平成 13 年度

卒業論文

ゴルフスイングの動力学とメカニズムの検討

指導教員

井上 喜雄 教授

甲斐 義弘 助手

高知工科大学工学部知能機械システム工学科

1020097 岡山 幸一

目次

1章 緒言	1
章.目的	2
3章 モデリング	3
4章 運動方程式	4
5章 アンコック	6
6章 各種パラメータ変化によるスイングへの影響	10
7章 結言	13
謝辞 参考文献	14 14
付録	

1章 緒言

近年,老若男女を問わず,スポーツがさかんであるが,その中でもゴルフは 誰もが楽しめ,長く続けることのできる人気の高いスポーツである.身長など もあまりハンデにはならず,それに合った攻め方を考えることができるのもゴ ルフの魅力の一つである.同時に,一見単純そうに見えるゴルフも実際はコー スに応じた緻密な戦略を立てる必要があり,奥の深いゲームをすることができ る.

ここで、ゴルフを長く楽しむ為には、正しいスイングを身につける事が重要 である.理にかなった効率の良いスイングは、好不調の波を少なくし、何より も体の負担を軽減することができる.効率のいいスイングというと飛距離のみ がクローズアップされがちだが、効率が良ければスイングの際に力むことがな く、飛距離を維持しながらボールをコントロールできるため正確さにもつなが る.そのため、ゴルフスイングについて多くの解説がなされており、その内容 はどのようにすれば遠くへ飛ばせるか、スイング時のどこで力を加えるかなど 様々である.しかし、それらの多くは腕の振りや体の動きなど形から論じられ ているものや、実際にスイングをするには無理のある体の動きであったり、プ ロにしかできないような動作である場合が多い.これでは一般のプレイヤーも 正確にスイングできるかどうかの確証を得ることはできない.このように、ス イングを経験的、形式的に論じてあるものが非常に多く、スイングを力学から 捕られているものは少ない.

そこで,本研究では,経験的,形式的に語られるゴルフスイングを動力学の 視点から考えることで,より合理的に理解する事ができるようにする.また, 初期角度,ゴルフクラブの長さ,腕の長さ,また,その質量などを変化させた 場合,スイングに対してどのような影響があるかを検討する.

2章 目的

ゴルフスイングは体の重心移動,クラブの動き,リストの動きなど,非常に 複雑な動きの集合体である.また,飛距離を伸ばすためにはインパクト時のヘ ッドスピードを大きくすることが重要であるため,リストターンはゴルフスイ ングの中でも最も重要な動作の一つであるといえる.そこで,このリストター ンに注目することによって,ゴルフスイングについてのメカニズムを知ること を目的とする.

- 1) 2 リンクモデルを用いたゴルフスイングのモデル化を行う.
- 2) Lagrange の法則を用いて運動方程式を導出する.
- アンコックの開始位置を検討する.2)の運動方程式よりアンコックの開始条件のための式を導出し、クラブの長さや、初期角度がアンコック開始のタイミングにどのように影響するかを検討する.
- 4) 実際のスイングとシミュレーションとのデータを比較検討する.
- 5) クラブの質量,長さなどの各パラメータ変化に対するスイングへの影響を考察する.

図1.ゴルフスイングのモデル化

プレイヤーとクラブからなるゴルフスイングを数学モデルとして,図1のような2リンクモデルを用いる. r_1 はプレイヤーの腕部分の長さ, r_2 はゴルフクラブの長さを,点Aは肩部分,点Bはリスト部,点Cはクラブヘッドを表している.本研究では腕にかかるトルクは一定であるとする.また, θ_2 はダウンスイング開始時の値($-\alpha$)以下にはならないものとする.よって,ダウンスイング開始後,アンコックが始まるまでは r_1 , r_2 は一体で運動し,アンコック開始後2自由度の運動となる.ここで,コックとはバックスイングの途中で生じる手首の折れ曲がりのことを言い,このコックをほどくことをアンコックと呼ぶ.

