平成 12 年度

卒業論文

インテリジェント歩行支援機における 患者の位置検出

(カメラ及び超音波センサを用いた場合)

指導教員

井上喜雄 教授

甲斐義弘 助手

高知工科大学工学部知能機械システム工学科

1010173 津野貴年

1010221 森井康友

1.緒言 1
2.実験準備
2.1 センサ取付カメラ4
2.2 カラーCCD カメラ5
2.3 超音波センサ7
2.4 被写体・カラーモニター8
2.5 リニア装置
3.実験方法
3.1 実験 1
3.2 実験 2
3.3 実験条件14
4.実験結果
4.1 実験 1
4.2 実験 2
5.考察
5.1 実験 1
5.2 実験 2
6. 结言 20
V.ing ロ
刻叶

付録

<u>1. 緒言</u>

近年,高齢化社会が進行するに伴い,高齢もしくは病気のため,歩行機能に障害を有す る患者が増加しつつある、そこで患者の増加を予防する手段として、または歩行機能を回 復するために歩行リハビリテーションは非常に重要である.しかし,歩行リハビリテーシ ョンは一般的に理学療法士や介助者等が患者の体を支えながら行っているのが現状であり, 理学療法士や介助者等の患者に付き添い続けることによる身体的負担は非常に大きい、今 後,高齢化社会が進行し続けると,歩行リハビリテーションを必要とする患者が増加し, 理学療法士等の身体的負担が更に増加する.それだけでなく,患者に必要な歩行リハビリ テーションの時間も十分取れなくなるということもあり得る.そこで歩行リハビリテーシ ョンの促進と,理学療法士等の身体的負担を軽減し,患者がある程度自立して歩行訓練を 行うことができる歩行支援機の開発が必要である.しかし,医療現場で一般的に用いられ る歩行器で歩行リハビリテーションを行う場合,患者の転倒が問題である.転倒を大きく 分類すると,歩行器と患者の水平方向の距離が離れていき体を支えきれず転倒に至るパタ -ン(転倒パターン1)と,患者の膝が折れ,主に鉛直方向に崩れ落ちるパターン(転倒 パターン2)がある.(図 1.1,図 1.2参照)このような患者の転倒を未然に防止して,安 全に歩行リハビリテーションを実施できることが,最も重要なことであると考えられる. このことから歩行支援機では、患者が転倒しそうな危険な姿勢の時、患者の状況に合わせ て制御させるための安全装置が必要不可欠である.そこで転倒を防止するのに重要となる のは歩行支援機と患者との位置関係であり、歩行支援機と患者との距離が測定できれば転 (倒パターン1,患者の上下の変位が測定できれば転倒パターン2が防止することが可能で あると考えられる.しかし,歩行時の足の動きは,前後左右に不規則に動作しており,ま た、人によっても状況が変化するなど予測がつきにくく、足の位置を測定することは非常 に難しい.さらに安全装置のセンサとして用いるので,確実に測定できることが必要であ る.一方,目的が転倒の状態の把握であるので,精密機器における計測のような精度は必 要としない.現状では,赤外線を用いたハイブリッドファイバセンサによって足の位置を 検出して歩行支援機を制御する位置検出エリアセンサ装置により,歩行支援機を制御させ る装置などの研究(1)2)がなされている.これらの装置は歩行支援機における患者の転倒防止, および足の位置情報に基づく速度制御を行うためには簡易でかつ有効であるが,位置検出 エリアセンサ装置の場合,離散的であり,細かな制御はできない.その上,足の動作範囲 に沿ってセンサを複数設置しなければならないので , 装置として全体の大きさが大きくな ってしまうという欠点がある.

そこで本研究では,比較的コンパクトに,確実に連続的な値の得られる方法として,レンズ部が可動して被写体を自動追尾することができるカラーCCDカメラと,距離測定において応答性が良い超音波式変位センサの両者の特性を生かして,確実に足の位置を検出することができないかと考え,センサ取付カメラを試作し,その機能について実験的な検討

を行う.まず,実験装置,実験方法について示した後,実験結果・考察により,センサ取 付カメラの有効性を示し,全体的な装置のコンパクト化・低価格化を図って,歩行支援機 の制御に応用できるか否か検討した.

2. 実験装置

この章では,3章で述べる実験で使用する装置の機能説明と実験を行うための設定を示す. 図 2.1 は各実験装置の接続図を示す.点線部が提案する計測するシステムであり,それ以 外の部分は,その性能を確立するための装置である.

・計測システム

レンズ部が可動して被写体を自動追尾することができるカラーCCD カメラ 距離を正確に測定できる超音波センサとアンプユニット

・その他

映像を出力するカラーモニター

足の理想動作で被写体を動作させるリニア装置

これらの各装置の機能説明と実験を行うための設定を述べる.そして,カメラが自動追尾 している被写体に超音波を当てることができて超音波センサによる距離測定を行うことの できるセンサ取付カメラの機能説明と実験を行うための設定を述べる.

2.1 センサ取付カメラ

本研究では,被写体を自動追尾する機能を持つカメラと,距離の測定が正確な超音波センサを組み合わせて図 2.2 に示す,センサ取付カメラを試作した.カメラの上部に超音波センサ取り付けることにより,カメラが自動追尾している被写体に超音波を当てることができ,超音波センサによる距離測定ができる.

図 2.2 センサ取付カメラ

カメラのレンズの中央から超音波センサの中央までの寸法は 50mm である.取り付けに 用いた道具は,市販の3.5インチフロッピーケース(10枚組)に直径30mmの穴を開け, 超音波センサを付属のナットで固定した.(図2.3,図2.4)取得したデータは上述したパ ソコンによって出力した.

図 2.3 センサ固定前

図 2.4 センサ固定

<u>2.2 カラーCCD カメラ (カメラ)</u>

カラーCCD カメラは SONY 社製のパン・チルトー体型カラーカメラ EVI-D30 を使用 した.このカメラはレンズ部が上下左右に可動する機能を持ち,この可動範囲は図 2.5 に示すように,左右合わせて約 200°,上下合わせて約 50°可動し,画角は左右合わせ て約 49°で,上下合わせて約 38°である.その他に被写体の色・濃度・輝度の情報を抽 出して被写体を認識することができ,その認識した被写体を,自動的にパン,チルト,ズ ームして追尾する機能(自動追尾機能)を持つ.付属の赤外線リモートコントローラーで コントロール可能であるが,SONY が開発した独自の通信プロトコル(VISCA™)によ る RS-232C シリアルコントロールも可能である.この RS-232C コントロールによるカ メラ専用の様々なコマンドを送受信することによって制御でき,そしてパン,チルト,ズ ーム等の各ポジションの値によりカメラの状態をパソコン上で知ることができる.そして, この予備実験での被写体の認識操作に必要な制御は,赤外線リモートコントローラーによ って行い,コマンドの送受信や,各データの取得にはデスクトップ型パソコンを用いた. カメラの主な仕様は表 2.1 に示す.

