卒業研究報告

題 目

Ti:サファイアレーザーによる 超高速光パルスの発生と応用

指 導 教 員 神戸 宏教授

報告者

中野 雄大

平成13年2月9日

高知工科大学 電子・光システム工学科

第1章	序論 1	
1-1 背	景・目的 ·········1	
1-2 構	成 •••••••••••••••••••••••••••••	
第2章	超高速パルスの発生 2	
2-1 E	ード同期の原理 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・2	
2-2 E	ード同期の方法 ・・・・・・・・・・・・・・・・・・・・・・・・6	
2-2-1	強制(能動)モード同期 ・・・・・・・・・・・・・・・・・6	
2-2-2	受動モード同期 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2-2-3	再生モード同期 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2-2-4	カーレンズモード同期 ・・・・・・・・・・・・・・・・・・・・・	
第3章	超高速パルス光実験装置 8	
3-1 実	験装置配置 ・・・・・・・・・・・・・・・・・・・・・・・・	
3-2 M	illenia V ••••••••9	
3-3 オ	ートコリレーター ・・・・・・・・・・・・・・・・・・・・・10)
3-3 オ 3-3-1	ートコリレーター ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)
3-3 オ 3-3-1 3-3-2	ートコリレーター ・・・・・10 SHG 相関法の原理 ・・・・・10 オートコリレータの使用方法 ・・・・・・・・11)
3-3 オ 3-3-1 3-3-2 3-3-3	ートコリレーター ・・・・・10 SHG 相関法の原理 ・・・・・・・・・・・・・・・・・・10 オートコリレータの使用方法 ・・・・・・・・・・・11 フェムト秒パルス時間幅測定 ・・・・・12)
3-3 オ 3-3-1 3-3-2 3-3-3	ートコリレーター ・・・・・10 SHG 相関法の原理 ・・・・・・・・・・・・・・・・・・・10 オートコリレータの使用方法 ・・・・・・・・・・・11 フェムト秒パルス時間幅測定 ・・・・・・12)
3-3 才 3-3-1 3-3-2 3-3-3 第4章	 ートコリレーター ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I
3-3 オ 3-3-1 3-3-2 3-3-3 第4章 4-1 構	 ートコリレーター ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・) L
3-3 オ 3-3-1 3-3-2 3-3-3 第4章 4-1 構 4-2 ピ	 ートコリレーター) L :
3-3 オ 3-3-1 3-3-2 3-3-3 第4章 4-1 構 4-2 ピ 4-3 フ	 トコリレーター)
3-3 オ 3-3-1 3-3-2 3-3-3 第4章 4-1 構 4-2 ピ 4-3 フ 4-3-1	 トコリレーター	

4-3-3	励起光出力とパルス光スペクトル幅の関係 ・・・・・24
4-3-4	励起光出力とパルス光時間幅の関係 ・・・・・・・・・25
4-3-5	パルス発振波長とパルス光平均出力の関係 ・・・・・26
4-3-6	実験のまとめ ・・・・・・・・・・・・・・・・・・・・・・・27
4-4 t	とめ ・・・・・29
4-4-1	ピコ秒用 Ti:サファイアレーザーの操作の特徴 ・・・・・29
4-4-2	フェムト秒用 Ti:サファイアレーザーの操作の特徴 ・・・・30

32

第5章 非線形光学効果

5-1	非約	泉型光学効果 ······32
5-2	光フ	bー効果と自己位相変調 ・・・・・・・・・・・・・・・・・・33
5-3	高調	周波発生 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・35
5-4	白色	色光発生実験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5-5	SH	G 結晶効率特性測定 ••••••••••••••••••••••••37
5-	5-1	SHG 結晶入射光角度依存性 ••••••••••••••••40
5-	5-2	SHG 結晶入射光集光位置依存性 ··········42
5-	5-3	SHG 結晶入射光出力依存性 ··········43
5-	5-4	SHG 結晶入射光波長依存性 ••••••••••••••45
5-	5-5	第2高調波パルススペクトル ・・・・・・・・・・・・47
5-	5-6	測定実験のまとめ ・・・・・・・・・・・・・・・・・・・・・・・49

第6章	その他実験	51
6 - 1	光ファイバ特性実験	
6 - 2	蛍光発光測定 ·····	

第七章	結論	53

謝辞	55
参考文献	56

第1章 序論

1-1 背景・目的

これからの高度情報化社会においてインターネットをはじめ大容量のデータ 通信の需要が増大しているなか、それらの伝送技術およびコンピュータなどの 処理技術において光技術の果たす役割が重要視されている。

よく知られているように高速かつ大容量伝送ができる光通信システムでは更 なる大容量伝送技術の研究開発が盛んである。デジタル光ファイバ通信では、 より大容量の情報を伝送するために必要とされるパルス幅の短縮化はもちろん のこと、波長分割多重方式(WDM)、時分割多重方式(TDM)などに代表さ れる多重通信技術、光ソリトン伝送などの長距離伝送技術、またこれらを実現 するためのデバイス・ファイバおよびその材料の研究開発において、超高速パ ルス光やそれに深い関わりを持つ非線形光学効果の研究は重要である。また、 超高速光パルスはピコ秒、フェムト秒の時間範囲に起こる物質中での様々な現 象を対象とした研究やパルス光ピーク出力の高さを利用した材料加工などへの 応用など様々な分野で研究・応用されている。

そのようなことから本研究は波長可変モード同期 Ti:サファイアレーザーを 用い、ピコ秒、フェムト秒というパルス幅の超短光パルスを発生させ、高調波・ 白色光の発生などの光非線形光学効果など、超高速パルス光のもたらす現象を 利用することでデバイス・材料測定、光通信分野などへの応用を探ることを目 的としている。上に述べたように超高速光パルスの研究は重要であることから、 本研究では超高速パルスレーザー装置を立ち上げ、その特性を調べるとともに 超高速光パルスを用いた非線形光学効果などの実験をおこなった。

1-2 論文の構成

本論文では第2章において超高速光パルス発生の原理・方法、第3章に超高 速光パルスを用いた実験の装置の説明、第4章に超高速光パルスを発振する Ti: サファイアレーザーの特性、第5章に超高速パルス光と関わりの深い非線形光 学効果について、第6章に Ti:サファイアレーザーを用いたその他の実験につい て述べる。

第2章 超高速パルス光の発生

本論文で述べる超高速パルス光とはパルス時間幅がピコ秒(10⁻¹²s)、フェムト秒(10⁻¹⁵s)のパルス光のことを指し、超短光パルスなどとも呼ばれる。これらのパルス光はその時間幅が短いとともに高いピーク光強度もつという特徴を持っている。これらの特徴から超短光パルスは物質中で非常に高速に起こる緩和現象の研究や光通信の多重通信技術、非線形光学現象の研究及び光通信技術への応用などに活かされている。

また、現在研究されている光パルスの応用をいくつか挙げると、光導波路な どの高速光通信デバイスの材料として注目されているフォトニック結晶の特性 測定や、光導波路への光パルス入射による WDM (Wavelegth Division Multiplex)用の波長の光の発生などから、パルス光ピーク出力の高さを利用し てガラスなどの透明な物質中に複数のビームを交差させ、その光学的性質を変 化させることで情報の記録をしたり、材料に新たな構造を作ったりするという 研究までさまざまなものがある。

本章ではこの超高速パルスの発生の原理となるモード同期の原理、及びその 方法について述べる。

2-1 モード同期の原理

本研究室の Ti:サファイアレーザーをはじめ、光通信に用いられるような半導体レーザー、ファイバレーザーなどの短パルス光(パルス幅:ピコ秒、フェムト秒)を発振するレーザーの多くはモード同期という手法により短パルス光を発振させている。

レーザー光の発振波長は増幅媒質で決まる遷移エネルギーと共振器の長さと で決まる。発振光のスペクトルには普通、レーザー共振器を往復する時間の逆 数に比例する周波数 だけ離れた複数の縦モードからなっていて、その各モ ードの位相は無関係である。このとき複数のレーザー光は時間的には不規則な 変動を示すが、ここで各縦モードの位相をそろえさせると光が共振器を往復す る時間1/ (=2L/C、L:共振器長、C:光速)の時間間隔(周期)で 短い時間幅のパルスが放出される。この現象をモードロック(同期)という。 モード同期をおこなうと図 2-1 のようなパルスが得られ、現在では約6フェム ト秒という高速なパルス光が世の中で作られている。

いまここで、(2N+1)個の縦モードが同一の振幅 Eo で発振していたとする。 そして各モード間の位相 が、

$$_{k}-_{k-1}=$$
 (2-1)

を満足するような一定の値に保たれていたとする。そのときの全電場強度 E(t) は、

$$E(t) = \sum_{l=-N}^{N} E_0 \exp i[(_0 + l) + l]$$
 (2-2)

となる。 0は発振中心周波数であり、 は

$$w = 2 \qquad = c/L \qquad (2-3)$$

である。式 (2-2)から、光強度 *I*(*t*) = *E*(*t*)² は

$$I(t) = I_0 \left\{ \frac{\sin[\frac{1}{2}(2N+1)(-t+-)]}{\sin[\frac{1}{2}(-t+-)]} \right\}^2$$
(2-4)

となる。このことは各縦モード間の位相が式(2-1)のような一定の関係を持つ と各モード間で干渉が起こり図 2-1 のようなパルス光が得られる。 このモード同期の簡単な原理を図 2-2 に示す。同図は縦モードが4つの波で あるとして、それを合成した波形でモード同期されているもの、いないものに わけてある。モード同期していないものでは合成した4つの波の位相の関係は ばらばらで合成波は不規則な変動をしているが、モード同期しているものでは 4つの波の位相を一定の関係にしてある。すると、モード間の干渉が起こり一 定間隔でパルスができるようになっている。そしてそのパルスのピークはモー ド同期していないものに比べ高い値となっている。