4章 運動方程式

ここでは,Lagrangeの法則を用いて運動方程式を導出する. 図1における点B,Cの位置及びその速度は以下のように表される.

$$x_{1} = r_{1} \cos \theta_{1}$$
(1)

$$y_{1} = r_{1} \sin \theta_{1}$$
(2)

$$x_{2} = r_{1} \cos \theta_{1} + r_{2} \cos(\theta_{1} + \theta_{2})$$
(3)

$$y_{2} = r_{1} \sin \theta_{1} + r_{2} \sin(\theta_{1} + \theta_{2})$$
(4)

$$\begin{aligned} \dot{x}_{1} &= -r_{1}\dot{\theta}_{1}\sin\theta_{1} \quad (5) \\ \dot{y}_{1} &= r_{1}\dot{\theta}_{1}\cos\theta_{1} \quad (6) \\ \dot{x}_{2} &= -r_{1}\dot{\theta}_{1}\sin\theta_{1} - r_{2}(\dot{\theta}_{1} + \dot{\theta}_{2})\sin(\theta_{1} + \theta_{2}) \quad (7) \\ \dot{y}_{2} &= r_{1}\dot{\theta}_{1}\cos\theta_{1} + r_{2}(\dot{\theta}_{1} + \dot{\theta}_{2})\cos(\theta_{1} + \theta_{2}) \quad (8) \end{aligned}$$

点 B , C での質量を m_1 , m_2 , 運動エネルギを T_a , T_b とすると ,

$$T_{a} = \frac{1}{2} m_{1} (\dot{x}_{1}^{2} + \dot{y}_{1}^{2})$$

$$= \frac{1}{2} m_{1} r_{1}^{2} \dot{\theta}_{1}^{2} \qquad (9)$$

$$T_{b} = \frac{1}{2} m_{2} (\dot{x}_{2}^{2} + \dot{y}_{2}^{2})$$

$$= \frac{1}{2} m_{2} \{ r_{1}^{2} \dot{\theta}_{1}^{2} + r_{2}^{2} (\dot{\theta}_{1} + \dot{\theta}_{2})^{2} + 2r_{1} r_{2} \dot{\theta}_{1} (\dot{\theta}_{1} + \dot{\theta}_{2}) \cos \theta_{2} \} \qquad (10)$$

スイング平面が鉛直面となす角度を とおくと,同様にポテンシャルエネルギ U_a , U_b は以下のようになる.

$$U_a = m_1 r_1 \sin \theta_1 g \cos \phi \qquad (11)$$

$$U_b = m_2 \{ r_1 \sin \theta_1 + r_2 \sin(\theta_1 + \theta_2) \} g \cos \phi \qquad (12)$$

Lagrange 関数を $L(=T_a + T_b - U_a - U_b)$ とすると

$$\frac{\partial L}{\partial \dot{\theta}_{1}} = (m_{1} + m_{2})r_{1}^{2}\dot{\theta}_{1} + m_{1}r_{1}^{2}(\dot{\theta}_{1} + \dot{\theta}_{2}) + 2m_{2}r_{1}r_{2}\dot{\theta}_{1}\cos\theta_{2} + m_{2}r_{1}r_{2}\dot{\theta}_{2}\cos\theta_{2}$$
(13)
$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{\theta}_{1}}) = (m_{1} + m_{2})r_{1}^{2}\ddot{\theta}_{1} + m_{2}r_{2}^{2}(\ddot{\theta}_{1} + \ddot{\theta}_{2})$$
$$+m_{2}r_{1}r_{2}(2\ddot{\theta}_{1}\cos\theta_{2} - 2\dot{\theta}_{1}\dot{\theta}_{2}\sin\theta_{2} + \ddot{\theta}_{2}\cos\theta_{2} - \dot{\theta}_{2}^{2}\sin\theta_{2})$$
(14)
$$\frac{\partial L}{\partial \theta_{1}} = \{-(m_{1} + m_{2})r_{1}\cos\theta_{1} - m_{2}r_{2}\cos(\theta_{1} + \theta_{2})\}g\cos\phi$$
(15)

よって, θ_1 に関する運動方程式は以下のようになる.

$$(m_{1} + m_{2})r_{1}^{2}\ddot{\theta}_{1} + m_{2}r_{2}^{2}(\ddot{\theta}_{1} + \ddot{\theta}_{2}) + m_{2}r_{1}r_{2}(2\ddot{\theta}_{1}\cos\theta_{2} - 2\dot{\theta}_{1}\dot{\theta}_{2}\sin\theta_{2} + \ddot{\theta}_{2}\cos\theta_{2} - \dot{\theta}_{2}^{2}\sin\theta_{2}) + \{(m_{1} + m_{2})r_{1}\cos\theta_{1} + m_{2}r_{2}\cos(\theta_{1} + \theta_{2})\}g\cos\phi = T_{1}$$
(16)

