レーザーアブレーション法による 環境半導体 - FeSi2の 薄膜作製と構造評価

高知工科大学 工学部 物質・環境システム工学科

山川 智弘 2001 年 3 月

【目次】

1 - 1	はじめに	3
1 - 2	環境半導体	4
1 - 3	研究目的	5

1 - 3 研究目的

第二章 環境半導体 - FeSi₂

2 - 1	環境半導体 - FeSi₂の特徴	9
2 - 2	FeSi₂の結晶相	10
2 - 3	- FeSi ₂の薄膜作成	11
2 - 4	FeSi ² の結晶相制御	11
2 - 5	結晶構造と Si 基板とのエピタキシャル関係	12
2 - 6	ドーピングによる伝導型の制御	14

第三章 実験

3 - 1	はじめに	17
3 - 2	- FeSi₂単相粉体の直接合成	17
3 - 3	レーザーアブレーション法	18
3 - 4	実験方法	19
3 - 5	薄膜評価装置	20
	a X線回析測定	20
	b 走査型電子顕微鏡 (SEM)	21
	c 4 探針法による抵抗率の測定	22

第四章 結果および考察

4 - 1 実験結果

		а	- FeSi ₂単相粉体の直接合成	24
		b	薄膜測定と照射時間依存性	24
		С	温度依存性とバンドギャップ測定	29
		d	4 探針法による抵抗率の測定	30
		е	SEM による試料表面観察と元素分析	31
2	4 - 2	考察		33
第五章	今後	の課	題	35
参考文南	ť			36
謝辞				37

1-1 はじめに

20 世紀、私たちは豊富な資源と豊かな技術を生かし、私たちは少ないエネル ギー消費で豊かな生活が享受できるようになりました。こういった意味でも 20 世紀は「恵みの世紀」だったといえます。しかしながら、私たちが作り出して きたものは環境に負荷を与えるものが多く、大量生産・大量消費を繰り返して きたため、さまざまな問題を引き起こしてきた背景があるのも事実である。

今日の情報化社会を支える半導体においても、電子技術の発達により恩恵を 受けてきましたが、その基幹となる化合物半導体は、GaAs の例に見られるよう にAs 等の環境に有害な物質を多く含むため環境への影響が懸念されます。また、 液晶ディスプレイ等の透明電極(ITO, InSnO)として使用されているインジウム (In)は、極端に資源寿命の短い元素から構成されており、新しい鉱脈の発見 やリサイクルの徹底を積極的に行わない限り、枯渇する運命にあると考えられ ます。(表 1-1)

.エネルギー資源	可採年数 (年)	. 稀少半導体資源	資源寿命 (年)
石油	44	インジウム	~ 1 4
天然ガス	63	砒素	~ 3 0
高品位石炭	231	カドミウム	19
ウラニウム	73	セレン	4 5
		ゲルマニウム	38

(表1-1)エネルギー資源と主な半導体資源の可採年数と資源寿命

このようなエネルギーデバイスに使用される材料(太陽電池・熱変換材料な ど)は、エネルギーをより多く、効率的に取り出すのが目的なので、そのデバ イス部分の大面積化・大容量化をはかり、性能を向上させることが要求されま す。⁶⁾そのため、エネルギーデバイスが使われた製品が大量に市場に出回るよ うになると、資源の大量消費から生産プロセスでの安定供給が困難になること や廃棄時の汚染問題などが予想できます。 私は、今日のこのような現状から、製作用材料の長期にわたる安定供給の確 保や、資源の供給問題とデバイス制作・廃棄時の環境負荷をトータルに考える ことのできる材料が望まれるのではないかと考えます。そのためには、自然環 境を視野にいれたデバイスの開発を考えていくことが21世紀を担う私たちの務 めではないかと私は考える。

1-2 環境半導体

従来のエネルギーデバイスの材料開発では、効率や性能面だけを考慮し、環 境リスクの推測や、人体への影響が研究の主軸とならなかった背景があります。 しかし近年、化合物半導体のなかでは、シリコン(25.8),アルミニウム(7.6), 鉄(4.7),カルシウム(3.4)といったクラーク数の上位元素(表 1-2)だけを 用いて、多様な機能を持つ2元系半導体が制作されるようになった。このよう な半導体材料に用いる元素は、地殻中に豊富な元素で生命誕生以来、生体に接 しており、多くの場合は生体に積極的に取り込まれてきたため生理学的には概 ね無害な物質である。また、化学的に安定で自然酸化や燃焼によって毒性が拡 散しない構造や機能をとっている。このように、低環境負荷元素を使用し、今 までとは異なる新しい半導体材料体系をとることによって、今日のデバイス産 業が抱える資源問題やデバイス制作・廃棄時の環境負荷を考慮することを目的 としたエネルギーデバイスを「環境半導体」と定義できると私は考える。(表1-3) ソーラーエネルギーが次世代のエネルギー資源の主力となることは CO₂の削 減を目指す上でも充分示唆される。こういったことから、私たちはこの「環境 半導体」を、太陽光、太陽熱、各種機器や低レベル放射性廃棄物等からの廃熱 など、再生可能エネルギー源を利用した電力生産用エネルギーデバイスとして