図 2-2 モードロックの簡単な説明

光パルスの時間間隔 T は式(2-4)の分母がゼロになるところで見ると、

$$T = 2 / = 1 /$$
 (2-5)

となり、共振器を光が一往復するのに必要な時間と等しい。また、光パルスの 時間幅 t は

$$\mathbf{t} = \frac{1}{2N+1} \cdot \frac{2\mathbf{p}}{\mathbf{p}} = \frac{1}{2N+1} \cdot \frac{1}{2N+1}$$
(2-6)

である。この式(2-6)から縦モードの総数 2N+1、光増幅スペクトルの波長帯域 が広いほどパルス幅 t は短くなるということがわかる。式(2-6)の分母は全発 振周波数幅である。

ひとつのパルス光に含まれる波長成分は図 2-3 のようになっている。パルス 波形の時間依存性と周波数依存性は

$$E(t) = \frac{1}{\sqrt{2}} \int_{\infty}^{\infty} E(\cdot) e^{-j \cdot t} d$$

$$E(\cdot) = \frac{1}{\sqrt{2}} \int_{\infty}^{\infty} E(t) e^{j \cdot t} dt$$

$$(2-7)$$

式(2-7)のようなフーリエ変換の関係になっている。時間軸で見たパルス波形の 半値全幅(FWHM)を t、周波数軸で見たパルス波形の半値全幅(FWHM) を とすると、式(2-7)の関係から

 $\Delta \quad \cdot \Delta t \qquad 2 \quad K \tag{2-8}$

の関係が得られる。Kの値は実際のパルスの波形によって異なり、矩形波パル スで1、本研究室Ti:サファイアレーザーの近似波形 sech²形では0.315となる。 以上のことから増幅媒質で決まるパルス光スペクトル帯域幅を広くとることが できれば、パルスの時間幅を短くできるということがわかる。この式(2-8)で等 号が成り立つときが最もパルスの時間幅が短いときで、そのパルスを transform-limited パルス(TLパルス)と呼ぶ。

2-2 モード同期の方法

モード同期をおこなう方法としては大きくわけて強制(能動)モード同期と 受動同期モードにわけられる。以下にそれぞれのモード同期の方法の説明と、 そのなかでも本研究で用いた Ti:サファイアレーザー発振に関わるより詳細な ふたつのモード同期方法の説明を記す。

2-2-1 強制(能動)モード同期

強制(能動)モード同期は共振器中に光変調器を挿入して発振している縦モ ード間隔周波数f = = c/2nLで外部から損失変調または周波数変調する方 法である。この方法は外部信号の周波数 'が '= のとき各縦モードは ± だけ離れた側帯波を生じ、その側帯波は隣接する縦モード周波数と一致 することでモード間に結合を生じさせるものである。このようなことがすべて の縦モードで生じる結果、すべての縦モードが一定の位相関係と同一のモード 間隔を保ち、モード同期状態が得られる。

2-2-2 受動モード同期

受動モード同期はレーザー共振器内に入射光強度の増加とともに光の吸収係 数が減少する過飽和吸収体と呼ばれるものや、入射光の強度で非線形な屈折率 をもつ媒質(関連第5章)を置いてモード同期をおこなう方法である。過飽和 吸収体をレーザー共振器内に置くと、この材料の吸収係数の入射光依存性によ り、入射光強度が強いときは光を通し、入射光強度が小さいときは光を通さな いという働きをし、光が何度もこの素子を通過することでパルスが自動的に形 成される。

2-2-3 再生モード同期

再生モード同期は本研究で用いた Ti:サファイアレーザーでピコ秒パルス発 生に用いられているモード同期方法で、強制モード同期の拡張型といえるもの である。再生モード同期はレーザーから出た光を光検出器で電気パルス信号に 変換し、それから基本周波数正弦波信号を取り出し、これを再び増幅して内部 変調器への変調信号としモード同期をおこなうものである。この方式の利点と しては変調器長を変調器駆動周波数に正確に整合できる点が挙げられる。

2-2-4 カーレンズモード同期(KLM:Kerr Lens Mode-Lock)

カーレンズモード同期方法は受動モード同期の一形態であり、本研究で用いた Ti:サファイアレーザーのフェムト秒パルスはこの原理で発生する。この Ti: サファイアレーザーのモード同期ではサファイア結晶自体がモードロッカーとして働いていて、その中で自己位相変調(SPM:第5章参照)を起こし、それを振幅変調することで受動モード同期をおこなっている。

KLM ではサファイア結晶中を通過するパルスがビームウエスト付近を通過

するときに、その光の強度に依存して、その断面に誘起される 屈折率分布によって凸レンズが 形成され、それによってビーム の形状が変わる(図2-4)。ここ で折り返し用のミラーをパルス 通過時の波面に合うよう調整を すると、パルスが共振器全体か ら受ける損失はパルスピーク付

図 2-4 集光強度による屈折率変化

近で最も小さくなり SPM は振幅変調へ変換される。これによって、自発的に モード同期がかかり、結果としてフェムト秒オーダーのパルス光が発生する。

第3章 超高速パルス光実験装置

本章ではTi:サファイアレーザーを用いた実験装置構成と装置の説明をする。 Ti:サファイアレーザーは高調波・白色光発生実験などパルス光を用いた実験は もとより、このレーザーの波長可変の特徴を活かして、蛍光発光実験などのCW 波を用いた実験などにも用いられる。なお、Ti:サファイアレーザーについての 説明は第四章に記載しているためここでは省略する。

3-1 基本装置配置

本研究でのピコ秒、フェムト秒の超高速光パルスを用いた実験は基本的に図 3-1の様な装置の構成で行われている。まずTi-サファイアレーザーはMillenia Vというレーザーから励起用レーザー光を得て発振される。Ti:サファイアレー ザーからの光は透過と反射の割合が約8.5:1.5(800nmのときの値)のハーフ ミラーで分けられる。この透過光は実験などの光源に用いられ、反射光はパル ス波形を観測するために用いる。

図 3-1 実験装置構成

実験装置の詳細は以下のようになっている。

・超高速パルス光発振システム:

Tunami system(Ti:サファイアレーザー、MilleniaV、モードロッカー)

Spectra-Physics 社

・オートコリレータ(パルス波形測定器):

モデル 409 オートコリレーター Spectra-Physics 社

- ・オシロスコープ: CS4125 KENWOOD 社
- ・窒素ガス注入器:モデル 3910 Spectra-Physics 社

窒素ガス注入器は長波長帯域でのフェムト秒パルス光を得るための装置である。短波長帯域でパルス光を発生させるときにはこれを用いる必要はない。

3-2 MilleniaV

MilleniaV は波長 532nm の CW レーザー光を発振する。このレーザーでは、 まずレーザーダイオードから波長 809nm のレーザー光を発振し、これによっ て Nd-YVO レーザを励起し波長 1064nm の光を発振する。そしてその光を SHG 結晶 (5-3 節参照)に透過することで 532nm の光を得る。その構成を図 3-2 に記す。MilleniaV は Ti:サファイアレーザーの励起だけでなく、色素 (ダ イ)レーザーの励起などにも使われる。MilleniaV の最大出力は 5.5W である。

☑ 3-2 MilleniaV

3-3 オートコリレーター

パルス波形を観測するにあたって、フェムト秒パルスはフォトダイオードと オシロスコープの時間分解能以下であるため、非線形相関法(SHG 相関法)を もちいたオートコリレーターと呼ばれるパルス時間測定器を用いてパルス波形 を観測する。本節ではこの SHG 相関法の原理、及びこれを用いたパルス時間 幅の求め方、オートコリレーターの使い方も述べておく。

3-3-1 SHG 相関法の原理

SHG 相関法とは測定するパルス光のビームをふたつにわけ、行路差を変えて 一方に遅延を加え、ふたつのパルスの重なりを SHG 結晶(5-3 節参照)から発 生する第2高調波を用いてパルス光を測定するものである。この方法では実際 のパルス波形を仮定すると、SHG 光の時間波形からパルス幅を知ることができ る。その図を図 3-3 に記す。

図 3-3 SHG 相関法

光遅延装置で時間をずらして重ねられたパルスは、その重なりが強いほど光 強度が強くなるため、SHG 結晶に入射した際、第2 高調波が発生する。する と遅延距離と第2 高調波強度の関係がわかり、遅延距離を光速度で割れば、時 間と第2 高調波強度の関係になりパルス幅が計算できる(図 3-4)。

図 3-4 遅延時間からのパルス時間幅の換算

3-3-2 オートコリレーターの使い方

本節ではオートコリレーターの使い方を示す。本研究で用いたオートコリレ ータは取扱説明書によると、近似パルス波形は sec h² 形で、使用波長は 690 -1100nm、測定範囲は 60fs - 1ps とされている。本研究室のオートコリレータ ーの外観を図 3-5 に示す。

図 3-5 オートコリレータ外観

まず、Signal out 、Trigger out につながれた同軸ケーブルをオシロスコー プにそれぞれつなぎ作動できる状態にする。そして、オートコリレータの窓に パルス光ビームを入射させ同図のように窓の下にある的にビームがくるように 入射光光路を調整する。入射光ビームはあらかじめ分光器等でパルス発振をし ているか確認をしておくと良い。次に GAIN つまみで、ある程度出力を出して おいて、オシロスコープに矩形波のような波形が出るように SHG 角度つまみ と delay つまみを調整する。このときオシロスコープの時間軸のレンジをある 程度おおきくとり、矩形波がいくつか見えるようにしておく。このようにして おくと次の作業でパルス波形を見つけやすい。最後に、その矩形波が出ている ところから微妙に SHG 角度つまみを動かしてゆくと、パルス波形を見つける ことができる。あとは、波形を観測しやすいように GAIN つまみ等を調整して 波形の半値全幅を調べ、エタロン挿入つまみを動かしパルスの遅延時間を調べ て下記のように実際のパルス幅を求めれば良い。上記の作業をおこなってもパ ルス波形が見つからないときは GAIN つまみと SHG 角度つまみをもう一度調 整し、それでも見つからないときは光路をチェックしてみると良い。また、入 射光波長を変えると SHG 結晶の角度により変換効率が変わるので、SHG 角度 つまみを最大出力となるように調整する。入射光強度や GAIN を大きくしすぎ ると検出器の飽和のためパルス波形が変わってしまうことがあるので注意する。