図 2.5 EVI-D30(可動範囲)

上述した自動追尾機能が,本研究での EVI-D30 を採用した大きな理由であるが,これ だけの機能を持っていて低価格であるということも理由の1つである.

そこで本研究では,カメラを図 2.1 に示すように接続し,赤外線リモートコントロー ラーを用いて,以下のように設定して被写体を認識させた. < 被写体の認識操作>(表 2.2 参照)

・AT モード ON, 追尾モード 2 (CHASE 2), ENTRY モード 3, オートズーム ON ・AT モード START (被写体認識完了)

·認識操作終了

本研究で対象としている歩行支援機は室内での使用を目的としているため、この実験も 室内環境での実験を行った.そしてこれらの制御モードは、この実験を行った室内環境で 被写体を自動追尾に最適なものと考えられる.この設定を変更することで様々な環境に適 応可能である.データの取得には、プログラムにより、RS-232C コントロールでコマン ドを送信し、それによりデータを受信する.このデータは16進表記であるので、それを 10進表記にプログラム上で変換して、パン(左右)、チルト(上下)、ズーム、それぞれ のポジションの値を算出した.これらの送受信コマンドおよび各ポジションデータの範囲 を表 2.3、表 2.4 に示す.

表 2.3 カメラ送受信コマンド

ポジション	送信コマンド	Replyコマンド	ポジションデータ
パン	91 00 06 12 EE	90 50 0W 0W 0W 0W	www:パン
チルト	81 09 00 12 FF	0Z 0Z 0Z 0Z FF	ZZZZ:チルト
ズーム	81 09 04 47 FF	90 50 0Z 0Z 0Z 0Z FF	ZZZZ:ズーム

表 2.4 各データの範囲

ポジション	16進表記	10進表記
パン	FC90 ~ 0370 (center 0000)	-880 (Left) ~ 880 (Right)
チルト	FED4 ~ 012C (center 0000)	-300 (Down) ~ 300 (Up)
ズーム	0000~03ff	0 (Wide) ~ 1023 (Tele)

プログラムには,エラー値を除くフィルタ処理を追加した.そのフィルタ処理の手順は 以下に示す.

< データのフィルタ処理 >

・ポジションの範囲(表 2.4)の間でなければ,1つ前のデータに変換.

・前後のデータの差が25以上の時,1つ前のデータに変換.

2.3 超音波センサ

超音波式変位センサは被写体までの距離を測るために用いた.超音波式変位センサは KEYENCE 社製のセンサヘッド部 UD-320 とアンプユニット UD-300 を用いた.これら の外形図を図 2.6,図 2.7 に示す.この超音波センサは測定距離が 200~1300mm であ り(表 2.5 参照),歩行支援機を使用した時の歩幅を十分に測定でき,本研究での目的で ある足の検出を行うことが可能である.しかし,測定範囲に限度があるので,範囲内に被 写体を入れておく必要がある.

🛛 2.6 UD-320

図 2.7 UD-300

超音波センサとアンプユニットはデータを 4~20mA の電流(アンペア)で, A/D ボードは 0~+10V の電圧(ボルト)で処理をするので,本研究ではセンサ・アンプユニット と A/D ボードは直列に接続せず,電流値を電圧値に変換するため,間に抵抗(470)を 並列に接続した.そして変換された電圧値より距離を次に示す式を用いて算出した.

<u>2.4 被写体,カラーモニター</u>

カメラに自動追尾させる被写体は,様々な色を調べた結果,鮮やかな色である蛍光ピン ク色が認識しやすいことが判り,本研究ではこの色のシール(マーカー)を直径 70mm の円形に裁断し,市販の 3.5 インチフロッピーケース(10 枚組)の側面に貼り付け,被 写体(図 2.8)として使用した.カメラから出力された画像はKEYENCE 社製の液晶カ ラービデオモニターCV-M30(図 2.9)を用いて出力した.カラーモニターは被写体の認 識操作を行うため,必要なものであり,前述した認識しやすい色を探す作業にも必要であ る.この最適な色を探す作業は,被写体を画面に表示されるフレームに合わせて,原色を 中心にカラーモニターに表示される色温度表示(図 2.10)の数値により決定した.この 色温度表示について SONY に問い合わせた結果,「色温度表示の数値は,フレーム内部に ある被写体の色の濃度を数値化したものである.」という回答であった.カメラの取扱説 明書では,この数値が高く,フレーム内が単一色になるほど認識しやすいと記述している. この実験で用いた被写体の場合,色温度表示は170~180前後である.ちなみに,蛍光イ エロー色では100~110,赤系の色で 80~90,青系では60~70であった.色が薄く,鮮 やかな色ほど数値が高い傾向にある.

図 2.8 被写体

図 2.9 カラービデオモニター

図 2.10 色温度表示(モニター画面)

2.5 リニア装置

本研究でリニア装置は,足の理想動作で被写体を動作させるための装置として用いた. リニア装置概観は図 2.11,図 2.12 に示す,NSK 社製のレゾルバーフィードバック型メ ガスラストモータ(リニアモータ)と EM 型ドライブユニットを使用し,その他にコス モテック社製の ISA バス対応 4 軸モータコントロールボード ATPG-46 と,Interface 社 製の 12 ビット 16 点 A/D 変換ボード IBX-3133 を使用した.このリニアモータは 1285mm のスケール長で,スライダー部は仕様上,最大 600mm/s (2.16km/h)の速度を出すこと ができる.そしてこれらの装置の制御や,データの取得には,カメラの制御にも用いたデ スクトップ型パソコンを用いた.このリニア装置に用いた装置の仕様は表 2.6~表 2.9 に 示す.

図 2.11 リニアモータ

本研究では,リニア装置は上述した各種 ISA ボードとドライブユニットを用いパソコンにて,位置制御を行った.(図 2.1 参照)また,位置制御を行うための制御パラメータは以下のように設定した.

<リニア装置の設定>

- ・ドライブユニットでパルス列による位置制御の設定.
- ・ATPG-46 ボードの External Counter Read コマンドから取得したスライダーの外部パ ルスを1パルスあたり2µm 移動するように設定.
- ・A/D ボードを用いて,サンプリング周波数を 100Hz でタイマ割り込みを行って時間を 取得.

上述したリニア装置,カメラ,超音波センサの制御で用いたログラムはひとつのプログ ラムであり,同じ A/D ボード用いている.そのことにより,時間の同期が取れ,それぞ れのデータの比較ができる.それぞれのプログラムの流れは図 2.13,図 2.14 に簡易フ ローチャートを示す.リニア装置のスライダーの位置データ,カメラの各ポジションデー タ,超音波センサで測定した距離,A/D ボードから取得した時間は全て同じデータファイ ルに保存される.測定した時間は,約20秒である.

