平成13年度

修士論文

変位拡大機構を用いた 上下方向動吸振器に関する研究

(幾何学的非線形,材料非線形の影響)

指導教員

井上喜雄 教授 甲斐義弘 助手

高知工科大学大学院 工学研究科基盤工学専攻 博士課程(前期)

1045013 友次 健一

目次

第1章	緒言・・・・・・・・・・・・・・・・・・・・・・・ 1	
第2章	変位拡大機構の有効性の検討・・・・・・・・・・・・・・2	
第3章	変位拡大機構・・・・・・・・・・・・・・・・・・・・・・・・・・・・4	
3-1	Yタイプ・・・・・・・・・・・・・・・・・・・・・・ 4	:
3-2	タイプ・・・・・・・・・・・・・・・・・・・・ 8	
第4章	材料の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1	2
4-1	一般工業用材料・・・・・・・・・・・・・・・・・・・・・・ 1	2
4-2	超弾性合金・・・・・・・・・・・・・・・・・・・・・・・・・・ 1	2
第5章	実験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
5-1	実験目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1	5
5-2	変位拡大型動吸振器の製作・・・・・・・・・・・・・・・・・ 1	5
5-3	実験装置の構成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
5-4	実験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1	9
	5-4-1 固有振動数の測定・・・・・・・・・・・・・・・・・ 1	9
	5-4-2 超弾性合金を用いた場合の固有振動数の測定・・・・・ 2	0
5-5	実験の条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・2	1
5	5-5-1 固有振動数の測定・・・・・・・・・・・・・・・・・・2	1
5	5-5-2 超弾性合金を用いた場合の固有振動数の測定・・・・・・2	2
5-6	実験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・2	2
第6章	考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・2	3
第7章	結言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2	6
謝辞		
参考文南	犬	

付録

第1章 緒言

現在,動吸振器は機械・構造物等の制振に幅広く用いられている.低周波の固有振動数 を持つ高層建築物・長大橋にもハイブリッド型動吸振器やTMD などが積極的に利用されて いる.

大型構造物,特に高層建築物を考えた場合,主に水平方向の振動が問題とされる.水平 方向の制振を行う動吸振器は復元力と自重の方向が異なり,ばねが自重を支える必要がな い.更に,重力による復元力を利用することが可能であり,振り子型の動吸振器が広く用 いられている.したがって低周波の固有振動数を有する水平方向の動吸振器の場合,ばね の強度については,あまり問題にはなっていない.

一方,橋梁等では横風等により上下方向の振動も発生する.上下方向の振動を動吸振器 により制振を行う場合,ばねは動吸振器の自重を支える必要がある.一般的に,ばねの強 度・座屈やスペースの問題により,金属ばねで質量を支持する構造で低周波の垂直方向の 動吸振器を実現しようとするのは困難である.そのため,低周波の動吸振器が必要な場合, 空気ばねが多く用いられている.しかし,空気ばねは高価である上,コンプレッサ等の駆 動機器が必要となりランニングコストがかかる.

東京湾アクアラインでは,ばね部分の変位に比べ質量部分の変位を拡大する変位拡大機構と金属ばねを組み合わせた低周波の垂直方向動吸振器を採用している.金属ばねを用いた動吸振器を設計する場合,ばねの形状に加工できる材料が限られる.そのため,本来ば ね用材料として有利である材料を必ずしも利用できるとは限らない.

本稿では,金属ばねや空気ばねを用いず金属棒を用いて低周波の垂直方向動吸振器を実 現するための機構と材料について検討する.金属棒を用いることで材料をばねに加工する 必要がなくなり,ばね用材料として有利な材料を使用することを可能とする.

第2章では,金属コイルばねで質量を支持する動吸振器と変位拡大機構と金属コイルば ねを組み合わせた動吸振器を比較し,変位拡大機構が低周波の固有振動数を有する動吸振 器の実現に有効であることを示す.

第3章では,構造の簡単な金属棒によるばねと変位拡大を用いた低周波の垂直方向動吸振器を2タイプ提案し特性を明らかにする.

第4章では、低周波の動吸振器を実現するために、材料に要求される性質を明らかにし、 どのような工業用材料を使用すればより低い固有振動数の動吸振器を実現できるか検討す る.また、超弾性合金を用いることにより、更に低い固有振動数を実現できるか検討する.

第5章では,第3章で検討する理論から実験装置を製作する.製作した実験装置に,第4 章で検討した材料を用いて実際の固有振動数を測定する.

第6章では,実験結果と理論の関係,実験装置の問題点についての考察を行う. 最後に第7章で,第2章から第6章までを簡潔にまとめ,結言を述べる.

第2章 拡大機構の有効性の検討

本章では,質量とばねのみの単純支持構造動吸振器と変位拡大機構を用いた変位拡大型動 吸振器を取り上げ,変位拡大機構を利用した方が容易に低周波の固有振動数を作り出せる ことを示す.

図 1 は、質量を圧縮コイルバネによって支持した1自由度である.この系での固有振動 数 f を低く設定するには, ばね定数を小さくすることが必要となる. ばね定数をできる限 り低く設計しようと考えれば,素線の許容せん断応力の限界で設計を行えばよいことが知 られているが,材料の強度,形状等のいくつかの制約条件から,ばね定数を低くするには 限界がある.

図2は,変位拡大機構を用いた系である.質量とばねはつりあっているものとする.こ の構造で質量が振動したとすれば、ばね部分の変位に比べ質量部分の変位が大きくなるこ とが分かる.このように,ばね部分の変位に比べ質量部分の変位を拡大する機構を変位拡 大機構と呼ぶ.また,ばね部分の変位に比べ質量部分の変位がどのくらい拡大されたかを 示す割合を拡大率と呼ぶことにする.以下に変位拡大機構を用いれば容易に等価なばね定 数を低くできることを示す.簡単のために変位を微小とし線形の範囲で考えれば,拡大率α は

$$\alpha = \frac{\Delta Xm}{\Delta X} = \frac{L\Delta\theta}{l\Delta\theta} = \frac{L}{l}$$
(1)

となる.