3-3-3 フェムト秒パルス時間幅測定

本節ではオートコリレータを用いたパルス光時間幅の求め方について述べる。 パルス時間幅の観測はパルスのピークとボトムの中央の幅を測る。この時間幅 を半値全幅(FWHM)と呼び、本論文で単にパルス幅と示すものはこのパルス 時間幅のことを指すものとする。オートコリレータを使いオシロスコープで観 測される波形は実際の波形とは異なるので、パルス時間幅を知るには較正が必 要である。図 3-3 のようにエタロンを光路に挿入すると、そのエタロン内での 光の速さは空気中のものに比べ遅いので、その分エタロンを挿入したときとし ないときでは遅延差があり、オシロスコープに現われる時間軸上でのパルスの 位置が異なる。その様子を図 3-6 に示す。一定の光路差を変えるエタロンによ って時間軸のスケールが較正できる。

そして、このオートコリレーターの特性により、実際のパルス波形とは異な る観測パルス波形をオートコリレータのデコンボリューション値で較正する。 まとめるとパルス時間幅 tは

 $t = \frac{(エタロンによる遅延時間) \times (1-1) - 9 \pi^{-1} + 3 \pi^{-1} +$

で求められる。ここで用いたオートコリレータのデコンボリューションは 0.65 で、エタロンによる遅延時間は 310fs である。

第4章 モード同期チタン:サファイアレーザー

本章では超高速光パルスを発生する波長可変モード同期チタン(Ti):サファ イアレーザーの構成・原理、ピコ秒・フェムト秒装置の特性測定実験について 述べ、最後にピコ秒・フェムト秒装置の操作の違いについてまとめる。

4-1 構成・原理

本研究で用いた Ti:サファイアレーザー光は 532nm のポンプ光で Ti:サファ イア結晶を励起して発振している。Ti:サファイアレーザーからはパルス光、 CW(連続波)光のどちらでも発振することができ、パルス光の発振では装置内部 の部品の取り外しにより、ピコ秒、フェムト秒の両方のレンジを選択すること ができる。基本的にこの装置は強制モード同期の拡張型である再生モード同期 と呼ばれる方法(2-2-3 節参照)でモード同期をおこないパルス光を発振させ ている。ここで「基本的に」と述べたのはフェムト秒の装置ではこの再生モー ド同期の電源を落としてもモードロックをしパルス発振するためである。その ようなことから、このフェムト秒の装置では KLM(Kerr Lens Mode-Lock: 2-2-4 節参照)と呼ばれる一種の受動モード同期方法でパルス光を発生すると 考えることができる。この装置は共振器長 1.8m、パルス繰り返し周波数は 80MHz である。図 4-1 に Ti:サファイア装置構成を記す。

ピコ秒の装置は再生モード同期でパルス光発生させている。一方、フェムト 秒パルス光は、モードロッカーの電源を落としてもモード同期することから、 KLM によるモード同期で発振していて、再生モード同期のモードロッカーは 補助的に働いているものと考えられる。これに加え、フェムト秒のパルス光発 生では KLM によるチャープの補償、及びパルスの圧縮をおこなうために装置 内に群遅延分散の量を正負いずれにも制御できる4枚のプリズムを組み込む。

図 4-1 フェムト秒チタン:サファイアレーザー

プリズム等によるチャープ補償、及びパルスの圧縮の原理は図 4-2 のように 共振器内の正の群速度分散(5-2 節参照)やアップチャープ(5-2 節参照)によ って広がるパルス幅を負の群速度分散を伝搬させてチャープ補償すること(ま たはこの逆の作業をおこなうこと)で TL パルス(2-1 節参照)に近づけるも のである。

図 4-2 チャープ補償

本研究で用いたフェムト秒装置のようにプリズムを用いたレーザーを4プリ ズムチャープ補償レーザーCPM レーザーと呼ぶ。プリズムは普通、図 4-3 の ようになっていて、プリズム頂角付近を通過するパルス光はプリズム材料の屈 折率 n()に応じて、負の群速度分散となる角度分散を受ける。それに加えて プリズムガラスを通過するため、その通過長に応じて正の群速度分散も受ける。 これを利用して一対のブリュースタープリズム(入射面に平行な直線偏光が反 射することなく入射・透過するように設計されたプリズムのことで挿入損失は 非常に小さい)を向き合う面が平行になるように並べ、その両プリズムの間隔、 挿入量を変えることで、正負の群速度分散量を変えることができる。そして、 同図のように対称にもう一対のプリズムを挿入することで出射光をもとの光軸 に戻すことができる。また、ピンホールを置き、それを垂直方向に変化させる ことで波長制御をおこなうこともできる。

図 4-3 4 プリズム分散素

4-2 ピコ秒 Ti: サファイアレーザー特性測定

本節ではピコ秒用に設定をした Ti - サファイアレーザー特性測定について 述べる。実験装置の配置を図 4-4 に示す。

図 4-4 ピコ秒 Ti:サファイア特性実験

実験装置の詳細は以下のようになっている。

・超高速パルス光発振・測定システム:三章参照

- ・光ファイバ: MM50/125 ACRTEC
- ・フォトダイオード (ch1)
- ・フォトダイオード (ch2):

PICOMETRIX PX-D7 Detector(7ps,60GHz,400-900nm)

- ・分光器: SpectraPro-300i ActonResearchCoporation 社
- ・オシロスコープ:infiniumDCA Agilent86100A

Wide-Bandwidth Oscilloscop AgilentTechnologies 社

実験は励起光出力 4.5Wで Ti - サファイアレーザからパルス光を発生し、そのパルス光をハーフミラーでふたつにわけ、ひとつは直接フォトダイオード(以下 PD) で電気信号にし、もうひとつは光ファイバを通し高周波用 PD で電気信号にしてオシロスコープでパルス波形を観測した。すると、観測したパルスの幅は PD で観測したものでは約 100ps、ファイバから PD を用いて観測したものでは約 16ps であった。これは PD で観測したものではここで観測す

るパルスがその PD の時間 分解能を超えているためだと 考えられる。一方、高周波用 PD の時間分解能は 7ps で あるので、こちらで観測した パルス波形を信頼できるもの とする。

また、この装置のパルス光 と波長とその平均光出力の関 係についても測定をした。そ の結果を図 4-5 に示す。結果 はほぼ取扱説明書にあるもの と同じようなデータが得られ た。利得は 730nm から 860nm までの波長帯域で得

られ、波長 780nm から 800nm で最も高い利得が得られた。共振器を調整すれ

ば他の波長帯域でもパルス発振が認められる可能性がある。

ピコ秒の装置では以上に記した以外の特性は詳しく測定をしていないので、 現在フェムト秒パルス用に設定してある Ti - サファイアレーザーをピコ秒用 に切り替えたときに詳しく測定するものとする。

4-3 フェムト秒 Ti:サファイアレーザー特性測定

本節ではフェムト秒用に設定をした本研究で用いた Ti - サファイアレーザ ーのパルス光ピーク出力の算出、励起光出力とパルス光平均出力の関係、励起 光出力とパルス光帯域幅の関係、パルス発振波長とパルス光平均出力の関係、 パルス発振波長と帯域幅・時間幅の関係などの特性について述べる。その実験 装置の配置を図 4-6 に示す。Ti:サファイアレーザーから発振されたパルス光ビ ームをハーフミラーでふたつにわけ、一方はパルス時間幅の観測、もう一方は パルススペクトル幅の観測に用いる。フェムト秒パルス平均出力は同図 の位 置で光検出器を用いて測定する。また、今回は再生モード同期のモードロッカ ーの電源はいれておき、窒素ガスは注入せず波長 700nm ~ 830nm の帯域につ いて測定をした。また、共振器の設定は変えないものとする。

図 4-6 フェムト秒 Ti:サファイア特性実験

実験装置の詳細は以下のようになっている。

- ・超高速パルス光発振・測定システム:三章参照
- ・光ファイバ: ACROTEC 50/125 マルチモードファイバ
- ・光検出器:モデル 407A TC SpectraPhysics 社
- ・O-E 変換器: PICOMETRIX PX-D7 Detector(7ps,60GHz,400-900nm)
- ・分光器: SpectraPro-300i ActonResearchCoporation 社
- ・オシロスコープ: CS-4125 KENWOOD 社

本研究室フェムト秒 Ti:サファイアレーザーの近似パルス波形は取扱説明書 によるとsec h²形とされている。パルス光の時間幅の観測は 3-3 節にあるように して求められる。しかし、オートコリレータのエタロン挿入つまみや GAIN 調 整つまみ、SHG 角度つまみなどの微妙なずれや、オートコリレータへの入射光 の強度によって、オシロスコープで観測されるパルス波形が変わるので、算出 したパルス時間幅の値も変わることがある。

フェムト秒パルス光のスペクトル幅は第2章にあるように広いスペクトル幅 を持つ、ここで Ti:サファイアレーザーから得られるレーザー光スペクトルを図 4-7 示す。フェムト秒パルス光のスペクトル波形は同図(c)に、CW(連続波) のスペクトル波形は同図(a)に、CW(連続波)成分の強いパルス光スペクトル 波形は同図(b)に示す。CW 成分の強いパルス光は不安定な状態でモードロ ックがはずれやすい状態である。励起光出力が高いと、この状態が起こりやす い。