同様に, θ_2 について,

$$\frac{\partial L}{\partial \dot{\theta}_2} = m_2 r_2^2 (\dot{\theta}_1 + \dot{\theta}_2) + m_2 r_1 r_2 \dot{\theta}_1 \cos \theta_2 \quad (17)$$

$$\frac{d}{dt} (\frac{\partial L}{\partial \dot{\theta}_2}) = m_2 r_2^2 (\ddot{\theta}_1 + \ddot{\theta}_2) + m_2 r_1 r_2 \ddot{\theta}_1 \cos \theta_2 - m_2 r_1 r_2 \dot{\theta}_1 \dot{\theta}_2 \sin \theta_2 \quad (18)$$

$$\frac{\partial L}{\partial \theta_2} = -m_2 r_1 r_2 \dot{\theta}_1 (\dot{\theta}_1 + \dot{\theta}_2) \sin \theta_2 - m_2 r_2 \cos(\theta_1 + \theta_2) g \cos \phi \quad (19)$$

よって, θ_2 に関する運動方程式は以下のようになる.

$$m_{2}r_{2}\{r_{2}(\hat{\theta}_{1}+\hat{\theta}_{2})+r_{1}\hat{\theta}_{1}\cos\theta_{2}+r_{1}\hat{\theta}_{1}^{2}\sin\theta_{2}+\cos(\theta_{1}+\theta_{2})g\cos\phi\}=T_{2}$$
 (20)

5章 アンコック

アンコックが開始されるタイミングについて知ることは,ゴルフスイングを 考える上で非常に重要であり,アンコック開始時期を変化させることによって より正確なスイングを実現することが可能となる.ここでは,アンコック開始 に関する条件について検討する.

アンコック開始まではr₁及びr₂は一体で運動し,θ₂はダウンスイング時の角度 を保ったままと考える.腕のトルクが一定であり,リスト部分においてアンコ ックを助けるためのトルクが加わらないものとすれば,ダウンスイングが進む につれ,角加速度によって発生する慣性力はθ₂を小さくするような方向に働き, 角速度による遠心力が発生しθ₂を大きくするような方向に働く.また,通常の スイング速度では重力の影響は少ないので,ここでは無いものと考える.この2 つの力の合成により,アンコック開始時期が決まる.つまり,遠心力が慣性力 より上回ればアンコックが開始することになる.

ここで,アンコックが開始する瞬間を考える. θ_2 は $-\alpha$,そのときの速度は0 であるから,

$$\theta_2 = -\alpha \qquad (21)$$

 $\dot{\theta}_2 = 0 \qquad (22)$

となる.これらを θ_2 に関する運動方程式に代入すれば以下のようになる.

 $r_2(\ddot{\theta}_1 + \ddot{\theta}_2) + r_1\ddot{\theta}_1\cos\alpha - r_1\dot{\theta}_1^2\sin\alpha + g\cos(\theta_1 - \alpha)\cos\phi = 0$ (23)

よって,リスト部の相対加速度は

$$\ddot{\theta}_2 = -\ddot{\theta}_1 - \frac{r_1}{r_2}\ddot{\theta}_1\cos\alpha + \frac{r_1}{r_2}\dot{\theta}_1^2\sin\alpha - \frac{1}{r_2}g\cos(\theta_1 - \alpha)\cos\phi \qquad (24)$$

となる.

 $\dot{\theta}_{1}^{2} > \left\{ r_{2}\ddot{\theta}_{1} + r_{1}\ddot{\theta}_{1}\cos\alpha + g\cos(\theta_{1} - \alpha)\cos\phi \right\} / r_{1}\sin\alpha$ (25)

通常のスイング速度では,アンコック開始位置に対する重力の影響は大きくないので,ここで重力を無視すれば,

 $\dot{\theta}_1^2 > \ddot{\theta}_1 \left(r_2 + r_1 \cos \alpha \right) / \left(r_1 \sin \alpha \right)$ (26)

となる.

これは, $\ddot{\theta}_1$ が与えられた場合, 速度 $\dot{\theta}_1$ が上昇していくが, 式(26)を満たさないうちは θ_2 は初期値のまま動かず, $\dot{\theta}_1$ がさらに速度を増し式(26)を満たせばアンコックが開始することを意味している.

