平成 14 年度

卒業研究報告

題目

第一原理バンド構造計算による 金属の仕事関数と実験との比較

指導教員

山本哲也教授

報告者

栗原孝洋

高知工科大学 電子・光システム工学科

目次

はじめに	: 1					
0 - 1	背景	1				
0 - 2	目的	2				
第1章	仕事関数	なとは	3			
1 - 1	概念	3				
1 - 2	仕事関数	数の必要	性	4		
1 - 3	ショッ	トキー接	触	5		
1 - 4	オーミ	ック接触		9		
1 - 5	ピンニン	ング現象		11		
第2章	仕事関数	如測定	1	3		
2 - 1	光電子旗	放出	13			
2 - 2	熱電子放	放出	14			
第3章	仕事関数	の結晶の	面依存怕	生	18	
3 - 1	表面原	子密度	18			
3 - 2	体心立刀	方格子	18			
3-3	面心立刀	方格子	20			
第4章	仕事関数	の計算	2	24		
4 - 1	モデルの	の構築と	その計	算方法		24
4 - 2	局所密度	度 汎関数	法	28		

4-3 エネルギーダイアグラム 30

4-4 計算結果に対する考察 30

第5章 まとめ 38

おわりに 40

謝辞 41

参考文献 42

はじめに

0 1 背景

物質には必ずバルク(物質内部)と表面あるいは界面とが存在し、その表面や 界面には様々な現象が現れる。表面現象については例として、物質表面から電子が 放出される現象である熱電子放出や光電子放出が挙げられる。熱電子放出は CRT (cathode ray tube)いわゆるブラウン管の電子銃において利用され、光電子放出 はレーザ光計測・センサーなどに用いられる光電管として利用されている。そして それらの陰極(熱電子、光電子を放出する部分)材料における仕事関数が素子の 消費電力や感度などを左右する。界面現象について例を挙げると、半導体デバイス とその金属の配線といった、金属/半導体界面における現象がある。それについて は金属の仕事関数と半導体の仕事関数の大小関係が大きな意味を持つと言える。 なぜなら、その大小関係によっては金属/半導体界面を流れる電流に抑制が加わる ためである。つまり仕事関数がその界面の特性を決めるのである。このように仕事 関数は物質の表面・界面現象に多大な影響を及ぼす重要な因子である。

仕事関数は物質の結晶面の方向に影響を受けることが知られている。それは、 結晶面の方向によって表面の原子密度が異なることに関係しており、このことから 仕事関数が物質表面の状態から強く影響を受けるということが分かる。しかし 物質のなかには、それが表面の原子密度に依存しないものも存在する。これは非常 に興味深いことであるが、その原因については現在においても課題となっている。 仕事関数は物質の表面状態だけでなく、未だ解明されていない表面の性質をも映し 出しているのである。

表面・界面現象を制御するためにも、また表面の性質を明らかにするためにも 仕事関数の詳細なデータが必要である。しかしその仕事関数のデータについては、 元素によってそのデータ量に偏りが見られるほか、同じ条件、同じ測定方法による ものを入手することは非常に困難である。さらに、結晶面方向における仕事関数の データについても、同様のことが言えるのが現状である。

そこで実験とは独立に仕事関数に関する理論計算を行い、実験との比較をする。 それはこれまでの描像に関する理論的な確証を得るとともに、実験の誤差による 曖昧さを取り除くことができる。と同時に、新しい描像を必要とする課題を明確に することができよう。仕事関数は、物質の表面や界面における現象の特性を決める と共に、物質表面の性質を反映することができる重要なパラメータであることは 明らかであり、その計算によって得られた仕事関数およびその結晶面依存傾向は、 今後の実験や研究において非常に重要なデータとなることは間違いない。

0 2 目的

仕事関数に関する基本的な事柄についてまとめ、理解を深める。室温(300K) において体心立方格子または面心立方格子構造をとる元素の、異なった結晶面に おける仕事関数について計算を行う。そしてそこから得た各元素の仕事関数から、 その傾向について議論する。

第1章 仕事関数とは

1 1 概念

仕事関数とは、1個の電子をフェルミ準位から真空準位へ取り出すのに必要な エネルギーである。言い換えると、1個の電子を表面のすぐ外側に取り出すのに 必要な最小のエネルギーである。そしてそれはq で表され(qは素電荷量)単位 は (eV)。図 1.1.1 は金属、n型半導体およびp型半導体のエネルギーバンド図で あり、q ϕ_{M} は金属の、q ϕ_{S}^{n} はn型半導体の、そしてq ϕ_{S}^{ρ} はp型半導体の仕事関数を 表す。

ここで図 1.1.1 を見てもわかるように、半導体においてはフェルミ準位に電子が存在しない。半導体では、電子は平均してフェルミ準位に等しいエネルギーの位置から真空中に取り出されると考えられるので、フェルミ準位と真空準位との差を仕事関数と定義する。

電気陰性度の大きな元素ほど、その仕事関数は大きくなる傾向にあることも 知られている。電気陰性度(Xとする)は、イオン化エネルギー I_E (基底状態の 原子から1個の電子を無限遠に引き離すために必要なエネルギー)と電子親和力 E_a (中性原子と電子とが結合する際に放出されるエネルギー)との算術平均と定義 され、次式で表される。

$$X = \frac{(I_E + E_a)}{2}$$
(1.1.1)

つまり言い換えると、電気陰性度は電子の出しにくさ(イオン化エネルギー) と電子のもらいにくさ(電子親和力)から評価した、原子の電子を引きつける力 の目安である。このことから電気陰性度が大きい物質は、電子を引きつける力が 強いため、電子を取り去るのに要する最小のエネルギーである仕事関数も大きな値 となるのである。図 1.1.2 にその仕事関数と電気陰性度との関係を示す。

図1.1.2:仕事関数-電気陰性度特性

1 2 仕事関数の必要性

仕事関数はどのような時に必要とされるのであろうか。それについては例えば 半導体の抵抗値を測定するために金属の電極を接触させる場合である。その時に 電極の仕事関数の大きさによっては、整流性接触となり、正しい電流を得られない。 その結果測定すべき抵抗値も誤った値となってしまうため、仕事関数を考慮して 電極の種類を決定しなければならない。また、集積回路といったようにシステムを 構成するときは、半導体デバイスと他のデバイスを金属電極で結線する必要がある。 その場合には半導体デバイスに電流(信号)を出し入れすることから、印加電圧の 極性にかかわらず接触抵抗を無視できる金属 / 半導体接触の必要があり、この場合 も仕事関数がその特性を決める。

このように仕事関数は、金属 / 半導体接触の特性を決める重要な因子である ことがわかる。では金属と半導体を接触させるとどうなるのであろうか。それに ついては次に述べる。

1 3 ショットキー接触

ある条件において金属と半導体を接触させる と、図 1.3.1 のような整流性を示すショットキー 接触となる。図 1.3.2 は、金属とn型半導体 およびp型半導体とのショットキー接触を示した ものである。図 1.3.2 において q を素電荷量、 金属のフェルミ準位を E_F^M 、n型そしてp型半導体 のフェルミ準位をそれぞれ E_F^{ns} 、 E_F^{ss} とする。 また n型およびp型半導体の電子親和力を それぞれ q χ_{ns} 、 q $\chi_{\rho s}$ またp型半導体のバンドギ ャップを E_g^ρ 、金属の仕事関数を q ϕ_M 、n型、p型

図1.3.1:整流性における 電流(I)-電圧(V)特性

半導体の仕事関数をそれぞれ $q\phi_s^{\prime\prime}$ 、 $q\phi_s^{
ho}$ とする。

ここでは金属 / n 型半導体接触を例に、ショットキー接触について説明する。 図 1.3.2 の(a)は金属と n 型半導体の接触前の図である。今、この金属と n 型半導体 との間には、

$$(E_F^M)_i < (E_F^{nS})_i$$
 (1.3.1)

$$\mathbf{q}\,\boldsymbol{\phi}_{\mathrm{M}} > \mathbf{q}\,\boldsymbol{\phi}_{\mathrm{S}}^{\prime\prime} \tag{1.3.2}$$

という関係が成り立っている。そしてこの後、この金属と *n* 型半導体とを接触 させた場合に起きる現象について述べる。

接触直後、まずフェルミ準位の大きさの違いによって電子の拡散が起こる。今、 *n*型半導体のフェルミ準位のほうが金属のフェルミ準位よりも大きい、つまり *n*型 半導体のほうが電子の密度が高いため、*n*型半導体の界面付近の電子が金属へと 流れ込む。この電子の流れを拡散電流という。

電子の流出のため、n型半導体側の界面付近にはドナーイオン(プラスの電荷) が取り残される。一方で電子の流入のため、金属側の界面に電子が薄くシート状に 分布する(マイナスの電荷)。その結果、n型半導体側のドナーイオンと金属側の 薄く分布した電子によって電界が生じ、この電界によってドリフト電流が流れる。 このドリフト電流は、拡散電流とは逆向きに流れる。

拡散電流とドリフト電流の大きさが等しくなったときが熱平衡状態であり、 その時の、金属と n 型半導体のフェルミ準位は等しい。図 1.3.2 の(a)'は、金属 / n 型半導体接触後の熱平衡状態である。このときの金属と n 型半導体のフェルミ 準位は

$$(E_F^M)_{eq} = (E_F^{/N})_{eq}$$
(1.3.3)