(b) CW 成分の強いパルス光スペクトル

(c) パルス光スペクトル

図 4-7 Ti: サファイアレーザー光スペクトル

4-3-1 パルス光ピーク出力計算

パルス光のピーク出力はそれがパルスであるため普通の光検出器(本節実験 装置の詳細に参照したようなもの)では観測できない。また、第3章で述べた ように、ピコ秒パルス光ではオシロスコープでパルス波形を計測することがで きるが、フェムト秒の場合では SHG 相関法を用いておおよその波形はわかっ てもパルス光ピーク出力は計測することはできない。そこで本節では、本研究 室 Ti:サファイアレーザーから発するフェムト秒パルス光のおおよそのピーク 出力を計算によって算出する。

そこでまずパルス波形を矩形波としたときのパルス光ピーク出力を、波長800nmのときの値をパラメーターに用いて計算する。パルスひとつのエネルギーはその波形の面積に相当し、そしてそのエネルギーはパルス出力平均もしくは CW 波のパルス繰り返し時間分の面積、つまり図 4-8 の斜線部の面積に相当するはずである。パルス光平均出力はパルス光を光検出器に入射して検出される値とし、800mW とする。そして、パルス幅 f=80fs、パルス繰り返し時間を 1/ =1/80MHz = 1.25 × 10⁻⁸ s とすると、そのエネルギーの関係から

$$X \times 80 \times 10^{-15} = 0.8 \times 1.25 \times 10^{-8}$$

$$X = 1.25 \times 10^{5} [W] = 125 [kW]$$
(4-1)

となる。

一方、パルス波形を式(2-4)で求めたものとして計算してみる。パラメータは 先ほどのものを用いる。ここで一定の位相の関係 を0とし、 $A = \frac{1}{2}$ とお きかえて、式(2-4)を

$$I(t) = \frac{\sin^2 A(2N+1)t}{\sin^2 At} I_0$$
(4-2)

とする。 上式(4-2)を L'Hospital の定理を用いて解くとパルス光のピーク出力値 I(0)は

$$I(0) = I_0 (2N+1)^2$$

= $\frac{I_0}{(t \cdot)^2}$ (4-3)

となる。また、ひとつのパルスのエネルギーは I(t)を 0 から 1/ まで積分したもの

$$\int_{0}^{1/2} I(t)dt = \int_{0}^{\frac{p}{A}} I_{0} \frac{\sin^{2} A(2N+1)t}{\sin^{2} t} dt$$
(4-4)

である。ここで

$$\int_{0}^{p} \frac{\sin^{2} nx}{\sin^{2} x} dx = n\boldsymbol{p}$$
(4-5)

という公式をもちいると、ひとつのパルスのエネルギーは

$$\int_{0}^{1} I(t)dt = \frac{(2N+1)\mathbf{p}}{A} I_{0}$$

$$= \frac{1}{t \cdot \cdot} \cdot \frac{I_{0}}{t \cdot \cdot} = \frac{I_{0}}{t \cdot \cdot}^{2}$$
(4-6)

となる。ここで矩形波で計算したときと同様に、ひとつのパルスのエネルギーはCW光強度をパルス繰り返し時間1/ 分だけ積分したものに相当することから

$$\int_{0}^{1/2} I(t) dt = 0.8 \times \frac{1}{1 - \frac{I_{0}}{t \cdot \frac{2}{2}}} = 0.8 \times \frac{1}{1 - \frac{I_{0}}{t \cdot \frac{2}{2}}} = 0.8 \times \frac{1}{1 - \frac{1}{2}}$$

$$I_{0} = 0.8 \times t \cdot (4-7)$$

となる(図4-9)。

そして、この Io を式(4-3)に代入するとパルス光ピーク出力値 I(0)は

$$I(0) = \frac{0.8 \times t \cdot}{(t \cdot)^2} = \frac{0.8}{t \cdot}$$

= 1.25×10⁵[W] = 125[kW] (4-8)

となり、パルスを矩形波に仮定したときの値と同じになる。

よって、本研究室の Ti:サファイアレーザーは発振利得の高い 800nm の辺り の波長では、パルス幅 80fs、平均出力 800mW で約 125kW のパルス光ピーク 出力が得られると考えられ、チューニングをあわせれば 200kW 近いピーク出 力が得られるものと思われる。

4-3-2 励起光出力とパルス光平均出力の関係

本節ではフェムト秒 Ti:サファイアレーザーの励起光出力とパルス平均出力 の関係について述べる。発振波長は 800nm とし、励起光出力を変えながら光 検出器でパルス光平均出力を測定した。このとき再生モード同期のモードロッ カーは作動させておいた。その結果を図 4-10 に示す。同図のデータは 5-5-3 節 のものである。

この図から、励起光出力とパルス光平均出力はほぼ線形な比例関係を持って

いるといえるが、励起光 4.5W のあたりで、ずれが生じている。 このとき Ti:サファイアレーザ ーの再生モードロックの調整が 切り替わり、パルス波形が変化 したと考えられる。これは第 2 高調波発生の結果(図 5-10、

5-11)、パルス幅が変わったことや、再生モードロック装置のパルス発振表示サインがこのあたりの励起光出力で切り替わるのを確認したことからいえる。この表示サインは基本的にパルス発振しているときに表示されるのだが、状況によっては表示されていなくともパルス発振する。その詳しい理由は不明である。

このずれについては単なる測定ミスではなく、なんど測定してもこのような データになることや、5-5-3 節の実験にあるように第2高調波発生の結果(図 5-10、5-11)からも、パルス幅あるいはパルス波形が変化したためであると推 測される。励起光出力とパルス光平均出力の関係の信頼できるデータを得るに は、再生モード同期のモードロッカーの電源を落としてパルス光を発振させる などの対処が必要である。

4-3-3 励起光出力とパルス光スペクトル幅の関係

この節では Ti:サファイア励起光とパルス光スペクトル幅との関係について 述べる。測定はパルス発振波長 800nm で励起光出力を変えて分光器でパルス

スペクトル波形を観測した。 その結果を図 4-11 に示す。同 図は横軸に励起光出力をとり、 縦軸にパルス周波数スペクト ル波形の半値幅をとる。

実験ではパルス発振をする 最低励起光出力は 3W であっ

た。結果は励起光出力 4.4W のときに周波数スペクトル半値幅 f は 3.64THz でピークとなり、そこからは励起光出力を上げても下げてもスペクトル半値幅 は下がっていくというようなデータが得られた。

本測定データを図 4-13 と比べると、図 4-11 のピークの位置と、図 4-13 の波 長 460nm 付近での出力値のずれとはほぼ同じ位置である。このことから、励 起光出力が 4.5W くらいになると、パルススペクトル幅が広がり、再生モード ロック装置が作動しパルス波形が切り替わるか、もしくはその逆で励起光が 4.5W くらいになると再生モードロック装置が作動しパルス波形が切り替わり、 パルススペクトル幅が広がるというようなことが推測できる。

4-3-4 励起光出力とパルス光時間幅の関係

本節では励起光出力とパルス光時間幅の関係について述べる。測定はパルス 光波長を 800nm とし、励起光出力を変化させパルス光の時間半値幅がどのよ うに変化するのか測定した。その結果を図 4-12 に示す。

同図から、パルス光時間幅は励 起光出力 3.7W から 5.5W までほ ぼ一定で、3.7W 以下から急激に パルス幅が広がることがわかる。

ここで、本測定データと 4-3-3 節の測定データから、パルス光の スペクトル幅と時間幅の関係に ついて考えてみる。パルス光のス

ペクトル幅と時間幅の関係は式(2-8)のようになっている。図4-11からパル ス光のスペクトル幅が最も広くなる励起光出力は4.4Wであることから、この 励起光出力のとき最もパルス光時間幅は短くなるような特性が得られるはずで ある。しかし、本測定データではこのような結果にはならなかった。このこと から考えてもパルス時間幅測定には少なからずミスががあるのではないかと考 えられる。また、図4-11と図4-12は同時に測定したデータではないのであく まで参考になるが、図 4-11、図 4-12 から励起光 4.4W のときのパルス時間半 値幅の値と周波数スペクトル半値幅の値を式(2-8)にいれて K 値を計算する と、その値は 0.26 となる。本研究で用いる Ti:サファイアレーザーの近似パル ス波形 sec h² の K 値は 0.315 であるのでこのパルスは transform-limited の状 態に近いものになると考えられる。しかし、現在の共振器の設定では transform-limited の状態であると判断できるデータは得られていない。

4-3-5 パルス光波長とパルス光平均出力の関係

本節ではパルス発振波長とパルス光平均出力の関係について述べる。測定は 励起光を 4.8W に設定し、発振波長を変えながら図 4-6 の位置 でパルス光平 均出力を測定した。その結果を図 4-13 に示す。

結果はだいたい取扱説明書に記さ れているものと同じようなデータと なり、780~800nm付近の波長帯域で 高い出力値が得られた。また、波長 700nmのあたりでは他の波長に比べ、 パルス時間幅が広くなったことから ピーク出力低下による影響もあるも のと思われる。このデータでは710

~740nm あたりの波長帯域のデータが抜けているが、このあたりの波長帯域で はCW成分が強く現われ、安定してパルス発振しないために値を取っていない。

4-3-6 実験のまとめ

本節では前節の Ti:サファイア特性測定実験の結果からいえることを以下に まとめる。

今回の実験で測定された本研究に用いたフェムト秒 Ti:サファイアレーザ ー最短パルス幅は約 70fs であった。このパルス光のピーク出力は約 200kW であると推測される。半値全幅 70fs のパルス光は発振利得の高い 波長帯域である 780~800nm 付近の波長で測定された。

