マグネシウム合金 AZ92A における 疲労き裂発生挙動

高知工科大学

知能機械システム工学科 4年

1010180 中澤 由佳

目次

1.緒	言	1
2.材料および試験片について		
3.実験方法		
4.実	験結果・考察	
4-1	平滑材における疲労強度	7
4-2	表面連続観察結果	7
4-3	破面観察	9
4-4	切欠き材における疲労強度	9
4-5	切欠き感度	9
5.結言		
6.謝辞		13
7.参考文献		

1.緒言

マグネシウムは実用金属中でもっとも軽く、地球上で6番目に豊富な金属であり、その 合金は比強度、切削性、減衰性、放熱性、吸振性、寸法安定性、などに優れた材料である。 しかし、わが国におけるマグネシウムの使用用途は他の合金への添加材や還元材としての 使用が7割を占めており、構造用としてのマグネシウム合金は、鋳造、圧延、押出などの 様々な加工法により成形され使われている。鋳物としての使用が大部分で、大量生産には ダイカスト法などが用いられている。航空機やロケット、自動車などの産業部品などは、 砂型鋳造が多く使用されている。また、地球環境保護の観点からも、リサイクル性に有効 な金属として注目されている金属である。

機械や構造物における材料を考えるとき、基本的要求のひとつとして、それらの全体 または各部分がその使用中に荷重に耐え破壊しないという安全性がある。装置や機械、構 造物が大型化、高性能化する現代は、材料は非常に過酷な環境下におかれることになる。 材料の持つの強さよりも大きな力がかかれば破壊するのは当然であるが、フックの法則が 十分成り立つと思われるときでも、小さな荷重で、連続して長時間、又は長時間繰り返し 負荷されると、材料のどこかに割れ目が生じ、成長進展して破壊にいたる。いわゆる疲労 破壊が生じる。このような金属疲労の過程は一般的に、き裂発生過程とき裂伝ば過程に分 けられる。き裂発生の過程は大きく二つに分類でき、すべりの開始からき裂成長までの過 程が連続的に起こり、点発生的なき裂発生過程を経るものである。このようなき裂生成段 階は、き裂進展の第1段階とよばれる。一方、鋼、黄銅、チタンなどの多くの金属では、 結晶粒程度の有限な領域を単位としてき裂が発生する。いずれにおいても、疲労き裂の発 生には結晶粒内のすべりの繰返しによって疲労寿命の比較的初期に起こる。

一方、切欠きのような、形状が複雑に変化する部分では、応力の分布が不均一になり、 切欠き底では応力が集中的に高くなる。このことを応力集中というが、応力集中が生じる 場合の疲労挙動も実際の機械・構造物の設計の際には重要になる。

材料中に切欠きがあると、その部分に担うべき応力をその周辺がかわってささえなけれ ばならないことから、応力集中が生じる。このような応力集中部での材料強度特性は線形 切欠き力学の考え方によりうまく評価できる。線形切欠き力学の概念は、応力集中による 最大応力と、切欠き半径の2つのパラメータにより現象を統一的に扱うものである。本研 究では、もっとも一般的に使用されている鋳物用マグネシウム合金である Mg-Al-Zn 系合 金の代表種である AZ92A についての平面曲げ疲労試験を行い、疲労き裂発生挙動ならび に切欠き感度についての調査を行った。

1

2.材料および試験片について

実験に使用した材料は、Mg-Al-Zn 系合金、AZ92Z-T6(JIS,MC3)で、その化学成分を 表1に、また機械的性質を表2にそれぞれ示す。

表 1 化学成分	(wt%)
----------	-------

Al	Zn	Mn	Si	Cu	Ni	Mg
8.69	1.94	0.14	0.023	0.002	0.002	bol.

表 2 機械的性質

耐力	引張応力	伸び	ヤング率
0.2 MPa	в MPa	%	E GPa
148	282	7	43

納入材は約270×100×20mmに鋳造された鋳塊で、試験片は、図1(平滑材試験片)、 図2(両側切欠き試験片)に示す形状・寸法に以下の手順で機械加工を行った。

フライス盤で端部の加工をする。

帯のこ盤で厚さ約5mm、長さ90mmに切断。

フライス盤で表面を切削し、厚さ4.5mmに仕上げる。

側面のばりをやすりで除去。

7~8枚の試験片をフライス盤に置き側面を仕上げ加工。(0.5mm ずつ)

反対側の面をノギスではかりながら、板幅を仕上げる。

すべてのばりをやすりでとる。

試験機チャック部のボルトの逃げ部を加工する。

球面くぼみ部、切欠き部をつける。(= 2、1、0.5、0.2、0.1)

シートペーパーで表面を磨く。

(目の粗い 150 320 800の順で)