である。図 1.3.2 (a) から分かるように、金属 / n 型半導体界面には電子の移動を 妨げるエネルギー障壁が存在する。n 型半導体側から見たときのエネルギー障壁の 高さ qV_{b}^{n} は

$$q V_{bi}^{n} = q(\phi_{M} - \phi_{S}^{n})$$
(1.3.4)

であり、金属側から見たときのエネルギー障壁の高さ $q \phi_B''$ (ショットキー障壁という)は、

$$q\phi_{\rm B}^{\prime\prime} = q(\phi_{\rm M} - \chi_{\rm nS}) \tag{1.3.5}$$

である。

また図 1.3.2,(b)のように

$$(E_F^M)_i > (E_F^{\rho S})_i$$
 (1.3.6)

 $q \phi_M < q \phi_S^p$

である金属とp型半導体を接触させると、図 1.3.2 (b) のショットキー接触となる。 考え方は上記の金属 / n 型半導体と同じであるため説明は省略するが、そのp型 半導体側から見たときのエネルギー障壁の高さ qV_{bi}^{ρ} および金属側から見たときの

エネルギー障壁高さ $q \phi_B^{
ho}$ は、それぞれ

$$q V_{bi}^{\rho} = q(\phi_{s}^{\rho} - \phi_{M})$$
 (1.3.7)

$$q \phi_{B}^{\rho} = E_{g}^{\rho} - q(\phi_{M} - \chi_{\rho S})$$
(1.3.8)

となる。

(iii)ショットキー接触における逆方向パイアス

図1.3.3:金属/n型半導体ショットキー接触の電圧印可

次に金属 / n 型半導体接触を例に、ショットキー接触に電圧を印可した場合に ついて述べる。

まず図 1.3.3,()のように、電圧 V だけ順方向バイアスした場合、n型半導体の 電子のポテンシャルエネルギーが qV だけ高くなる。するとフェルミ準位が qV だけ 上昇する。その結果、n型半導体側から見たときのエネルギー障壁の高さ (q Vⁿ_{hi})⁻は、

$$(qV_{bi}^{n})^{-} = q(\phi_{M} - \phi_{S}^{n}) - qV$$
 (1.3.9)

と熱平衡状態時よりも qV だけ減少し、拡散電流が増加する。一方金属側から見た ときのエネルギー障壁の高さ q ϕ_B^n は変わらないため、ドリフト電流も変化しない。 よって拡散電流とドリフト電流との均衡は破れ、金属から n 型半導体へと電流が 流れる。

次に、図 1.3.3,()のように電圧 V だけ逆バイアスした場合、n型半導体の電子のポテンシャルエネルギーは qV だけ低くなり、フェルミ準位が qV だけ下降する。 その結果、エネルギー障壁の高さ $(q V_{\Omega}^{\alpha})^{+}$ は

$$(qV_{bi}^{n})^{+} = q(\phi_{M} - \phi_{S}^{n}) - qV$$
(1.3.10)

と熱平衡状態時よりも qV だけ増加し、拡散電流は減少する。一方金属側から 見たときのエネルギー障壁の高さは、 $q\phi_B^{\prime\prime}$ のままであるためドリフト電流は変化 しない。よって n型半導体から金属へと微少な電流が流れる。

これらのことから、金属 / n 型半導体のショットキー接触は図 1.3.1 のような 電流 - 電圧特性となる。

以上のことから金属 / 半導体接触が整流性のショットキー接触となる条件は、 金属 / n型半導体接触、金属 / p型半導体接触ではそれぞれ

$$q\phi_{\rm M} > q\phi_{\rm S}^{\prime\prime} \tag{1.3.11}$$

$$q \phi_{\rm M} < q \phi_{\rm S}^{\rho} \tag{1.3.12}$$

である。そして先にも述べたように半導体の抵抗値の測定において、この条件を満 たすような電極を使用した場合、正しい電流値を得られず結果として正しい抵抗値 を得ることができない。抵抗値の測定のときには、仕事関数に注意する必要がある。

1 4 オーミック接触

次に非整流性を示す金属/半導体接触に ついて説明する。電流(信号)を出し入れす る電極と半導体とは非整流性となる接触で なければならない。図 1.4.1 は非整流性に おける電流-電圧特性を示す。

ある条件において金属と半導体を接触させると、非整流性を示すオーミック 接触となる。図 1.4.2 は、金属とn型半導体およびp型半導体とのオーミック接触 を示したものである。図 1.4.2 において金属のフェルミ準位を E^M_F、n型そしてp型 半導体のフェルミ準位をそれぞれ \mathbf{E}_{F}^{ns} 、 \mathbf{E}_{F}^{\rhos} とする。また n型およびp型半導体の 電子親和力をそれぞれ $q\chi_{ns}$ 、 $q\chi_{\rho s}$ またp型半導体のバンドギャップを \mathbf{E}_{g}^{ρ} 、金属の

仕事関数を $q\phi_{M}$ 、n型、p型半導体の仕事関数をそれぞれ $q\phi_{S}^{n}$ 、 $q\phi_{S}^{p}$ とする。

ここでは金属 / n型半導体接触を例にオーミック接触ついて説明する。図 1.4.2 (a)は、金属と n型半導体の接触前の図であり、今この金属と n型半導体との間には、

$$(E_F^M)_i > (E_F^{/S})_i$$
 (1.4.1)

$$q \phi_{\rm M} < q \phi_{\rm S}^{\prime\prime} \tag{1.4.2}$$

という関係が成り立っている。そしてこの後、この金属と n 型半導体とを接触させた場合に起きる現象について述べる。

オーミック接触についても、考え方はショットキー接触と同じである。接触 直後は、その界面における電子の密度勾配によって電子の拡散が起こる。この場合 は金属のほうが電子の密度が高いため、金属から n型半導体へと電子が拡散する。 そして界面において金属と n型半導体それぞれのフェルミ準位が一致、つまり

$$(E_{\rm F}^{\rm M})_{\rm eq} = (E_{\rm F}^{\rm / S})_{\rm eq}$$
(1.4.3)

となった時点で電子の拡散は収まり、図 1.4.2,(a)'のような熱平衡状態となる。

この時、図 1.4.2,(a)'から分かるように金属・n型半導体双方の伝導帯が重なり、 金属側・n型半導体側どちらから見ても電子の移動を阻害するエネルギー障壁が 存在しない。よって外部からの電圧により、電子は自由に行き来することができる。

金属 / 半導体接合が非整流性を示すオーミック接触になる条件は、金属 / n型 半導体接触、金属 / p型半導体接触についてそれぞれ

$$q \phi_{\rm M} < q \phi_{\rm S}^{\prime\prime} \tag{1.4.4}$$

$$q\phi_{\rm M} > q\phi_{\rm S}^{\rho} \tag{1.4.5}$$

である。そしてこの条件を満たすような金属 / 半導体接合の場合、印加電圧の極性 にかかわらず接触抵抗が無視できる。

1-5 ピンニング現象

図1.5.1:ショットキー障壁高さの金属仕事関数依存性

図 1.5.1 は、Si と GaAs におけるショットキー障壁の高さの金属仕事関数 依存性を示したものである。前述のように金属 / n型半導体接触における理想的な ショットキー障壁の高さは、

 $q \phi_{Bn} = q(\phi_M - \chi_{rs})$ (1.5.1) であり金属の仕事関数によって大きく変化する。しかし、現実の金属 / 半導体界面 では図 1.5.1 のように金属の仕事関数が変わっても障壁の高さはほとんど変化 しない。これをピンニング現象 (ピン止め効果)という。

今までにピンニング現象のメカニズム、ピンニング現象を引き起こす表面準位 の起源をめぐり様々なモデルが提唱されている。その1つである Bardeen の表面 準位説を挙げる。半導体表面のフェルミ準位は高密度の表面準位により、金属との 接触を形成する前からピンニングされている。そしてこの準位密度が十分大きい ので、金属を接触させたことの影響は遮蔽(スクリーニング)されるというもの である。しかしこのモデルも、これ以外のモデルも未だ定説とはなっておらず、 ピンニング現象のメカニズムの解明については今後に残された課題となっている。 (堂山昌男,高井 治『材料別接合技術データハンドブック 第 分冊』サイエンス フォーラム(1992)61 より引用)

第2章 仕事関数の測定

仕事関数の測定の際、最もよく行われた方法に光電子放出と熱電子放出がある。 1888 年にハルヴァックス(W.L.F.Hallwacks 独)が発見した光電子放出は、 アインシュタイン(A.Einstein)の光量子仮説を証拠づけるものとして有名である。 そして 1884 年エディソン(T.A.Edison 米)によって発見された熱電子放出に ついては、リチャードソン(O.W.Richardson 英)が 1900 年から研究を行い、 その業績から 1928 年にノーベル物理学賞を受けた。この光電子放出、熱電子放出 から測定した仕事関数のデータも多く見られることから、第2章ではその2つの 現象について触れる。

2 - 1 光電子放出

金属表面に光が当たると、表面近くの電子は その光のエネルギーを吸収する。そしてその エネルギーが表面のエネルギー障壁を越えうる ほど大きくなると、電子(光電子)が表面から飛び 出す。この現象を光電子放出といい、この光電 子放出から物質の仕事関数を知ることができる。

光電子の運動エネルギーを $\frac{1}{2}$ mv²、金属の 仕事関数を $q\phi_M$ そして入射光(振動数)のエネ ルギーを hとすると、次の関係が成り立つ。

$$hv = q \phi_M + \frac{1}{2} mv^2$$
 (2.1.1)
 $h:$ プランク定数
 $q: 素電荷量$
 $m:$ 電子の静止質量

