卒業研究報告

題 目

高エネルギーイオン散乱法における 散乱確率のシミュレーション

指導教員

原 央 教授

報告者

刈谷 之彦

平成 13 年 2 月 9 日

高知工科大学 電子 光システム工学科

目次

- 高エネルギーイオン散乱法(HEIS)
 1 1.高エネルギーイオン散乱法(HEIS)
 1 2.ラザフォード後方散乱法(RBS)
- 2.RBSにおけるイオン散乱過程
 - 2 1 . イオン散乱と原子の反跳
 - 2-2.高速イオンと物質との相互作用
 - 2-3. 散乱イオンの強度
 - 2 4 . 粒子の散乱
- 3. チャネリング現象
 - 3-1.チャネリング効果
 - 3-2.2原子モデル
- 4.散乱確率シミュレーション
 4-1.シミュレーションの概要
 4-2.シミュレーションの考え方
- 5.シミュレーション結果と考察 5-1.シミュレーションの実行結果 5-2.実行結果の考察 5-2.課題
- 6.まとめ
- 7.謝辞

1. 高エネルギーイオン散乱法(HEIS)

1 - 1 . 高エネルギーイオン散乱法(HEIS)

高エネルギーイオン散乱法(High Energy Ion Scattering,HEISと略称する)はH⁺、He⁺あるい はアルファ粒子のような軽いイオンビームをMeV程度の高エネルギーに加速し、固体に入 射して固体を構成する原子核により散乱されたイオンのエネルギーを分析することにより、 固体中に含まれる原子の組成、不純物原子の深さプロファイル、あるいは固体試料が結晶 の場合には不純物原子の結晶内位置や、結晶欠陥分布などの情報も得るものである。HEIS の長所は、高エネルギーイオンを用いるため、測定試料の破壊の程度が小さく(非破壊分析)、 また、たいていの場合1時間以内と測定時間が比較的短い、測定感度は中庸であるが、測 定に利用する物理現象の解析が確立されているので、定量性にすぐれていることである。

HEISの歴史は古く、1955年ごろから、主に核物理関係の研究に用いられていたが、 半導体中の不純物分析や、半導体/金属界面反応の解析に有用なことが認識されたことか ら、1965年以降急速に脚光を浴び、測定結果の発表がさかんになった。また、196 7年に打ち上げられた月探査船サーヴェイヤー5号に、アルファ線源を用いた簡単なHEIS の装置が搭載され、月の土壌分析が行われたことはよく知られている。

1 - 2 . ラザフォード後方散乱法 (RBS)

イオン散乱法は、散乱イオンのエネルギースペクトルの測定を基本としているので、イ オン散乱分光法とも呼ばれる。イオン散乱分光法は、入射イオンのエネルギーの大きさに よってつぎの三つに大別される。すなわち、1~5 keV程度の低エネルギー領域における低 エネルギー(低速)イオン散乱分光法(Low Energy Ion Scattering Spectroscopy; LEISS -- 歴史的な理由によって単にISSと略されることもある)、30~100 keV程度の中エネ ルギー領域における中エネルギー(中速)イオン散乱分光法(Medium Energy Ion Scattering Spectroscopy; MEISS)、そして1 MeV程度の高エネルギー領域におけるHEISである。HEIS の代表的な手法としてラザフォード後方散乱分光法(Rutherford Back scattering Spectroscopy; RBS)がある。

高エネルギーイオンを用いるRBS法では表面から数µm程度の深さまでの情報が得られ る。表面からより深く侵入して散乱される高エネルギーイオンは、試料中の原子や電子と の非弾性相互作用を通してより多くのエネルギーを失うことになるので、測定される散乱 イオンのエネルギースペクトルにおいて特定のエネルギーに着目すれば、それに対応する 特定の深さの情報を抽出することができる。すなわち、深さ分解が可能である。しかし、 RBSにおける深さ分解能は10nm程度なので、この程度の厚さにわたって平均化された情 報しか得られず、したがってRBSは原子間の位置関係を決定する必要のある表面構造解析 には必ずしも適さない。RBSはむしろ表面から数µm程度の深さまでの組成の深さ分析に威 力を発揮する。 2.RBSにおけるイオン散乱過程