質量 M の重力を F としたときのばねにかかる力 Fs は,力のつりあいより

$$Fs = \frac{L}{l}F = \alpha F \qquad (2)$$

となる.同様に質量 M に力 ΔF を加えたとき,ばね部分にかかる力の増分 ΔFs は,

$$\Delta Fs = \frac{L}{l} \Delta F = \alpha \Delta F \qquad (3)$$

となる.

式(2)より,ばねにかかる荷重は図1の荷重に比べ拡大率α倍だけ大きくなっている.したがって,ばねの素線の許容せん断応力を図1と同じと考えれば,強度の面からばね定数ksは

$$ks = \frac{Fs}{X} = \alpha \frac{F}{X} = \alpha k$$
 (4)

で表され,拡大していない場合と比べると拡大率αの分だけばね定数を大きく取る必要が ある.

ばねの微小変位 ΔX は

$$\Delta X = \frac{\Delta Fs}{ks} = \alpha \frac{\Delta F}{ks} \qquad (5)$$

となる.したがって,質量部分の変位 △Xm は,式(1)より

$$\Delta Xm = \alpha \Delta X = \alpha^2 \frac{\Delta F}{ks} \qquad (6)$$

であるので,質量部分での等価なばね定数 K は

$$K = \frac{\Delta F}{\Delta Xm} = \frac{1}{\alpha^2} ks \qquad (7)$$

となる.式(7)より質量位置での等価なばね定数は,ばね単体のばね定数ksの $1/\alpha^2$ になることが分かる.また,式(7)に式(4)を代入すると

$$K = \frac{1}{\alpha^2} ks = \frac{1}{\alpha} k \qquad (8)$$

となる.式(8)は拡大機構を用いる事により質量部分の仮想ばね定数は,単純支持構造動吸振器のばね定数の1/α になることを示している.このことより固有振動数は,単純支持構

造動吸振器の固有振動数の $1/\sqrt{\alpha}$ となることが分かる.

第3章 变位拡大機構

前章では,変位拡大機構を用いることによりばね単体に比べ容易に低い固有振動数を有 する動吸振器の設計が可能であることを示した.この章では,変位拡大機構とばねの代替 品である棒材を用いた動吸振器について検討する.

変位拡大機構(Yタイプ) 3-1

図3 変位拡大型動吸振器(Yタイプ)

図3は, L₀の部分にばねの代わりとして棒材を用い,質量Mを棒材で直接支持すること ができると同時に, 張力による幾何剛性が存在するものの変位拡大の要素も備える機構で ある.

図 3 は,質量Mにかかる重力Fと初期張力 T_0 がつりあっている状態である.このとき 質量部分に ΔF だけ力を加えた時、質量が ΔY だけ変位したとして、ばねの部分の伸び ΔL と ΔY の関係は

$$(L_0 + \Delta L)^2 = X_0^2 + (Y_0 + \Delta Y)^2$$
 (9)

となる、

式(9)を展開し高次の微小項を省略すると

$$(L_{0} + \Delta L)^{2} = X_{0}^{2} + (Y_{0} + \Delta Y)^{2}$$

$$L_{0}^{2} + 2L_{0}\Delta L + \Delta L^{2} = X_{0}^{2} + Y_{0}^{2} + 2Y_{0}\Delta Y + \Delta Y^{2}$$
(10)
$$L_{0}\Delta L = Y_{0}\Delta Y$$

となり,拡大率 は

$$\beta = \frac{\Delta Y}{\Delta L} = \frac{L_0}{Y_0} = \frac{1}{\sin \theta_0} \qquad (11)$$

となる.一方,つりあっている状態の棒材にかかる初期張力 T_0 は

$$T_{0} = \frac{1}{2} \frac{1}{\sin \theta_{0}} F = \frac{1}{2} \beta F \qquad (12)$$

となり,前章の拡大機構と同様に棒材にかかる力は,質量にかかる力の β 倍となることが分かる.その時に必要な棒材の断面積Aは

$$A = \frac{T_0}{\sigma} = \frac{\beta F}{2\sigma} \qquad (13)$$

また,質量Mによる静荷重Fがかかっている時のばね定数ksは,

$$ks = \frac{EA}{L_0} = \frac{E}{\sigma} \frac{\beta F}{2L_0} = \frac{1}{\varepsilon} \frac{\beta F}{2L_0} \qquad (14)$$

となる. 質量部分に力 ΔF を加えたとき棒材にかかる増分の張力を ΔT ,加えた力による棒材の伸びを ΔL ,質量の鉛直方向の微小変位を ΔY とすると式 (12)より,

$$\frac{1}{2}(F + \Delta F) = \frac{(Y_0 + \Delta Y)}{(L_0 + \Delta L)}(T_0 + \Delta T)$$
 (15)

の関係が成り立ち,展開し高次の微小項を省略すると

$$\frac{1}{2}(F + \Delta F) = \frac{Y_0(1 + \frac{\Delta Y}{Y_0})}{L_0(1 + \frac{\Delta L}{L_0})} T_0(1 + \frac{\Delta T}{T_0})$$

$$= Y_0(1 + \frac{\Delta Y}{Y_0}) \frac{1}{L_0}(1 - \frac{\Delta L}{L_0}) T_0(1 + \frac{\Delta T}{T_0})$$

$$= \frac{Y_0}{L_0} T_0(1 + \frac{\Delta Y}{Y_0}) (1 - \frac{\Delta L}{L_0}) (1 + \frac{\Delta T}{T_0})$$

$$= \frac{Y_0}{L_0} T_0(1 + \frac{1}{Y_0} \Delta Y) (1 - \frac{Y_0}{L_0^2} \Delta Y) (1 + \frac{ks\Delta L}{T_0})$$

$$= \frac{Y_0}{L_0} T_0(1 + \frac{1}{Y_0} \Delta Y) (1 - \frac{Y_0}{L_0^2} \Delta Y) (1 + \frac{ksY_0}{T_0 L_0} \Delta Y)$$

$$= \frac{Y_0}{L_0} T_0 - \frac{Y_0^2}{L_0^3} T_0 \Delta Y + \frac{1}{L_0} T_0 \Delta Y + \frac{Y_0^2}{L_0^2} ks\Delta Y$$