図 2.1.1 はその光電子放出を示すものである。振動数 の入射光に対して(a)の 領域にある電子が光電子放出に関与しうる。入射光のエネルギーh は、まず フェルミ準位E_F付近にある電子のポテンシャルを真空準位まで引き上げるための エネルギーqφ_Mとして使用される。そして残りのエネルギーは、光電子として

飛び出すための運動エネルギー $\frac{1}{2}$ mv²となる。

図2.1.2:電圧と光電子

また図 2.1.2 は、光電子の測定装置とそれから得られる電流-電圧特性である。 図 2.1.2,(a)においてスイッチを に入れた場合、光電子はその電圧により加速 されるため陽極に到達できる光電子数は増加、その結果電流が増加する。また スイッチ を入れた場合、光電子はその運動を妨げられるため、陽極に到達する 光電子数は減少、電流が減少する。そしてある電圧 V₀になると光電子は、陽極に 到達できなくなる。これは光電子の運動が電圧 V₀によって相殺されたことを意味 するため、

$$\frac{1}{2}mv^2 = qV_0$$
 (2.1.2)

という釣り合い関係が推測される。よって式(2.1.2)を式(2.1.1)に代入すると、

$$\mathbf{V}_0 = \frac{\mathbf{h}}{\mathbf{q}} \mathbf{v} - \boldsymbol{\phi}_{\mathbf{M}} \quad [\mathbf{V}] \tag{2.1.3}$$

よって式(2.1.3)から仕事関数を得ることができる。

2-2 熱電子放出

金属を高温に加熱すると、その表面 から電子(熱電子)が放射される。この 現象を熱電子放出といい、物質の仕事 関数を求める手段としても利用される。 ここでは、その熱電子放出について 述べる。

熱電子が図 2.2.1 の y - z 面から x 方向へ放出されるとする。x, y, z 方向の電子の速度を v_x, v_y, v_z とすると熱電子の電流密度J $[A/m^2]$ は

$$\mathbf{J} = \mathbf{qn}_{\mathbf{V}_{\mathbf{X}}} \tag{2.2.1}$$

n は表面から放射された電子の密度である。

金属内のエネルギー状態密度D(E) [1/J_m³]は

$$D(E) = \frac{(2m)^{3/2}}{2\pi^2 \hbar^3} E^{1/2}$$
(2.2.2)

で与えられる。ただし電子のスピンの向きを考慮し、1つの状態に2個電子が入るとして2倍してある。式(2.2.2)より、EとE+dEにある状態密度D(E)dE $[1/m^3]$ は、

$$D(E)dE = \frac{(2m)^{3/2}}{2\pi^2\hbar^3}E^{1/2}dE$$
 (2.2.3)

となる。ここで x, y, z 方向の運動量 p_x, p_y, p_z を導入すると、運動エネルギーの式は、

$$E = \frac{1}{2m} (p_x^2 + p_y^2 + p_z^2) = \frac{p^2}{2m}$$
(2.2.4)

と表される。これを用いて、式(2.2.3)を変形する。まず式(2.2.4)より

$$E^{1/2} = \frac{p}{\sqrt{2m}}$$
(2.2.5)

$$dE = \frac{p}{m}dp \tag{2.2.6}$$

が得られる。この2つの式(2.2.5),(2.2.6)を、式(2.2.3)に代入すると

$$D(E)dE = \frac{2}{h^3} 4\pi p^2 dp$$
 (2.2.7)

ここで式(2.2.7)右辺の $4\pi p^2 dp$ は、運動量空間内における $p \ge p+dp \ge o$ 間の、 球殻の体積 $[kg^3 m^3 s^{-3}]$ である。このことから 2 / h^3 は、運動量空間内の状態密度 $[kg^{-3} m^{-6} s^3]$ の次元を持つ。(プランク定数 h の次元は $[Js] = [kg m^2 s^{-1}]$)ここで、 球座標の体積素片と直角座標の体積素片が等しいとして

$$4\pi p^2 dp = dp_x dp_y dp_z$$
 (2.2.8)

そして状態密度の式(2.2.7)右辺にフェルミ-ディラク分布関数をかけると、体積素片 $dp_x dp_y dp_z$ 内の電子密度 $n(p_x, p_y, p_z) dp_x dp_y dp_z$ $[1/m^3]$ を得ることができる。

フェルミ-ディラク分布関数は

$$F(E) = \frac{1}{\exp\left(\frac{E - E_F}{kT}\right) + 1}$$
(2.2.9)

である。今、 $q\, \varphi_{_M} = E - _{E_F}$ であり $q\, \varphi_{_M} >> kT$ であることから、

$$F(E) \cong \frac{1}{\exp\left(\frac{E - E_F}{kT}\right)}$$
(2.2.10)

よって電子密度は、

$$n(p_x, p_y, p_z)dp_x dp_y dp_z = \frac{2}{h^3} \cdot exp\left(\frac{E_F}{kT}\right)exp\left(-\frac{E}{kT}\right)dp_x dp_y dp_z$$
(2.2.11)

式(2.2.11)に、式(2.2.4)を代入すると、
$$n(p_x, p_y, p_z)dp_xdp_ydp_z$$

$$= \frac{2}{h^{3}} \cdot exp\left(\frac{E_{F}}{kT}\right) exp\left(-\frac{p_{x}^{2} + p_{y}^{2} + p_{z}^{2}}{2mkT}\right) dp_{x} dp_{y} dp_{z}$$
(2.2.12)

を得る。

ここで熱電子に寄与できるのは、 $q \phi_M + E_F$ 以上のエネルギーを有する電子である。そこでx方向の運動量の下限を

$$p_x = \sqrt{2m(q\phi_M + E_F)}$$
 (2.2.13)

とし、式(2.2.12)にqおよび

$$v_x = \frac{p_x}{m} \tag{2.2.14}$$

をかけ運動量空間内で積分すると式(1)より、 金属表面から放出される熱電子による電流密度 Jを得ることができる。

図2.2.2:金属のエネルギーモデル

$$J = \frac{2q}{h^{3}m} \exp\left(\frac{E_{F}}{kT}\right) \int_{\sqrt{2m(q\phi_{M}+E_{F})}}^{+\infty} p_{x} \exp\left(-\frac{p_{x}^{2}}{2mkT}\right) dp_{x}$$
$$\cdot \int_{-\infty}^{+\infty} \exp\left(-\frac{p_{y}^{2}}{2mkT}\right) dp_{y} \cdot \int_{-\infty}^{+\infty} \exp\left(-\frac{p_{z}^{2}}{2mkT}\right) dp_{z} \qquad (2.2.15)$$

上式の $p_v \ge p_z$ に関する積分は、公式

$$\int_{-\infty}^{+\infty} \exp\left(-\frac{x^2}{a}\right) dx = \sqrt{\pi a}$$
 (2.2.16)

を用いると

$$J = \frac{4\pi q kT}{h^{3}} \exp\left(\frac{E_{F}}{kT}\right) \int_{\sqrt{2m(q\phi_{M}+E_{F})}}^{+\infty} p_{x} \exp\left(-\frac{p_{x}^{2}}{2mkT}\right) dp_{x}$$
$$= \frac{4\pi q kT}{h^{3}} \exp\left(\frac{E_{F}}{kT}\right) \left[-mkT \cdot \exp\left(-\frac{p_{x}^{2}}{2mkT}\right)\right]_{\sqrt{2m(q\phi_{M}+E_{F})}}^{+\infty}$$
$$= \frac{4\pi q m (kT)^{2}}{h^{3}} \exp\left(-\frac{q \phi_{M}}{kT}\right) \qquad (2.2.17)$$

そして式(2.2.17)を書き直すと

$$J = AT^{2} exp\left(-\frac{q \phi_{M}}{kT}\right)$$
(2.2.18)

$$A = \frac{4\pi qm k^2}{h^3} = 1.20 \times 10^6 \ [A/m^2 K^2]$$

式(2.2.18)を熱電子放出に対するリチャードソン-ダッシュマンの式という。また、 A をリチャードソン定数と呼ぶ。

このリチャードソン-ダッシュマンの式より、

$$\frac{J}{T^{2}} = A \exp\left(-\frac{q \phi_{M}}{kT}\right)$$
$$\ln\left(\frac{J}{T^{2}}\right) = \left(-\frac{q \phi_{M}}{k}\right)\frac{1}{T} + \ln A \qquad (2.2.19)$$

式(2.2.19)から分かるように横軸を1/T、縦軸を $\ln(J/T^2)$ としてデータをプロット すると、仕事関数 q ϕ_M はグラフの傾きとして得ることができる。

第3章 仕事関数の結晶面方向依存性

3 1 表面原子密度

仕事関数は、電子ひとつを原子核とのクーロン引力の影響を受けなくなるまで 引き離すのに必要なエネルギーであることから物質の表面における原子密度が 仕事関数に影響することが予想される。その確認は第4章で確かめるとして、ここ では原子の球状モデルを用いて体心立方格子と面心立方格子の(110)面、(100)面、 そして(111)面における表面原子密度を求める。

3 2 体心立方格子

http://www.zaiko.kyushu-u.ac.jp/~watanabe/AtonStr1.html 図3.2.1:体心立方格子

体心立方格子 (body-centered cubic structure 以下 bcc と略記する)構造に ついて述べる。その bcc 構造を図 3.2.1 に示す。波動関数の球対称近似のため、 原子を剛体球として表したものである。室温(300K)においてこの構造をとる元素は、 Li,Na,K,V,Cr,Fe,Rb,Mo,Cs,Ba,Eu,Ta,W,Fr,Ra である。