使用し、今日の環境問題に対応できる次世代のエネルギーデバイスとして期待 できる。

1-3 研究目的

「環境半導体」の禁制帯幅を軸上に表現してみると、シリサイドを中心とし 赤外から可視光領域まで幅広くカバーしていることがわかる。(図 1-4)しかし ながら、「環境半導体」の光起電力や性能指数といったデバイス機能をエコ・エ ネルギーとして実用化するには、まだ十分な成果が得られていないのが現状で ある。現在「環境半導体」は、通常の化合物半導体結晶成長に使われる、分子 線エピタキシー(Molecular Beam Epitaxy; MBE)法や有機金属気相エピタキ シー(Metalorganic Vapor Phase Epitaxy; MOVPE)法をはじめ、さまざまな 作成法が試みられているが、デバイス内での移動度やキャリア濃度が作製方法 により異なっている。これは、結晶が成長する際に何らかの作製条件が影響し ているためで、「環境半導体」のデバイスの特性が現れるか否かは、この結晶成 長段階にあると考えられる。

こういったことから「環境半導体」がエコ・エレクトロニクスを実現するに は、光学特性や電気特性などデバイスの特性が現れる要因が、結晶成長にどの ように起因されているかを明らかにし、「環境半導体」の特性を十分に引き出す ことのできる結晶性を制御することが必要である。そのためには、結晶成長に おいてさまざまな環境を設定し、できた結晶を評価することが先決である。

本研究では、クラーク数が高く毒性の低い元素から構成される、鉄シリサイド(FeSi₂)をレーザーアブレーション(Pulsed Laser Deposition;PLD)法を用いることによって薄膜を作製し、半導体の性質を示す 相の結晶成長機構に依存する要因や条件を解明し、X線解析装置や電気抵抗率などを測定することによって結晶構造の評価を行う。

禁制帯幅(eV)

図(1-4)資源の豊富な元素から作成される半導体の禁制帯幅 3C-SiC,4H-SiC,6H-SiCは、それぞれ3層周期立方晶、 4層周期六方晶,6層周期六方晶のSiCを示す

分類	化学式	結晶構造	バンドギ ャップ (eV)	応用分野
シリサイド	- FeSi 2	Orthorhombic	0.87	太陽電池・熱電変換デバ イス他
	Ca₂Si	?	1.9	太陽電池用窓
	Mg₂Si	?	0.5	熱光起電力デバイス 熱電変換デバイス
酸化物	CuAIO ₂	Zincblende	3.5	透明電極
	Zn0	-	3.4	太陽電池用窓、紫外・青 色発行デバイス、光表面 超音波デバイス、熱殿変 換デバイス
窒化物	GaN	Wurtzite	3.39	青色発光デバイス、高速 低消費電力デバイス、耐 環境電子デバイス
	AIN	Wurtzite	5.9	青色発光デバイス用
カーボン	SiC	Zincblende HEX	2.20 2.86	GaN と同じ

(表1-3)環境半導体の分類とその例

第二章 環境半導体 - FeSi₂

2-1 環境半導体 - FeSi₂の特徴

鉄シリサイド(FeSi₂)は、もともと耐熱・耐腐食材料として 1950 年代から 研究開発されてきた遷移金属ケイ化物の一つである。1985 年に米国の Bost らに より、多結晶 - FeSi₂膜の吸収特性から直接遷移型半導体であることが報告さ れ、さらに 1997 年英国の Leong らによる p-Si/ -FeSi₂微結晶/n-Si 構造から の赤外エレクトロルミネッセンス(EL)の実証がされてから注目されるように なった。