となり,

質量部分の等価なばね定数Kは,

$$K = \frac{\Delta F}{\Delta Y}$$

= $-2\frac{Y_0^2}{L_0^3}T_0 + 2\frac{1}{L_0}T_0 + 2\frac{Y_0^2}{L_0^2}ks$
= $2\frac{1}{L_0}(1 - \frac{Y_0^2}{L_0^2})T_0 + 2\frac{Y_0^2}{L_0^2}ks$
= $2\frac{1}{L_0}(1 - \frac{1}{\beta^2})T_0 + 2\frac{1}{\beta^2}ks$ (17)

であらわされる.式(17)より,全体的なばね定数 K はばね部分の棒材にかかる張力 T_0 の項 とばね定数 ks の項の和になる.ばね定数の項だけをみれば拡大率 β を大きくとる,すなわ ち初期角度 θ_0 を小さくすれば式(14)より棒材のばね定数 ks は拡大率倍になる.しかし, 係数に拡大率 β の 2 乗の逆数があるので,項全体では拡大率を大きくすることにより低い ばね定数となる.張力の項では,式(12)より初期張力 T_0 が拡大率倍だけ大きな値となり, 張力 T_0 の項の括弧内も大きくなる.したがって,拡大率を大きくするだけでは全体的なば ね定数 K は低い値とはならず,張力が大きくなることで棒材の取付け部分等に工夫が必要 となる.また,張力の項には1/ L_0 があるので,同じ拡大率を用いるのであれば,棒材の長 さ L_0 を大きくとることにより低周波数へとつながる. 更に式(17)を変形し式(18)を得る.

$$K = \frac{\Delta F}{\Delta Y}$$

$$= -2\frac{Y_0^2}{L_0^3}T_0 + 2\frac{1}{L_0}T_0 + 2\frac{Y_0^2}{L_0^2}ks$$

$$= -2\frac{1}{L_0}\frac{1}{\beta^2}T_0 + 2\frac{1}{L_0}T_0 + 2\frac{1}{\beta^2}ks$$

$$= -\frac{1}{L_0}\frac{1}{\beta}F + \frac{1}{L_0}\beta F + 2\frac{1}{\beta^2}ks$$

$$= -\frac{1}{L_0}\frac{1}{\beta}F + \frac{1}{L_0}\beta F + \frac{1}{\beta}\frac{EF}{\sigma L_0}$$

$$= -\frac{1}{L_0}\sin\theta_0 F + \frac{1}{L_0}\sin\theta_0 F + \sin\theta_0\frac{EF}{\sigma L_0}$$
(18)

この式より,静的つりあい状態における初期角度 θ_0 が,ばね定数にどのように影響するか計算する.計算では棒材にSUS304を用いる.棒材の長さ L_0 は,現実的な長さとして5[m]・10[m]の2種類とし,付加質量は東京湾アクアラインの動吸振器と同じ10[t]とする.また,ばねを設計する際の許容せん断応力の決め方は,ばね材料のせん断降伏点を次のような係数で除す方法が一般的に用いられている.

軽い使用条件の場合:1.5

ふつうの条件の場合:1.8

激しい条件の場合:2.2

これらを参考にし,計算で用いる許容応力σは降伏点を2 で除した値を用いることとした.今回は,ステンレスなので降伏点の代わりに耐力を2 で除した値を用いる.

図4 ばね定数(Yタイプ)

図 4 は計算結果である.横軸を初期角度 θ_0 [deg],縦軸がばね定数K[N/m]である.初期角度が0[deg]に近いところでは,張力の項が急激に大きくなるため,ばね定数が上昇していることが分かる.その後,張力の項とばね定数の項のバランスが取れ,約1.3[deg]あたりで最低となったあと拡大率の低下と共にばね定数は緩やかに上昇していることが分かる.

3-2 変位拡大機構(△タイプ)

図 5 は, 質量を下から支持する構造の拡大機構である.長さ X_0 の部分は棒材を用いたばね とし,その他の部分は剛体であると考える.リンク長をL,質量をM,質量Mの静荷重Fをかけた時の質量Mまでの高さを Y_0 , ばねに代わる棒材の長さを X_0 とする.この釣り合 っている状態から,質量Mに ΔF だけ力を加えた時のばねの伸び ΔX との関係は

$$L^{2} = (Y_{0} - \Delta Y)^{2} + \left\{\frac{1}{2}(X_{0} + \Delta X)\right\}^{2}$$
(19)

となり,この式を展開し高次の微小項を省略すると

$$L^{2} = (Y_{0} - \Delta Y)^{2} + \left\{\frac{1}{2}(X_{0} + \Delta X)\right\}^{2}$$

$$L^{2} = Y_{0}^{2} + \frac{1}{4}X_{0}^{2} - 2Y_{0}\Delta Y + \Delta Y^{2} + \frac{1}{2}X_{0}\Delta X + \frac{1}{4}\Delta X^{2} \qquad (20)$$

$$2Y_{0}\Delta Y = \frac{1}{2}X_{0}\Delta X$$

となり,拡大率γは

$$\gamma = \frac{\Delta Y}{\Delta X} = \frac{\frac{1}{2}X_0}{Y_0} = \frac{1}{2}\frac{1}{\tan\theta} \qquad (21)$$

となる.また,力のつりあいより棒材にかかる初期張力T₀は

$$T_0 = \frac{1}{2} \frac{1}{\tan \theta_0} F = \gamma F \qquad (22)$$

この時に必要な断面積 Aは,

$$A = \frac{T_0}{\sigma} = \frac{\gamma F}{\sigma} \qquad (23)$$

となり, その時のばね定数 ks は

$$ks = \frac{EA}{X_0} = \frac{E\gamma F}{\sigma X_0} = \frac{1}{\varepsilon} \frac{\gamma F}{X_0} \qquad (24)$$

になる.また,質量部分に ΔF を加えたとき棒材にかかる増分の張力を ΔT ,加えた力による棒材の伸びを ΔL ,質量の鉛直方向の微小変位を ΔY とすると式(22)より,

$$(F + \Delta F) = 2 \frac{(Y_0 - \Delta Y)}{(X_0 + \Delta X)} (T_0 + \Delta T)$$
 (25)