3. 実験方法

この章では,足の前後の理想動作による被写体の位置検出を目的とした実験1と足の左 右の理想動作による被写体の位置検出を目的とした実験2のこれら2つの実験方法につい て述べる.このことにより,足の位置検出におけるセンサ取付カメラの有効性を示すこと ができる.また,専門家や歩行支援機の研究に携わった方々の意見より,患者の足の位置 は患者が着ている衣類などの影響を受けるので、位置測定の誤差は100 mm 以内に抑える ことができれば、歩行支援機の制御に応用できると考えられる.そして,歩行支援機の速 度から,1 秒以内の時間遅れでは患者が転倒したと判断した場合,停止するまでに歩行支 援機はそれほど進まない.したがって,被写体の位置の測定誤差が100 mm で,時間遅れ が1 秒以内という結果が得られれば,歩行支援機の制御に応用できるといえる.

本研究では,センサ取付カメラを図 3.1 のように設置した.スライダーの移動方向と同 一直線上に設置する方法を実験1とし,移動方向に対して垂直に設置する方法を実験2と する.

図 3.1 センサ取付カメラ設置方法

<u>3.1 実験1</u>

図 3.2 は実験1の概観図を示す.実験1は,足の前後の理想動作による被写体の位置検 出を目的としている.計測には超音波センサとカメラのズームの2パターンを使用した.

センサ取付カメラからスライダーの初期位置までの距離 600mm を S とし, 被写体までの距離を L とする.カメラの回転半径 r は 60mm である.

図 3.2 実験1

3.2 実験 2

図 3.3 は実験2の概観図を示す.実験2は足の左右の理想動作による被写体の位置検出 を目的としている.

センサ取付カメラの可動角を とし,回転半径rは60mmである.そしてスライダーの 移動距離をP,センサ取付カメラからスライダーの初期位置までの距離600mmをSとする. PとSで被写体のX座標,Y座標を示すことができる.

図 3.3 実験 2

両実験ともセンサ取付カメラからスライダーの初期位置までの距離 S からスライダーを 往復運動(Sin カーブ)させた.カメラによる被写体の認識操作もこの距離で行った.この 距離は,人が歩行支援機に普通に立った状態でのセンサ取付カメラの設置予定位置から足 までの距離である.

<u>3.3 実験条件</u>

リニア装置の振幅や周期を変更して,表 3.1 のような組み合わせで実験1と実験2それ ぞれの実験を行った.この振幅・周期で実験を行った理由を以下に示す.

<振幅・周期の条件>

- ・超音波センサの測定距離の範囲が 200~1300mm であり,センサ取付カメラから 600mmの位置から動作させるので,振幅は 400mm 以内に限定される.振幅 400mm でも測定範囲であるが,スライダーのオーバーシュート等の原因により,1mm でも超音波センサ側にずれると,測定範囲を超えてしまうので,振幅 400mm は実験を行わなかった.
- ・そして,リニア装置のスライダー部の最大速度は仕様上,600mm/s(2.16km/h)であるが, 実際は 560mm/s 程度が限界であり,この 560mm/s 近辺の速度で,かつリニア装置の最 大速度を超えないという条件が必要である.

このような条件を満たす 50mm から 350mm まで 50mm 刻みの振幅,及び 0.5 秒刻みの 周期の組み合わせをそれぞれの最大速度を計算することにより導き出した結果,表 3.1 で 示す振幅・周期が得られた.つまり,各振幅でのリニア装置の最大速度に近い速度で実験 を行ったことになる.もしも,この振幅・周期で測定できなかった場合,スライダーの移 動速度を下げるため,振幅は変更せず,周期を 0.5 ずつ上げ,実験を行う.また,専門家に よると歩行支援機の移動速度を 208.33mm/s (0.75km/h)程度にすると,患者にとって速い と感じられ,その速度で足の認識ができれば,歩行支援機を使用する必要のある患者の足 の認識が十分可能であり,歩行支援機に応用できるということである.したがって上述し た振幅・周期での実験結果が良ければ,歩行支援機に応用できると考えられる.

振幅 [mm]	周期 [s]	振動数[Hz]	最大速度 [mm/s] ([km/h])	平均速度 [mm/s] ([km/h])
50	1.00	1.00	314.00 (1.13)	200.00 (0.72)
100	1.50	0.67	418.67 (1.51)	266.67 (0.96)
150	2.00	0.50	471.00 (1.70)	300.00 (1.08)
200	2.50	0.40	502.40 (1.81)	320.00 (1.15)
250	3.00	0.33	523.33 (1.88)	333.33 (1.20)
300	3.50	0.29	538.29 (1.94)	342.86 (1.23)
350	4.00	0.25	549.50 (1.98)	350.00 (1.26)

表 3.1 各振幅・周期の振動数,最大速度,平均速度

各振幅・周期での最大速度,平均速度は,以下の式を用いて導出した.

最大速度[mm/s] = (2 × × 振幅[mm]) ÷ 周期[s] = (2 × × 振幅[mm]) × 振動数[Hz] (円周率 は 3.14 とする .)

平均速度[mm/s] = 1周期の総移動距離[mm] ÷ 周期[s] = (振幅[mm] × 4) ÷ 周期[s] = (振幅[mm] × 4) × 振動数[Hz]

この実験によりデータファイルとして出力されたスライダーの位置データと,カメラの 各データ,そして超音波センサのデータを Microsoft Excel によりグラフ化し,スライダー の位置データを基準として,カメラの各データや超音波センサのデータにより,時間のず れ,誤差をそれぞれ比較することができる.このことによりカメラ,超音波式変位センサ の性能を解析することができる.

4. 実験結果

この章では前述した実験1,実験2での各振幅・周期の実験結果,および各データより, 作成したそれぞれのグラフの説明を述べる.

<u>4.1 実験1</u>

図 4.1.1(a)は,スライダーの外部パルスから得た位置データ Lo(基準データ)と,本計測 システムでの測定データ L を表したグラフである.このグラフの横軸は時間,縦軸はセン サ取付カメラから被写体までの距離を表す.スライダーの位置データとは初期位置 S(被写 体までの距離 600mm)を原点とした変位(絶対値移動)を表す.スライダーがセンサ取付 カメラに近づく方向の変位をマイナス,遠ざかる方向の変位をプラスとする.

この図より,本測定システムによる計測データは基準値であるスライダーの外部パルス から得た位置データとよく一致しているのが分かる.

なお,基準値Lo,本計測システムによる計測値Lは次式により求められる.