図 3.2.2 は bcc 構造の(110)面である。図のように格子定数を a 、原子間距離の 半分を r とすると、

$$\mathbf{r} = \frac{\sqrt{3}}{4}\mathbf{a} \tag{3.2.1}$$

このとき、原子の占める面積 $S_{atom}^{(110)}$ は

$$S_{\text{atom}}^{(110)} = 2\pi r^2 = \frac{3}{8}\pi a^2$$
(3.2.2)

となり、(110)面の面積 $_{S_{(110)}}$ は $\sqrt{2}a^2$ であるから、(110)面表面の原子密度 $_{\sigma_{(110)}}$ は

$$\sigma_{(110)} = \frac{S_{\text{atom}}^{(110)}}{S_{(110)}} = \frac{3\sqrt{2}}{16}\pi$$
(3.2.3)

よって表面上を原子が占める割合は、83.3%である。

上の図 3.2.3 は bcc 構造の(100)面である。この表面における原子の面積 S⁽¹⁰⁰⁾ は、 式(3.2.1)を用いて

$$S_{\text{atom}}^{(100)} = \pi r^2 = \frac{3}{16} \pi a^2$$
(3.2.4)

(100)面の面積 $S_{(100)}$ は a^2 であるから(100)面表面の原子密度 $\sigma_{(100)}$ は、

$$\sigma_{(100)} = \frac{S_{\text{atom}}^{(100)}}{S_{(100)}} = \frac{3}{16}\pi$$
(3.2.5)

よって表面上を原子が占める割合は、58.9%である。

上の図 3.2.4 は bcc 構造の(111)面である。この表面の原子の面積 S⁽¹¹¹⁾ は、 式(3.2.1)を用いて

$$S_{\text{atpm}}^{(111)} = \frac{1}{2}\pi r^2 = \frac{3}{32}\pi a^2$$
(3.2.6)

(111)面の面積 $_{\mathbf{S}_{(111)}}$ は $\frac{\sqrt{3}}{2}a^2$ であるから、(111)面表面の原子密度 $_{\mathbf{O}_{(111)}}$ は、

$$\sigma_{(111)} = \frac{S_{\text{atom}}^{(111)}}{S_{(111)}} = \frac{\sqrt{3}}{16}\pi$$
(3.2.7)

表面上を原子が占める割合は、34.0%である。

面心立方格子

3

3

このように bcc 構造における表面原子密度は、波動関数の球対称近似においては (110)面 > (100)面 > (111)面 であることが分かる。

 Z
 Y

 Y
 Y

 Http://www.zaiko.kyushu-u.ac.jp/~watanabe/AtomStr1.html

 図3.3.1:面心立方格子

について述べる。その fcc 構造を図 3.3.1 に示す。波動関数の球対称近似のため、 原子を剛体球として表したものである。室温(300K)においてこの構造をとる元素は、 Al,Ca,Ni,Cu,Sr,Rh,Pd,Ag,Ir,Pt,Au,Pb である。

(表面原子密度の導出方法は bcc 構造と同じであるため、計算式は省略する)

図 3.3.2 は fcc 構造の(110)面である。この(110)面の表面原子密度 の(110) は、

$$\sigma_{(110)} = \frac{\sqrt{2}}{8}\pi$$
 (3.3.1)

よって表面上を原子が占める割合は、55.5%である。

図 3.3.3 は fcc 構造の(100)面である。この(100)面の表面原子密度 G(100) は、

$$\sigma_{(100)} = \frac{1}{4}\pi$$
 (3.3.2)

よって表面上を原子が占める割合は、78.5%である。

図 3.3.4 は fcc 構造の(111)面である。この(111)面の表面原子密度 G(111) は、

$$\sigma_{(111)} = \frac{\sqrt{3}}{6}\pi$$
 (3.3.3)

表面上を原子が占める割合は、90.6%である。

このように fcc 構造における表面原子密度は、波動関数の球対称近似においては (111)面 > (100)面 > (100)面 であり、ちょうど bcc 構造における大小関係とは 逆の関係となっていることが分かる。

一一夫	電気陰性度	<u> </u>	仁	±事関数 [e\	/]	结旦而优方	参考文献	
九糸	(Pauling's)	和田件坦	(110)	(100)	(111)	祁 明 画 体 行		
K	0.82	bcc	2.55	2.40	2.15	0	16	
Nb	1.6	bcc	4.87	4.02	4.36	×	17	
Мо	2.16	haa	4.95	4.53	4.55	×	18	
IVIO	2.10	DCC	4.95	4.53	4.36	0	19	
			5.85	4.82	4.41	0	20	
W	2.36	bcc	5.25	4.63	4.47	0	21	
			4.68	4.56	4.39	0	22	
Al	1.61	fcc	4.06	4.41	4.24	×	23	
<u> </u>	1.00	fac	4.48	4.59	4.98	0	24	
Cu	1.90	ICC	4.48	4.59	4.94	0	25	
NE	1.01	faa	4.65	5.30	5.40	0	26	
INI	1.91	ICC	5.04	5.22	5.35	0	27	
Ag	1.93	fcc	4.52	4.64	4.74	0	28	
Pd	2.20	fcc	5.20	5.65	5.95	0	26	
Au	2.54	fcc	5.37	5.47	5.31	×	29	

表3.3.5:それぞれの結晶面における仕事関数の実測データ

物質の表面は、その結晶面方向によって原子の密度が異なることが明らかと なった。そして表 3.3.5 は、bcc 構造または fcc 構造をとる元素の結晶面依存性を 示す仕事関数の実測データである。この表 3.3.5 を見ると、その多くは仕事関数が 表面の原子密度に依存している(表 3.3.5 では第7列目で""と記す)。しかし、 Nb,Al,Au などはそれに当てはまらない(表 3.3.5 では第7列目で"×"と記す)という結果である。

第4章で、仕事関数の計算プロセスとその計算結果について述べる。そして 表 3.3.5 の実測データとの比較およびそれ以外の元素における仕事関数の結晶面 依存性について検討する。

第4章 仕事関数の計算

以下に仕事関数を得るまでのフローチャートを示す。第 4 章は、このフロー チャートに沿ったかたちで説明していくことにする。

データベース: ICSD(Inorganic Crystal System Database) から室温における格子定数を得る

元素とその格子定数から(110),(100),(111)面のモデルを 構築する

そのモデルについて第一原理バンド構造計算を行う ---- フェルミ準位を得る--

4 1 モデルの構築とその計算方法

室温(300K)において bcc 構造および fcc 構造をとる金属について、その(110)面、 (100)面、(111)面の仕事関数を計算する。計算には Prof.Dr.Juergen Hafner による ソフトウェア"VASP"を用いる。(VASP 詳細 http://cms.mpi.univie.ac.at/vasp/)

先に示したように、まず ICSD から得た格子定数をもとに図 4.1.1、図 4.1.2 の ような表面モデルを作成する。このような表面モデルは、スラブモデルと言われる。 表 4.1.3 にその使用した実験値である格子定数(300K)をまとめた。このスラブ モデルは、x,y,z軸方向について周期的境界条件となっているため、原子層(x-y 平面)は5層となる。そしてその原子層に挟まれた何も存在しない空間が真空層で ある。この表面モデルを用いて計算を行う。

図4.1.2:fcc構造のスラブモデル

族 周期	1 I A	2 II A	3 ⅢA	4 IVA	5 V A	6 VIA	7 VIIA	8	9 VIII	10	11 I B	12 II В	13 ⅢB	14 IVB
1	1 H		_											
2	³ Li bcc 3.5092	4 Be hcp				原子番号 元素 結晶構 格子定数	名 造 [Å]*						⁵ B rhomb.	⁶ C diamond
3	¹¹ Na bcc 4.235	12 Mg hcp											¹³ AI fcc 4.04975	¹⁴ Si diamond
4	¹⁹ K bcc 5.328	20 Ca fcc 5.5884	21 Sc hcp	22 Ti hcp	23 V bcc 3.0258	²⁴ Cr bcc 2.88494	²⁵ Mn cubic	²⁶ Fe bcc 2.886	27 Co hcp	²⁸ Ni fcc 3.5157	29 Cu fcc 3.613	³⁰ Zn hcp	31 Ga orth.	³² Ge diamond
5	³⁷ Rb bcc 5.697	³⁸ fcc 6.076	³⁹ Y hcp	⁴⁰ Zr hcp	41 Nb bcc 3.3	⁴² Mo bcc 3.1451	43 Tc hcp	44 Ru hcp	⁴⁵ Rh fcc 3.8031	46 Pd fcc 3.9	47 Ag fcc 4.0855	48 Cd hcp	49 In tetr.	⁵⁰ Sn diamond
6	⁵⁵ Cs bcc 6.141	⁵⁶ Ba bcc 5.01	*	72 Hf hcp	⁷³ Ta bcc 3.3058	⁷⁴ W bcc 3.16475	⁷⁵ Re hcp	⁷⁶ Os hcp	⁷⁷ Ir fcc 3.8394	⁷⁸ fcc 3.9231	⁷⁹ Au fcc 4.0796	80 Hg rhomb.	81 TI hcp	82 Pb fcc 4.9506
7	87 Fr bcc	88 Ra bcc	**							*格	子定数デーク	ゆの出典	は、参考文権	就に記述する
	表4.1.3:計算対象とその格子定数													