この鉄ケイ化物には 5 つの化合物が存在する。なかでも(表 2 - 1)の鉄ケイ 化物の結晶構造と室温における伝導パラメータに見られるように、 - FeSi₂の 熱電能(Seebeck coefficient)が他の 4 つのケイ化物に比べて、大きな値を示 している。この化合物は半導体的性質をもち、熱電能が特別大きいだけでなく、 比抵抗が比較的小さい特徴がある。しかも 1200 K以上の高温の大気やガス炎中 にも耐えることが知られていることから、熱電変換素子に利用する試がなされ てきた。最近では、光学特性においても 1eV で 10⁵ cm⁻¹ 以上の大きい吸収係数が 確認され、厚く(1µm)連続した - FeSi₂ 膜を作製することにより、太陽電池 材料の実現が期待されている。この - FeSi₂が、エコ・エレクトロニクスとし て研究され始めたのは、まだ最近のことである。

鉄ケイ化物	結晶構造	抵抗率 (10 ⁻⁵ m)	熱電能 (μ \/K)	ホール係数 (10⁻⁵m³/C)
Fe₃Si	Cubic	0.03 ~ 0.05	- 2	
Fe ₃ Si ₂	Cubic	0.17 ~ 0.20	- 14.4	
FeSi	Cubic	0.22 ~ 0.25	1.6 ~ 3.6	1.6 ~ 3.6
- FeSi 2	Tetragonal	0.50 ~ 0.75	5 ~ 10	0.1
- FeSi 2	Orthorhombic	5.00 ~ 10.0	$\pm 200 \sim \pm 300$	$\pm 300 \sim \pm 600$

(表2-1)鉄ケイ化物の結晶構造と室温における熱電特性

2-2 FeSi₂の結晶相

FeSi - Si 系の中間相は、 と呼ばれている。 相には、2つの化合物 とが存在し、前者の相は非化学量論的不定組成比化合物 - Fe_{1-x}Si₂である。
後者の相は、化学量論的化合物 - FeSi₂である。 および 相は、一般には - FeSi₂および - FeSi₂と書かれる。

この - FeSi₂は高温の金属相から低温の半導体相に変わる金属 - 半導体遷 移を示す。つまり Piton と Fay の状態図(図 2 - 2)によると、Fe 66.7at%Si 組成において共晶点と包折点が存在し、共晶温度 1489K と包折温度 1259K の間 では、FeSi(相・立方晶)と Fe₂Si₅(相・正方晶)の共晶合金であるが、1259K 以下では FeSi₂(相・斜方晶)になる。また、 相の固溶範囲は 1at%以下であ るが、 相は共晶温度において 7.1-12at%の Fe 空格子点をもつ。Fe - 66.7at%Si 共晶合金における 相の空格子点は約 7.1at%であるため、理論的には、この合 金を包折温度以下で熱処理することによって半導体相の FeSi₂が生成されると 考えられる。

(図2-2) Piton と Fay の Fe - Si 系状態図 11

2-3 - FeSi₂の薄膜作成

今日の - FeSi₂の薄膜作製には、高純度イオンを活用したイオン注入(Ion Beam Synthesis; IBS)法や蒸着法をベースにした熱反応堆積(Reactive Deposition Epitaxy; RDE)法など、あまり、化合物半導体結晶成長法としては 聞き慣れない方法が用いられている。このような背景には、通常の分子線エピ タキシー(MBE)法などでは、SiとFeの融点が高く蒸気圧が非常に低いため、

- FeSi₂の作製が困難であるという FeSi₂の性質上の問題点があるためであ る。(GaAs などでは、 族の蒸気圧が高いため、厳密な組成比の制御なしにほぼ 化学量論組成比の結晶が得られる。)最近では、レーザーアブレーション(Pulsed Laser Deposition; PLD)法や有機金属気相エピタキシー(Metalorganic Vapor Phase Epitaxy; MOVPE)法等の新しい多様な成長法が開発されてきており、そ の方法の特徴を生かした薄膜作製が行われている。

2-4 FeSi,の結晶相制御

最近では、多様な作成法により薄膜成長・バルク成長両面にわたって - FeSi 2結晶成長が行われている。しかし、現在行われている薄膜作製方法では、共に 高品質な結晶を成長させることは、一般に難しいと考えられる。⁷⁾その理由と して、 - FeSi2は通常の半導体に比べ対称性の低い複雑な結晶構造をとること、 また Piton と Fay の状態図(図2-2)からも分かるように Fe - Si 系には多く の金属間化合物があり、特に - FeSi2高温相の存在は、液相からの結晶成長を 困難にしている等があげられる。また、熱電変換素子への応用に際しては、 - FeSi2の焼結法が試みられているが、一度高温相である 相を作製した後に、