図 2 のように, $r_1' = r_1 \sin \alpha$, $r_2' = r_2 + r_1 \cos \alpha$ とおき, さらに, 式(26)の両辺が等 しくなる, つまり, アンコック開始直前の速度を $\dot{\theta}_{10}$, また, そのときの加速度 を $\bar{\theta}_{10}$ とおけば以下のように表せる.

 $\dot{\theta}_{10}^2 = \ddot{\theta}_{10} \left(r_2 + r_1 \cos \alpha \right) / (r_1 \sin \alpha) = \ddot{\theta}_{10} \left(r_2' / r_1' \right)$ (27)

ここで 腕とクラブが一体で動いている場合の点 A まわりの慣性モーメントを J

とおくと,

 $J = m_2 \{ (r_2 + r_1 \cos \alpha)^2 + (r_1 \sin \alpha)^2 \} + m_1 r_1^2$ (28)

また,ダウンスイング時における角加速度 👸は,以下のように表せる.

 $\ddot{\theta}_1 = T_1 / J \tag{29}$

式(27),(29)より,アンコック開始速度は

 $\dot{\theta}_{10} = \{ (T_1/J) \cdot (r_2 + r_1 \cos \alpha / r_1 \sin \alpha) \}^{1/2} = (T_1 r_2' / J r_1')^{1/2}$ (30)

ここで,加振トルクが一定であるとすれば,加速度も一定となるので,アンコック開始までの腕の角変位は次のようになる.

$$\delta = \theta_{10}^2 / 2\theta_{10} = (r_2 + r_1 \cos \alpha) / (2r_1 \sin \alpha) = r_2' / 2r_1'$$
(31)

ここで,パラメータの影響を把握するために無次元パラメータ $\mu(=m_2/m_1)$, $\gamma(=r_2/r_1)$ を導入して無次元化を行っておく.

ここで,式(31)からアンコックについてどのようなことがわかるかを検討する. 図 3 は γ = 1.1, 1.4 と一定とし, α の値を $\pi/6$ から $3\pi/4$ まで変化させた場合の δ の変化の様子であり, 図 4 は同様の条件での $\dot{\theta}_{10}$ の変化の様子を示す.また,図 5 は $\alpha = \pi/2$, $2\pi/3$ と一定とし, γ を 1.0 から 1.5 まで変化させた場合の δ の変化の様子であり,図 4 は同様の条件での $\dot{\theta}_{10}$ の変化の様子を表している.

これらの結果からアンコックについて以下のようなことがわかる.

r₁ が小さい,または,r₂ が大きいほど角変位が大きくなる,つまり,アンコック開始は遅くなり,アンコック開始速度が速くなる.また,αが小さいほうが角 変位が大きくなりアンコックが遅くなる.αが一定の場合は,r₁が小さく,r₂が 大きいほどアンコックは遅くなる.つまり,腕が短いほど,ゴルフクラブが長 いほどアンコックが遅くなることを表している.

6章 各種パラメータ変化におけるスイングへの影響

本章では、これまでに導出した式を用いて、腕の長さ、クラブ長さ、その質量、コック角などの各パラメータが、アンコック開始後のスイングに対してどのような影響を与えるかを検討する.また、ここでは計算の手段としてMathematicaを用いる.まず、 η 、 α 、 μ 、 γ を入力し、アンコック速度およびそのときの開始位置を式(30)、(31)を用いて計算を行う.ここで η は θ_1 の初期値とする.これらの値を初期条件として運動方程式を解く.具体的なプログラムの内容は付表に示す.

はじめに, $\eta = 2\pi/3$, $\alpha = \pi/2$, $\mu = 0.3$, $\gamma = 1.4$ としたときを基本条件として 考える.そのときの角速度および角変位の時刻歴応答を図7,8 に示す. θ_1 につ いては,インパクトの地点となる $3\pi/2$ の位置が0 になるように原点を移動して いる.よって, θ_1 , θ_2 が0 になるタイミングがほぼ一致していれば正確にスイン グできているといえる.図7 では, θ_1 については,はじめは速度が増加してい るがインパクトが近づくにつれ速度が減少し, θ_2 については,同様に速度が増 加し,インパクトが近づくにつれさらに速度が増していることがわかる.これ は腕の速度がクラブの速度へ移動していると考えることができる.また,図8 では, θ_2 がかなり遅れていることがわかる.