計算ではまず、第一原理バンド構造計算からフェルミ準位が導出される。 そして次に局所ポテンシャルの計算が行われる。その計算では電子を z 軸方向に 移動させた場合に、その電子が感じるポテンシャルが導出されるのである。

その計算方法について述べる。使用する"VASP"は密度汎関数法を用いた 平面波-擬ポテンシャル法バンド構造計算プログラムである。擬ポテンシャル法の 長所としては、

- 擬ポテンシャルは浅く、なめらかであるため擬波動関数は少ない基底状態で
 展開できる
- ・ 全エネルギー計算における frozen-core 近似:擬ポテンシャル理論では、 原子の置かれた環境に応じて、内殻状態が変化することは無視する。この 近似は厳密には正しくないが、内殻状態の変化による価電子状態の変化を セルフコンシステントに考慮すれば、全エネルギーに対しては内殻状態の 一次の変化分は完全に打ち消される
- 系の全エネルギーの計算から構造の安定性などを議論する際、内殻電子 までを含める計算であれば有効数字8桁の全エネルギー計算となる。しかし frozen-core 近似を用いて価電子だけを考えた計算であれば、有効数字5桁 の計算ですむ

 相対論的効果:重い元素においても価電子状態についてはr>rc(rcは適当 な内殻領域の半径)での相対論的効果は小さい。すなわちr>rcに限れば ディラック方程式はシュレーディンガー方程式で近似できる。したがって 擬ポテンシャルを作る段階で相対論的効果を押し込めることにより、具体的 応用の段階ではシュレーディンガー方程式を解くだけで相対論的効果を 反映することが可能である

そして擬ポテンシャルを求めるには、孤立原子の計算において次の4つの要請を 置く。

- I. 価電子状態の固有エネルギーが正しく与えられる
- II. 価電子状態の擬波動関数はノードレスである
- III. $r > r_c$ では擬波動関数は真の波動関数と振幅まで一致する。言い換えれば 規格化された場合には、真の波動関数と擬波動関数の内殻領域での ノルム(波動関数の2乗の $r < r_c$ での積分値)が一致する
- IV. r > r_c での波動関数の対数微分のエネルギー微分が擬波動関数と真の 波動関数で一致する
- と の要請は次の恒等式を通して関連していることは興味深い。

$$-\frac{1}{2}\left[(rR_{1})^{2}\frac{d}{dE}\frac{d}{dr}\ln R_{1}\right]_{r=R} = \int_{0}^{R}R_{1}^{2}r^{2}dr \qquad (4.1.1)$$

すなわち、 $r < r_c$ でのノルムが保証されておれば、対数微分のエネルギー微分も 正しく与えられるのである。 と は擬ポテンシャルの transferability についての 重要な要請になっている。

非経験的擬ポテンシャルの具体的な作成手順の大筋を述べると、

- I. 価電子も含めた全電子系について、原子の電子状態をセルフコンシステントに求め、1電子ポテンシャル V(r)を得る
- II. V(r)の原点での特異性を除くように適当な変換を行う。変換された

ポテンシャル Ŷ(r) のもとでは、要請 ~ が満足されていなくては

ならない。特に、 $\hat{V}(r)$ は各運動量依存性を持つが、エネルギー依存性が あってはならない。ポテンシャルがエネルギーによると式(4.1.1)は成立 しない。

III. 価電子の電子分布からのクーロンポテンシャルと交換・相関ポテンシャルを Ŷ(r) から抜き去り、イオンコアだけからの擬ポテンシャル

V_{ps}^{ion}を作る。

擬ポテンシャル法は、一般の形状のポテンシャルを扱うことができ、価電子だけが 寄与する問題を扱う場合には FLAPW 法に勝るとも劣らない精密な計算が可能で ある。(寺倉清之,浜田典昭『バンド計算法の最近の発展()』固体物理, Vol.19,No.8(1984)452-454 より引用)

計算では GGA(一般化密度勾配補正)および PAW(Projector Augmented Wave) 法を使用し、k 点のサンプリングを6×6×2(:x×y×z)とする。

そして次は、ポテンシャルの計算値を得るための局所密度汎関数法について 述べる。

4 2 局所密度汎関数法

仕事関数の計算において、局所密度汎関数法(Local Density Approximation) が使用されている。ここではその LDA について簡単に説明しておく。

N 電子系の基底状態における電子密度分布 $n(\mathbf{r})$ は、基底状態の波動関数を $\phi_{n\mathbf{k}}(\mathbf{r})$ とすると

$$\mathbf{n}(\mathbf{r}) = \sum_{\mathbf{n},\mathbf{k}} \left| \boldsymbol{\varphi}_{\mathbf{n}\mathbf{k}}(\mathbf{r}) \right|^2$$
(4.2.1)

で表される。 \mathbf{r} は位置を表すベクトルである。そして、 $n(\mathbf{r})$ の汎関数で表される 基底状態の全エネルギー $E_{TOT}[n(\mathbf{r})]$ は

$$E_{\text{TOT}}[\mathbf{n}(\mathbf{r})] = \sum_{\mathbf{n}\mathbf{k}} \int \varphi_{\mathbf{n}\mathbf{k}}^{*}(\mathbf{r}) \left[-\frac{\hbar^{2} \nabla^{2}}{2m} + V(\mathbf{r}) \right] \varphi_{\mathbf{n}\mathbf{k}}(\mathbf{r}) d^{3}r + \frac{1}{2} \int \int \frac{e^{2} n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^{3}r d^{2}r' + E_{\text{XC}}[n(\mathbf{r})]$$
(4.2.2)

 $\phi_{nk}^{*}(\mathbf{r})$: 波動関数 $\phi_{nk}(\mathbf{r})$ の複素共役

m :電子の静止質量 (= 9.109×10⁻³¹kg)
 V(**r**) :電子のポテンシャルエネルギー

_{Exc}[n(**r**)]:交換相関エネルギー

となる。式(4.2.2)の第1頃は電子の運動エネルギーとポテンシャルエネルギー、第 2項は電子-電子間のクーロン相互作用によるエネルギー、そして第3項の交換相関 エネルギーは1電子問題で記述できない多体効果のすべてが押し込められている 複雑な汎関数である。なお、第2項の1/2はエネルギーを2重にとらないための ものである。

ー様でない電子系の交換相関エネルギー_{Exc}[n(r)]を、局所的には一様な電子 ガスで近似できるとして次のように表される。

$$E_{XC}[n(\mathbf{r})] = \int \varepsilon_{XC}[n(\mathbf{r})]n(\mathbf{r})d^{3}r$$
(4.2.3)

$$\varepsilon_{XC}[n(\mathbf{r})] : -様な電子ガスにおける1電子あたりの$$

交換相関エネルギー

 $\epsilon_{xc}[n(\mathbf{r})]$ は、外部からの力を全く受けない系すなわち自由電子系を考えると、 $n(\mathbf{r})$ は定数となり、 $\epsilon_{xc}(n)$ で表される。その形として最も簡単なものは、ハートリー-フォック近似での交換エネルギーをそのまま用いた次式である。

$$\varepsilon_{\rm XC}(n) = -\frac{3}{4} e^2 \left(\frac{3}{\pi}n\right)^{\frac{1}{3}}$$
(4.2.4)

式(4.2.2)における全エネルギー $E_{TOT}[n(\mathbf{r})]$ の最小値を得るために、1電子 波動関数 $\varphi_{nk}(\mathbf{r})$ が必要となる。その $\varphi_{nk}(\mathbf{r})$ はシュレーディンガー方程式

$$\left\{-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right\}\phi_{n\mathbf{k}}(\mathbf{r}) = E_{n\mathbf{k}}\phi_{n\mathbf{k}}(\mathbf{r})$$
(4.2.5)

から得ることができる。そしてこの近似においてセルフコンシステントな場を考慮 すると、式(4.2.5)は

$$\left\{-\frac{\hbar^2}{2m}\nabla^2 + V_o(\mathbf{r}) + \int \frac{e^2 n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 r' + \frac{d[n \varepsilon_{\rm XC}(n)]}{dn}\right\} \phi_{n\mathbf{k}}(\mathbf{r}) = E_{n\mathbf{k}} \phi_{n\mathbf{k}}(\mathbf{r})$$

(4.2.6)

 $V_0(\mathbf{r})$:原子核のつくるポテンシャルエネルギー

となり、式(4.2.6)を満たすような $\varphi_{nk}(\mathbf{r})$ を式(4.2.2)に代入することで全エネルギー E_{TOT} が分かる。そして上式の固有値 E_{nk} を使い、電子分布とは無関係に与えられる 原子核-原子核間のクーロン相互作用によるエネルギーの項を加えると次のような 表式になる。

$$E_{\text{TOT}} = \sum_{n\mathbf{k}} \Omega_0 E_{n\mathbf{k}} + \frac{e^2}{2} \Omega_0 \int \frac{[n(\mathbf{r}) - N_0][n(\mathbf{r}) - N_0]}{|\mathbf{r} - \mathbf{r}'|} d^3 r d^3 r' - \int n(\mathbf{r})^2 \frac{d\varepsilon_{\text{XC}}}{dn} d^3 r d^3 r' + \frac{1}{2} \int \int \frac{e^2}{|\mathbf{r} - \mathbf{r}'|} \left[\sum_{\nu} Z_{\nu} \delta(\mathbf{r} - \mathbf{R}_{\nu}) - N_0 \right] \left[\sum_{\nu'} Z_{\nu'} \delta(\mathbf{r}' - \mathbf{R}_{\nu'}) - N_0 \right] d^3 r d^3 r' d^3 r$$