相への相変態を目的に熱処理されるため、 相が残存する問題点があるなど 現段階では、 - FeSi₂の結晶相制御を完全に行える技術には至っていない。最 近では、 - FeSi₂薄膜の結晶品質の向上が報告され、比較的大面積単結晶薄膜 が成長可能であることが報告されているが、少数の例外を除いて大方の -

FeSi,薄膜は多結晶である。

このように、 - FeSi₂は鉄とシリコンという単純な系ではあるが、 - FeSi 2の機能発現の源になる結晶構成単位をどこまで制御できるかという視点で眺 めた場合、単結晶が良いのか多結晶が良いのか、また微粒子が良いのか層構造 が良いのかまったく分かってない分野である。

2-5 結晶構造とSi 基板とのエピタキシャル関係

- FeSi₂は、Si 基板上へのエピタキシャル成長が可能であるため、多くの 薄膜成長が Si 基板上へ試みられている。ここでは、結晶構造と Si 基板とのエ ピタキシャル関係を明らかにする。

これまで述べてきたように、FeSi₂には、2 つの安定な相が存在する。940 以上で安定な 相とそれ以下の温度で安定な 相である。 相は正方晶(a=b =2.69 , c=5.14)の構造をとる金属である。一方、 - FeSi₂は、斜方晶 (a=9.86 , b=7.79 , c=7.83)の構造をとり、単位胞内に Fe 原子 16 個 および Si 原子 32 個を有する複雑な結晶構造で知られている。

- FeSi₂の生成には、理論的に金属的で準安定な構造として CoSi₂と同じ螢 石構造(CaF₂)を持つ - FeSi₂(格子定数は約 0.5431nm)が、ヤン・テラー (Jahn - Teller)効果により対称性が低下するため、²⁾斜方晶の 相に格子変 形する。このとき、 - FeSi₂の半導体性は、電子エネルギーバンドの分裂によ って形成された直接遷移ギャップに起因すると考えられている。⁷⁾したがって、 格子変形の程度によって、 と 格子間の転移が連続的に起こり、バンドギャ ップを中心に電子エネルギーバンド構造が格子歪みに敏感に変化することが知 られている。(図2-3)に 相の結晶構造を示す。

次に Si (001)および Si (111)基板上での - FeSi 2のエピタキシャル関係を考 える。Si (001)上では、 - FeSi 2の b, c 軸方向の格子定数が Si 基板の格子 定数(5.43)の約2の平方根であるため、(図2-4)(a)のように、 - FeSi 2(100) // Si (001)となる。この場合、2つの等価な成長様式が考えられるが、 同時に格子不整合が発生する。ここでの格子不整合とは対応する原子間のずれ に対応する。それぞれの格子不整合の割合を示すと

- FeSi₂(100) // Si (001) かつ、Si [110] // - FeSi₂ [010] では、

$$\frac{7.79 - 7.68}{7.68} \times 100 \qquad 1.4\%$$

となる。つまりこの場合、Si (001)上に - FeSi₂(100) 面が平行になるように 成長する時、原子配列が最もうまく歪みなく並ぶためには、面内方向でSi [110] 方向と - FeSi₂ [010] 方向が平行になるように原子がエピタキシャル成長す るが、面内で約1.4%の圧縮歪みを受けると考えられる。同様に、

- FeSi₂(100) // Si (001) かつ Si [111] // - FeSi₂ [001] では、

 $\frac{7.83 - 7.68}{7.68} \times 100 \qquad 2.0\%$

となり、2.0%の圧縮歪みを受ける。

一方、Si (111)上でも、格子不整合が考えられ、(図2-4)(b)に示すように、

- FeSi₂(110) // Si (111) または、 - FeSi₂(101) // Si (111)の2種類が 存在し、3つの成長様式が考えられる。

それぞれの格子不整合の割合を示すと、 - FeSi₂(110) // Si (111)では、 面内で1.4%の圧縮歪みと5.3%の引っ張り歪みを受ける。また - FeSi₂(101) // Si (111)でも面内で2.0%の圧縮歪みと5.5%の引っ張り歪みを受けることが考え られる。(計算式は今までと同様の考え方なのでここでは省略する。)

(図2-4) - FeSi₂(a) Si(001)基板および(b) Si 基板とのエピタキシャル関係

2-6 ドーピングによる伝導型の制御

エネルギーデバイスとして- FeSi2の特性を十分に発揮させるには、FeSi2pn接(A)合を実現することが必要(B)である。このためには、- FeSi2の伝導型を制御することが不可欠である。現在、熱電変換素子用に研究開発されてきた- FeSi2では、主に、Fe原子を不純物原子で置換することで p 型および n 型を制御してきた。n 型ドーパントとして Ni,Co,Pt,Pd,B が、また P 型ドーパントとしてMn,Cr,V,Ti,AI が知られている。しかし、こういった元素をドープすることによって環境に負荷を与えてしまう恐れがある。環境半導体という意味でも、なるべく毒性の高い元素を添加することを避け、伝導型の制御を行うのが理想である。