2 - 1 . イオン散乱と原子の反跳

試料物質に入射したイオンは一般に多くの原子と相互作用しながら運動するが、高エネ ルギーイオンの場合にはイオンの運動は個々の原子との2体相互作用のくり返しとして記 述することができる。

図1にイオンと原子との相互作用の状況を簡単に示す。質量 M_1 のイオンがエネルギー E₀をもって質量 M_2 の静止したターゲット原子に接近すると、そのイオンは散乱角の方向にエネルギーE₁をもって散乱される(<90°の場合を前方散乱、>90°の場合を後方散乱と呼び、前方散乱においてが小さい場合を小角散乱、後方散乱を含むの大きい場合を広角散乱という)。この後方散乱イオンのエネルギーは、散乱過程でイオンエネルギーの一部をターゲット原子に反跳エネルギーとして与えるため、入射時のエネルギーE₀より小さくなる。さらに、物質とイオンとの相互作用によるエネルギー損失、あるいは別の表現を使えば、物質のもつ阻止能のため入射時より小さくなる。

図1:イオン散乱の概略図

2-2.高速イオンと物質との相互作用

イオンが物質中を通過するとき、物質との相互作用によりイオンは大別して二通りの散 乱をうける。一つは弾性散乱である。これは散乱前のイオンと原子の運動エネルギーの総 和が散乱後も保存される場合である。もう一つは非弾性散乱であって、この場合は運動エ ネルギーの総和の一部がほかのエネルギーに変るため保存されない。たとえば、物質中原 子のイオン化など、つまり電子励起にエネルギーが消費される場合がこれにあたる。RBS で使用されるMeV領域の高エネルギーイオンの場合、弾性散乱はほとんどなく電子励起(非 弾性散乱)が起こる。その理由は、運動するイオンと軌道電子間に生じるクーロン相互作 用の時間的変化が電子励起を起こすのに十分なほど激しくなるからである。また、MeV領 域の高速イオンのド・プロイ波長は原子間隔に比べ十分に小さいので、古典的粒子として とり扱うことができる。

さて、高速イオンが非弾性散乱によりエネルギーを失っていくことはわかったが、これ はどの程度に"弾性散乱"を受けるものであろうか。ここで、物質が Z_{2e} の荷電をもつ原子核 を考える。この物質に Z_{1e} の原子核をもつイオンがEのエネルギーで入射するとしよう。こ の場合、イオンと物質の両原子核間には互いの距離の2乗に逆比例するクーロンの反発力 が働き、それが十分大きいとイオンの進行方向に影響をあたえる(ラザフォード散乱)が、 そのためには両者がどの程度に近づけばよいのかを考えてみる。この距離をrとするとき、 クーロンのポテンシャルエネルギーの大きさは $Z_1Z_2e^2/r$ であるから、これとイオンの運 動エネルギーEが同程度になる距離r=bになればよいことがわかる。言いかえれば、b は イオンが原子に近づきうる最短の距離であって、この場合には最も激しい衝突が期待され るということである。この距離 b は正確には次式で与えられ、衝突半径と名づけられる。

$b = Z_1 Z_2 e^2 / E$

この式から、たとえば1 MeVのH⁺(Z_1 = 1)がSi(Z_2 = 14)の結晶内を運動する場合に は、b 2×10⁻⁴ となる。一方、原子核の大きさは10⁻⁴~10⁻³ くらいであるか ら、この高速度のH⁺は、Siの原子核のごく近傍を通ってほとんど正面衝突をする場合のほ かは、その運動方向を変えるほどの散乱(広角散乱)を受けないことがわかる。ここで、 この正面衝突に近い広角散乱こそが、高速イオンの"弾性散乱"にほかならないのである。 これらのことから、高速イオンの弾性散乱の確率は非常に小さいことがわかる。

さて、これまでSi原子核の周りの電子の存在を無視してきたが、これはそれほど問題に はならない。なぜなら、これら電子のもつ運動エネルギーは数evから数+evの範囲にあり、 1 Mevのイオンエネルギーに比べれば十分小さく、そのうえ質量はイオンに比べて数千倍 以上も小さい。したがって、これら電子により高速イオンが散乱され、イオンの運動方向 が変化するということは起こりえない。また、前述のごとくラザフォード(広角)散乱が 起こるには、b~10⁻⁴ 程度に両原子が接近しなければならないから、その場合、これ ら電子が原子核間に働くクーロン反発力を弱める(遮へいする)ことはない。電子と原子 核との距離はbより2~3桁は大きいからである。つまり、これら電子はラザフォード散乱 には何も寄与せず、非弾性散乱に寄与するだけである。