N0 :単位胞の総数

- **Ω**₀:単位胞の体積
- Z,: 番目の原子核の電荷
- R_v: 番目の原子核の座標
- E_{nk}:式(4.2.6)左辺括弧内の第2項、第3項に
 おいて、全空間での平均値(G=0の成分)
 を強制的に0とおいて求めたもの

式(4.2.7)の最後の項は、単独では無限大の寄与を与えるような項を集めたもので、 一様な電子分布(密度_{n0})中に、その負電荷をちょうど打ち消すだけの正の点電荷 (原子核)が分布しているという系での電磁気的エネルギーを表す。

4 3 エネルギーダイアグラム

図 4.3.1 は局所ポテンシャルの平均化により導出された Li の(100)面における 計算結果である。図 4.3.1 では z 軸座標 5 0 の付近に、電子のポテンシャルの収束 が見られる。これは、その場所において電子が、原子核からのクーロン相互作用に よる影響を受けていないことを意味する。本計算ではそれを真空準位と定義した。 よって第一原理バンド構造計算から導出されるフェルミ準位と真空準位との差から、 仕事関数を得ることができる。

4 4 計算結果に対する考察

第3章で示したそれぞれの結晶面における表面原子密度と仕事関数との関係に ついて、表3.3.5の実測データおよび計算結果をもとに考察する。

	雨乍吟林山	《士 日		供日王	実測データ				
元素	电式层性度	応 田		計算値		実測	値	桁 前 面 曲 位 左	における
	(i duing 3)	旧也	(110)面	(100)面	(111)面	多結晶	文献	IT AL	結晶面依存
Cs	0.79		2.06	1.96	2.02	2.14	30	×	
К	0.82		2.35	2.02	2.23	2.30	31	×	0
Rb	0.82		2.23	1.72	2.13	2.16	32	×	
Ba	0.89		2.41	2.35	2.39	2.7	33	×	
Na	0.93		2.90	2.68	2.73	2.75	34	×	
Li	0.98		3.30	3.02	2.84	2.9	35	0	
Та	1.5	bcc	4.90	4.06	3.53	4.25	36	0	
Nb	1.6		4.61	3.67	3.58	4.3	37	0	×
V	1.63		4.73	3.54	3.74	4.3	37	×	
Cr	1.66		4.79	3.79	3.87	4.5	37	×	
Fe	1.83		4.55	4.49	3.75	4.5	37	0	
Мо	2.16		4.38	4.23	3.52	4.6	37	0	O, ×
W	2.36		4.96	4.47	4.07	4.55	38	0	0
Sr	0.95		2.59	2.60	2.64	2.59	39	0	
Ca	1.00		2.83	2.80	2.96	2.87	40	×	
AI	1.61		4.06	4.27	4.23	4.28	41	×	×
Cu	1.90		4.46	4.70	4.84	4.65	42	0	0
Ni	1.91		4.55	5.00	4.97	5.15	37	×	0
Ag	1.93	foo	4.01	4.24	4.57	4.26	43	0	0
Pd	2.20	100	4.71	5.12	5.34	5.12	44	0	0
Ir	2.20		5.02	5.52	5.61	5.27	36	0	
Rh	2.28		4.62	5.24	5.24	4.98	44	×	
Pt	2.28		5.36	5.75	5.62	5.65	37	×	
Pb	2.33		3.81	3.72	3.73	4.25	45	×	
Au	2.54		4.79	5.09	5.27	5.1	37	0	×

表4.4.1:それぞれの結晶面における仕事関数の計算結果

表4.4.1 は計算によって求めた bcc 構造または fcc 構造をとる元素の(110)、(100)、 (111)面における仕事関数である。そして図4.4.2 および図4.4.3 は、その計算結果 をグラフ化したものである。図4.4.2 と図4.4.3 を見てみると、電気陰性度の大きい 元素ほど仕事関数が大きく、またその結晶面方向依存性も顕著になることが分かる。 これは第1章1-1において述べたように、電気陰性度が原子の電子を引きつける力 の目安であるであることを考えれば、それが表面の原子密度による仕事関数の変化 割合を増加させたことが分かる。

第3章で述べた表面原子密度と仕事関数との相互関係について見てみることに する。そこで分かったことは次のとおりである。

> 表 4.4.1 に示すように仕事関数が原子密度に依存しない元素は、全体の 半数 (Cs,K,Rb,Ba,Na,V,Cr,Ca,Al,Ni,Rh,Pt,Pb)である

> 表 3.3.5 の実測データとの比較を行ってみると、W.Al,Cu,Ag,Pd について はそれと同じ結晶面依存性となり、K,Nb,Ni,Au については異なった傾向 が現れた

> 表 3.3.5 の Mo の実測データでは 2 パターンの結晶面依存性が見られたが、 計算結果における仕事関数は第 3 章 3 - 2 で示した表面原子密度に依存 する傾向となり、片方の実測データと一致する

> Nb,Alの実測データは表面の原子密度に依存していないが、計算結果では 仕事関数はそれに依存する値となった

について計算結果の傾向が実測データの片方と一致することから、Mo における 仕事関数は表面の原子密度に依存するということが言える。しかし , , の結果を 受け、少しスラブモデルを変えて再度計算を行うことにする。

その変更したスラブモデルを図 4.4.4、図 4.4.5 に示す。図 4.1.1、図 4.1.2 と 比較すると分かるように×-y平面の原子層数を以前の5層から9層に増加させ、 計算精度を上昇させた。

図4.4.5:fcc構造のスラブモデル(原子層2倍)

	雨乍吟州中	(社日)		供日子	実測データ				
元素 (Pauling's)		応 田		計算値		実測	値	桁 前 面 山 休 左	における
	(Tuuning 0)	旧也	(110)面	(100)面	(111)面	(多結晶)	文献	1711	結晶面依存
Cs	0.79		2.05	1.96	1.98	2.14	30	×	
K	0.82		2.35	2.17	2.23	2.30	31	×	0
Rb	0.82		2.24	2.07	2.13	2.16	32	×	
Ba	0.89		2.37	2.39	2.36	2.7	33	×	
Na	0.93		2.86	2.69	2.63	2.75	34	0	
Li	0.98		3.23	2.89	2.88	2.9	35	0	
Та	1.5	bcc	4.82	4.02	3.51	4.25	36	0	
Nb	1.6		4.55	3.81	3.43	4.3	37	0	×
V	1.63		4.44	3.69	3.68	4.3	37	0	
Cr	1.66		5.01	3.52	3.74	4.5	37	×	
Fe	1.83		5.12	3.85	3.81	4.5	37	0	
Мо	2.16		4.83	4.00	3.64	4.6	37	0	O, ×
W	2.36		4.98	4.23	3.93	4.55	38	0	0
Sr	0.95		2.61	2.80	2.69	2.59	39	×	
Ca	1.00		2.83	2.87	2.98	2.87	40	0	
Al	1.61		4.18	4.25	3.99	4.28	41	×	×
Cu	1.90		4.39	4.42	4.77	4.65	42	0	0
Ni	1.91		4.62	5.25	4.25	5.15	37	×	0
Ag	1.93		4.08	4.10	4.31	4.26	43	0	0
Pd	2.20	fcc	4.87	5.20	5.26	5.12	44	0	0
Ir	2.20		5.14	5.61	5.53	5.27	36	×	
Rh	2.28		4.68	5.07	5.29	4.98	44	0	
Pt	2.28		5.40	5.74	5.79	5.65	37	0	
Pb	2.33		3.59	3.94	3.79	4.25	45	×	
Au	2.54		5.09	5.25	5.09	5.1	37	×	×

表4.4.6:それぞれの結晶面における仕事関数の計算結果(図4.4.4使用)

図4.4.7:bcc構造の結晶面における仕事関数(原子層9層)

図4.4.8:fcc構造の結晶面における仕事関数(原子層9層)

その図4.4.4 および図4.4.5 の表面モデルを用いた計算結果を、表4.4.6 と図4.4.7、 図 4.4.8 に示す。そしてこの計算結果から分かることを次に述べる。

> 図 4.4.4,図 4.4.5 のスラブモデルを用いた計算により、新たに Na, V,Ca,Rh,Pt が表面原子密度に依存する傾向となった(表 4.4.6 では第9 列目で""と記す)

> Sr,Ir,Au は、図 4.1.2 を用いた計算では表面原子密度への依存傾向が 見られたが図 4.4.5 を用いた計算では、傾向が見られない結果になった。 しかし Au についての(100)面の値が最も大きいという結果は、実測 データと一致する

> K,Ni は実測データでは原子密度依存傾向(表 4.4.6 の第 10 列目で"" と記す)となるが、計算値ではその傾向は見られない

> Nb は、実測データでは (110) > (111) > (100)と表面原子密度依存傾向は 見られない(表 4.4.6の第 10 列目で"×"と記す)が、計算においては その傾向が見られる