通常、作製した 相結晶は p 型になる。これは格子上の Fe と Si 原子には 2 つの格子位置、Fe()、Fe()、Si()、Si()があると考えられており、こ

の時の Si()は、格子位置から歪んで位置し空孔となりなるため、これがアク セプターとして働くためであると考えられる。³⁾⁴⁾また n 型についても、化学 量論組成近傍で Si をわずかに rich することで、p 型から n 型に変換することが 確認されている。量論組成近傍での格子欠陥が、局在準位の形成に大きい影響 を与えていることが考えられるが、FeSi₂の格子欠陥に対する検討は、Mössbauer 効果による研究が以前になされて以後、あまり進展していない。しかし、この ことは、不純物元素を添加することなく組成比を変えることで、伝導型がかわ りうることを示唆している。

(図2-3) - FeSi₂の結晶構造

第 三 章 実 験

3-1 序

本研究の - FeSi₂薄膜の作製では、まず、 - FeSi₂単相粉体の直接合成を 行い、レーザーアブレーション法のターゲットとして、この焼結体を使用する。 高品質の焼結体は熱伝変換素子の原材料としてだけではなく、高純度の単結晶 や薄膜作製の原材料として期待できるため、ターゲットに用いることにより、 これまでの薄膜よりも結晶性の良い - FeSi₂薄膜を作製できると考える。しか し、前節で述べたように、従来の - FeSi₂焼結体の作製では、高温の 層を相 変態させて 相を作製するため、 相が残存することが懸念される。そのため、

- FeSi₂単相粉体の直接合成では、こういった熱処理条件を制御することによって、高品質の薄膜を作製することを試みた。

また、この焼結体ターゲットとは別に、もう一つのターゲットとして市販されている FeSi₂(3N)を使用する。この FeSi₂は、X線回析結果より、いくつかの相に相当するピークも現れており、純度も高いことから高品質の薄膜作製を行うのに適していると思われる。このターゲットでは、主に基板温度依存による薄膜作製を行い、その評価を行う。

3-2 - FeSi, 単相粉体の直接合成

この実験での - FeSi²焼結体の作製方法は、出発原料としてSi(高純度シリ コンスクラップ・5N)を砕いた粉末とFe(電解鉄粉・3N)をモル比でFe:Si= 1:2 に秤量後メノウ乳鉢で混合し、室温で加圧形成する。この時の大きさは、 PLD装置に使うターゲットの大きさを直径4cm高さが0.5cmになるようにペレッ トを作製させる。この成形体を石英管内に真空封入し、電気炉を用いて、890 で20時間アニールした。

従来の方法との違いは、低温熱処理して - FeSi²焼結体の作製する点にある。 そうすることによって、相変態させずに 相を作製し 相残存の問題点を考慮 した。次に、薄膜を作製することによりその構造評価を行う。 3-3 レーザーアブレーション法

レーザーアブレーションは、レーザー光を固体に照射した場合、レーザー光 の照射強度がある大きさ、つまり、しきい値以上になると、ターゲット表面を、 高温・溶融状態にする。その結果、表面が瞬間的に蒸発気化するため、ターゲ ット表面がエッチングされる。この時、プルームと呼ばれる励起された粒子群 が拡散する。この粒子群には、ターゲットに含まれていた、中性原子、分子、 正負のイオン、ラジカル、クラスタ、電子、光子などである。そして、被照射 ターゲットに対向した位置に基板を設置すると、それら放出されたフラグメン トが基板上に付着・堆積され、薄膜が形成されるプロセスのことである。¹⁾(図 3-1)に装置の模式図を示す。このレーザーアプレーション法、(以下、PLD 法) は高温超伝導薄膜や強誘電体薄膜の作製で成功を収め、現在まであらゆる材料 の薄膜化に適用されている。