の関係が成り立ち,展開し高次の微小項を省略すると,

$$(F + \Delta F) = 2 \frac{Y_0 (1 - \frac{\Delta Y}{Y_0})}{X_0 (1 + \frac{\Delta X}{X_0})} T_0 (1 + \frac{\Delta T}{T_0})$$

$$= 2Y_0 (1 - \frac{\Delta Y}{Y_0}) \frac{1}{X_0} (1 - \frac{\Delta X}{X_0}) T_0 (1 + \frac{\Delta T}{T_0})$$

$$= 2 \frac{Y_0}{X_0} T_0 (1 - \frac{\Delta Y}{Y_0}) (1 - \frac{\Delta X}{X_0}) (1 + \frac{\Delta T}{T_0})$$

$$= 2 \frac{Y_0}{X_0} T_0 (1 - \frac{1}{Y_0} \Delta Y) (1 - 2 \frac{Y_0}{X_0^2} \Delta Y) (1 + \frac{ks\Delta X}{T_0})$$

$$= 2 \frac{Y_0}{X_0} T_0 (1 - \frac{1}{Y_0} \Delta Y) (1 - 2 \frac{Y_0}{X_0^2} \Delta Y) (1 + 2 \frac{ksY_0}{T_0 X_0} \Delta Y)$$

$$= 2 \frac{Y_0}{X_0} T_0 (1 - \frac{1}{Y_0} \Delta Y) (1 - 2 \frac{Y_0}{X_0^2} \Delta Y) (1 + 2 \frac{ksY_0}{T_0 X_0} \Delta Y)$$

$$= 2 \frac{Y_0}{X_0} T_0 + 4 \frac{{Y_0}^2}{{X_0}^2} ks\Delta Y - 4 \frac{{Y_0}^2}{{X_0}^3} T_0 \Delta Y - 2 \frac{1}{X_0} T_0 \Delta Y$$

となり,

質量部分の等価なばね定数*K*は

$$K = \frac{\Delta F}{\Delta Y}$$

$$= 4 \frac{Y_0^2}{X_0^2} ks - 4 \frac{Y_0^2}{X_0^3} T_0 - 2 \frac{1}{X_0} T_0$$

$$= 4 \frac{Y_0^2}{X_0^2} ks - \frac{1}{X_0} (4 \frac{Y_0^2}{X_0^2} + 2) T_0$$

$$= \frac{1}{\gamma^2} ks - \frac{1}{X_0} (\frac{1}{\gamma^2} + 2) T_0$$
(27)

であらわされる.式(27)より,式(17)と同様に全体的なばね定数*K* はばね部分の線材にかかる初期張力 T_0 の項とばね定数*ks* の項の和になる.ばね定数の項だけをみれば拡大率 γ を大きくとる,初期角度 θ_0 を小さくすれば,式(24)より棒材のばね定数*ks* は拡大率倍になる.しかし,係数に拡大率 γ の2 乗の逆数があるので,項全体では拡大率を大きくすることにより低いばね定数となる.また,張力の項では,式(22)より初期張力 T_0 は拡大率倍だけ大きな値となり,括弧の中の値も大きくなる.しかし,張力の項の符号はマイナスであるので,拡大率 γ を大きくするとどんどんばね定数が低下する.したがって,拡大率 γ を大きくしていけば,ある時点から負のばねになる.結果的に,ばね定数は低下するものの非常に不安定となる.

さらに張力の項には1/X₀があるので,同じ拡大率を用いるのであれば,ばねの長さを大きく取ることにより低周波を実現しやすい.また,式(27)を変形し式(28)を得る.

$$K = \frac{\Delta F}{\Delta Y}$$

$$= 4 \frac{Y_0^2}{X_0^2} ks - 4 \frac{Y_0^2}{X_0^3} T_0 - 2 \frac{1}{X_0} T_0$$

$$= \frac{1}{\gamma^2} ks - \frac{1}{X_0} \frac{1}{\gamma^2} T_0 - 2 \frac{1}{X_0} T_0$$

$$= \frac{1}{\gamma^2} ks - \frac{1}{X_0} \frac{1}{\gamma} F - 2 \frac{1}{X_0} \gamma F$$

$$= \frac{1}{\gamma} \frac{EF}{\sigma X_0} - \frac{1}{X_0} \frac{1}{\gamma} F - 2 \frac{1}{X_0} \gamma F$$

$$= 2 \tan \theta_0 \frac{EF}{\sigma X_0} - \frac{1}{X_0} 2 \tan \theta_0 F - \frac{1}{X_0} \tan \theta_0 F$$
(28)

先ほどの Y タイプと同様に,棒材に SUS304を用い,静的つりあい状態における初期角度 θ_0 が,ばね定数にどのように影響するか計算する.パラメータも Y タイプ同じとして計算を行った結果を図 6 に示す.

図6 ばね定数(Yタイプ)

横軸に初期角度 θ [deg],縦軸にばね定数K[N/m]をとる.図6より,初期角度 θ_0 が90[deg] に近いところでは,ばね定数が無限大に上昇していることが分かる.

図7 ばね定数拡大図(Yタイプ)

図7は図6の初期角度0[deg]付近を拡大したグラフである.初期角度0のあたりでばね定数が負となっており,自重だけで変位が増大することが分かる.

第4章 材料の選定

前章では,拡大機構と金属棒を組み合わせた動吸振器を提案し,機構の面からばね定数 を低くするための検討を行った.本章では,棒材にどのような材料を用いればばね定数を 低くすることができるのか検討を行う.

4-1 一般工業用材料

式(14),式(24)より,Y タイプと Δ タイプ動吸振器の棒材のばね定数 ks には,共通 して係数に σ/E があることが分かる.この値を小さくすることにより,ばねとして用いて いる棒材のばね定数 ks の値が低くなる よって,弾性限界での応力である最大許容応力 σ が 大きくヤング率 E の低い材料を用いればよいことになる.工業用材料と σ の値が大きく E の値の低いばね用材料の代表的なものを表1に示す.表中の E/σ の計算する際,S45C と ばね鋼の E と σ , SUS 304 の σ は,表に示した最低の値を用いた.