> Cs,Rb,Ba,Cr,Sr,Ir,Pb の計算結果には表面原子密度への依存は見られなかったが、それを裏付ける実測データは得られていない

Al は実測データと計算値共に、(100)面の仕事関数が最も大きな値となる

仕事関数の計算の結果 ~ をもとにその表面原子密度への依存傾向について 以下のようにまとめる。

A) 実験データと計算結果から、その依存傾向が見られる元素

Mo,W,Cu,Ag,Pd

B) 実測データと計算結果共に傾向が見られない元素

Au,Al

- C) 計算結果には傾向が見られるが、実測データには傾向が見られない元素 Nb
- D) 実測データには傾向が見られるが、計算結果には傾向が見られない元素 K,Ni
- E) 実測データは得られていないが、計算の結果、傾向が見られると予想
 される元素 Na,Li,Ta,V,Fe,Ca,Rh,Pt
- F) 実測データも得られておらず、計算結果からも傾向が見られない元素
 Cs,Rb,Ba,Cr,Sr,Ir,Pb

、族	1	2	3	4	5	6	7	8	9	10	11	12	13	14
周期	ΙA	ΠA	ШA	IVA	VA	VIA	VIIA		VII		ΙB	IΒ	ШВ	IVВ
	3 I:	4 D.											5	6
		Ве											в.	
2	DCC	hcp			店フ亚日		1						rhomb.	diamond
					原于香气	; = /2								
	- 10				兀	东 名								
	-5.48				結晶	構造								
	11	12			動道エネル	p 軌道							13	14
	Na	Mg			ギー準位	d軌道		真空準位	たの[eV]とする			AI	Si
2	bcc	hcp			[eV]	s 軌道							fcc	diamond
3								色を付け	る元素に	ついては			-4.86	
								仕事関数	なが表面原	原子密度(こ依存した	にい		
	-5.13												-10.11	
	19	20	21	22	23	24	25	26	27	28	29	30	31	32
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge
4	bcc	fcc	hcp	hcp	bcc	bcc	cubic	bcc	hcp	fcc	fcc	hcp	orth.	diamond
											-1.83			
					-12.55	-13.94		-16.54		-18.96				
	-4.19	-5.41									-6.92			
	37	38	39	40	41	42	43	44	45	46	47	48	49	50
	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn
-	bcc	fcc	hcp	hcp	bcc	bcc	hcp	hcp	fcc	fcc	fcc	hcp	tetr.	diamond
5											-2.05			
					-10.03	-11.56			-16.16	-17.66				
	-3.94	-5.00									-6.41			
	55	56		72	73	74	75	76	77	78	79	80	81	82
	Cs	Ba	*	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb
	bcc	bcc		hcp	bcc	bcc	hcp	hcp	fcc	fcc	fcc	rhomb.	hcp	fcc
6				·				•			-2.38		·	-5.77
					-9.57	-10.96			-15.13	-16.55				
	-3.56	-4 45			0.07				10.10	10.00	-6 48			-12 07
5	-3.94 55 Cs bcc	-5.00 56 Ba bcc	' hcp *	72 Hf hcp	-10.03 73 Ta bcc -9.57	-11.56 74 W bcc -10.96	75 Re hcp	76 Os hcp	⁷⁷ Ir fcc -15.13	⁷⁸ Pt fcc -17.66	⁷⁹ ⁷⁹ Au ⁷⁹ ⁷⁰	80 Hg rhomb.	81 TI hcp	di 82

データの出典-WA.Harrison, Electronic Structure and the Properties of Solids : The Physics of the Chemical Bond, W.H.Freeman and Company, 1980 表4.4.9: s軌道、p軌道およびd軌道のエネルギー準位

ここで、表 4.4.9 において仕事関数が表面原子密度に依存しない元素に注目する と、次のことが分かる。

- 1 族元素をひとつのグループとして見た場合、K,Rb,Cs は自由電子近似が 成立しない
- 8~10 族元素をひとつのグループとして見た場合、Ir は d 軌道エネルギー
 準位が最も高く、5 d 軌道の影響が大きい
- ・ 11族元素をひとつのグループとして見た場合、Auはs軌道とp軌道の エネルギー準位の差が最も小さく、6s軌道から6p軌道への遷移が容易
- Al,Pb の価電子数はそれぞれ3と4であるため、それら元素は価電子が p軌道に入る

このことから上記 K,Rb,Cs,Sr,Ba,Ir,Au,Al,Pb については、原子の球状モデル、 すなわち s 状態のみ考慮するモデルが通用しないことによる傾向の不一致である ことが分かる。このことから p 軌道を考慮した新たなモデルの必要性があると 言える。しかし次の事柄による傾向の不一致については、現段階では分からない ため今後の課題とする。

- 2 族元素をひとつのグループとして見た場合、Sr,Ba は s 軌道のエネルギー
 準位が高い
- 5,6族元素をひとつのグループとして、また8,9,10族元素をひとつのグループとして見た場合、Cr,Niはそれぞれのグループ内においてd軌道のエネルギー準位が最も低い

第5章 まとめ

第1章

仕事関数とは、1個の電子をフェルミ準位から真空準位へ取り出すのに必要 なエネルギーである。また電気陰性度とは原子の電子を引きつける力の目安で あることから電気陰性度が大きい元素ほど仕事関数が大きくなる傾向にある。

半導体デバイスにとって金属電極は不可欠なものである。そのような金属と 半導体との接触において、仕事関数は非常に重要なファクターとなる。なぜ なら金属と半導体との仕事関数の大小関係が、ショットキー接触かオーミック 接触かを決めるためである。

理想的なショットキー接触の障壁の高さは、金属の仕事関数によって大きく 変化する。しかし、現実の金属 / 半導体界面では金属の仕事関数が変わっても 障壁の高さはほとんど変化しないピンニング現象が存在する。そして現在に おいてもそのピンニング現象を説明する有力なモデルは出ておらず、その解明 は今後の課題となっている。

第2章

仕事関数の測定には、光電子放出や熱電子放出といった現象が利用される。 光電子放出は、物質に光を当てるとき、光のエネルギーを得た電子が物質表面 から外に放出される現象である。また熱電子放出は物質を高温に加熱すると、 その表面から電子が放射される現象である。

第3章

どの結晶面が表面となるかによってその表面における原子密度が異なる。 その大小関係については、体心立方格子の場合(100)>(100)>(111)であり、 面心立方格子ではその逆の関係(111)>(100)>(110)である。そして仕事関数の 実測データ(図 3.3.5)においては15個中11個のデータがその表面原子密度 に依存する傾向を示す。

第4章

仕事関数の表面原子密度依存性を確認するため、ソフトウェア"VASP"を 用いて仕事関数の計算を行った。まず原子層5層のスラブモデルを構築し、 計算を行った。その結果、25の元素中のほぼ半数13個がその依存の傾向を 示さなかった。

そこで傾向を示さなかった元素、実測データの傾向と一致しなかった元素に ついてはスラブモデルの原子層を9層にし、再度計算を行った。その結果、 Sr,Ir,Au が傾向を示さなくなったが、新たに5個の元素について傾向が見られた。

傾向の見られない K,Rb,Cs,Ir,Au,Al,Pb については、s 状態のみ考慮する モデルが通用しないことによる傾向の不一致であることから、p 軌道を考慮 した新たなモデルの必要性があることが分かった。しかし s 軌道のエネルギー 準位の高い Sr,Ba、d 軌道のエネルギー準位が低い Cr,Ni における傾向の不一致 の理由については今後の検討課題である。

おわりに

本研究では、仕事関数に関する基本的な事柄である"真空準位とは何か"について、バンド構造計算によるポテンシャルの視覚化から理解を深めることができた。 ひとつひとつを本当に理解するには、非常に多くの知識が必要となることも実感 することができた。

ある参考のそれに、仕事関数の表面原子密度依存傾向についてのこのような 記述があったので紹介する。"どういった理由で傾向が見えるもの、見えないものに 分かれるのかについては、まだ十分解明されていない。(塚田 捷『表面物理入門』 東京大学出版会(1989)32 より引用)"

しかし私は科学的な根拠のある解明ができると考えており、その時には本論文 がそれを物語る重要なデータとなるであろう。

最後に本研究が私にとって貴重な体験となったことを明記して終わりとする。

謝辞

今回この論文を書くにあたり、指導教員である山本哲也教授には丁寧なご指導を 賜りました。山本教授の日々のご指導がなければ、この論文は書けませんでした。誠に ありがとうございました。

また M2の浜小路欣大さんには、私が行き詰まったときなどに的確なアドバイス、 励ましを頂きました。そして川島寿章さんにもお礼を申し上げます。彼の努力する姿勢 を見ることで、私も諦めず最後までこの論文を書き上げることができました。