	(Lo:スライダーの外部パルスによる被写体までの距離[mm]
Lo= P + S	L:本計測システムによる被写体までの距離[mm]
	P:被写体の移動距離[mm]
L = T	T:超音波センサの測定データ[mm]
	S:被写体の初期位置[mm]

図 4.1.1(b)では,本計測システムの測定誤差として Error = Lo - L を示している.

図より,測定誤差の最大値は,各振幅・周期で27.58~36.85 mm と,僅かであることが 分かる.

これらのグラフにより,本計測システムは,かなり精度のよい測定ができていることがわかる.

図 4.1.2(a)は,図 4.1.1(a)で生じていた基準データ,本測定システムの測定データの時間 ずれを補正したグラフである.以下に時間ずれ補正作業の方法を示す.この作業は,C言語 のプログラムにより行う.

<時間ずれ補正作業>

基準データと本測定システムの測定データを読み込む. 基準データと本測定システムの測定データの差を取り,その絶対値の総和を取る. 基準データの時間を1つシフトし,再び を行い,総和が最小になるまで繰り返す. 総和が最小となる値が見つかれば,シフトした分の時間(時間ずれ)を導出する.

この図より,補正前の本測定システムによる計測データに比べ,補正後のデータは基準デ ータとさらに一致しているのが分かる.

図 4.1.2(b)は,本計測システムの測定誤差として Error = Lo - L を示している.

図より,測定誤差の最大値は,振幅100mm・周期1.5sのときの30.78mmを除けば, 各振幅・各周期とも20mm以下であることが分かる.前述した十分に距離を測定できるリ アルタイムでの測定誤差よりも,更に精度が上がっていることがわかる.時間ずれは各振 幅・周期において 0.04 秒前後である.0.04 秒という時間遅れは歩行支援機の制御に対し てほとんど影響を与えない.

これらのグラフより,本計測システムは,先程の結果よりも,さらに精度のよい測定が できていることがわかる. 表 4.1 では,図 4.1.1(b)で示したリアルタイムでの本測定システムによる測定誤差の最 大値,時間ずれ,図 4.1.2(b)で示した補正後の本測定システムによる測定誤差の最大値を各 振幅・周期ごとに示す.

振幅 [mm]	周期 [s]	測定誤差(補正なし) [mm]	時間 ずれ [s]	測定誤差(補正あり) [mm]
50	1	27.58	0.04	17.81
100	1.5	36.85	0.04	30.78
150	2	34.78	0.04	19.44
200	2.5	30.93	0.04	17.71
250	3	30.47	0.05	19.98
300	3.5	32.07	0.04	18.75
400	4	30.50	0.03	19.70

表 4.1 各振幅・周期の時間ずれ・最大誤差

図 4.1.3(a)では,図 4.1.1(a)で用いた基準データをグラフで示し,図 4.1.3(b)では,カメ ラから取得したズームポジションをグラフで示す.横軸は時間を表し,縦軸はセンサ取付 カメラから被写体までの距離を表す.ズームポジションでは横軸は同様に時間を表し,縦 軸にカメラから取得したデータの値を表す.

図より,振幅 50 mm・周期 5 s のときには,規則的な基準データの動きとは全く関連な く,ズームポジションのデータは 202~214 の範囲内を不規則に動いているのが分かる.一 方,振幅 [mm]・周期 [s]:100・1.5~350・4 では,基準データのように正確ではないが Sin カーブの曲線になっている.しかし,曲線の頂点の時間ずれを調べてみると約 2 秒の 遅れがあることがわかる.2 秒という時間遅れは患者を危険な目に合わせる可能性が高く, 歩行支援機の制御には適さない.さらに,各振幅・周期で,被写体の初期位置に対するズ ームポジションの値にかなりの違いが見られる.

これらのグラフを比較することにより,オートズームの性能では被写体までの距離を測 定することは不可能であると分かる.

限界図 1

上のグラフでは,実験1において被写体の位置を検出できたときの振幅・周期,リニア 装置の限界速度,歩行リハビリテーション時の歩行支援機の速度を示す.縦軸は振幅,横 軸は周期を表す.

この図より,本計測システムの検出可能を表すラインは,歩行支援機の最大速度を表す ラインよりも左側にあるのが分かる.よって,センサ取付カメラは歩行リハビリテーショ ンにおける歩行支援機の最大移動速度である 0.75 km/h よりも速い速度を検出できている といえる.

<u>4.2 実験2</u>

図 4.2.1(a)は,図 4.1.1(a)と同様に,スライダーの外部パルスから得た基準データLoと, 本計測システムでの測定データLを表したグラフである.このグラフの横軸は時間,縦軸 はセンサ取付カメラから被写体までの距離を表す.そして,基準データを超音波センサが 測定した被写体までの距離と比較するため,三平方の定理より導出した計算式を用い,基 準データより被写体までの距離を算出してグラフに表した(図 3.3 参照).

図より,振幅 [mm]・周期 [s]: 50・1~200・2.5 では本計測システムの超音波センサか ら出る超音波が被写体から外れていないが,振幅 [mm]・周期 [s]: 250・3~350・4 では 超音波が被写体から外れているのが見て分かる.よって,実験方法で述べたように振幅 250 mm~350 mmの周期をそれぞれ 0.5 s ずつ上げて,各振幅とも超音波が外れない周期まで 同様の実験を行った.

超音波が外れなくなるときの振幅・周期,及び超音波が外れなくなる直前の振幅・周期 の振動数,最大速度,平均速度を表 4.2 に示す.

振幅 [mm]	周期 [s]	振動数[Hz]	最大速度 [mm/s] ([km/h])	平均速度 [mm/s] ([km/h])
250	3.50	0.286	448.57 (1.61)	285.71 (1.03)
300	4.50	0.222	418.67 (1.51)	266.67 (0.96)
300	5.00	0.200	376.80 (1.35)	240.00 (0.86)
350	7.50	0.133	293.07 (1.06)	186.67 (0.67)
350	8.00	0.125	274.75 (0.98)	175.00 (0.63)

表 4.2 各振幅・周期の振動数,最大速度,平均速度

超音波が被写体から外れる原因として次のことが考えられる.

- 1.カメラの反応速度
- 2.超音波センサの超音波の角度特性
- 3.被写体の横幅

原因1,2では,反応速度と角度特性の両方とも設定変更ができず,原因3では,被写体の横幅は100 mmであり,この幅は衣類などを考慮した場合の測定予定である患者の足の幅に近く実験には大変適していて,幅を広げることはできない.

したがって,超音波センサが超音波を外さずに被写体を測定できる各振幅での周期は上記で示した通りであるといえる.

超音波を外さず被写体を測定できたときの図より,振幅 50 mm・周期 1 s のときには測 定データは Sin カーブのように曲線状になっているものの,リニアのデータとは全く一致 していないことが分かる.