そこで、高速イオンが固体物質に一様に入射する場合、これらイオンからみれば、物質 はきわめて希薄に小さな(~10⁻⁴)原子核が点々と互いに遠くに離れて(~数)散 在している大きな空間である。そして、これらイオンのごく一部(計算すれば数百分の一 以下であることがわかる)が、たまたま原子核のごく近く(~10⁻⁴)を通る場合にの み広角散乱が起こるが、大部分のイオンは散乱されずに物質中を直進する。また、高速イ オンの通路に存在する電子群は、個々の過程としては小さいが、集積してこのイオンに対 してブレーキの役目を果たす。この電子によるイオンのエネルギー損失を電子阻止能 (electronic stopping power)と呼ぶ。また、原子核との衝突による弾性散乱でもエネルギー を失う。これを原子核阻止能(nuclear stopping power)と呼ぶ。

さて、数MeVの高速イオンが一つの原子核により後方散乱されるには、イオンが原子 核の中心へ約10⁻⁴ (10⁻¹² cm)程度近づかなければならないから、その散乱断面積 は非常に小さく(10⁻¹² cm)² = 10⁻²⁴ cm²、すなわちバーン(barn:原子物理学でよ く用いられる単位)の程度であることがわかる。一方、固体物質は1 cm³中に 10²²~10²³個の原子核を含んでいるから、物質が単結晶の場合には、高速イオン群が 結晶全体から後方散乱されるマクロな断面積にその結晶性が影響を持つ場合がある。すな わち、イオンの入射方向が結晶軸(または面)と特殊な関係にある場合(これをaligned case と呼ぶ)には、そうでないとき(randam case)に比べて、この断面積ははなはだしく(約 2桁ほど)小さくなる(つまり後方散乱が起こりにくい)現象が認められる。これはチャ ネリング現象と呼ばれている。

2-3. 散乱イオンの強度

散乱イオンの強度は、散乱の頻度を表す微分散乱断面積を使って示される。 物理学で粒子の散乱問題を扱うときには、ふつう、個々の粒子の散乱を問題にするので はなく、粒子ビームの散乱を考察の対象とする。いま、同一速度 v で一定方向に平行に進 む、一様な密度の粒子束の流れを考えよう。これは粒子ビームとよばれるが、その強度 は、v に垂直な平面(すなわち入射面)内の単位面積を単位時間あたりに横切る粒子の数、

n = v

で表される。さて入射方向の中心軸(力の中心点を通る直線)からの距離を衝突係数 p とし、ビーム中のいろいろな p の値をもつ各粒子は、それぞれに対応した散乱角 で散乱される。ここで考えている中心力による散乱は、中心軸のまわりに軸対象である。単位時間あたり、散乱角 と +d のあいだにある立体角d 内に散乱される粒子の数をdNと書こう。この数自身は入射ビームの強度nに依存する(比例する)ので、散乱を特徴づける物理量として適当でない。そこで、dNをnで割って、

d = dN / n

なる普遍的物理量を定義する。これは、単位面積・単位時間あたり1個の粒子ビームを入 射させたときに、立体角d 内に散乱される粒子にほかならない。定義により、d は面積 の次元をもっており、散乱断面積とよばれる。これは散乱する場の形によって完全に決定 され、また散乱過程のもっとも重要な特徴づけを与える。また、これを単位立体角あたり の量として定義したものは微分散乱断面積(または微分断面積)とよばれる。

