Human visual and color information processing investigated by psychophysical approaches and development of applications with computational model simulation.

Project Leader
Keizo SHINOMORI, Dr. Eng. Professor, Information Systems Engineering Course

1. Objective
Visual and color information play crucial roles, being the central medium of human related information processing. In information systems, which process all forms of information involving humans, visual and color information are the primary means of information presentation. In particular, color is used extensively in information systems and technologies. However, scientific and applicability aspects of human visual information processing and human behavior have not been well investigated. In particular, I would like to point out that many studies in visual perception are independent of potential application of their findings and many of the applicable studies in visual information processing, such as image analysis and image retrieval, are ignoring how the human brain works to process images. Thus, in this project, within the context of knowledge of human perception and recognition, there is the need for understanding of color and illumination control, shape and color recognition, and visual information processing in behavioral tasks. Subsequently, algorithms for applications will be developed, especially focusing on computational model simulation methodology.

2. Project Outline
This project has four research areas, as follows.

(a) Impulse response function (IRF) of human visual system:
IR in this project is defined as the perceptual and/or cognitive response of the entire human visual processing system to a flash stimulation and can be described as a function of time. Regardless of the uncountable number of neurons concerning to the information process, the human system can control and synchronize divided information in the brain and can make a certain perception (and/or cognition). Thus, measurement of IRFs with sophisticated stimulus can be a good tool to investigate and analyze subsystems of the human visual processes (such as color and shape). [See refs. 1, 3, and 8]

(b) Age-related Changes in Visual Perception:
Human vision changes with age, originating from anatomical and physiological changes in the human visual system. Especially, the increment of lens density and decrement of cone sensitivities with age should cause extensive changes in visual perception. In some aspects of visual performance, that is true. However, in some other important aspects like color appearance, vision is relatively stable throughout the life span. In this research area, age-related change in visual performance will be measured, and work will be done to estimate these changes by means of empirical models. [See refs 3 and 9]

(c) Color Perception and Color Processing Models:
Some people have dichromatism in color vision, in which only two independent colors rather than three colors are required to match a certain color. Red-green dichromatism is a typical dichromatism; it causes reduced prominence of both red and green. However, dichromatic people can identify color chips accurately, although they cannot discriminate red and green in color test conditions. In this area, further investigation will be made to clarify this unexpected conflict.

(c) Shape Perception and Possible Shape Recognition Model:
Investigation of shape perception is another very important issue in vision research. In my laboratory, we have recently investigated face perception and recognition for recognition of individual persons and for the detection of emotion. In expanding these face researches, the shape perception issue will be investigated because the process of the face in brain must be different from other shape recognition. [See refs 2, 4, 5, 6 and 7]
In the subproject, the basic procedure will be: firstly human observers’ visual performance will be measured and analyzed to find factors that influence performance. Secondly, a computational model should be made based on those factors and used to simulate human visual performance. Thirdly, the closeness of results of real visual performance and results of computational model simulation will be evaluated.

4. Expected Performance
In this project, the successful candidate would be expected to:
(a) Make good proposals regarding the project and experiments, especially for Ph.D. (SSP) project. (This part is initially evaluated in the SSP application)
(b) Contributing to the supervisor’s project to learn protocols and procedures for high quality research.
(c) Working independently in experimental preparation and procedures and data analysis.
(d) Assisting the senior members (most likely masters students) in the lab in all aspects of research activities.
(e) Share routine work in terms of managing the laboratory.

5. Required Skills and Knowledge
The successful candidate for this project will have the following knowledge and skills:
(a) Some background about vision, brain and/or psychological research is preferred.
(b) Ability to adapt quickly to new research areas.
(c) High motivation to conduct foundation research on human factors.
(d) Ability to communicate effectively in English, including writing research papers in English.
(e) Ability to collect, analyze and report to English research publications.
(f) Programming skill (MATLAB), and strong ability in mathematics are preferred.
SSP status is restricted to a three-year period; all SSP students have to write at least two excellent research papers for established English language journals within three years. Thus, it is strongly recommended that the accepted candidate will join the supervisor’s project immediately and soon establish one project in the four research areas as the core of his/her Ph.D. thesis. Additionally, the candidate's proposals for new, creative, and interesting research subprojects are welcome.

References (Underlined authors are SSP graduates of this laboratory)
See our admission guidelines:
http://www.kochi-tech.ac.jp/kut_E/graduate/admission.html

Contact
E-mail: shinomori.keizo@kochi-tech.ac.jp