(図 3 - 1) レーザーアブレーション装置の模式図

PLD 法の特徴として、ターゲットと薄膜との組成のずれが少ないことや、チャンパー内の薄膜成長時に、真空や Ar ガスなどを変化させて雰囲気の制御ができること、また、実験装置としても簡単であるなど、一般にさまざまな利点が挙げられるが、非平衡状態において成膜が行えることが、重要な特徴であると考えられる。発光が見られることでもわかるように、飛び出す原子・分子は非平衡状態にあり、温度に換算すると数万度相当の高い運動エネルギーを持つ。また飛び出す原子は、一部イオン化されている。これらの現象は、よく対比される分子線エピタキシー法では起こり得ない。このため、形成される膜の性質にも、他の手法にない、独自性が出てくることが期待できる。最近では、レーザーアブレーションを環境半導体としての鉄シリサイド薄膜成長に適用したときでも、クリーンな成膜が行えるのみならず、多の方法に比べて 相を再現性よく作製できるなどのことが分かってきている。

3-4 実験方法

レーザーアブレーションは、光源の波長やパルス幅などに強く依存すること が知られており、レーザー条件を変えることによって、薄膜の形成に違いが見 られる。本研究では、Nd:YAGレーザーの第二高調波を用いてシリコン基板上に 鉄シリサイド薄膜を形成させる。レーザーのターゲットとしては、先に述べた、

- FeSi₂単相粉体の直接合成から得られた焼結体と市販の FeSi₂(3N)を用い、 基板には、ガラスまたは Si(100)ウエハを用いる。(表 3 - 2)に - FeSi₂薄膜 の作製条件を示す。

まず、膜圧を計測するため、ターゲットに市販 FeSi₂(3N)を用い、ガラス基 板上に FeSi₂を蒸着させた。そして、焼結体と市販の FeSi₂(3N)ターゲットを 用いて、シリコンまたはガラス基板上に基板温度依存成による薄膜作製を行っ た。

レーザー	Nd : YAG レーザー		
	第二高調波(532nm)		
パルスエネルギー (mJ)			
パルス幅 (nm)	358		
パ ル ス 繰 り 返 し 周 波 数	5 - 10		
(Hz)	10		
ビーム直径 (mm)	9		
分光幅 (cm ⁻¹)	1		
照射時間 (hour)	0.5 - 2.0		
ターゲット(FeSi₂)	99.9%		
基板	ガラスおよびシリコンウエハー		
タ ー ゲ ッ ト - 基 板 距 離	約 6		
(cm)	室温、400 - 600		
基板温度 (度)	10⁻⁵以下		
真空度 (Torr)	電気 - 光学 Q-switch		
操作モード			

(表 3 - 2) - FeSi₂薄膜の作製条件

3-5 薄膜評価装置

a. X 線回析測定

X線回析は、波動の回折像を利用し、物質中の原子・分子位置の周期性に関す る情報を得るための装置であり、非破壊で測定を行うことができる。また多く の場合試料調整も多くの場合不要なため、結晶性物質の簡便な同定法として広 く用いられる。(図3-3)は、結晶中での各原子の規則的配列を表したものです。 そしてこれらの原子を通るような面を考えると、結晶はこれらの面が等間隔で 無数に並んできたものと見なすことができます。この面は格子面と呼ばれ、回 折現象は格子面から反射した X線の干渉により 2dsin = nl のブラッグ条件で 示される方位にだけ強度が得られ、それ以外の場所では弱くなり観測されない。 ^{2 、 5 、)}また、X線回析測定ではさまざまな面間隔について強度測定を行うことが できるため、本研究では、基板上に成長させた - FeSi₂のエピタキシャル成長 を観測するためにこの装置を用いる。

b. 走查型電子顕微鏡 (SEM)

SEM は試料に電子線を照射しその表面形態を観測する。試料に電子線を照射す ると、試料表面から 2 次電子が発生する。そして、細かく絞られた入射電子ビ ームを試料表面の走査させ、発生した 2 次電子を検出し、発生量を輝度の信号 に変換すると目的の SEM 像が得られるというしくみである。2 次電子は凹凸のう ち凸部分の方が、多発生量のため、SEM 像では凸部分が明るく、凹部分が暗いも のとなり、3 次元的な凹凸をディスプレーや写真や写真のような二次元の像とし ても表すことができる。模式図を(3-4)に示す。

SEM 観測を行うには試料に金属やカーボンを蒸着し、導電性を付与する必要が ある。これは、試料に導電性がない場合、試料表面に電荷が溜まるチャージア ップという現象が表れ、正常な SEM 像が得られない。また、観測時の環境は高 真空下にあるため、今回行う薄膜評価など断面構造回析には、機械研磨や切断 などの試料調整を行なければならない。