材質	E[Gpa]	σ [Mpa]	E/σ
S45C	≧207	≧392	528.06
ばね鋼(SUP7)	≧207	≧1079	191.84
SUS304	197	≧206	956.31
ばね用SUS304(B種)	197	800	246.25
純チタン(JIS2種)	106	215	493.02
β チタン(Ti-15V-3Cr-3Sn-3Al,STA)	98	1110	88.29

表1 代表的なばね用金属材料

E / σ は材料の面から低い固有振動数を有した動吸振器を実現するための目安となり, こ の値が小さいほど, 固有振動数も低くなると考えられる.

4-2 超弹性合金

前節の代表的な材料の検討では,ばね部分の材質に β チタンが有利であることを示した. β チタンのヤング率は,ばね鋼の1/2であるにもかかわらず,引張強さはばね鋼とほぼ同 じという,ばね材料に用いるために有利な性質を持っている.(表1)

しかし,動吸振器を取り付けるスペースは限られており,また棒材を用いるということからばねとしての役目を果たす棒材の長さは,ばねの形状に加工し用いるよりも短くなり, 非常に低い固有振動数を実現することが難しい.よって,βチタンよりも更にばね定数を 低くする可能性のある材料として超弾性合金について検討する.

本節では,超弾性合金の性質を明らかにした後,今回提案した拡大機構に超弾性合金の 棒材を用いることによってどの程度まで動吸振器全体のばね定数,固有振動数を下げるこ とが可能か検討する. 超弾性合金は,通常の金属材料ならば塑性変形するような大きなひずみを与えても変形 力を除くと,ゴムのように元に戻る合金である.図8に超弾性合金の応力-ひずみ曲線の 例を示す.超弾性合金は負荷ひずみ6[%]までは除荷すると完全に元の状態に戻る.また, ひずみ8[%]でも残留ひずみは0.2[%]にとどまる.

図8 超弾性合金の応力-ひずみ曲線図

通常の金属では, *A*-*B*間を弾性範囲としている.*A*-*B*間は,通常の金属同様,応力と ひずみが比例しているのでフックの法則が成り立つ.また,*B*-*C*間も若干曲線ではあるも のの,応力とひずみはほぼ比例しているといえる.超弾性合金の応力-ひずみ曲線から考 えると,*A*-*B*間と*B*-*C*間で2種類の大きく異なるヤング率を有していると考えることも できる.

この材料は図のようにループを描くので等価なばね定数を求めるには,このヒステリシスの影響を考慮する必要があるが,ここでは第一近似としてB-C間の傾きで考える.質量M[kg]により棒材にかかる応力がB-C間になるように棒材の面積を選定すれば,非常に低いヤング率でばねを設計することができる.

まず,A - B間のヤング率を E_{A-B} ,B - C間のヤング率を E_{B-C} として,図8から E_{A-B} , E_{B-C} を求めると $E_{\scriptscriptstyle A-B}=78[Gpa]$

 $E_{\scriptscriptstyle B-c}=1.35[Gpa]$

また,Bまでを弾性範囲と考えると,図8より最大許容応力 σ は,

 $\sigma = 430[Mpa]$

となり, $E_{{\scriptscriptstyle A-B}}\,/\,\sigma\,$ は,

 $E_{A-B} / \sigma = 181.4$

となる.同様に,弾性限度を6[%]と考えれば σ は,

 $\sigma = 480[Mpa]$

となるので , $E_{\scriptscriptstyle B-C}/\sigma$ は

 $E_{B-C} / \sigma = 2.81$

となる.表1の金属と比較すると E_{A-B}/σ は,ばね鋼と同等程度の値であるが, E_{B-C}/σ は 非常に小さな値でとなることが分かる.したがって,低い固有振動数を有する動吸振器の 実現に超弾性合金は有効であると考えられる.

第5章 実験

前章までに,低周波の動吸振器を設計するために変位拡大機構を用いることが有効であることを示し,変位拡大機構を用いた動吸振器と低周波の動吸振器に有効であると思われる材料を提案した.本章では,それらの結果から実験装置を製作し,実験を行う.

5-1 実験目的

実験を行うにあたり,以下のことを目的とした.

- (1)実験により固有振動数を測定し,理論の検証を行う.
- (2)工業用材料をばねとして用いた場合の特性を明らかにする.
- (3) 超弾性合金をばねとして用いた場合の特性を明らかにする.

(1)は、実験により実際の固有振動数を測定し、理論値と比較することで、理論と実際の動吸振器との関係を明らかにする.(2)は、工業用材料をばねとして用いた場合の固有振動数を測定し、現実的にどの程度まで低くすることが可能であるかを明らかにするとともに、理論の検証を行う.(3)は、前章で低い固有振動数を実現するために有効であると思われる超弾性合金を提案した.しかし、超弾性合金の機械的特性は非線形であり、動吸振器の特性に与える影響は予測しにくい.よって、実験により特性を明らかにする.

5-2 変位拡大型動吸振器の製作

実験で用いる変位拡大型動吸振器は,上記の実験目的を基に製作した.

概要

- ・本実験では固有振動数を可能な限り低くするために、△タイプの動吸振器の理論を用いることにする。
- ・目的(1)より,実験装置の摩擦を可能な限り小さくするために,すべての可動部分に ベアリング,もしくはリニアガイドを使用する.

△タイプの理論から動吸振器を製作する際,大きな問題点がある.図5 とまったく同じ 構造の動吸振器を設計しようとすれば,力のつりあいは図10のような関係となる.

図 10 タイプの力のつりあい

質量取り付け部分には,棒材にかかる張力 T_0 と同じ力がかかっていることが分かる.固 有振動数を低くするために拡大率を大きくとると張力の値が大きくなる.そのため,質量 を取り付けてある可動部分のベアリングにも張力と同じ大きな力がかかることになる.し たがって,耐久性の面から使用するベアリングを強度の大きいものにする必要がある.ま た,強度の大きなベアリングを用いるということは,一般的にベアリング内部の転動体が 球から円筒になり接触する部分が点から線へと変わるため摩擦も大きくなる.また,ベア リングにかかる力が大きくなれば同じ摩擦係数であったとしても,摩擦力が大きくなるこ ととなる.この問題を解決するため Δ タイプの理論を用い図 11 のような構造を提案する.

図11 実験装置の力のつりあい

この構造であれば,力のつりあいは矢印のようになり,可動部分には質量程度の力はかかると思われるが,拡大効果による大きな張力はかからない.図12に実際に製作した変位拡大型動吸振器を示す.