パルス発振をするための最適な励起光電力は波長によって異なる。

パルス時間幅測定はオートコリレーターの調整つまみの微妙な調整のず れによるなどによって波形が変化することから、確実に実際のパルス幅を 求める方法を検討しなければならない。

パルス光は励起光を高くすると CW 成分が強くあらわれる。そのパルス 発振波長との関係の詳細は不明であるが、パルス光波長 720nm から 730nm、810nm 以上の波長ではそれが顕著に現われる。このとき励起光 出力をだいたい 4.5W 以下にしないと、この CW 成分が消えることはな い。一方、Ti:サファイアレーザーの利得が最大となる 800nm 付近では、 励起光を装置限界の 5.5W にしてもプリズム等の調整で CW 成分をなく すことができる。

CW 成分が強くあらわれるとパルス発振が難しくなるため、の理由から 波長によってはパルス発振する最大励起光出力というものがある。

再生モード同期のモードロッカーの電源をいれておいた状態で、パルス発振したまま励起光出力を変えていくと、あるところでこのモードロッカーの影響を受けてパルス波形が変わると思われる現象がおこる。これは励起

光出力 - パルス光スペクトル幅特性にも何らかの関わりがあるものと考 えられる。

励起光出力とパルス光平均出力は、の影響がなければ、線形な比例関係 といえる。

パルススペクトル幅がもっとも広くなる励起光出力はパルス発振波長 800nmのときでは、4.4Wである。そのことからパルス発振波長 800nm のときでは、励起光出力4.4Wで最短パルス時間幅が得られるはずである。 しかし、そのような励起光出力とパルス時間幅の関係は認められていない ので、このような視点からもパルス時間幅測定には何らかの誤差があるも のと考えられる。

今回の測定データは共振器を波長 700~830nm の広い帯域でパルス発振 できる設定にしたもので、パルス光の共振器に対する依存性は測定してい ない。これは今後の課題である。

4-4 まとめ

本節では 4-2 節、4-3 節の測定データからピコ秒・フェムト秒 Ti:サファイア レーザーの操作上の特徴についてまとめる。Ti:サファイアレーザーはピコ秒の 装置とフェムト秒の装置で若干操作方法に違いがあり、それを 4-4-1 節、4-4-2 節にまとめる。

図 4-14 に操作するときに用いるつまみの配置を記す。装置の外見はピコ秒、 フェムト秒のものも同じであるが、発振される光の操作に使うつまみが異なる。

Ti:サファイアレーザーは室温の影響を受けるとみられ、あまり低温であると 発振されるレーザー光の出力は普段より低いものとなり、パルス発振もしない。 室温 18 以下であるとこのような状態になり、経験から最適室温は 20~25 くらいであると思われる。

図 4-14 Ti:サファイアレーザー操作つまみ

4-4-1 ピコ秒用 Ti:サファイアレーザーの操作の特徴

ピコ秒装置では上図 4-14 のピコ秒用波長調整つまみ、GT1 つまみ、縦横共振器つまみと、それに加えモードロッカー装置(再生モード同期のもの)の PHASE つまみでパルス光を調整する。波長は基本的に波長調整つまみのみに よって可変することができる。パルス幅つまみ、フェムト秒用パルス調整つま みはプリズム挿入時に用いるもので、ピコ秒パルス光発生には関わりがないも のである。ピコ秒の装置ではパルス光を発振するとき、帯域幅である 730~860nm の範囲においてどのあたりでもモード同期のしやすさは変わらず、 波長を変えたときのモード同期のしやすさは励起光の出力に依存しない。この 装置では波長つまみのみをまわし、波長を変えていくとモード同期するところ はとびとびでしかでることがなく、波長を変えながら連続で発振することはで きない。しかしそのときにモード同期しなかったところはGT1 つまみを調整す ることによってモード同期させることができる。GT1 つまみは図 4-1 の M1 の 共振器を調整しているものと思われる。基本的に共振器軸つまみを調整するこ となく、この装置では帯域幅全体でモード同期させ、パルス光を発振すること ができる。

4-4-2 フェムト秒用 Ti:サファイアレーザーの操作の特徴

フェムト秒装置では図 4-14 のフェムト秒用波長調整つまみ、パルス幅つまみ、 縦横共振器つまみでパルス光を調整する。GT1 つまみ、それに加えモードロッ カー装置の PHASE つまみはこの装置では使用しない。また前節 4-1 でも述べ たように再生モード同期のモードロッカーの電源をいれなくてもモード同期す る。フェムト秒の装置の波長帯域はだいたい 680nm から 1µm である。しか し現在のところ約 695nm から 870nm までの帯域でしかパルス光が得られてい ない。CW 光では短波長側では 680nm が得られているが、長波長側ではまだ 測定をしていない。また、長波長側では窒素ガスを装置内に注入すると光が得 られやすい。

この装置ではピコ秒用装置と比べて、パルスの発振のしやすさは波長によっ て大きく異なっている。最も光出力が大きく、モード同期しやすい波長は 800nm 付近である。しかし、いずれの波長においてもモード同期をし、パルス を発振させることができる。ただし、ある波長でパルスを発生させ、これを保 ったまま連続で波長を変えていかないと、波長帯域の端である 700nm 付近や 870nm 付近でのパルス発振は困難である。この理由はこれらの波長領域でパル ス光を最初から発振させようとするとつまみの調整が微妙なためにモード同期 する位置が探しづらいことと、一度モード同期が外れるとモード同期をしやす いところまで波長を戻さないと発振しないことにある。

また、この装置では波長によってパルスの発振させやすい励起光出力が変わってくる。長波長域では窒素ガスの有無にも依るが、波長帯域端の領域ではだいたい 4.2W 以上の励起光出力がないとパルス発振は容易ではない。基本的に発振波長が 800nm に近づくにつれ励起光出力をそれより下げても発振するようになる。波長 800nm では 3W あたりの励起光でもモードロックが可能である。また、このようなことから高い出力の励起光を用いればどの波長でもモードロックするようにおもえるが、励起光波長によっては励起光出力を高くすると CW 成分が多く現われモード同期がはずれることがあるので、単に励起光を強くすれば良いというものでもない。

この装置では短波長から長波長までパルス光を得るためには共振器の調整が 必要になってくる。800nm から 695nm までの波長では共振器のあるところに 設定すると、そこから共振器を調整することなくパルス光を発振することがで きるのであるが、長波長側でパルス光を得るときにはやはり共振器の調整が必 要となってくる。しかし、共振器のつまみにはメモリがなく、どの位置が最適 であるのか読むことはできないことや、あまり共振器を大きく動かすとレーザ ー発振すらしなくなることがあるので注意が必要である。一度、レーザー発振 しなくなるような共振器の動かし方をすると装置のカバーをはずし、中の光軸 を合わせなければならないこともありうる。

このようにフェムト秒の装置をあつかう際にはモード同期がはずれると、次 にモードロックするために時間を多く費やさなければならなかったり、復旧す るときに共振器の調整等をしなければならないことから、実験途中でデータが 大きく変わってしまったり、即座にパルス光をえることができなかったりする ことがある。こうならないためにも、必要とする光に応じて、条件の良い設定 ができたら共振器などのつまみを動かさないなどの工夫が必要である。

31

第5章 非線形光学効果

非線形光学効果は光ファイバ通信や超短光パルスなどの分野に対して制御、 測定、応用などの様々な面で深い関わりがある。また、前章に述べた受動モー ド同期によるパルス光の発生やパルス補償・圧縮など、本研究で用いた Ti:サフ ァイアレーザーにもこの非線形光学効果が活かされている。本章では非線形光 学効果が起きる理由、それに関するさまざまな現象についてのまとめや実験に ついて述べる。

5-1 非線形光学効果

非線形光学効果は媒質に入射した光の電界が大きいとき、媒質中に誘起され る分極密度が比例関係でなくなるために起こる現象である。第2章で述べたよ うに超短光パルスはそのピーク出力が高いために非線形光学効果が起こしやす い。そして、この非線形な分極は自己位相変調(5-2節)や高調波発生(5-3節)、 入射光強度の吸収飽和変化、和周波・差周波の発生など様々な現象をひきおこ す。これらの現象は非線形光学効果と呼ばれ、本節ではこの要因となる非線形 分極についてまとめておく。

どんな誘電体でも電磁場の強度が強いと光に対して非線形応答を示す。その 理由は印可された場によって起こる束縛電子の非調和運動と関係したもので、 その結果、電気双極子に起因する誘導分極 P は電界 E に比例しなくなる。ここ で、 e_0 を真空の誘電率、 $c^{(1)}, c^{(2)}, c^{(3)}$ をそれぞれ一次、二次、三次の感受率で 一般にテンソルで表される。そして、ここでは簡単のためにその感受率をそれ ぞれ

$$\boldsymbol{c}^{(1)} = \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{pmatrix} \qquad \boldsymbol{c}^{(2)} = \begin{pmatrix} b_{11} & 0 & 0 \\ 0 & b_{22} & 0 \\ 0 & 0 & b_{33} \end{pmatrix} \qquad \boldsymbol{c}^{(3)} = \begin{pmatrix} c_{11} & 0 & 0 \\ 0 & c_{22} & 0 \\ 0 & 0 & c_{33} \end{pmatrix}$$

とする。ここで電界を E とすると、誘導分極 P は

$$\mathbf{P} = \mathbf{e}_{0} (\mathbf{c}^{(1)} \cdot \mathbf{E} + \mathbf{c}^{(2)} \cdot \mathbf{E} + \mathbf{c}^{(3)} \cdot \mathbf{E} + \mathbf{c}^{($$