$$d / d = 1 / n \cdot d N / d$$

さらに、微分散乱断面積を全立体角について積分したもの、

 $= d / d \cdot d$

は、全散乱断面積とよばれる。

図2: 固体表面における高速イオンの立体角d 内への散乱

2-4. 粒子の散乱

ラザフォードは、原子核の大きさを調べるために、放射性原子核から飛び出してくる質量mの軽い原子核である 粒子を、原子核にぶつけて、その散乱のようすを調べた。原子番号がこの原子は、Zeの電荷をもつ原子核と、そのまわりを取り囲むZ個の非常に質量の軽い電子とから構成されている(電子の質量は、陽子の質量の約2000分の1である)。ここで、eは1個の陽子がもつ電荷である。したがって、電子は-eの電荷をもつ。電子の軌道半径は原子の大きさである1 程度に広がっていることは、化学反応等から知られていたが、その中心にあると思われる原子核がどの程度の大きさをもつものかはわかっていなかった。原子の大部分の質量を担っている原子核が、原子の大きさくらいに広がっていても不思議ではない。ラザフォード散乱は、原子の中心にある原子核が、実は原子の大きさに比べてきわめて小さい10⁻⁴~10⁻⁵ 程度の半径をもち、原子サイズに比べてほとんど点状であることを示したのである。すなわち、陽子の約4倍の重さの点状 粒子は、原

子核の半径の約10⁵倍の領域に広がる軽い電子をはねとばして、点状の重い原子核に近づき、原子核とのクーロン相互作用によって散乱される。このような散乱は質点の力学における双曲線軌道と同様に扱うことができる。この場合、双曲線の漸近線と原子核との距離をp(衝突パラメータ)とし、質量mの 粒子が速さvで原子核に近づいてきて散乱角 で散乱するとすれば、角運動量およびエネルギー保存則から

$$p = 2 Ze^2 / mv^2 \cdot cot / 2$$
 (a)

となる。この場合、 粒子に対して原子核を固定して考えている。実験ではいろいろな p の値をもつ 粒子がとんでくるわけであるが、図3のように、原子核Zeのまわりの円柱を 考え、この円柱の半径 p と p + d p の管に入ってくる 粒子の数 dn は、dn = 2 pdp・n、 ただしn は単位面積あたりの全体の入射 粒子の数である。個の式の右辺は式(a)の関係を考 慮すると、

図3:電荷Zeの原子核によって散乱角 と + d の 間に散乱される 粒子の軌道

 $dn = -n (Ze^2 / mv^2)^2 \cdot cosec^4 / 2 \cdot 2 \sin d$

となる。負号が付くのはpが増加すれば が減少することを示している。そこで入射する 粒子が立体角増加分d = 2 sin d の中に散乱される場合をd とすると、

$$d = (Ze^2 / mv^2)^2 \cdot cosec^4 / 2d$$
 (b)

となる。これがラザフォードの散乱公式とよばれるものであり、この式から求められる d /d が散乱断面積である。式(b)の右辺のZe²は、ヘリウムおよびターゲット原子の それぞれの電荷のクーロン斥力を考えて誘導されたものであるから、ヘリウムの原子番号 2とターゲット原子の原子番号Zとの積にe²/2を乗じたものと考えることができる。

RBSの場合も、上と同じ考えが通用するので表面層の原子(原子番号: Z_2 、質量:M) を入射イオン(構成原子の原子番号: Z_1 、質量:m)に対してその位置を固定して考え、 入射イオンの運動エネルギー1/2・ $mv^2 \epsilon_E$ で表すと、

d =
$$(1/2Z_1Z_2e^2/2E)^2/cosec^4/2d$$

そして、

d / d =
$$(Z_1Z_2e^2 / 4E)^2 \cdot cosec^4$$
 / 2

となる。

3. チャネリング現象

3-1.チャネリング効果

単結晶に高速イオンを結晶軸に平行に入射させる場合(これをaligned方向と呼ぶ)、散 乱収量(scattering yield)は、そうでない場合(random方向)に比べて2桁近くも減少する。 結晶模型を低指数軸方向からながめると結晶内に原子列に囲まれた空間があることがわか る。このような空間をチャネル(channel)と呼ぶ。このチャネル軸との角度が1°以内(し たがって、ほぼ軸に平行)でチャネル内に進入する高速イオンは、チャネルを構成する原 子列と小角散乱を繰り返しながら進んでいく(クーロンの反発力を受ける)。結果、ラザ フォード散乱の確率が大幅に低下する。この現象がチャネリングである(図4、コースA)。

図4:チャネリング(A)とディチャネリング(B)(C)の模式図

チャネリング状態にあるイオンの数は表面から内部に入るにしたがって減少していく。 この現象をディチャネリングという。ディチャネリングが起こる要因としては、図4のコ ースBのように結晶構成原子の熱振動、あるいはコースCのような結晶欠陥(格子間原子) によって直接原子と衝突することによって起こる。