図 12 実験装置

特徴

- ・可動部分や部品の取り付け部分に大きな力がかからない.
- ・初期角度 θ_0 は, 15[deg]・30[deg]・45[deg]の角度を取れるようにアーム部に棒材を 固定する穴を3箇所開けた.
- ・摩擦を減らすために,すべての可動部分に与圧のかかっていないベアリング・リニア ガイドを用いた.

5-3 実験装置の構成

本節では,次節以降で使用する実験装置の構成と各々の機器について述べる.図13に本実験で用いる実験装置の構成・接続図を示す.

(1) 变位拡大型動吸振器

- (2) FFT アナライザ
- (3)加速度ピックアップ
- (4)アンプ

5-4 実験方法

本節では,固有振動数の測定を目的とした実験を行う.実験1では,材料にSUS304を 用い,初期角度を変化させたときに,質量とつりあっている状態で棒材の面積を調節する ことで,棒材にかかる応力を一定にし,固有振動数の変化を比較する.すなわち,棒材に かかる負担は同じ条件で,初期角度の変化により固有振動数にどのような影響を与えるか 測定により明らかにする.実験2では,実験1とは異なる材料である純チタンを用いて固 有振動数を測定する.純チタンは,表1よりSUS304と同じ耐力を持ちながらヤング率が 約半分の値となっている.したがって,実験1で用いたSUS304と同じ直径の棒材を用い て測定すれば,棒材にかかる負担は同じ条件で,ヤング率により固有振動数にどのような 影響があるか明らかにできる.実験3では,棒材に超弾性合金を用いた実験を行う.実験 に先駆けて,実際に実験に用いる材料の特性を明らかにする.その結果から,降伏状態に なる直前の応力を最大許容応力とし,その値を2で除したものを許容応力として用いる. その測定結果と理論との関係を明らかにする.

5-4-1 固有振動数の測定

本項では,実験1と実験2の実験方法について説明する.実験1と実験2では,代表的 な工業用材料である SUS 304 と純チタンをばねとして用いた変位拡大型動吸振器に加振力 を与え動吸振器を自由振動させる.そのときの加速度を加速度ピックアップでセンシング し,その信号を解析することにより,変位拡大型動吸振器の固有振動数がどの程度の値と なるのか測定する.

実験方法

(1)質量と棒材がつりあっている初期状態で、棒材にかかる張力T₀を計算により求める.

- (2)棒材の直径から断面積を求め、(1)で求めたT₀を断面積で除して、棒材にかかる応 力を求める.求めた値と棒材の許容応力を比較し、なるだけ近い値となるよう棒材 の断面積を選択し用いる棒材の直径を決める.
- (3)理論では,初期状態で質量と張力がつりあっている状態を初期状態とした.したがって,その状態と同じ状態を初期状態で実現するために,測定で用いる棒材とは関係のない棒材を1本用意する.その棒材を実験装置に取り付け,測定したい初期角度になるように位置決めする.
- (4) 測定用の棒材を実際に必要な長さより少し長めに切り取り,片端を実験装置に固定 する.

(5)もう一方の片端は、ばねばかりをかけ、初期張力と同じ力をかけた状態で固定する.

- (6)2本とも固定がすんだら,位置決めをしていた棒材を取り外す.この状態が,理論 上での初期状態となる.
- (7) 動吸振器に手で適度な加振力を加え,自由振動をさせる.
- (8) そのときの加速度を加速度ピックアップでセンシングし, FFT アナライザで解析 することにより固有振動数を求める.

5-4-2 超弾性合金を用いた場合の

固有振動数の測定

本項では,超弾性合金をばねとして用いた場合に,第5章4節1項と同様の実験を行い, 変位拡大型動吸振器の固有振動数がどの程度の値となるかを測定する.

図14に実験3で用いる,超弾性合金の応力-ひずみ曲線を示す.

図14 応力 - ひずみ曲線(実験用超弾性合金)

A-*B*間が,一般の金属でいう弾性の範囲である.*B*点から*E*点までが超弾性(偽弾性) と呼ばれる範囲となる.材料の測定の結果,弾性の範囲でもかなり大きくひずんでいるこ とが分かる.弾性の範囲のヤング率を図14から求めてみると,

E = 1.24[GPa]

くらいの値となっている.材料の面から低い固有振動数を有した動吸振器を実現するための目安である *E* / σ は,

 $E/\sigma = 3.1$

となり,表1のどの材料よりも低い値となっており,低い固有振動数を目的とした動吸振器に用いるばね用材料として有効である.

5-5 実験の条件

5-5-1 固有振動数の測定

実験1と実験2で用いた条件を以下に示す.

実験1

付加質量: 6.25[kg] 棒材の材質: SUS 304 初期角度: 45[deg]と15[deg]の2通り 棒材の直径 初期角度45[deg]のとき: 0.7[mm] 初期角度15[deg]のとき: 1.5[mm]

・実験2

付加質量: 6.25[kg] 棒材の材質: 純チタン(JIS2種) 初期角度: 15[deg] 棒材の直径: 1.5[mm]

実験 1・実験 2 の付加質量の値は, 6.25[kg] となっている.これは,今回の実験装置を 製作する際,実際に製作する動吸振器の 40 分の 1 のスケールとしている.東京湾アクアラ インに用いられている動吸振器の付加質量は10[t]である.ばねや棒材にかかる負担を同じ 条件にするために,付加質量は 1600 分の 1 の 6.25[kg] とした.

5-5-2 超弾性合金を用いた場合の

固有振動数の測定

実験3で用いた条件を以下に示す.

・実験3

付加質量:8.57[kg] 棒材の材質:超弾性合金 初期角度:15[deg] 棒材の直径:1[mm] 室温:20[°C]

この実験での付加質量は8.57[kg]となっている.これは,実験1・実験2と同じ理由で, 棒材にかかる負担を同一にするためである.