となり、x 方向の電界を考えると

$$\mathbf{P}_{(x)} = \boldsymbol{e}_{0} (\boldsymbol{a}_{11} \mathbf{E}_{x} + \boldsymbol{b}_{11} \mathbf{E}_{x}^{2} + \boldsymbol{c}_{11} \mathbf{E}_{x}^{3} + \cdots)$$
(5-2)

となる。簡単のため電界ベクトルが1つの座標成分のみのときには

$$\mathbf{P} = \boldsymbol{e}_0 \left(\boldsymbol{c}^{(1)} \mathbf{E} + \boldsymbol{c}^{(2)} \mathbf{E}^2 + \boldsymbol{c}^{(3)} \mathbf{E}^3 + \cdots \right)$$
(5-3)

と表される(は×方向の感受率)。この式のそれぞれの項は二次、三次・・の 非線形現象を引き起こす。また、式(5-3)から二次、三次の非線形現象はそれぞ れE²、E³に比例していることがわかる。式(5-3)は入射光強度の低いときには 一次以外の項は無視することができ、そのときには入射光強度と分極の関係は 線形に表すことができる。

5-2 光カー効果と自己位相変調

光カー効果は式 (5-3)の三次の項による非線形効果で、光の強度に依存する 屈折率変化のことである。ここで時間をt、光強度を I(t)とし、線形の屈折率 をn₀、非線形屈折率をn₂とすると

$$n(t) = n_0 + n_2 I(t)$$
(5-4)

というように光強度と屈折率 n(t)の関係が表せる。屈折率 n の微小距離 x を 光パルス通過したときの光電界の時間軸上の位相のずれ は

$$\mathbf{f} = -nk \quad x \tag{5-5}$$

である。 k は真空中の波数である。式(5-4)と式(5-5)から位相のずれ (t)は

$$f(t) = -[n_0 + n_2 I(t)]k \quad x$$
(5-6)

となり、これを自己位相変調という。自己位相変調(SPM:Self-Phase Modulation)は光カー効果よってひき起こされる位相変調のことであり、パル ス光自らの強度によって位相が変化する現象である。この自己位相変調はパル ス光の強度分布によって瞬時周波数のずれをつくるような現象を起こす。以下 にそれまでの説明を記す。

このパルス光による位相のずれ (t)は同時に、そのパルス光強度によって 瞬時周波数のずれ f(t)を

$$f(t) = \frac{1}{2} \frac{\partial}{\partial t} \frac{\mathbf{f}(t)}{\mathbf{f}(t)} = -n_2 \frac{k}{2\mathbf{p}} \frac{\partial I(t)}{\partial t} \quad x \tag{5-7}$$

のように変化させる

この式(5-7)から $n_2 > 0$ のときには瞬時周波数のずれ f(t)はパルスのたち上がりでは負に、たち下がりでは正に大きくなる。そのことから $n_2 > 0$ のときには周波数がパルス前部で下がり、後部で高くなる。 $n_2 < 0$ のときはこの逆である。この現象をチャープと呼び、 $n_2 > 0$ のときすなわち時間とともに周波数が高くなることをアップチャープ、 $n_2 < 0$ のときすなわち時間とともに周波数が低くなることをダウンチャープと呼ぶ。ここで例としてアップチャープの図を図 5-1 に示す。

図 5-1 アップチャープパルス

この自己位相変調の応用としては第4章の Ti:サファイアの原理のところで 述べたパルスの補償及び圧縮や後節で述べる白色光の発生、光通信の分野では ソリトン伝送とよばれるパルス光を一定波形に保ったまま長距離伝搬する技術 が挙げられる。ソリトン伝送は自己位相変調によるアップチャープを負の群速 度分散をもつファイバーに通すというようなことによって行われている。

群速度分散とはひとかたまりの光波内に含まれるそれぞれの周波数成分ごと に媒質中での光速度が異なることから、その伝搬速度が異なってしまうことを いう。周波数が高くなったときに速度が上昇することを正常分散、その逆を異 常分散とよぶ。群速度分散は線形光学効果で、これと似たような言葉に群遅延 分散というものがある。

5-3 高調波発生

高調波発生とはある非線形媒質に光を入射すると入射光の2倍、3倍・・の 周波数の光が発生するという現象である。二次の非線形効果で起こるものを第 2高調波とよび、三次の非線形効果で起こるものを第3高調波というように呼 ぶ。第2高調波の起こる様子を図5-2に示し、以下に第2高調波を例にあげて 説明をする。

図 5-2 第 2 高調波の発生

式 5-3 の二項目から二次の非線形効果による分極 P2は

$$P_2 = e_0 c^{(2)} E^2$$
 (5-8)

となる。ここで入射光の周波数を とし、電界 E を

$$E = A\sin(t) \tag{5-9}$$

とすると、式(5-8)は

$$\mathbf{P}_{2} = \mathbf{e}_{0} \mathbf{c}^{(2)} A^{2} \sin^{2}(t)$$

= $\frac{1}{2} \mathbf{e}_{0} \mathbf{c}^{(2)} A^{2} (1 - \cos 2 t)$ (5-10)

となることから、入射光の2倍の周波数2の光が発生することがわかる。

5-4 白色光発生実験

本節では非線形光学効果を用いた実験のひとつとしておこなった白色光発生 を試みた実験について述べる。

白色光はパルス光をサファイア結晶に入射し、パルスに自己位相変調をおこ させることで得ることができる。その原理は自己位相変調によって光パルス内 の強度分布による瞬時周波数のずれをつくることで、ひとつのパルス内に長波 長から短波長まで広い帯域の波長成分の光を持たるというものである。ここで の白色光というのはこのように広い帯域の波長成分をもつ光のことを指し、実 際、白色に見える。白色光の発生方法を図 5-3 に示す。この原理の応用として 光通信の分野で用いられるスーパーコンティニュアム光などが挙げられる。

図 5-3 白色光発生実

実験装置の詳細はは以下のようになっている。

- ・超高速パルス光発振・測定システム:三章参照
- ・サファイア結晶
- ・レンズ: 焦点距離 55mm、80mm、160mm のものを使用
- ・光ファイバ:マルチモードファイバ MM50/125 ACROTEC
- ・分光器: SpectraPro-300I ActonReseachCoporation 社

本実験では平均出力約1W、パルス幅約80fs、ピークパワー125kWのパルス 光ビームをレンズで絞りサファイア結晶に透過させ白色光の発生を試みた。そ して、入射光のサファイア結晶に対する入射角度、レンズとサファイア結晶の 距離、レンズの焦点距離を変え、出射光の帯域幅がどのように変化するのか分 光器を用いて観測した。

しかし、焦点距離 55mm、80mm、160mm のどのレンズでも、入射光のサ ファイア結晶に対する入射角度、レンズとサファイア結晶の距離を変えて測定 しても帯域幅の変化は認められなかった。白色光の発生しない原因としては、

・入射強度の不足

・結晶の非線形の感受率が低いこと

・非線形効果が起きるほどビームウエストの距離が長くない

などの可能性が挙げられる。今後の対策としてはよりビームウエストの細いレンズを用いる、または入射光強度を上げるなどの方法が挙げられるが、現在の装置ではいくらパルスを transform-limited にしても得られる入射光強度には限界があることや現在の入射光強度で帯域幅の変化が全く見られないことから、まず別の非線形媒体を用いて実験をおこなうのも良いかもしれない。

5-5 SHG 結晶効率特性測定

本節では本研究で用いた SHG(Second Harmonic Generation:第2高調波発 生)結晶の波長依存性、集光依存性、入射光角度依存性、入射光強度依存性等 の特性を測定した結果を述べる。この結晶はその名のとおり第2高調波を発生 するもので、本研究室の SHG 結晶は BBO(BaB2O2)と呼ばれる物質である。 これらの測定実験は図 5-4 のように行われた。また、このとき Ti:サファイアレ ーザーの再生モード同期のモードロッカーの電源はいれておいた。

37

図 5-4 SHG 効率実験

本実験は Ti:サファイアレーザーによるフェムト秒パルス光をレンズで集光 し、SHG 結晶に入射させ第二次高調波を発生させる。SHG 結晶の後ろに置い たフィルターで入射光をカットし光検出器で第2高調波のみを検出しそのパル ス光平均強度を観測する。

第2高調波の入射光に対する効率は

で求められる(の数字は図 5-4 のもの)が、位置の青色透過出力は青色の 波長のみを遮断するフィルタ c3c22(詳細は下記参照)を透過してくる光の強 度である。この強度は 位置の入射光平均出力に比べ無視できるくらい小さい ので、効率は

とする。第二次高調波 2 の強度 **P**² は、**P** を入射光強度とし、B を様々な パラメ - タのまとめとすると

$$\mathbf{P}_{2\mathbf{w}} = \mathbf{B}\mathbf{P}_{\mathbf{w}}^2 \tag{5-13}$$

となり、ここでビームの断面積を S とすると、第 2 高調波への変換効率 SHG は(単位面積あたりの入射光強度 I)分の(そこから発生する第 2 高調波強度 I2)で求められるので

$$\mathbf{h}_{SHG} = \frac{I_{2W}}{I_{W}} = \frac{B(I_{W} / S)^{2}}{I_{W} / S} = \frac{BI_{W}}{S}$$
(5-14)

となる。このようなことから第2高調波強度が入射光強度の2乗に比例すること、SHG 変換効率が入射光強度に比例し、ビームの単位断面積 B に反比例することがわかる。

この実験の実験装置の詳細は以下のようになっている。

・超高速パルス光発振・測定システム: 三章参照

・レンズ: 焦点距離 80mm (記載表示)

・光ファイバ: マルチモードファイバ MM50/125 ACROTEC

- ・第2高調波用光検出器: ADVANTEST 社 OPTICAL SENSOR Q82214
- ・入射光用光検出器: SpectraPhysics 社 model407A
- ・分光器: ActonReseachCoporation 社 SpectraPro-300I