(図3-3)X線の干渉原理

(図 3 - 4)SEM の原理

c. 4 探針法による抵抗率の測定

今回作製した - FeSi₂薄膜の電気的特性を測定するため、4 探針法による低 効率測定を試みた。まず、電流端子、電圧端子を作製するため、薄膜の上に Au を堆積させた。この 4 探針法は、試料がある程度大きい場合、形状に関係なく 低効率を求められる。探針の間隔 d、薄膜の長さを k、電流を I、電圧を V、膜 圧を t とすれば低効率 は、

$$=$$
 $\frac{V}{I}$ $\frac{t}{d}$

となる

この実験は、光のエネルギーにより薄膜内の原子の励起を防ぐため、暗室で 測定する。(図3-5)に4探針法の模式図を示す

(図 3-5)4 探針法による電気抵抗率測定

第 四 章 実験結果および考察

4-1 実験結果

a. - FeSi, 単相粉体の直接合成

PLD 法に使用するターゲットとして、電気炉で 20 時間アニールして作製した - FeSi²焼結体を X 線回析行った結果、アニールする前の - FeSi²混合物の X 線回析ピークと比較したところ、焼結体からは、 - FeSi²のピークはまった く観測できておらず、焼結前の回析ピークしか現れなかった。おそらく今回設 定温度の 890 のアニールでは FeSi²の熱反応が起こらなかったと考えられる。 原因として考えられることは、石英管内を真空封入したため、熱伝対を石英管 内部に入れることができず、電気炉が示す設定温度と実質の温度と間に差が生 じたため、反応が進まなかったためと思われる。

この焼結体では Si と Fe 共に残存しており、最大の目的である熱処理条件の 制御によって 相の制御ができなかった。そのため本研究では、この焼結体と もう一つの FeSi₂(3N)とのターゲット依存性による薄膜作製は行わず、FeSi₂ (3N)を用いて温度依存性や照射時間依存性による薄膜作製を重視する。

b. 薄膜測定と照射時間依存性

まず、ガラス基板上に(表3-2)のレーザー条件で、(基板温度・室温、パルス エネルギー・358mJ)アブレーションを行った場合、FeSi₂の膜圧がどれだけ得ら れるかを知るために成膜した後、走査型トンネル顕微鏡 (AFM)で膜圧測定を行 った。パルスエネルギーとの膜圧形成の関係を(表4-2)に表した。

また、同じガラス基板を用いて、照射時間変化により薄膜を作製した X 線回 析結果を(図 4 - 1)の示した。この時の基板温度、パルスエネルギーは、膜圧計 測の時の条件と同じである。

(図 4 - 3) 照射時間依存性による薄膜作製の X 線回析結果

照射時間のちがいによる - FeSi₂薄膜は、これといったピークの違いは観測 できなかったため、今回、設定したレーザー条件下での照射時間依存性はない ものと考えられる。

2 (deg)

(図 4 - 1) 温度依存性による - FeSi₂のX線回析結果

(表 4 - 2)AFM による膜圧測定結果

蒸着時間(hour)	0.5	1.0	1.5
膜圧 (nm)	25.6	60.8	60.1

パルスエネルギーは 358mJ で測定

AFM による膜圧測定は、境界部分での膜と基板との段差から探針を走査し、 その平均値から膜の測定している。蒸着時間が増加するごとに膜圧が増す傾向 にあることがわかり、パルスエネルギーに違いによる - FeSi₂の膜圧が計測で きた。

基板温度依存性による - FeSi₂薄膜の X 線回析結果からは、常温基板、400 度基板ともに 69°付近で - FeSi₂006 反射に相当するピークが観測されてい ることがわかる。500 基板になると - FeSi₂006 面に加えてもう一つピーク が観測されていることがわかったが、今の段階では、 - FeSi₂のどの面が出て いるのか、また FeSi などの 相とは違うものが観測されているか同定には至っ ていない。600 度基板になるとこのピークは観測されず、 - FeSi₂006 面が同 じように観測されている。

このように、温度を変化させた全ての薄膜から Si 基板(004)に - FeSi₂ (006)反射が確認され、Si 基板上に - FeSi₂がエピタキシャル成長させること ができた。

C. 温度依存性とバンドギャップ測定

Si 基板を用いて、温度依存性による薄膜形成の X 線回析結果を(図4-3)に示し、各基板温度から得られた薄膜をバンドギャップの測定のために、フーリエ 変換赤外分光法の結果を(図4-3)に示した。