振幅 100 mm・周期 1.5 s のときには測定データは振幅 50 mm・周期 1 s のときと比べる と, リニアのデータにかなり近づいているが, 一致しているとはいえない.

その他の振幅・周期ではリニアのデータにほぼ一致している.

なお,基準値Lo,本計測システムによる計測値Lは次式により求められる.

Lo =
$$\sqrt{P^2 + (S+r)^2}$$
 - r
L = T 「 r:カメラの回転半径 [mm]

図 4.2.1(b)では,本計測システムの測定誤差として Error = Lo - L を示している.

図より、振幅 50 mm・周期 1 s のときには最大誤差が各振幅・周期の中で最も小さく 15.83 mm であり,全く一致していなかった原因は短い振幅に対しての超音波センサの測定誤差 によるものであると分かる.

振幅 100 mm・周期 1.5 s のときの最大誤差が振幅 50 mm・周期 1 s の次に小さい 16.21 mm であることから同様に短い振幅に対しての測定誤差が原因であると分かる.

その他の振幅・周期では,最大誤差は20.05 mm~44.08 mm で,それほど大きくない測 定誤差である.

図 4.2.2(a)は,スライダーの外部パルスから得た位置データ,本計測システムのカメラか ら取得したパンポジションのデータから,被写体の初期位置から現在位置までの角度を算 出して基準データ o,測定データ を表したグラフである.このグラフの横軸は時間,縦 軸はスライダーの初期位置から現在位置までの角度を表す.マイナス値は,センサ取付カ メラから見て左方向の移動,プラス値は,右方向の移動である(図 3.3参照).

図より,各振幅・周期ともカメラが見失った様子は見られないので,周期の変更は行わない.

各振幅・周期とも測定データが,基準データに対して右側にずれているものの,基準デ ータと同じような Sin カーブになっている.全体が右側にずれているので,ずれの原因は カメラの自動追尾機能の時間遅れである.

なお,基準値 o,本計測システムによる計測値 は次式により求められる.

$$o = \tan^{-1}(P \div S + r)$$

o:スライダーの外部パルスより算出した角度[rad] :本計測システムによる角度[rad]

図 4.2.2(b)では,本計測システムの測定誤差として Error = o - を示している.

図より,振幅 50 mm・周期1 s のときに左方向への基準データに対して,測定データが 小さいが,このときの最大誤差が各振幅・周期の中で最も小さく 0.14 rad であり,データ の差が大きかった原因は短い振幅に対しての基準データと計測データとの誤差によるもの であると分かる.

他の各振幅・周期は基準データと測定データにはそれほど違いはなく,最大誤差は 0.15 rad~0.23 rad であり,大きな誤差ではない.

表 4.3 では,図 4.2.1(b)で示したリアルタイムでの超音波センサの測定誤差の最大値, 図 4.2.2 で示したカメラのパンにおける誤差の最大値を各振幅・周期ごとに示す.

振幅 [mm]	周期 [s]	超音波センサの誤差 [mm]	カメラの誤差 [rad]
50	1	15.83	0.14
100	1.5	16.21	0.19
150	2	20.05	0.23
200	2.5	40.22	0.21
250	3.5	31.15	0.21
300	5	29.49	0.19
400	8	44.08	0.15

表 4.3 最大誤差

図 4.2.3(a)はスライダーの外部パルスから得た位置データ,図 4.2.1 の超音波センサから 得られたデータ,図 4.2.2 のカメラから取得したパンポジションのデータから,スライダー の初期位置から現在位置までの距離を算出し,基準データ Po と測定データ P 表したグラフ である.このグラフの横軸は時間,縦軸はスライダーの初期位置から現在位置までの距離 を表す(図 3.3 参照).

図より,図 4.2.2 とほとんど同じ結果の曲線で,角振幅・周期とも基準データと同じような Sin カーブになって,全体が右側にずれている.

なお,基準値 Po,本計測システムによる計測値 P は次式により求められる.

図 4.2.3(b)では,本計測システムの測定誤差として Error = Po - P を示している.

図より,振幅 50 mm・周期 1 s のときの最大誤差が最も小さく 95.37 mm であり,その 他の振幅・周期の最大誤差は 110.67 mm ~ 153.76 mm と,許容誤差である 100 mm を超え てしまっているのが分かる.

したがって,リアルタイムでのデータでは歩行支援機の装置として適しているとは判断 できず,補正する必要がある.

図 4.2.4(a)は,図 4.2.3(a)で生じていた基準データ,本計測システムの測定データの時間 ずれを補正したグラフである.時間ずれは,図 4.1.2 で行った作業と同様の補正を行う.

図より,振幅 [mm]・周期 [s]: 50・1~250・3.5 では,最初の4分の1周期までが少しずれているが,以降の曲線はほとんど一致しているのが分かる.

振幅 [mm]・周期 [s]: 300・5 と 350・8 では, 全体がほとんど一致している.

図 4.2.4(b)は,本計測システムの測定誤差として Error = Po - P を示している.

図より,振幅 [mm]・周期 [s]:50・1~250・3.5 での最大誤差はすべて4分の1周期の ところにあり,振幅250 mm・周期3.5 sのときには最大誤差が108.69 mmと許容誤差を 少し超えているのが分かる.しかし,他よりもかなり高めの値であるため,原因はスライ ダーの動き始めの速度が0から最大速度まで一気に変化するためであると考えられる.

よって,動き始めの誤差を省いて最大誤差を出してみると,24.55 mm~44.1.11 mm で 僅かな誤差だと言える.時間遅れは0.53 s~0.59 s と少し長いが,1 秒以内なので歩行支援 機での制御においては十分対応できる.

さらに,許容誤差の100 mm まで倍以上の差があるので,そこまでの最大誤差を許容すると時間遅れは0.3 s 以下になり,歩行支援機の制御に先程よりも時間がかからない.

振幅 [mm]・周期 [s]: 300・5 と 350・8 での最大誤差は 64.26 mm, 84.53 mm と許容 誤差の範囲内であり,時間差はどちらも 0.33 s と短い時間遅れである.

図 4.2.5(a)はスライダーの外部パルスから得た位置データ,図 4.2.1 の超音波センサから 得られたデータ,図 4.2.2 のカメラから取得したパンポジションのデータから,スライダー の初期位置から現在位置までの距離を算出し,基準データ So と測定データ S 表したグラフ である.このグラフの横軸は時間,縦軸はスライダーの初期位置からセンサ取付カメラの 距離を表す(図 3.3 参照).