・フィルタ: C3C22(第2高調波透過、入射光遮断 図 5-5 参照)、

kc13(入射光透過、第2高調波遮断 図 5-5 参照)

・SHG 結晶: BBO (BaB2O2)

ここで扱う光検出器は、入射光用光検出器では第2高調波の値が小さいために 検出ができないことと、入射光強度が第2高調波用光検の限界基準50mWを上 まわっていて第2高調波用光検出器では入射光を測定できないことから、光検 出器を第2高調波用、入射光用とわけている。また、フィルタの波長と透過率 特性を図 5-5 に記す。本論文の測定データはこのフィルタ特性を較正したもの である。

図 5-5 使用フィルタの特性

5-5-1 SHG 結晶入射光角度依存性

本節では SHG 結晶の入射光に対する角度とそこから発生する第2高調波の 平均出力との関係を測定したことについて記す。この測定実験では発振波長、 励起光出力、SHG 結晶入射光(位置)平均出力、レンズ - SHG 結晶距離を 以下の測定条件にあるように一定にしてある。これらの値は強い入射光電界が 非線形光学効果を起こすことを考慮して設定した。

SHG 結晶の角度はマイクロメーターを用いて可変する。しかし、その角度と マイクロメーターのメモリの関係について記した資料などもなく、はっきりと した角度がわからないため、そのメモリの値をデータの値とした。また、SHG 結晶を光軸に合わせて配置する際にも多少ずれが生じるため具体的なメモリと の対応は難しい。本測定実験では、入射光に直角であるときのメモリはだいた い 3.25 くらいで、メモリの限界でも入射光に対して 45°以下の角度である。 今後は角度メモリと実際の値を対応させるデータをまとめておくと良いと考え られる。

測定条件

測定結果を図 5-6 に示す。同図から第2高調波は結晶のある角度で急激に発 振効率を増すことがわかる。言い換えると、この SHG 結晶は効率よく第2高 調波を発生する最適な入射光角度を持っているといえる。

また、この最適な角度は入 射光強度や集光位置に依存す ることはないが、図 5-7 のよ うに入射光波長に対して依存 性を持っている。図 5-7 のデ ータは 5-5-4 節の実験デー タで、それぞれの入射光波長 のもっとも効率の良いところ

3.00

SG角度メモリ

3.50

4.00

4.50

を点にとっている。同図からそれぞれの波長のもっとも効率よく第2高調波が 発生する角度メモリの値は、入射波長に対してほぼ線形の関係になっていると いえる。これは SHG 結晶角度の変化から光の結晶通過距離が変わり、位相整 合がおこることによるものと考えられる。

5-5-2 SHG 結晶入射光集光位置依存性

本測定実験では SHG 結晶とレンズとの距離を変化させことで、入射パルス 光ビームの集光具合と第2次高調波効率の関係がどのようになっているのかを 調べた。ここでは焦点距離 80mm と記されているレンズを用い、入射パルス光 波長、入射光(図 5-4 位置) 平均出力、SHG 結晶角度を下記測定条件のよう に一定にして第2次高調波の平均出力を測定した。

測定データを図 5-8 に示す。このデータから第 2 次高調波の変換効率はレン ズ - SHG 結晶距離が 9.3cm のときにピークとなっていることがわかる。ここ でレンズの焦点距離が 8cm とされているので、この差はレンズを固定する台に よるレンズ-SHG 間距離や焦点距離に誤差であると考えられる。もし、このレ ンズ焦点距離とピークの出たレンズ-SHG 間距離が同じでないと仮定すると、 焦点は SHG 結晶中心からずれていることになる。この焦点が SHG 結晶中心か らずれた位置でピークが出るならば、図 5-9 のように SHG 結晶中心を軸にこ の位置の対称となる位置に焦点がきたときにもピークが出るはずである。

図5-9 焦点距離とレンズ-SHG距離についての仮定

しかし、このデータでのピークはひとつであるし、ピークの範囲が広いわけ ではないので、レンズ-SHG 間距離や焦点距離には誤差がありピークの出たレ ンズ-SHG 間距離はレンズの焦点距離であると考えられる。また、式 5-14 より SHG 変換効率は入射光ビーム断面積に反比例しているので、焦点が SHG 結晶 中心からはずれてゆくと、その距離の2乗に比例して SHG 変換効率は減衰し ていくはずである。したがって、実際の焦点距離は9cm 程度と考えられ、焦点 に絞られた光がSHG 結晶中にあれば高いSHG 変換効率が得られているものと 考えられる。

5-5-3 SHG 結晶入射光出力依存性

この実験では SHG 結晶への入射光出力と SHG 効率の関係を調べた。入射光 波長を 800nm とし、SHG 結晶角度、レンズ SHG 結晶距離を以下に記す測 定条件のように一定にして、入射光出力を変化させながら第2高調波の出力を 測定した。出力光は Ti:サファイア励起光出力を変えることで変化させた。

測定データは表 5-1、図 5-10、5-11 のようになった。このデータでは、入射 光強度に対する第2高調波強度のグラフは入射光 500mW あたりで一度第2高 調波出力光が下がりまた再び上昇していくようなずれがあり、効率ではこれが さらに顕著に現われている。これはこのとき Ti:サファイアレーザーの再生モー ドロックの調整が切り替わり、パルス波形が変化したと考えられる。これは表 5-1 のようなパルス幅の変化や、4-3-2 節に記したことから言える。

衣3-1 5日5初举八射尤强足似仔性				1子1生
励気光出力	パルス幅	入射光	第二高調波	効率
[mW]	[fs]	平均出力[mW]	平均出力[mW]	
5.5	71.1	725	86.1	11.9%
5.43	75.9	700	81.5	11.6%
5.12	77.0	650	72.8	11.2%
4.89	74.1	600	64.4	10.7%
4.85	71.1	550	63.8	11.6%
4.75	75.2	500	68.8	13.8%
4.39	73.0	450	62.6	13.9%
4.07	77.0	400	51.2	12.8%
3.82	77.0	350	39.2	11.2%
3.65	83.0	300	30.7	10.2%
3.56	88.9	250	22.6	9.05%
3.48	119.4	200	13.2	6.62%
3.34	1511	175	7.08	4 05%

-1 SHG効率入射光強度依存性

 Mul f 60
 60

 好 40
 0

 第四20
 0

 100
 300

 100
 300

 100
 300

 100
 500

 700

 図5-10
 入射光平均出力-二次光平均出力特性

入射光強度依存性

測定条件

室温 22

入射光波長 800nm

SHG結晶角度 3.3 レンス SHG距離 9.3cm

このような理由から入射光出力と第2高調波出力の関係がずれ、効率との関係にも影響していると考えられる。このことは、最大第2高調波出力は励起光出力最大 5.5W のときで 86mW であるのに対して、最大効率値は励起光出力450mW のときで13.9%になるという測定結果にもあてはまると考えられる。 励起光 5.5W のときの第2高調波出力値は光検出器の限界基準を超えているのでなんともいえないが、このデータからでは励起光出力450mW のときに効率よくパルス発振をし、その分パルスピーク出力が上がり、SHG 効率が上昇したと考えられる。

入射光強度変化による第2次高調波出力、SHG変換効率のグラフは式5-13、 式5-14からそれぞれ、2次曲線、比例直線になるはずである。しかし今回の測 定ではそのような結果が出ることはなく、モード同期変化によるパルス波形変 化というパラメータの依存の影響も受けてしまった。これを改善するには、入 射光出力を励起光で調整するのではなく、ある一定のパルス光を発振しておい て減衰器などで調整をして測定することや、再生モードロッカーの電源を入れ ずに計測をするなどの対処が必要である。このような対処をしてデータを測定 すれば入射光強度に対する第2高調波出力はもう少し理想にそった関係になる のではないかと思われる。

5-5-4 SHG 結晶入射光波長依存性

本実験では SHG 変換効率が波長に対してどのように変化をするのか測定した。ここでは入射光強度を Ti:サファイアレーザーの発振効率がいちばん悪い波 長 700nm のときのパルス光平均出力である 170mW にあわせ、入射光波長ご とに結晶角度、励起光出力をこの入射光出力 170mW でもっとも第2次高調波 変換効率がよいところを測定した。レンズ - SHG 結晶距離は上記実験でもっと も効率が良いところにあわせた。

結果は表 5-2、図 5-12 のようになった。これは測定されたデータをフィルタ の値で較正したものである。理論的には式(5-13)(5-14)の B の値は入射光 周波数 の2乗に比例していることから、第2高調波強度、SHG 変換効率とも に入射光波長 の2乗に逆比例する。しかし、本測定データは波長 750nm か ら長波長側では効率が上昇するものとなった。表 5-2 のパルス幅の違いからの ピーク値の高さによるデータの依存性を考えてみても、このパルス幅の値がこ のようなグラフを形づくるとは考えられない。そのようなことから、本実験デ ータはフィルタ特性の影響が強く現われたものであると考えられる。今後はよ り適切なフィルタを用いて測定したいと考えている。

表5-2 入射光波長 - SHG变換効率特性

入射光波長	パルス幅	第二高調波	SHG変換効率
[mW]	[fs]	平均出力[mW]	
700	97.0	8.54	5.0%
720		7.61	4.5%
740	77.5	6.69	3.9%
760	71.0	6.13	3.6%
780	79.4	8.09	4.8%
800	72.0	10.67	6.3%
820	96.4	10.29	6.1%

SHG変換効率 入射光波長依存性

> 測定条件 入射光平均出力:170[mW] レンス-SHG結晶距離 9.3cm 室温:21 SHG-光検出器距離:37.5cm

5-5-5 第2高調波パルススペクトル

本節ではフェムト秒パルス光を入射して得られる第2高調波パルスのスペクトル特性について述べる。図 5-12、5-14 に第2高調波パルスの波長スペクトル依存性を示す。このときの入射パルス光の波長は 800nm で、そのスペクトル依存性を図 5-14 に示す。図 5-13、図 5-14 から入射パルス光波長半値幅 1 は 18nm、第2高調波パルスの波長半値幅 2は 2nm であることがわかる。