次に,図8 でのスイングの遅れを補正するために,基本条件からクラブ長さを変更し, γ=1.1とする.そのときの角速度および角変位の時刻歴応答を図9, 10に示す.図9でのクラブ速度は図7のものと比べて増加が大きくなっている. これはクラブ長さが短くなったために,腕からクラブに移動するエネルギがク ラブ長さが長い時と比べて小さくなり,結果としてクラブ速度が大きくなって いると思われる.

図 10 では, θ_1 , θ_2 が0 になるタイミングがほぼ一致しており, ボールを正確 にヒットできているといえる.

また,ゴルフクラブの長さをすぐに変えることは実際には困難である場合も 多い.その場合,このほかにダウンスイング開始位置 η を変えることでもスイン グを補正することができる. $\eta = \pi/2$, $\alpha = \pi/2$, $\mu = 0.2$, $\gamma = 1.4$ としたときの 角速度および角変位の時刻歴応答を図 11,12 に示す.ここでは, η を小さくす ることでストロークを大きくし,スイングのずれを補正している.

7章 結言

本研究では,ゴルフスイングの数学モデルとして 2 リンクモデルを用い, Lagrange の方法によって運動方程式を導出した.また,アンコック開始位置に ついての理論を導出し,腕の長さ,クラブ長さ,コック角がアンコックにどの ように影響するかを検討した.これによって,ドライバーはスイングを大きく, アイアンは小さくといった,今まで経験的に言われてきたことが正しいもので あることが分かった.アンコック開始後のスイングにおいて,各パラメータを 変化させた場合,それがスイングに対してどのような影響を及ぼすかを明らか にするとともに,正確にスイングするための補正方法を考察を行うことで,ゴ ルフスイングについての動力学的メカニズムを明らかにした.

謝辞

本研究を行うにあたりご指導して下さった,井上善雄教授,甲斐義弘助手に 深く感謝したします.

参考文献

高知工科大学知能機械システム工学科,日本自転車振興会:ヒューマンフレンドリーロボット,(2000)

```
m1 = 1.0
m2 = 0.3
r1 = 1.0
r2 = 1.1
gdt = 0
q= 3.141592/180
s01 = 120 q
alp=90q
s02 = 360q-alp
g= 9.8
fai = 30q
gcf = gCos[fai] gdt
tr0 = 1
tr[t] = tr0
rr = (r2 + r1 \cos[alp])^2 + (r1 \sin[alp])^2
jj = m2rr + m1r1^2
a1 = tr0/jj
v1 = Sqrt[(a1(r2+r1Cos[alp]) + gcfCos[s01-alp]) / (r1Sin[alp])]
unc = v1^2/a1/2
unc/q
ank = s01 + unc
ank/q
NDSolve[{gcf((m1+m2) r1Cos[s3[t]) + m2r2Cos[s3[t] + s2[t])) - 2m2r1r2Sin[s2[t])}]
      s_{2[t]} s_{2[t]} - m_{1} s_{2[t]} s_{2[t]} s_{2[t]}^{2} + m_{1} s_{32'[t]} + m_{1}^{2} s_{32'[t]} s_{32'[t]}
    +m2r2^{2}s32'[t] + 2m2r1r2Cos[s2[t]] s32'[t] + m2r2^{2}s22'[t]
    +m2r1r2Cos[s2[t]] s22'[t] == tr[t], s32[t] == s3'[t],
  m^2 r^2 (gcf \cos[s^3[t] + s^2[t]] + r^1 \sin[s^2[t]] s^{32[t]})^2
       + (r2 + r1\cos[s2[t]]) s32'[t] + r2s22'[t]) = 0, s22[t] = s2'[t], s32[0] = v1,
  s_{3[0]} = ank, s_{2[0]} = 0, s_{2[0]} = -alp, \{s_{2[t]}, s_{2[t]}, s_{3[t]}, s_{3[t]}\}, \{t, 0, 3\}
gy3 = Plot[Evaluate[s3[t] - s02 /.Out[][[1]]], {t, 0, 3}, Frame -> True]
gz_3 = Plot[Evaluate[s_32[t] / . Out[-2][[1]]], \{t, 0, 3\}, Frame -> True]
gy2 = Plot[Evaluate[s2[t] /. Out[-3][[1]]], \{t, 0, 3\}, Frame -> True, PlotStyle ->
\{ \text{Dashing} [ \{ 0.02, 0.02 \} \} \}
gz2 = Plot[Evaluate[s22[t] /.Out[-4][[1]]], {t, 0, 3}, Frame -> True, PlotStyle ->
\{\text{Dashing}[\{0.02, 0.02\}]\}
gzz = Show[gz2, gz3, PlotRange -> {0, 2}, FrameLabel ->
{" t ","
                 (\partial \theta_1 / \partial t), (\partial \theta_2 / \partial t) "}
gyy = Show[gy2, gy3, PlotRange -> {-2, 3}, FrameLabel ->
{" t ", " \theta_1, \theta_2 "}]
```