5-6 実験結果

実験1の初期角度 $\theta_0 = 45[\text{deg}]$ の結果を図 15-a と図 15-b に示す.図 15-a は,時刻歴応 答波形を示している. X 軸に時間, Y 軸に振幅をとる.図 15-b は,図 15-a を解析して求 めたスペクトル波形を示す.以後,結果の図番号のアルファベットが a の図は,時刻歴応 答波形を示し,bの図は a を解析して求めたスペクトル波形を示す.図 15-b から,固有振 動数は $f_E = 31.25[H_Z]$ であることが分かる.

実験1の初期角度 $\theta_0 = 15$ [deg]の結果を図 16-a と図 16-b に示す.図 16-b から,固有振動数は $f_F = 15$ [H_Z]であることが分かる.

実験 2 の結果を図 17-a と図 17-b に示す.図 17-b から,固有振動数は $f_E = 12.5[H_Z]$ であることが分かる.

実験 3 の結果を図 18-a と図 18-b に示す . 図 18-b から , 固有振動数は $f_E = 5.6[H_Z]$ であることが分かる .

第6章 考察

本章では,以下の3つの事柄について考察を行う.

- ・製作した変位拡大型動吸振器
- ・加振方法
- ・各々の実験の理論と実験結果

・製作した変位拡大型動吸振器

今回製作した変位拡大型の動吸振器は重要な条件として,拡大効果による非常に大き な張力を可動部分にかけないこと,摩擦を小さくすることがあった.これら2つは,構 造を工夫すること,可動部に与圧のないベアリング・リニアガイドを用いることにより 解決することができた.しかし,実験中に大きな問題でないが解決する必要がある問題 が2つ出てきた.

1つ目は,理論上の初期状態を再現する方法である.理論上では,初期状態で質量と棒 材がつりあっているとして考えている.そのため棒材の固定の方法として第5章4節1 項で示した方法を用いている.この方法では,初期位置を決め固定しなくてはならない. この位置決めを行うのに棒材を用いて行っているが,正確に位置を決めるために多くの 時間が必要である.また,棒材の張力のかけ方にも問題がある.今回の実験装置では, 上側に張る棒材と下側にはる棒材の張力を同じにしなければ,可動部分に張力の差分だ けの力がかかり,摩擦が大きくなるだけではなくベアリングにもいい影響を与えない. 張力をかける際,棒材の片端を固定し,反対側の片端にばねばかりをかけて手で引っ張 った状態で棒材を固定している.かける張力が小さい場合にはある程度正確な値で固定 できるが,大きな張力をかける場合には,手がいくらか震えるため正確な張力をかける ことが難しい.

2 つ目は,棒材の固定の方法である.ボルトで締め付けることによる摩擦力で棒材を固 定しているが,ボルトを締め付けるときにボルトが回転するため,その回転により微小 ではあるが張力がずれている可能性がある.また,棒材を固定する際にボルトで直接締 め付けているため棒材に傷が付き,その部分に応力が集中することにより塑性変形を起 こし,最悪の場合,破断することも考えられる.今後の実験では,棒材を固定する方法 を検討する必要がある.

・加振方法

今回の実験では,加振をする方法として人間の手で行った.これは,インパルスハン マを用いて加振を行うと加振する入力の波形の周期が短くなり,入力波形の周波数が高 くなる.そのため,動吸振器に用いている金属部品等の固有振動数と共振しやすくなり, その振動の影響で出力の波形が小さく波打つ.それに比べ,手のような柔らかいもので 加振した場合には,力を入力し始めてから入力し終わるまでの時間,すなわち,周期が 長くなる.したがって,硬いものでたたく場合と比べ振動数が低くなり,金属部品とは 共振しにくくなる.更に,動吸振器自体の固有振動数も低いので,動吸振器本来の固有 振動数と共振しやすくなり,出力の波形がきれいに取れることが分かった.今後の課題 としては,

- ・加振力をある程度の範囲で自由に変化させることができること.
- ・加振力の再現性があること
- ・加振力が分かること
- ・非常に低い固有振動数と共振しやすくし,金属材料と共振しにくくするために,動 吸振器に加振力を加える部分にある程度やわらかい材料を用いること

以上のような条件を満たした加振器があれば,実験がより正確に行うことができると考える.

実験1

実験1の条件から,理論上の固有振動数を計算すると

- f_T (初期角度45[deg]のとき): 70.16[Hz]
- f_T (初期角度15[deg]のとき): 40.29[Hz]

となる.実験上の固有振動数は,

- f_E (初期角度45[deg]のとき): 31.25[Hz]
- f_F (初期角度15[deg]のとき): 15[H_Z]

という結果が出ている.これらの結果から,理論値に対する実験値の誤差 Eは,

E (初期角度45[deg]のとき): 0.45

E (初期角度15[deg]のとき): 0.37

となることが分かる.一般的に,実験で測定した固有振動数は理論の固有振動数の値よ りも低くなることが知られている.したがって,多くの実験を行い実験のデータを蓄積し 誤差を統計処理することができれば,誤差を理論と実際の固有振動数の補正係数として用 いることが可能であると考える.今後,実験を続けデータを蓄積する必要がある.

・実験 2

実験2の条件から,理論上の固有振動数を計算すると

 f_T : 29.5[*Hz*]

となる.実験上の固有振動数は

 f_{F} : 12.5[Hz]

という結果が出ている.この結果の理論値に対する実験値の誤差Eは,

E : 0.42

であることが分かる.

第4章で,低い固有振動数を実現する材料パラメータの割合である*E/σ*を目安とする ことにより,低い固有振動数を実現するために有効な材料を選択することができる可能 性があることを示した.実験1で用いた*SUS* 304の E/σ に対する実験2で用いた純チタンの E/σ の割合は,0.51であり約半分の値となっている.したがって,理論上では純チタンを用いれば*SUS* 304 に比べ固有振動数が低くなることが予想される.実験の結果から,純チタンを用いた場合のほうが*SUS* 304 を用いた場合に比べ固有振動数が低くなっている.よって, E/σ を目安として材料を選択することにより,更に低い固有振動数を実現できることが分かる.しかし,実験のデータが少ないため E/σ と固有振動数の関係を明らかにするまでには至っていない.実験1と同様に,今後,実験データの蓄積が必要であると思われる.