図より,測定データが基準データと一致していないのが分かる.原因は目盛りから被写体の y 座標位置は 600 mm と一定でグラフでは直線になるためといえる,

なお,基準値 So,本計測システムによる計測値 S は次式により求められる.

$$S = (T+r) \times Cos()$$

So: スライダーの外部パルスよる Y 座標位置[mm] S:本計測システムによる Y 座標位置[mm]

図 4.2.5(b)では,本計測システムの測定誤差として Error = So - S を示している.

図より,各振幅・周期とも最大誤差は16.01 mm~44.22 mm と僅かであることが分かる.

表 4.4 では ,図 4.2.3(b)で示したリアルタイムでの測定誤差の最大値 ,時間ずれ ,図 4.2.4 の(b)で示した補正後の測定誤差の最大値 , 図 4.2.5(b)で示したリアルタイムでの測定誤差 の最大値を各振幅・周期ごとに示す .

振幅 [mm]	周期 [s]	測定誤差 P (補正なし)[mm]	時間ずれ [s]	測定誤差 P (補正あり) [mm]	測定誤差 S [mm]
50	1	95.37	0.59	40.29	16.01
100	1.5	126.01	0.54	60.10	19.94
150	2	153.76	0.53	74.79	22.26
200	2.5	139.75	0.57	88.67	32.56
250	3.5	137.41	0.56	108.69	28.52
300	5	125.54	0.33	64.26	41.91
350	8	110.67	0.33	84.53	44.22

表 4.4 時間ずれ・最大誤差

限界図 2

上のグラフでは,実験2において被写体の位置を検出できたときの振幅・周期,リニア 装置の限界速度,歩行リハビリテーション時の歩行支援機の速度を示す.縦軸は振幅,横 軸は周期を表す.

この図より,センサ取付カメラは175~320 mm/sの平均速度で左右に移動する被写体の 距離及び位置座標を検出できることが分かる.歩行支援機でのリハビリ中に患者の足が左 右に175mm/s 以上の速度で移動することは,患者がバランスを崩したり転倒したりしたと き以外にはありえない.

5. 考察

この章では前述した実験結果を考察する.

<u>5.1 実験1</u>

超音波センサで被写体までの距離を測定し,カメラで被写体を追跡させ,センサ取付カ メラが前後に移動する被写体の位置を検出可能な振幅・周期を調査するため,リニア装置 による基準データと本計測システムであるセンサ取付カメラの測定データを比較した.そ の結果,測定データは基準データほとんど一致していて,誤差も僅かであり,精度のよさ が分かった.

時間遅れを調べてみると,0.04 秒と歩行支援機の制御にはほとんど影響を与えない時間 差であった.そこで,その時間遅れを補正して再び基準データと測定データを比較した. その結果,補正後の測定データは補正前よりも基準データと一致していて,誤差もさらに 少なくなった.

また,カメラの機能のオートズームを使用し,ポジション値をカメラから取得させ,オ ートズームにより距離を測定できるか調査した.結果,オートズームは約2秒の時間遅れ があり,歩行支援機の制御には応用できないことを示した.

本計測システムが被写体の位置を検出できたときの振幅・周期をプロットし,歩行支援機の最大速度と比較した.これにより,本計測システムは歩行支援機の速度を十分検出で きることが示せた.

したがって,歩行支援機に搭載しても,前後に移動する患者の足の位置を検出する可能 性が十分であることが分かった.

<u>5.2 実験2</u>

超音波センサで被写体までの距離を測定し,カメラで被写体を追跡させ,その時の角度 をカメラより取得した.被写体までの距離を表す図から,超音波が被写体から外れていな いかを確かめ,外れていた場合は周期を上げることで速度を下げた.

そして,得られた距離と角度から被写体の X 座標位置,Y 座標位置を算出し,センサ取 付カメラが左右に移動する被写体の位置を検出可能な振幅・周期を調査した.

被写体の X 座標位置の基準データと本計測システムの測定データを比較すると, 誤差が 100mm 以上になった.実験1と同様に補正を行ったが,補正前に比べ誤差も小さくなった ものの,100mm を超えてしまう.この原因が被写体の動き始めの速度にあると考え,それ を考慮して補正を再び行った.すると,誤差,時間遅れともに許容範囲内であった.

よって,センサ取付カメラは被写体の X 座標位置を検出するのに十分な制度を持っていることが分かった.

被写体の Y 座標位置の基準データと本計測システムの測定データを比較すると,測定デ ータは基準データに一致していはいなかったが,誤差が僅かであったことから,原因は被 写体の Y 座標位置は一定であるためであった.

よって,センサ取付カメラは被写体の Y 座標位置を検出するのに十分な制度を持っていることが分かった.

したがって,歩行支援機に搭載しても,左右に移動する患者の足の位置を検出する可能 性が十分であることが分かった.

実験1・2では理想状態での患者の足の動きを再現させたが,実際の歩行リハビリテー ションでも,センサ取付カメラは,前後左右に不規則に移動する患者の足の位置を検出し, 歩行支援機を停止させることによって,転倒パターン1を確実に防止する有効性があると いえる.

また,転倒防止だけでなく,患者の足の位置が検出できるので,赤外線センサのように 検出した位置によって歩行支援機の速度を変化させるなどの制御も十分に考えられる.

したがって、センサ取付カメラは歩行支援機の制御に十分に応用可能である。

<u>6. 結言</u>

本研究では,歩行リハビリテーションを行う場合に起こり得る転倒を防止することを目 的とし,カメラ及び超音波センサを用いて患者の足の位置を検出することが可能か否かを 実験により検討した.

実験 1 では,超音波センサで被写体までの距離を測定し,カメラで被写体を追跡させ, センサ取付カメラが前後に移動する被写体の位置を検出可能な振幅・周期を調査した.そ の結果,歩行支援機に搭載しても,前後に移動する患者の足の位置を検出する可能性が十 分であることを示した.また,カメラの機能のオートズームを使用し,ポジション値をカ メラから取得させ,オートズームにより距離を測定できるか調査した.結果,オートズー ムは約2秒の時間遅れがあり,歩行支援機の制御には応用できないことを示した.

実験2では,超音波センサで被写体までの距離を測定し,カメラで被写体を追跡させ, その時の角度をカメラより取得した.そして,得られた距離と角度から被写体のX座標位 置,Y座標位置を算出し,センサ取付カメラが左右に移動する被写体の位置を検出可能な振 幅・周期を調査した.その結果,歩行支援機に搭載しても,左右に移動する患者の足の位 置を検出する可能性が十分であることを示した.

これら実験1・2より,センサ取付カメラは,実際の歩行リハビリテーションで,前後左 右に移動する患者の足の位置を検出し,歩行支援機を停止させることによって,転倒パタ ーン1を確実に防止することの有効性を示した.また,転倒防止だけでなく,患者の足の 位置が検出できるので,赤外線センサのように検出した位置によって歩行支援機の速度を 変化させるなどの制御も可能である.