3-2.二原子モデル

チャネリング条件下での入射イオンと原子列との相互作用を考える手始めに二原子モデルを取り上げる。図5に示すように、距離dだけ離れて結合している2個の原子(Z_2)に、結合方向に平行に、イオンビーム(Z_1)がエネルギーE₀をもって入射するとする。1番目の原子と正面衝突したイオンは後方散乱するし、衝突パラメータpが大きいと散乱角 は小さいから(小角散乱するから)、1番目の原子の後ろ側にはイオンビームが入り込めない影ができる。この影の形が円錐に似ているのでシャドーコーン(shadow cone)と呼ばれる。そして、第二層目以下の原子による散乱は、表面原子の影になるために、明らかに減少する。この効果はshadowing effectと呼ばれ、すべてのHEIS測定の原理となっている。

図5:2原子モデル

さて、衝突パラメータpで入射してきたイオンの1番目の原子による散乱角 はラザフォードの散乱公式、

$$\tan(12)$$
 / 2 $Z_1Z_2e^2$ / 2 E_0p

で与えられる。 は小さい角とした。このとき、図5中に示したイオンと2番目の原子との距離 r は

$$r = p + tan$$

$$p + Z_1 Z_2 e^2 d / E_0 p$$

となる。最小を与える p の値は、dr / dp = 0より $p = (Z_1 Z_2 e^2 d / E_0)^{1/2}$ と求められて、このとき r の最小値Rは、

$$\mathbf{R} = (\ 2 \, \mathbf{Z}_1 \mathbf{Z}_2 e^2 \, \mathbf{d} \, / \, \mathbf{E}_0)^{1 \, / \, 2}$$

となる。このRはシャドーコーン半径とよばれ、 $E_0 \sim MeV$ 、d ~ に対しては R~0.1 程度となる。以上のRの導出では、簡単のためにラザフォードの散乱公式をも ちいたが、 :小の過程の下では散乱ポテンシャルの電子によるスクリーニング効果が無 視できなくなるので、正確にはクーロンポテンシャルよりさらに現実に近いポテンシャル (トーマスフェルミポテンシャルなど)を使わなければならない。

イオンビームは一様な密度をもって入射してくるが、1番目の原子によって散乱を受けた あとではある分布をもつようになる。2番目の原子のところでの分布f(r)は、粒子数保存 の関係: f(r) 2 rdr = f(p) 2 pdpから、

f(r) = 0, r < R

=
$$(1/2) [\{ 1 - (R^2/r^2) \}^{1/2} + \{ 1 - (R^2/r^2) \}^{-1/2}], r > R$$

と求められる。f(p)は入射フラックスの分布で1と規格化している。

次に2原子モデルでのイオンの広角散乱の確率を求めてみる。1番目の原子は、散乱断 面積のいかんにかかわらず、必ず散乱に寄与することは明らかであるから、その確率を1 とする。原子が完全に静止していれば、図5のとおり、2番目の原子の近くにはイオンは こないので、それによる散乱確率は0であるが、熱振動があるので、やや複雑となる。熱 振動による原子の位置の分布が単純なガウス型であるとすると、原子の平衡位置からの距 離をrとして、r~(r+dr)に原子が存在する確率 dP(r) は、

$$dP(r) = \exp(-r^{2}/2) \cdot 2 r dr/2$$
 (C)

で与えられる。 は(2次元の)熱振動振幅で、その値は多くの物質について室温で 0.1 の程度である。イオンの散乱確率は、この原子の存在確率とフラックス分布f(r) の重なり積分として計算できる。すなわち、

- $I = I_1 + I_2$
 - = f (p) dP(p) + f (r) dP(r)

$$= 1 + \{ 1 + R^{2} / (2^{2}) \} \cdot \exp\{ -R^{2} / (2^{2}) \}$$

である。I₁は1番目の原子の寄与で、I₂は2番目の原子の寄与である。この式を見ると、 イオンビームと結晶のパラメータは、R / という一つのパラメータとなって散乱の確率 (強度)Iを決定していることがわかる。Iと / Rのこの普遍的な関係を図6に示す。 /Rの値によっては、I は1よりもかなり大きく2に近くなることもある。実際、イオン ビームからみると、2個の原子は図5のように整列しているのではなくて、熱振動で乱れ、 2番目の原子も頻繁に顔をだしているのである。