- Graphics -

- Graphics -

r1 = 1.0r2 = 1.1aln= 30 alx=135 q= 3.141592/180 fad = 30fai = fadq gdt = 0 gcf = gdt 9.8 Cos[fai] as1 = 121 xn=alnq xx = alxq $\mathbf{f}[\mathbf{x}] = (\mathbf{r}\mathbf{2} + \mathbf{r}\mathbf{1} \cos[\mathbf{x}] + \mathbf{g}\mathbf{c}\mathbf{f} / \mathbf{a}\mathbf{s}\mathbf{1}) / (\mathbf{r}\mathbf{1} \sin[\mathbf{x}])$ $gx1 = Plot[f[x] / 2, \{x, xn, xx\}, Frame \rightarrow True]$ fv[x] = Sqrt[f[x]]gv1 = Plot[fv[x], {x, xn, xx}, Frame -> True] r2 = 1.4 $\mathbf{f}[\mathbf{x}] = (\mathbf{r}\mathbf{2} + \mathbf{r}\mathbf{1} \cos[\mathbf{x}] + \mathbf{g}\mathbf{c}\mathbf{f} / \mathbf{a}\mathbf{s}\mathbf{1}) / (\mathbf{r}\mathbf{1} \sin[\mathbf{x}])$ $gx2 = Plot[f[x] / 2, \{x, xn, xx\}, Frame \rightarrow True, PlotStyle \rightarrow$ $\{\text{Dashing}[\{0.01, 0.01\}]\}]$ fv[x] = Sqrt[f[x]]gv2=Plot[fv[x], {x, xn, xx}, Frame -> True, PlotStyle -> $\{\text{Dashing}[\{0.01, 0.01\}]\}]$ grr = Show[gx1, gx2, PlotRange -> $\{0, 3.\}$, FrameLabel -> $\{" \alpha$ "," **v** "}] "}] grr = Show[gv1, gv2, PlotRange -> {0, 3.}, FrameLabel -> {" ", " α 1. 1.1 30 135 0.0174533 30 0.523599 0 0 121 0.523599

2.35619

- Graphics -

```
q= 3.141592/180
ald = 90
alp= aldq
fad = 30
fai = fadq
gdt = 0
gcf = gdt 9.8 Cos[fai]
as1 = 121
xn = 1.0
xx = 1.5
f[x_] = (x + r1 \cos[alp] + gcf / as1) / (r1 \sin[alp])
gx1 = Plot[f[x] / 2, \{x, xn, xx\}, Frame \rightarrow True]
fv[x_] = Sqrt[f[x] as1]
gv1 = Plot[fv[x], \{x, xn, xx\}, Frame \rightarrow True]
ald = 120
alp= aldq
f[x_] = (x + r1 \cos[alp] + gcf / as1) / (r1 \sin[alp])
gx2 = Plot[f[x] / 2, \{x, xn, xx\}, Frame \rightarrow True, PlotStyle \rightarrow
\{\text{Dashing}[\{0.02, 0.02\}]\}]
fv[x] = Sqrt[f[x] as1]
gv2=Plot[fv[x], {x, xn, xx}, Frame -> True, PlotStyle ->
\{\text{Dashing}[\{0.02, 0.02\}]\}]
grr = Show[gx1, gx2, PlotRange -> {0, 0.8}, FrameLabel ->
{"
       r
               ", "
                              "}]
                       Y
grr = Show[gv1, gv2, PlotRange -> {0, 15}, FrameLabel ->
               "," "}]
{" r
1.
0.0174533
90
1.5708
30
0.523599
0
0
121
```

r1 = 1.0

- Graphics -