したがって,センサ取付カメラは歩行支援機の制御に十分に応用可能であることを示せた.

<u>謝辞</u>

本研究を行うにあたりご指導して下さった,井上喜雄教授,甲斐義弘助手,並びに本研 究に携わった方々に深く感謝いたします.

参考文献

- (1)甲斐義弘,井上喜雄,中浜昌文,森井康友,大田大,石田健司,山本博司,"歩行支援機における患者の状態の認識",ジョイント・シンポジウム 2000 講演論文集,(2000),日本機械学会,178-182.
- (2)甲斐義弘,井上喜雄,中浜昌文,森井康友,大田大,川澤延弘,谷岡哲也,"インテリジェント歩行支援機による患者の転倒防止",日本 ME 学会中国四国支部大会 論文集,(2000),日本 ME 学会,54.
- (3)森井康友,津野貴年,甲斐義弘,井上喜雄,"インテリジェント歩行支援機における患者の位置検出(カメラ及び超音波センサを用いた場合)",中国四国支部講演会 講演予定.

付録目次

図表

义	1.1	転倒パターン 1	A-1
义	1.2	転倒パターン 2	A-1
表	2.1	EVI-D30	A-2
表	2.2	カメラ認識操作設定モード	A-3
表	2.5	UD-320	A-4
表	2.6	レゾルバーフィードバック型メガスラストモータ	A-5
表	2.7	EM 型ドライブユニット	A-5
表	2.8	ATPG-46	A-6
表	2.9	IBX-3133	A-7
义	2.13	C 言語プログラムフローチャート	A-8
义	2.14	各装置の簡易フローチャート	A-9

グラフ

义	4.1.1	A-10
义	4.1.2	A-17
义	4.1.3	A-24
义	4.2.1	A-31
义	4.2.2	A-43
义	4.2.3	A-55
义	4.2.4	A-67
义	4.2.5	A-79

図 1.1 転倒パターン1 図 1.2 転倒パターン2

表 2.1 EVI-D30

<項目>	│ <仕様>
<システム>	
映像信号	NTSCカラーEIAJ標準方式
映像素子	1/3インチカラーCCD
	(総画素数 約41万画素)
	(有効画素数 約38万画素)
レンズ	電動12倍ズームレンズ
	f=5.4~64.8mm,F1.8~F2.7
	水平画角 4.4°~48.8°
最至近撮影距離	10mm(WIDE端)
	800mm(TELE端)
最低被写照度	7~100,000ルクス
シャッタースピード	1/60~1/10,000(VISCAコントロール時)
ゲイン切り替え	自動/マニュアル
水平解像度	460TV本
映像S/N	48dB
パン・チルト機能	水平±10°、垂直±25°
<入出力端子>	
映像出力	ピンジャック(1)、1Vpp、75W不平衡、同期負
S映像出力	4ピンミニDIN(1)
音声出力	ピンジャック(モノラル)(1)、規定出力372mV
	出カインピーダンス2.2kΩ以下
コントロール入/出力端子	RS232C(各1)、8ピンミニDIN、9600bps
	データ8ビット、ストップ1ビット
マイク入力端子	ミニジャック(モノラル)(1)、規定入力0.775mV
	低インピーダンスマイク用DC3V
	入力インピーダンス10kΩ以上(φ3.5)
電源端子	EIAJ type4
<電源部、その他>	r
入力電圧	DC12~14V
消費電力	11W
動作温度	0~40°C
保存温度	-20~60°C
最大外形寸法	本体、142×109×164mm(幅/高さ/奥行き)
	リモコン、56/26/210mm(幅/高さ/奥行き)
質量	本体、1200g
	リモコン、109g

表 2.2 カメラ認識操作設定モード

設定・モード	説明
ATモード	自動追尾モード(Auto Tracking)
オートズーム	自動的に動いている被写体の大きさを一定にするように、ズームレンズを制 御する機能
追尾モード	
追尾モード1	パン・チルトせず(カメラは動かない)、画面内フレームが被写体を追う。
追尾モード2	パン・チルトしながらフレームが被写体を追う。このとき被写体は常に画面中 央となる。
追尾モード3	はじめは追尾モード1の追尾方法で、被写体が画面から外れそうになるとパン・チルトして被写体を画面中央にする。
ENTRYモード	
ENTRYモード1	通常モード。<枠内代表点抽出>
ENTRYモード2	被写体の色が薄くて認識できないとき。被写体と近くにある似た色のものを間 違えやすいとき。 (フレームが被写体から似た色のものに移ってしまう) < 無 採色被写体対応 >
ENTRYモード3	被写体の照明に対する向きが変わることによって、被写体自身の明るさが変わると、見失ってしまうとき。<長時間抽出>
ENTRYモード4	被写体と背景の壁や天井を間違えやすいとき。(フレームが被写体から背景 に移ってしまう)く枠内外比較抽出>
表 2.5 UD-320

<項目>	<仕様>
測定範囲	200~1300mm
表示分解能	1mm
指示精度(表示)	±1%of F. S.
<アナログ電流出カ>	
出力電流	4~20mA
適用負荷	0~500Ω
分解能	0.08mA
温度特性	0.05% of F. S. /°C
<出カ>	-
制御出力	リレー出力1c×2 AC220V 3A(抵抗負荷)
アラーム出力	リレー出力1a AC220V 3A(抵抗負荷)
応差距離	1~255mm 可変
応答時間	56ms(10Hz 設定時)
最小検出物体	20mm
<定格>	-
電源電圧	DC24V リップル(P-P)
消費電流	250mA以下
<耐環境性>	
使用周囲温度 センサヘッド	$-25 \sim +70^{\circ}C$
使用周囲温度 アンプユニット	0∼55°C
使用周囲湿度	35~85%RH(結露しないこと)
保護構造(センサヘッド)	IP-65
<重量>	-
センサヘッド	約190g(コード含まず)
アンプユニット	約450g

表 2.6 レゾルバーフィードバック型メガスラストモータ

<項目>	<仕様>
TYPE	YA21156017
モータ形式	YA2
最大推力	196
許容搭載質量(kg)	40
スライダー質量(kg)	6
ラックベース長さ(mm)	1560
ストローク(mm)	1285
可搬モーメント	
・ローリング	75
・ピッチング	125
・ヨーイング	140
最高速度(mm/s)	600
最小分解能(μm)	1
繰り返し位置決め制度(μm)	<u></u> 1
位置検出器	レソルバー