図6:Iと / Rの関係

4. 散乱確率シミュレーション

4-1.シミュレーションの概要

図7のような2原子モデルを考え、Si原子の結合軸と平行にHeイオンを入射したときの 散乱確率を求める。ここでは、第1原子で小角散乱されたHeイオンが第2原子で広角散乱 される散乱確率を求めている。Heイオンは大量に入射されるので、1番目のSi原子は必ず 散乱に寄与するとして考えるから、その散乱確率を1とし、第1Si原子、第2Si原子とも熱 振動をしているものとしてシミュレーションを行っている。

図 7

4-2.シミュレーションの考え方

まず、入射イオンと第1原子との散乱を考えたとき、イオン、原子が存在する位置を決 定するために、結合軸を原点にして垂直な平面を考える。(図8)

図8:原子平面を考える

入射イオン、原子ともにこの平面上に乱数によって、座標を決定する(図8)。 そして、イオンと原子の2点間の距離 p を求める。これは3 - 2 で出てきた衝突パラメー タ p のことである。この p がゼロの場合、すなわち、入射イオンと第1原子の座標が一 致した場合は、イオンは第1原子によって広角散乱されることにしている(図9)。実際 の広角散乱はイオンと原子が10⁻⁴ 程度近づいた場合に生じるが、ここでは前述の条件 で後方散乱するとしている。

図9:第1原子位置、イオン位置を乱数で決定

図10:第1原子での広角散乱

第1原子で広角散乱されなかったイオンは原子のもつクーロン力によって、軌道が曲げ られ(小角散乱され)第2原子のほうへと向かう(図11,図12)。この場合、第2原 子平面でのイオンの座標を考えなければならない。

図12において、rは第1原子において、結合軸に平行な軸を考えた時、第2原子平面におけるイオンとその軸との距離である。

図11:第1原子で小角散乱されたイオン

図12:距離 p と距離 r の関係

r は p が求まることによって以下の式で計算することができる。

 $\mathbf{r} = \mathbf{p} + \mathbf{Z}_1 \mathbf{Z}_2 \mathbf{e}^2 \mathbf{d} / \mathbf{E}_0 \cdot \mathbf{p}$

 Z_1 :入射イオンの原子番号(ここではHeイオンなので2) Z_2 :ターゲット原子の原子番号(ここではSi原子なので14) e^2 :14.4eV・ d:原子間距離5.43 (<100>方向) E_0 :入射イオンのエネルギー(ここでは10⁶eV=1MeV)

r を第2原子平面上で考える(図13)。このrにより、イオンの座標を決定することが できる。ここで、第3象限に斜線で表されている円は第1原子の位置であり、第1象限に 斜線で表されている円は第1原子平面上に入射してきたイオンの座標である。そして第1 象限の塗りつぶされた円が、第2原子である。第2原子位置も第1原子と同様に、乱数に よって決定されている。

ここでのイオンの座標と、第2原子との座標が一致すれば、入射イオンは第2原子によって広角散乱されたことになる(図14)。一致しない場合は、第3原子以下で散乱されるであろうが、ここでのシミュレーションでは第2原子までとする。

図13:第2原子平面上のでイオンの位置と 乱数による第2原子位置の決定

図14:第2原子での広角散乱

ここで、1回のイオン入射で広角散乱する場合の散乱回数を計算で求める。原子は熱振動 をしているため、各座標における存在確率に差が生じる。つまり、広角散乱するとき、原 点付近での散乱と、端付近での散乱回数は頻度が違うわけである。そこでまず、各座標に おける存在確率を求めることにする。第1原子の存在確率P₁は下式で求められる。

 $P_1 = \exp(-r_1^2/2) / \exp(-r^2/2)$

r₁:第1原子と原点との距離 :熱振動振幅,0.07

ここで、 $exp(-r_1^2/2)$ はガウス分布を表す式で、分母の で表される式は、原子平面座 標上にとりうるすべての点と原点との距離の和を表している。1回の入射イオンで第1原子に おいて広角散乱した場合は、「1回散乱した」とは数えず、「 P_1 回散乱した」と数える。同様 に第2原子の存在確率 P_2 を求める。第2原子での散乱の数え方は $P_1 \times P_2$ 回となる。これは第2 原子での広角散乱は入射イオンが第1原子の寄与を受けていることを表している。