・実験 3

実験1,実験2と同様に実験3の条件から,理論上の固有振動数を計算しようとすれば, ばね定数が負となり,理論上では付加質量によりつぶれてしまっていることになる.し かし,実験上での固有振動数は

 $f_{E} = 5.6[Hz]$

となっている.これは,超弾性合金のヤング率が図14のデータよりも大きいことを示していると考えられる.実験1,実験2の理論値に対する実験値の誤差の平均を算出し, 実験結果から実際のヤング率を求めると

E = 55.69[GPa]

であることが予想される.この差は,超弾性合金のヒステリシスの影響であると考えられる.超弾性合金の応力 ひずみ曲線は,一般的に材料の温度により特性が大きく変化 することが知られている.したがって,温度を変化させて,用いる棒材のおのおのの温 度での応力 ひずみ曲線を測定し,ヒステリシスの影響や温度による固有振動数の変化 などを調べる必要がある.また,超弾性合金特有の問題として,繰り返し回数に限界が ある.図8のような応力 ひずみ曲線の場合,6[%]までひずませた場合の繰り返し回数 は10³から10⁴回程度であるので,振動回数が多い場所にはあまり適さない等の問題があ るがこれらは今後の検討課題としたい.

第7章 結言

本研究では,金属ばねや空気ばねを用いず金属棒を用いて低周波の垂直方向動吸振器を 実現するための機構と材料について検討した.

第2章では,質量とばねのみの単純支持構造動吸振器と変位拡大機構を用いた変位拡大型動吸振器を取り上げ,変位拡大機構を利用した方が容易に低周波の固有振動数を作り出せることを示した.

第3章では,変位拡大機構とばねの代替品である棒材を用いた動吸振器について提案し 検討した.その結果,金属棒をばねの代替品として用いた場合,理論上,低い固有振動数 を実現できることを示した.

第 4 章では,棒材にどのような材料を用いればばね定数を低くすることができるのか検討を行った結果,材料の選択の目安として *E*/σ の低い値を用いることが低い固有振動数に つながることを示した.

第5章では,第4章までの理論を元に実験装置を製作し実験を行った.

実験 1 では,初期角度を変化させることにより固有振動数を低くすることができること を示した.

実験2では実験1と異なる材料を用い,E/σを材料選択の目安とすることが可能である ことを示した.

実験 3 では,超弾性合金を用いることにより固有振動数を低くすることができることを 示した.

第6章では,実験結果と理論の関係,実験装置の問題点についての考察を行った.

これらのことから,金属棒を用いて非常に低い固有振動数を有した動吸振器が実現可能 であることを示した.

<u>謝辞</u>

本研究を行うにあたりご指導くださいました,井上喜雄教授,甲斐義弘助手に深く感謝 いたします.また,実験装置の製作にあたり非常に多くのアドバイスをしてくださいまし た,中浜昌文氏.本研究・論文をまとめるにあたり,ご協力くださいました森井康友氏, ならびに本研究に携わった多くの方々に深く感謝いたします.

参考文献

1)吉田好孝,藤野陽三,佐藤弘史,時田秀往,三浦章三郎:東京湾アクアライン橋梁部鋼 桁橋に発現した渦励振の振動制御,土木学会論文集,1999.10,119-134,

2) 井上喜雄,甲斐義弘,友次健一,上田宏樹,岡田徹:上下方向動吸振器に関する研究,

機械力学・計測制御御講演論文アブストラクト集,2000

3)日本機械学会:金属材料の弾性係数,日本機械学会,1980

4) ばね技術研究会: ばね用材料とその特性,日刊工業新聞社,2000

5)根岸朗:形状記憶合金のおはなし,日本規格協会,1989

6)ニッパツ・日本発条株式会社:機械要素活用マニュアル ばね,工業調査会,1995

7)山口公典,小野孝彦:やさしいFFT アナライザの使い方,オーム社,1993

付録目次

グラフ

図 15-a	実験1の時刻歴応答波形(初期角度 $ heta_0$:45[deg])・・・・・ $A-1$
図 15-b	実験1のスペクトル波形(初期角度 $ heta_0$:45[deg])・・・・・ A-1
図 16-a	実験1の時刻歴応答波形(初期角度 $ heta_0$:15[deg])・・・・・・A-2
図 16-b	実験1のスペクトル波形(初期角度 $ heta_0$:15[deg])・・・・・ A-2
図 17-a	実験 2 の時刻歴応答波形(初期角度 $ heta_0$:15[deg])・・・・・・ A-3
図 17-b	実験 2 のスペクトル波形 (初期角度 $ heta_0$:15[deg])・・・・・・ A-3
図 18-a	実験 3 の時刻歴応答波形(初期角度 $ heta_{_0}$:15[deg])・・・・・・ A-4
図 18-b	実験 3 のスペクトル波形 (初期角度 $ heta_0$:15[deg])・・・・・・ A-4

表

表 2	計測系装置の仕様・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		A	-5
-----	-----------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	----

図 15-a 時刻歴応答波形

図 15-b スペクトル波形

図 16-a 時刻歴応答波形

図 16-b スペクトル波形

図 17-a 時刻歴応答波形

図 17-b スペクトル波形

図 18-a 時刻歴応答波形

図 18-b スペクトル波形

使用機器	仕様									
	会社名	小野測器								
	型番	CF-5220								
	雪酒	AC90 ~ 264V (47 ~ 440Hz								
		DC10.5V ~ 30V								
	消費電力	150VA 以下								
	外形寸法	420 (W) ×200 (H) ×300 (D) mm								
FFT アナライザ	質量	約 11kg								
	入力チャンネル数	2 チャンネル								
	入力電圧したが	- 60dBVr ~ 30dBVr (1mVr ~ 31.6Vr								
	八月電圧レフラ	2dB ステップ								
	周波数レンジ	10mHz ~ 100kHz								
	平均化回数	1~65535 回 (任意回数設定可能)								
	ウィンドウ問数	レクタンギュラ、ハニング								
		フラットトップ、フォース、指数								
	会社名	B&K (ブリュエル・ケアー社)								
加速度	型番	Туре 4383								
加速度 ピックアップ	電荷感度	3.16[pC/m/s ⁻²]								
	振動数範囲	0.1[Hz] - 8.4[kHz]								
	寸法	14×21.6[mm]								
	重さ	17[g]								

表2 計測系装置の仕様