球面くぼみ部を、バフ研磨、切欠き部をカーボンランダム粉(#2000 まで) で磨く。

電解研磨により表面をきれいに加工する。

陽極溶解により研磨する

- ・ リン酸(H3PO4) 3部、エチルアルコール(C2H2OH) 5部
- 5.5V、1.5Aで1時間、後に、6.5V、1.5Aで5分研磨する
- ・ 10%水酸化ナトリウムで洗う (酸をアルカリで中和するため)
- ・ 水で十分洗浄後、ガーゼであらう。
- アルコールをかけて、ドライヤーで乾かす。
- ・ 顕微鏡で表面の観察をおこない、結晶粒を確認をする。

SR10

A-A (Notched specimen)

(単位 :mm)

図1. 平滑材試験片の形状および寸法

図2.両側切欠き試験片の形状および寸法

各切欠き試験片の平面曲げにおける応力集中係数 Kt は、有限要素法解析解析パッケージ ANSYSを用い計算した結果を表3に示す。応力集中係数とは、切欠き底の最大応力 max を最小断面における公称応力で割った値である。

表3.応力集中係数

	2	1	0.5	0.2	0.1
Kt	1.36	1.53	1.75	2.28	2.88

3.実験装置・方法

実験にて用いた試験機は、平面曲げ疲労試験機(東京衝機製)で諸元を表4に示す。鉄、 非鉄金属、高分子材料などの試験片の動的疲労試験を行う目的でつくられている。

表4.疲労試験機諸元

最大動的モーメント	± 15Nm
最大静的モーメント	30Nm
最大組合わせモーメント	30Nm
駆動繰返し角度	max ± 12 °
静的初期負荷角度	max ± 18 °
平形試験片厚さ	0.6 ~ 12mm
繰返し負荷周波数	約 300 ~ 1500cpm
繰返し回数	999999 × 100 回
王 里	約 71kgW
ユーティリティー	単相 200/220V
	0.2kVA

負荷する必要な曲げモーメントの計算は以下のとおりである
 繰返し曲げ応力振幅を aとする。
 試験片の断面係数 Z は次式により計算される。
 Z=bh²/6 (1)
 ここで、 b は幅、h は板厚である

必要な曲げモーメント M は次式により計算される。

 $M = Z \times a \qquad (2)$

実際の試験手順を図3のフローチャートに示す。

図3.試験手順

なお、負荷した曲げモーメントの最大値が 70%まで低下したときでお破断とみなして、試 験を終了した。

き裂の発生過程の連続観察にはレプリカ法を用いた。この方法は以下のとおりである。 まず、ピンセットでアセチルロースをアセトンに浸して、試験片のき裂観察面に貼り付け る。この時、試験片とアセチルロースの間に気泡が入らないようにすばやく作業を行う。1 ~1.5 分で貼り付けたアセチルロースは乾燥するので、き裂観察面にピンセットが触れて 傷をつけないように注意して試験片からはがす。そしてガラス板に両面テープを貼り付け、 その上に先ほどのレプリカを試験片に接していた面を上にして貼り付ける。その後、き裂 発生箇所をさか登り光学顕微鏡で観察、撮影する。このときイオンスパッターを用いて、 レプリカを貼り付けたガラス板に真空状態の中で15秒間、20mAかけて、レプリカの表面 の反射率を向上させ観測を容易にさせた。後に20倍の対物レンズで、写真をとっていく。 フィルムの現像は、暗室で専用の器具にネガを入れ、以下の順で、処理した。

- 1. 現像液ミクロファインを約20 を用いて7~8分現像。
- 2. 酢酸に1分弱停止。
- 3. 定着液で定着3分。
- 4. 水洗い40~50分。
- 5. 乾燥。

次に暗室で、ネガから感光時間を調節し印画紙に以下の手順で焼き付ける。

- 1. 露光
- 2. 現像液コレクトロールを用いて現像。
- 3. 酢酸につける。
- 4. 印画紙定着液5~6分。
- 5. 水洗い 40から50分。
- 6 . 乾燥。

き裂の発生していく過程についての観察を行う。

破面の観察は走査型電子顕微鏡を用いた。試料の準備は以下のとおりである。破断面 を切欠き部を含めて切断しアセトンにつけ、超音波洗浄をした後、試料を乾かす。試料 台に両面テープをはり、試料をのせ、電気を通すため、隙間に銀をしみこませる。

4.実験結果および考察

4-1.平滑材における疲労強度

疲労試験の結果として、S-N 曲線を図 4 に示す。図中 印が球面くぼみ無し(平滑材) 印が球面くぼみ有の試験のデータであるが、平滑材も球面くぼみつき試験片もどちらも ほとんど差はみられない。また、鋼などのSN 曲線に見られる明瞭な折れ曲がりは2×107 回までの繰返し範囲においては観察されなかった。すなわち、未破断であった試験片につ いて、き裂発生は認められなかった。107 回時間強度は、約80MPa で引張り強さ B に対 する比は 0.28 であった。