実際のシミュレーションでは100万回以上のイオンを入射するので、第1原子、第2 原子とも、広角散乱した場合の回数の和を出す。この和が各原子での散乱確率となる。そ して、第1原子での散乱確率を1としたときの、第2原子での散乱確率 I は

 $\mathbf{I} = (\mathbf{P}_1 \times \mathbf{P}_2) / \mathbf{P}_1$

となる。この [をシミュレーションで出力している。

- 5.シミュレーション結果と考察
- 5-1.シミュレーションの実行結果

ここで行なうシミュレーション条件は・・・

入射イオン:Heイオン 入射エネルギー:1MeV 入射回数:10万~1億回 ターゲット原子:S源子 入射方向:<100>方向(原子間距離d=5.43) 平面:100×100平面

ここで、図9、図13における原子平面は10×10の小さい面で行なっているが、実際のシミュレーションでは100×100の面で行なっている。この条件でシミュレーションを実行した主な結果を以下に示す。

入射イオン10万回のとき・・・・I=6×10⁻⁵~9×10⁻⁵ 入射イオン100万回のとき・・・I=1.3×10⁻⁵~3.5×10⁻⁵ 入射イオン1000万回のとき・・I=2.19×10⁻⁵ 入射イオン1億回のとき・・・・・I=2.2×10⁻⁵

となった。ここでの結果は、各入射イオン数において、数十回実行した結果である。そして、100万回入射のときの所用時間は約5秒、1000万回入射の所用時間は約50秒、 1億回入射の所用時間は約8分だった。

5 - 2 . 実行結果の考察

入射イオンは入射回数によって、散乱確率にばらつきが生じている。入射10万回ほどの低回数だとばらつきが多いことがわかる。1000万回、1億回と入射回数が増えるにつれ、散乱確率が収束していっている様子がわかる。ゆえに、イオンの入射回数は1000万回から1億回の範囲でよいと思われる。

5-3.課題

今回のシミュレーションでは第2原子までの散乱確率しか計算できないので、第3原子以降の散乱確率の計算や、他の原子列においての散乱確率の計算が課題としてあげられる。

6.まとめ

この卒業研究での散乱確率シミュレーションは穴だらけのプログラムではあったものの、 シミュレーションを完成させるために、高エネルギーイオン散乱法について一から調べ、 大学生活最後の勉強には、自分にとって大変有用なものだった。

7.謝辞

ここで、この卒業研究においてお世話になった、武田先生、成沢先生に感謝の意をここに 表したい。

参考文献:

(1)平木 昭夫,成沢 忠 表面・界面の分析と評価 オーム社,1994.6.1	
(2)社団法人 日本化学会 実験化学講座[13]表面・界面 丸善株式会社 1993.8.31	
(3)八木 克道 表面の構造解析 丸善株式会社 1998.3.31	
(4) 松田 哲 力学 丸善株式会社 平成1993.8.31	
(5)エリ・デ・ランダウ・イェ・エム・リフシッツ 訳者:広重 徹 水戸 力学 東京図書株式会社 1974.10.1	厳
(6)塚越 一雄 はじめてのC ⁺⁺ 技術評論社 1999.10.10	

(7)スティーブ・オウアルライン 訳者:望月 康司 谷口 功 C⁺⁺ 実践プログラミング オーム社 1996.10.30

付録

4 - 2 で説明した内容をプログラミング言語C⁺⁺により、プログラミングしている。こ こではそのソースコードを紹介する。

#include<iostream.h>//cout を使うのに必要 #include<stdlib.h>//rand を使うのに必要 #include<time.h>//srand を使うのに必要 #include<math.h>//sqrt を使うのに必要 #include<iomanip.h>//setw を使うのに必要

int siki(),S(); int J=100;//全コマ数を入力 int m=J+1;//(全コマ数/2)+1::原子の存在範囲 double t=0.07; double N=0.003;// - こまの大きさ。J × N = 平面の1辺の長さ double r1,r2,k01,k02,v1,v2; double P1,P2; double w=1.5;//w の値で散乱範囲を決定 double s;

int main() srand((unsigned)time(0));//乱数の初期化

S();