表 2.7 EM型ドライブユニット

<項目>	<仕様>
制御モード	デジタルサーボ、FETスイッチング
	(位置制御モード、速度制御モード、トルク制御モード)
制御電流	単相 90~240V 50/60Hz
	電源容量 0.1kVA
質量	4.6kg
指示内容	指示入力方式
位置決め指令	1. 内部プログラム実行方式
	2. BCDシリアル入力方式
	3. パルス列信号入力方式
	4. RS232Cシリアル通信入力方式
速度指令	1. アナログ±10V入力方式
トルク指令	2. パラレル12ビット2進信号入力方式
	3. RS232Cシリアル通信入力

表 2.8 ATPG-46

	<仕様>
型名	ATPG-46
専用アドレス	32アドレス使用
外形寸法	121.92×157.48mm(コネクタ部、取付金具部含まず)
使用温度·湿度	温度 0~45℃·湿度 10~80%(非結露)
入力電源	DC+5V±0.25V
消費電力	Min 200mA ・ Max 1000mA
制御機能	・PRESENT PULSE ドライブ(指定パルス数ドライブ)
	・CONTINUOUS ドライブ(連続ドライブ)
	・SIGNAL SEARCH-1, -2 ドライブ(信号検出ドライブ)
	・最高出力周波数 4.096MPPS
	・速度オーバーライド機能
	・移動量オーバーライド機能
	・直線加減速機能(非対称も可)
	・自動S字加減速機能(非対称も可)
	・出力パルス数管理用 28Bit Counter内蔵(各軸毎)
	・フィードバックパルス数管理用 28Bit Counter内蔵(各軸毎)
	・フィードバックパルスは、Up/Down 信号、2相信号 何れも入力可能
	(2相信号選択時は、逓倍指定が可能)
	・偏差量自動算出機能
	・急停止機能(入力信号、コマンド書き込み 何れも可能)
	・減速停止機能(コマンド書き込み)
	・リミット停止機能(急停止、減速停止 いずれも可能)
	・最大4軸(2軸仕様ボート時は2軸)制御(同時ドライブ可能)
出力信号	パルス出力等 ーー ラインドライバーによる作動出力
	ドライバー制御出力 -- フォトカプラによるオープンコレクタ出力
入力信号	機械系入力 及び 汎用入力 ーー +12~24V フォトカプラ入力
	ドライバーステータス入力 -- +12~24V フォトカプラ入力
	フィードバックパルス入力 -- ラインレシーバーによる差動入力
使用可能ドライバー	ステッピングおよびサーボモータドライバー
	パルス列入力型(1パルス/2パルス 何れも可能)
	差動入力、フォトカプラ入力、TTL入力型
付属品	CN1用コネクタ ヒロセ FX2B-100S-1.27R(1mケーブル付)1個

表 2.9 IBX-3133

く項目>	<仕様>	
くアナログ部>		
入力仕様		
接続方法	シングルエンド入力/作動入力 切り替え使用可能	
チャンネル切り替え方式	マルチプレクサ切り替え方式	
入力チャンネル数		
シングルエンド入力時	16チャンネル	
差動入力時	8チャンネル	
絶縁方式	非絶縁入力	
入力レンジ	バイポーラ:-2.5~2.5V、-5~5V、-10~10V	
	ユニポーラ:0~5V、0~10V	
分解能	12ビット	
入力インピーダンス	10MΩ以上	
入力保護	POWER ON時 ±35V	
	POWER OFF時 ±20V	
AD変換機	使用素子:ADS774K(相当品)	
	分解能:12ビット	
	変換時間:8.5μs	
相対精度	±1LSB (at 25℃)	
誤差(最大)	$\pm 0.15\%(0 \sim 50^{\circ}C): 0 \sim 10V, \pm 5V, \pm 10V$	
	±0.2% (0~50°C): 0~5V、±2.5V	
変換時間	10µs(チャンネル固定時)	
	60 µ s(チャンネル切り替え時)	
<u> <デジタル部></u>		
割り込み機能	AD変換終了割り込み	
	タイマ割り込み	
	外部割込み(JPにて設定)	
タイマ	使用素子:8254相当品	
	基準クロック:8MHz	
	タイマ割り込み	
	AD変換スタート	
汎用入出力	入力:2点(TTL)	
	出力:2点(TTL)	
外部制御入力	ADサンプリング制御入力:1点	
	外部割込み入力:1点	
1/0ポートアドレス	16ビットフルデコード設定可能(RSWにて設定)	
外部電源出力	12V、-12V(負荷電流10mA以下)	
	5V (負荷電流100mA以下)	
供給電源	$DC5V(\pm 5\%)$	
	DC 12V(±10%): 人力レンジ0~10V、±10V使用時、±5%	
	DC-12V(±10%): 人力レンジ0~10V、±10V使用時、±5%	
消費電流	• 5V 0.5A(TYP)	
	• 12V 40mA(TYP)	
	•-12V 20mA(TYP)	
	温度:0~50℃ 湿度20~90%(非結露)	
使用コネクダ	PCR-E50LMDA(相当品)	

図 2.13 C 言語プログラムフローチャート

図 2.14 各装置の簡易フローチャート

図 4.1.1 振幅 50 [mm], 周期 1 [s]

図 4.1.1 振幅 100 [mm], 周期 1.5 [s]

図 4.1.1 振幅 150 [mm], 周期 2 [s]

図 4.1.1 振幅 200 [mm], 周期 2.5 [s]

図 4.1.1 振幅 250 [mm], 周期 3 [s]

振幅 300 [mm], 周期 3.5 [s]

図 4.1.1 振幅 350 [mm], 周期 4 [s]

図 4.1.2 振幅 50 [mm] , 周期 1 [s]

振幅 100 [mm], 周期 1.5 [s]

振幅 150 [mm], 周期 2 [s]

図 4.1.2 振幅 200 [mm],周期 2.5 [s]

図 4.1.2 振幅 250 [mm], 周期 3 [s]

図 4.1.2 振幅 300 [mm], 周期 3.5 [s]

振幅 350 [mm], 周期 4 [s]

振幅 50 [mm], 周期 1 [s]

振幅 250 [mm], 周期 3.5 [s]

振幅 300 [mm], 周期 5 [s]

振幅 300 [mm], 周期 3.5 [s]

0.3 0.2 Error [rad] 0.1 0 -0.1 -0.2 -0.3 8 4 12 16 20 0 Time [s] 誤差 (b)

振幅 250 [mm], 周期 3 [s]

振幅 300 [mm], 周期 3.5 [s]

振幅 350 [mm], 周期 4 [s]

振幅 350 [mm], 周期 7.5 [s]

振幅 150 [mm], 周期 2 [s]

振幅 200 [mm], 周期 2.5 [s]

図 4.2.5 振幅 250 [mm],周期 3 [s]

振幅 300 [mm], 周期 3.5 [s]

振幅 300 [mm], 周期 4.5 [s]

振幅 350 [mm], 周期 7.5 [s]