(図 4 - 3) FT - IR による - FeSi,のバンドギャップ測定結果

- FeSi₂は、約 0.89eV のバンドギャップを有する直接遷移半導体として知られている。(図 4 - 3)の波線で表したところがこの約 0.89eV にあたるが、ここでの吸収ピークは確認されなかった。

d. 4 探針法による抵抗率の測定

4 探針法による抵抗率の測定では、X 線回析で - FeSi₂のエピタキシャル成 長が観測されたことから、400 基板上に作製した - FeSi₂薄膜の抵抗率を測 定した。このときの基板は、抵抗の低いガラス基板を使用し、前節で示した4 探針法による計算式から抵抗率を求めた結果、5.49×10⁻²(・cm)が得られた。 電圧・電流の関係を(図4-5)に表した。

一般に、 - FeSi₂低効率は 0.01 から 0.1(・cm) であることがわかって いることから、PLD 法で作製した - FeSi₂薄膜の電気抵抗率は比較的低いこと が考えられる。このことから膜中のキャリア密度が高く、バンドギャップが形 成されてないことが考えられる。

(図 4 - 5)4 探針法による電流・電圧の関係

e. SEM による試料表面観察と元素分析

抵抗率の測定した薄膜と同じ400 基板の - FeSi₂薄膜試料を用いて、薄膜 試料の表面観察とEDX による元素分析を行った。表面観察のSEM 像(図4-5)か らは、白い斑点が局所に散らばって見られることがわかった。これを EDX によ り元素分析した結果(図4-6)斑点は、周囲の元素に比べて、Fe が多く含まれ ていることが考えられる。

(図4-6) - FeSi₂薄膜のSEM像

4-2 考察

前節で述べてきたように、PLD 法による - FeSi₂薄膜の作製では、基板温度 を変えることによって、 - FeSi₂が Si 基板上にエピタキシャル成長すること がわかったが、69°付近で - FeSi₂の(006)面が観測されていれば、46°付 近の - FeSi₂(004)の強い反射がでるはずである。しかし、今回作製された 薄膜では、このピークは観測されなかった。このことから、FeSi₂がエピタキシ ャル成長しているものの、完全な - FeSi₂は得られていないと考えられる。

低効率測定からは、キャリア密度が高いことが観測された理由として、レー ザーターゲットの - FeSi₂が(3N)であるため、FeSi₂に多くの不純物が混入 していることは十分ありうる。そのため、不純物がキャリアとなっていること が考えられる。

第 五 章 まとめと今後の課題

まとめと今後の課題

今後の課題として、基板温度を制御して完全な - FeSi₂を得ることが最大の 課題である。完全な - FeSi₂を得るためには、失敗に終わったターゲット依存 性による薄膜作製の試みや、基板温度の制御をもう少し、幅広い温度領域で行 って見るなど、薄膜作製とレーザーの性質との関係を追及していくことが考え られる。また、ターゲットの組成比を変えることによって、伝導型と伝導率の 制御を行なうなどした、FeSi₂の電気的特質を考えた薄膜作製も、環境半導体と しての今後の課題である。

- 1) 電気学会編;レーザーアブレーションとその応用、コロナ社
- 2) CHARLES KITTEL 固体物理入門 第7版; 宇野良清・津屋昇・森田章・ 山下次郎共訳、丸善株式会社
- 3) 新版基礎半導体工学;國岡昭夫、上村喜一著、朝倉書店
- 4) 電子回析と初等結晶学;田中通義、寺内正巳、津田健治;共立出版株式会社
- 5) X線回析の手引 改訂第四版;理学電気株式会社
- 6) エコマテリアルのすべて、山本良一著、日本実業出版社
- 7) 材料科学、;特集環境半導体 vol.37.2000.1.日本材料科学会誌

本研究を行うにあたって、たくさんの方々にご指導・ご鞭撻をいただいたこ とを心からお礼申し上げます。特に、谷脇雅文教授には実験装置の知識や、実 験手順、測定方法に至るまで数々のご指導をいただきました。お忙しい中にも かかわらず、こちらの受験等の都合によって大変ご迷惑をおかけしたことをこ の場を借りて深くお礼申し上げます。実験装置をお借りさせてもらい装置のご 指導をいただいた、知能・機械システム工学科の竹内彰敏助教授や、高知県工 業技術センターの方々や坂輪研究室の方々、また適切な助言や、アドバイスを してくださった藤原弘助手に深く感謝しここにお礼を申します。

最後になりましたが、この実験のことや、実験以外のことでもお世話していただいた、先生方や同研究室の皆さん、門馬研究室の皆さんには、本当に感謝の気持ちでいっぱいです。ここに篤くお礼申し上げるとともに、謝辞とさせていただきます。