4-2.表面連続観察結果

疲労き裂発生挙動の一例として応力振幅 aが 110MPa における表面連続観察結果を図 5 に示す。本材料は白地の 固溶体の粒界より、Mg₁₇Al₁₂が不連続析出した微視組織を有する。試験荷重 0.25N でビッカース硬さを測定したところ、 相は Hv=110、不連続析出部

図5.応力振幅 110Mpa における表面観察

は Hv=147 であった。

き裂発生に至るまでの過程として、まず繰返しに伴い 相内に多数のすべり帯が出現する。 これらのすべり帯に沿ってき裂が発生するが、走査型電子顕微鏡により詳細に観察すると 複数の微小き裂が発生しこれらが連結して一結晶粒程度のき裂に成長し伝ぱを開始するこ とが分かった。このすべりはおそらく底面すべりであり、き裂発生挙動は他の Mg 合金と ほぼ同様である。

ここでのき裂発生寿命は0.6×10⁴回程度であり全破断寿命の約5%であった。

4-3. 破面観察

応力振幅の低い場合、表面からのき裂ではなく、内部の欠陥からき裂が発生する場合も あった。応力振幅 90MPa において実験した時、表面においてき裂発生が確認できず急に 破断に至った。このような場合、後述するようにき裂発生は内部の欠陥から生じている。

疲労試験後、破面を走査型電子顕微鏡により詳細に観察をすると、図6に示すような十数µm 程度の欠陥表面より約10µm 内部に見られ、ここを起点としてき裂が発生し破断 に至ったことが分かった。

図5に示した表面連続観察部の破面のSEM 写真で図7に示す。破面を観察するとき裂が発生した 相の破面は比較的平坦であるが、微小き裂が連結した跡が明瞭に確認できた。 同じ稠密六方晶である純チタンにみられるような隣接する結晶に発生したき裂同士が連結 するような発生挙動はいずれの応力振幅においても観察されなかった。

4-4.切欠き材における疲労強度

図8に切欠き材についての実験で得られたS-N曲線を示す。本材料はS-N曲線には明確な折れ点が見られず、いずれの切欠き材についても107回で応力を繰返しても破断せず 試験片にはき裂の発生がみられなかった。切欠き半径2mm、1mmの時107回時間強度は 70MPa、切欠き半径0.5mmの時107回時間強度は65MPa、切欠き半径0.2mmの時 107回時間強度は445MPa、切欠き半径0.1mmの時107回時間強度は40MPaであった。 有限寿命領域においても当然ながらさらに、切欠きが最も鋭い =0.1においても停留き裂 に観察されなかった。切欠き半径が小さくなるほど同一応力振幅における破断寿命は低下 した。

4 - 5 . 切欠き感度

切欠き感度を評価するため線形力学に基づき、疲労試験の結果をまとめたものを図9に 示す。この図は、縦軸に切欠き材の107回時間強度における切欠き底の弾性最大応力Kt wを、平滑材の疲労限度 w0 で無次元化した値を、横軸には切欠き半径の逆数をとっ たもので、縦軸の値が大きいほど切欠きに対して鈍感であることを表している。したがっ

図 6.応力振幅 90MPa における破断面

図 10. すべりによるき裂発生の割合

て、縦軸の値が1であることは切欠き感度が最大であることを表している。この図には、 同じ稠密六方構造を有する純チタンの結果を比較のために示した。本材料は純チタンに比 べてかなり切欠きに敏感であることがわかる。

切欠き材においても疲労き裂は、表面のすべりと内部の欠陥から発生する場合があった。 破断した切欠き半径 0.1mm の切欠き試験片について走査型電子顕微鏡により破面を観察 し、き裂発生部をすべりか欠陥かを判断した。その結果を図 10 に示す。応力振幅が低い 時に表面からき裂が発生せず内部の欠陥からき裂が発生する割合が高くなることがわかっ た。

5. 結言

マグネシウム合金 AZ92A の平滑材および切欠き材について、平面曲げ疲労試験を行い、 疲労強度ならびにき裂発生挙動について、詳細に検討した結果、以下の結論が得られた。

- き裂は表面の相に生じるすべり帯に沿って発生する場合と、表面近くの材料
 内部にある微小欠陥を起点として発生する場合がある。
- 2. AZ92A は同じ稠密六方の純チタンに比べて切欠き感度が高いことがわかる。
- 応力振幅が低いときに表面からき裂が発生せず内部の欠陥からき裂が発生する割合が高い。

6.謝辞

本実験研究および学部論文作成にあたり、ご指導下さいました楠川量啓助教授に心から 感謝の意を表します。

7 . **参考文献**

- 村上 理一 高尾 健一 萩山 博之 著 材料強度学入門
- 村上 敬宜 著 金属疲労微小欠陥と介在物の影響
- 日本機械学会 一般・寸法効果・切欠き効果