{

```
double sumP1=0;
double sumP2=0;
int z=100000000;//*******イオンの入射回数を決定!!*******
for(int i=0;i<z;i++)
{//for の最初の範囲を示す
```

```
//************ 第1原子の座標 ********************
```

int x1=rand()%m,y1=rand()%m;// %m は余りを意味し、1~m までの範囲

double xg,yg;//-50 から 50 までの数を表す。 xg = x1 - J/2;yg=y1-J/2; //************ 第1原子の座標 * * * * * * * * * * * * * * * * * * // * イオンの座標(第1原子面) //求め方は第1原子と同じ

int x2=rand()%m,y2=rand()%m;

double xi,yi; xi=x2-J/2; yi=y2-J/2;

//*********** イオンの座標(第1原子面) ************

//************** イオンと第1原子との距離pの計算 ************

double p; p=sqrt((xg-xi)*(xg-xi)+(yg-yi)*(yg-yi));

r1=(xg)*(xg)+(yg)*(yg);//原点と第1原子との距離の2乗した値 v1=-N*N*r1/(t*t);//tは熱振動振幅を表わす

k01=exp(v1); P1=k01/s;//第1原子の存在確率

//************ 第1原子の存在確率 ******************* //************ 第1原子での散乱判定 *************** if(p<=w)//イオンと原子の距離 p が w 以下のとき広角散乱される ł cout<<setw(4)<<i+1<<"::入射イオンは第1 原子によって"<<P1<<"回散乱 されました。"<<endl; sumP1 += P1; } else if(p>w)//イオンと原子の距離がwより大きいとき小角散乱される { //************ 第1原子での散乱判定 ***************** int z1=2;//入射イオンがH+より int E0=1000000;// = 1 M e V int z2=14;//ターゲット原子がSiより double e=14.4;//14.4 e V •

double d=5.43;//(100)方向入射のときの原子間距離 double r; r=p*N+(z1*z2*e*d/(E0*p*N));// * * * * * * * * * * * * * * //*********** 第2原子面でのイオンの座標 ************* double a,b,xi2,yi2; a=xi-xg; b=yi-yg; xi2=a*r/p+N*xg; yi2=b*r/p+N*yg; //************ 第2原子面でのイオンの座標 ************* //************ 第2原子の座標 ********************* int x4=rand()%m,y4=rand()%m;//%ra は余りを意味し、0 ~ m+1 までの範囲 double xg2,yg2; xg2=(x4-J/2)*N;yg2=(y4-J/2)*N; double p2; p2=sqrt((xg2-xi2)*(xg2-xi2)+(yg2-yi2)*(yg2-yi2)); // * * * * * * * * * * * 第2原子の座標 **************** 第2原子の存在確率 *************** // * * * * * * * * * * * //求め方は第1原子と同じ r2=(xg2)*(xg2)+(yg2)*(yg2);//原点と第2原子との距離の2乗 v2=-r2/(t*t);k02=exp(v2);P2=k02/s;//第2原子の存在確率 double P22=P1*P2; //********** 第2原子の存在確率 ***************** //********* 第2原子での広角散乱の判定 ***************** if(p2<=w*N) { cout<<setw(4)<<i+1<<"::第2原子によって"<<P22<<"回散乱されまし た。"<<endl; sumP2 += P22;} }//else if(p>w)の終わりを示す }//for の終わりを示す //********** 第2原子での広角散乱の判定 *************** cout<<endl; cout<<"第1原子での散乱回数は"<<sumP1<<"回となる。"<<endl; cout<<"第2原子での散乱回数は"<<sumP2<<"回となる。"<<endl; if(!sumP1==0){ cout<<"イオンを"<<z<"個入射したとき、"<<endl <<"第1原子での散乱確率を1としたときの第2原子での散乱確率は "<<sumP2/sumP1<<"である。"<<endl; } // * * * * * * * * * * * * * * * * return 0; } // * * * * * * * * * * * * * * * * exp(-r^2/ ^2)の計算 ********* double ee; int rr; int siki() { double x; x = -N*N*rr/(t*t);ee=exp(x);return 0; } int S() { double sum=0; for(int I=0;I<=J/2;I++)//I = 全コマ数/2 { for(int i=I, j=1; j <=J/2; j++)rr=i*i+j*j;

}