また、実験から第2高調波パルスの波長スペクトル波形は入射光に対する SHG 結晶角度を変えると、入射光パルス波長スペクトル幅 T の半分の波長ス ペクトル幅 T/2 の範囲内でピーク出力を変えながら連続に移動することがわか った。この様子を図 5-12 示す。図 5-14 は第2高調波波長波形でピーク出力が 最大になるものであり、そのピークの波長は 400nm であった。

図 5-12 SHG 結晶角度による第2高調波スペクトル波形の変化

図 5-14 第2高調波パルススペクトル波形 (入射光波長 800nm)

図 5-15 第2高調波パルススペクトル波形

このように第2高調波のスペクトル波形が SHG 結晶角度によって変化するのは、5-5-1 節に記したように SHG 結晶角度の変化で位相整合がおこなわれることによるものと考えられる。図 5-15 は第2高調波が発生する範囲 T/2 の端の第2高調波パルススペクトル波形(図 5-12 波形)である。これは SHG 結晶通距離の変化により第2高調波が干渉して現れる波形であると考えられる。

今後、第2高調波パルスの時間幅等の観測できるようになれば、そのピーク パワーなどの特性もわかるようになる。

5-5-5 実験のまとめ

本節に記した実験から今回実験で用いたBBOのSHG結晶の特性は以下のようにまとめられる。

- ・今回この SHG 結晶から得られた第2高調波の最高出力値は67mW で、最高効率値は10.8%であった。フィルタの特性を考慮して較正をおこなった結果、約86mW の最大第2高調波出力が得られるものと考えられる。このときの測定条件は入射光波長800nm、レンズ-SHG 距離9.3cm であった。
- ・本研究で用いた SHG 結晶は効率よく第2高調波を発生する入射光角度を 持つことがわかった。その角度は入射光の強度、集光性には依存しないが、 入射光波長に対しては依存性を持つ。SHG 結晶角度が変わると光の結晶通 過距離が変化すること、入射光波長ごとに位相整合されるのに適した結晶 通過距離が異なることから、効率よく第2高調波を発生する SHG 結晶角 度は入射光波長に依存すると考えられる。

- ・SHG 結晶の効率よく第2高調波を発生する入射光ビーム集光具合は、レン ズ焦点距離やレンズ-SHG 距離の誤差を踏まえて、焦点が結晶の中心に位 置するときであると考えられる。
- ・SHG の第2高調波変換効率は入射光強度に応じて上昇するものと考えられる。しかし、今回の測定データは、パルス波形等に依存したものになり、 理論式どうりの結果にはならなかった。信頼できるデータを得るには減衰 器を用いて入射光強度の調整するなどの対処をして測定をしなければならない。
- ・SHG 変換効率の波長依存性を調べた実験結果は理論式どおりにはならなかった。これはフィルタの特性の影響を受けたものであると考えられ、今後はより適したフィルタを用いて実験しなければならない。
- ・第2高調波パルスの波長スペクトル幅は入射パルス光波長スペクトル幅Tの半分の^T/₂であると考えられていたが、本研究で得られた第2高調波パルスの波長スペクトル幅はそれよりも狭いものであった。さらに、この第2高調波パルスの波長スペクトル波形はSHG結晶の角度を変えると、T/₂の範囲内でピーク出力を変えながら移動することがわかった。これはSHG結晶での位相整合によるものと考えられる。

第6章 その他実験

本章では前章までに記述した実験以外で、現段階でデータ収集が未完成の実験について記述する。

6-1 光ファイバ特性測定

本節では使用する光ファイバによって、入射したパルス光が分散などの影響 によるパルス波形の変化の観測を試みたことについて記す。ファイバの特性を 知ることができれば、高調波のパルス波形計測など多くの実験をすることがで きるようになる。本実験ではTi:サファイアレーザーから得られるフェムト秒パ ルス光ビームを光ファイバに入射し、レンズを用いて平行ビームにしたファイ バからの出射光をオートコリレータに入射しパルス幅の観測を試みた。その様 子を図 6-1 に示す。

図 6-1 オートコリレータ入射までのファイバ出射光ビーム

しかし、ファイバによって広がった出射光ビームは、本研究室のレンズを用 いてもオートコリレータに入射できるほど細くかつ平行にはできないため、光 ファイバ出射後のパルス波形を観測することはできなかった。

ファイバからの広がったビームはファイバとレンズの距離をレンズの焦点距 離Lと同じ距離にすると平行ビームとなることや、平行にしたビームの直径d がファイバによって広がった大きさに比例することから、光ファイバ出射後の ビームを細くかつ平行にするには、ビームの直径dは焦点距離Lの短いレンズ を使用し、そして光ファイバ出射端とレンズの距離をLとすればよい。このよ うな方法を用いれば光ファイバ出射後のパルス波形を観測することができると 考えられる。

6-2 蛍光発光測定

蛍光発光測定は Ti:サファイアレーザーの波長可変性をもちいて半導体をは じめとするサンプルにポンプ光をあて、そこから発生する蛍光を観測しようと いうものである。ポンプ光としてサンプルのバンドギャップより高いエネルギ ーの光を入射するとそのバンドギャップに相当する波長の光が得られる。実験 装置の配置を図 6-2-1 に示す。

図 6-2-1 蛍光測定実験

本実験ではポンプ光は Ti:サファイアレーザーの CW 波を使用し、サンプル 上に焦点がくるようにレンズを設置する。そして、そこから発生した蛍光をレ ンズで集め、分光器で波長スペクトル波形を観察する。

本測定実験は現在データを測定中であるので、本節では GaAs-AlGaAs の超 格子をサンプルから得られた蛍光スペクトル波形を図 6-2-2 に示すのみとする。 サンプルの GaAs-AlGaAs は量子井戸構造 50 層の超格子で、層の厚さは GaAs 層 80 、AlGaAs 層 100 である。

図 6-2-2 GaAs-AlGaAs 超格子サンプルの蛍光スペクトル波形

第7章 結論

本研究において得られた結果とその考察を以下に示す。

- Ti:サファイアレーザーレーザー、及びそこから発生するパルス光の特性 が得られたことでピコ秒・フェムト秒パルス発生の手法を確立し、操作 法を明らかにした。確実なパルス時間幅測定方法の確立や、共振器の調 整によるパルス光の依存性を考慮したときの特性については今後の課題 である。
- 2. SHG 結晶の第二高調波発生に関する特性が得られ、効率よく第2高調波 を発生させる条件を明らかにした。
- 光ファイバ特性測定については、ファイバからの出射光を観測できない
 理由と、その対処法を明らかにした。このことから今後は光ファイバの
 特性について測定ができるものと考えられ、第2高調波のパルス時間波
 形の観測などいくつかの応用ができるものと思われる。
- 4. 白色光発生実験ではパルス光の自己位相変調によるスペクトルの広帯域 化は認められなかった。その原因についても不明であることから、今後 は水など別の媒質を用いて白色光発生を試みたいと考えている。白色光 発生に成功すればWDM用導波路などへの実験光源として用いるなどの 応用が考えられる。
- 5. 現在実験中である蛍光測定など Ti:サファイアレーザーの励起光光源と しての使用については、その出射光、第2高調波を用いていくつかの材 料について評価できるものと思われる。

本研究では以上のように超高速パルス光についてある程度の基礎的なデータ が集められ、その結果からその応用方法についてもいくつか挙げられるように なった。今後、基礎データの収集を付け加えていくとともに、超高速光パルス を用いた具体的な応用研究に取り組んでいけたらよいと考えている。

謝辞

本研究を進めるにあたり、日頃から御指導御鞭撻をいただく原学科長をはじ め高知工科大学電子・光システム工学科の教職員の皆様に感謝いたします。特に、 本研究の緒より常に暖かい御指導、御教示を賜りました神戸宏教授に心から感 謝いたします。また、現在の光通信分野で研究開発を行う企業等を案内してい ただくとともに、有益な御助言を賜りました野中弘二助教授に深く感謝いたし ます。

最後に、本研究を進めるにあたり分光器の使用法について助言をいただいた 掛水瞳氏、色素レーザーの使用法について助言をいただいた片桐泰斗氏、受光 素子等について助言をいただいた加瀬川亮氏をはじめ、ともに研究を進め、多 くの御討論をいただいた本研究室の皆様に深く感謝いたします。

参考文献

- ・非線形ファイバ光学 G. P. Agrawal 吉岡書店 1997.5.25
- ・光エレクトロニクスの基礎 Amon Yariv 丸善 1974.7.20
- ・超高速デバイス 齋藤 富士郎 共立出版 1998.6.15
- ・超高速光技術 矢島 達夫 丸善 1990.3.15
- ・光と量子 大津 元一 朝倉書店 1994.12.1
- Y.Yamabayashi, M.Nakazawa and K.Takiguchi : "Terabit Transmission Technologies", NTT R&D Vol.48 No.1 1999
- H.Toba, Y.miyamoto, M.Yoneyama, S.Kawanishi and Y.Yamabayashi : "Next generation ultra-high-speed transmission technologies", NTT R&D Vol.48 No.1 1999
- Y.Cho : "Fundamentals of Mode-Locking Technology", The Review of Laser Engieenring Vol.27 Number11 July 6 1999
- K.Torizuka : "Ultrashort Pulse Generation by Mode-Locked Solid-State Laser", The Review of Laser Engieenring Vol.27 Number11 July 8 1999
- K.Kikuchi : Method of Ultrashort Optical Pulse Measurement", The Review of Laser Engieenring Vol.27 Number11 June 28 1999