多くの方々からの助けを頂き、今の私に至ったことを改めて実感いたしました。 改めてお礼を申し上げます。ありがとうございました。

参考文献

- 1. 飯田昌盛,白石 正『電子物性工学』東海大学出版会(1982)
- 2. 井上晴夫『量子化学 』(1996)
- 3. 黒田 司『結晶・表面の基礎物性』日刊工業新聞社(1993)
- 4. 小間 篤『表面・界面の電子状態』丸善株式会社(1997)
- 5. 清水潤治『半導体工学の基礎』コロナ社(1986)
- 6. 塚田 捷『仕事関数』共立出版(1983)
- 7. 塚田 捷『表面物理入門』東京大学出版会(1989)
- 8. 塚田 捷『表面における理論 』丸善株式会社(1995)
- 9. 堂山昌男,高井 治『材料別接合技術データハンドブック』サイエンスフォーラム (1992)
- 10. 和光信也『コンピュータでみる固体の中の電子』講談社サイエンティフィク(1992)
- 11. 日本金属学会『界面物性』丸善株式会社(1976)
- 12. 電子情報通信学会『先端デバイス材料ハンドブック』(1993)
- 13. 久保亮五,長倉三郎,井口洋夫,江沢 洋『岩波 理化学事典 第4版』岩波書店 (1987)
- 14. H.B.Michaelson, The work function of the elements and its periodicity, *Journal of Applied Physics*.**48**(1977)4729-4733
- B.M.Welch, D.A.Nelson, Y.D.Shen and R.Venkataraman, "Metallization Technology for GaAs Integrated Circuits," In VLSI Electronics Microstructure Science, Vol.15, VLSI Metallization (N.G.Einspruch, S.S.Cohen and G.S.Gildenblat,eds.), Academic Press,p.394(1987)
- 16. R.Blaszczyszyn et al, *Surf.Sci.***51**(1975)396
- 17. R.P.Leblanc, B.C.Vanbrugghe, and F.E.Girouard, Can.J.Phys.52(1974)1589
- 18. S.Berge, P.O.Gartland, and B.J.Slagsvold, Surf. Sci. 43 (1974) 275
- 19. S.berger et al , Surf.Sci.43(1974)25
- 20. 黒田 司『表面電子物性』日刊工業新聞社(1990)45
- 21. R.W.Strayer, W.Mackie, and L.W.Swanson, Surf. Sci.34(1973)225
- 22. 石井 勇五郎『材料科学概説』朝倉書店(1970)230
- 23. (110) : R.M.Eastment and C.H.B.Mee, *J.Phys.*F**3**(1973)1738 (100),(111) : J.K.Grepstad, P.O.Gartland, and B.J.Slagsvold, *Surf.Sci.***57**(1976)348
- 24. P.O.Gartland, Phys.Norv.6(No.3,4), (1972)201
- 25. P.O.Cartland et al , Phys. Rev. Lett. 28(1972)738
- 26. 小間 篤『表面・界面の電子状態』丸善株式会社(1997)172
- 27. B.G.Baker, B.B.Johnson, and G.L.C.Maire, Surf.Sci.24(1971)572

- 28. (110),(100) : A.W.Dweydari and C.H.B.Mee, *Phys.Status Solidi* .A27(1975)223
 (111) : A.W.Dweydari and C.H.B.Mee, *Phys.Status Solidi* .A17(1973)247
- 29. H.C.Potter and J.M.Blakeley, *J. Vac.Sci. Technol.***12**(1975)635 ; H.C.Potter, Ph.D.thesis(Cornell University, 1970)(unpublished)
- 30. G.-A.Boutry and H.Dormont, Philips Tech. Rev. 30(1969)225
- 31. Th.G.J.Van Oirschot, M.van den Brink, and W.H.M.Sachtler, *Surf.Sci*.29(1972) 189
- 32. V.B.Lazarev and Yu.I.Malov, Fiz.Met.Metalloved.24(1967)565
- 33. B.V.Bondarenko and V.I.Makhov, Sov. Phys.-Solid State 12(1971)1522
- 34. R.J.Whitefield and J.J.Brady, Phys. Rev. Lett. 26(1971)380
- 35. A.P.Ovchinnikov and B.M.Tsarev, Sov. Phys.-Solid State 9(1968)2766
- 36. R.G.Wilson, J. Appl. Phys. 37(1966)3170
- 37. D.E.Eastman, Phys. Rev. B2(1970)1
- 38. B.J.Hopkins and J.C.Riviere, Proc. Phys. Soc. (London)81(1963)590
- 39. T.Alleau, Surface Phenomena in Thermionic Emitters, Round Table Conf. (Inst. Tech. Phys. Julich Nucl. Res. Establ., Julich, Germany, 1969), p. 54
- 40. L.Gaudart and R.Riviora, Appl. Opt. 10(1971)2336
- 41. R.M.Eastment and C.H.B.Mee, J.Phys.F3(1973)1738
- 42. J.van Laar and J.J.Scheer, Philips Res. Rep. 15(No.1)(1960)1
- 43. A.W.Dweydari and C.H.B.Mee, Phys. Status Solidi .A27(1975)223
- 44. B.E.Nieuwenhuys, R.Bouwman and W.H.M.Sachtler, *Thin Solid Films*.**21**(1974) 51
- 45. A.Thanailakis, Inst. Phys. Conf. Ser. 22(1974)59

格子定数の出典

Title

Li

Na

	1 1
Author(s)	Covington, E.J.;Montgomery, D.J.
Reference	Journal of Chemical Physics(1957), 27, 1030-1032
Title	X-ray study of the alkali metals at low temperatures
Author(s)	Barrett, C.S.
Reference	Acta Crystallographica (1,1948-23,1967)
	(1956), 9, 671-677
	Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik,
	Kristallchemie (-144,1977)

Lattice constants of separated lithium isotopes

		(1939), 100, 195-200
		Physical Review, Serie 3. B - Condensed Matter (18,1978-)
		(1989), 40, 12086-12097
Al		
	Title	Precise lattice constsants of germanium, aluminum, gallium
		arsenide, uranium, sulphur, quartz and sapphire
	Author(s)	Cooper, A.S.
	Reference	Acta Crystallographica (1,1948-23,1967)
		(1962), 15, 578-582
K		
	Title	Compression and polymorphism of potassium to 400 kbar
	Author(s)	Liu, LG.
	Reference	Journal of Physics and Chemistry of Solids(1986), 47, 1067-1072
		Journal of Physics F(1978), 8, 2075-2084
		Acta Crystallographica (1,1948-23,1967)
		(1956), 9, 671-677
Ca		
	Title	Coefficients of thermal expansion for face-centered and
		body-centerd cubic calcium
	Author(s)	Bernstein, B.T.;Smith, J.F.
	Reference	Acta Crystallographica (1,1948-23,1967)
		(1959), 12, 419-420
		Phase Transition(1992), 38, 127-220
V		
	Title	Effect of oxygen on the lattice constant, hardness and ductility of
		vanadium
	Author(s)	Bradford, S.A.;Carlson, O.N.
_	Reference	Transactions of the American Society for Metals(1962), 15, 421-422
Cr		
	Title	The absorption and refraction corrections and the lattice constants
		of chromium
	Author(s)	Straumanis, M.E.;Weng, C.C.
	Reference	American Mineralogist(1956), 41, 437-448
		Zeitschrift fuer Kristallographie (149,1979-)
		(1983), 162, 151-153
		Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki

(1964), 47, 476-479
Journal of the Less-Common Metals(1963), 5, 258-270

Fe

Ni

Cu

Rb

Sr

Nb

Title Author(s) Reference	Standard x-ray diffraction powder patterns Swanson, H.E.;Tatge, E. National Bureau of Standards (U.S.), Circular(1955), 539, 4-4 Acta Crystallographica (1,1948-23,1967) (1954), 7, 464-464
Title	The temperature dependence of the isotope effect in the nickel lattice
Author(s)	Kogan, V.S.;Bulatov, A.S.
Reference	Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (1962), 42, 1499-1501
Title	High-temperature expansion of six metallic elements measured by dilatation method and X-ray diffraction
Author(s)	Suh, IK.;Ohta, H.;Waseda, Y.
Reference	Journal of Materials Science(1988), 23, 757-760
	Annales Academiae Scientiarum Fennicae, Series A6: Physica (1967), 223, 1-10
Title	The rubidium transition at ca. 180 K
Author(s)	Kelly, F.M.;Pearson, W.B.
Reference	Canadian Journal of Physics(1955), 33, 17-74
Title	The barium-strontium equilibrium system
Author(s)	Hirst, R.G.;King, A.J.;Kanda, F.A.
Reference	Journal of Physical Chemistry(1956), 60, 302-304
	Acta Crystallographica (1,1948-23,1967)
	(1953), 6, 100-100
	Journal of Physical Chemistry(1962), 66, 2138-2142
Title	High-temperature crystalline structure of niobioum and vanadium
Author(s)	Vasyutinskii, B.M.;Kartmazow, G.N.;Smirnov, Yu.M.;Finkel', V.A.
Reference	Fizika Metallov i Metallovedenie(1966), 21, 134-135

		Journal of the Less-Common Metals(1975), 40, 161-164
		Journal of the Less-Common Metals(1982), 87, 1-19
Mo		
	Title	Lattice expansion of molybdenum
	Author(s)	Pawar, R.R.
	Reference	Current Science(1967), 36, 428-428
		High Temperatures-High Pressures(1975), 7, 221-226
		Zeitschrift fuer Metallkunde(1968), 59, 492-495
Rh		
	Title	Standard x-ray diffraction powder patterns
	Author(s)	Swanson, H.E.;Ugrinic, G.M.
	Reference	National Bureau of Standards (U.S.), Circular(1954), 539, 1-75
		Acta Crystallographica (1,1948-23,1967)
		(1960), 13, 823-826
		Proceedings of the Koninklijke Nederlandse Academie van
_		Wetenschappen(1931), 34, 15-32
Pd	mu l	
	Title	Theory of bonding in transition-metal carbides and nitrides
	Author(s)	Haglund, J.;Fernandez Guillermet, F.;Grimvall, G.;Korling, M.
	Reference	Physical Review, Serie 3. B - Condensed Matter (18,1978-)
۸		(1993), 48, 11685-11691
Ag	Title	High temperature V ray diffractometer
	Author(s)	Spreadborough L:Christian LW
	Reference	Journal of Scientific Instruments (1959) 36 116-118
Cs	Reference	Southar of Scientific Instruments (1959), 50, 110-110
05	Title	X-ray study of the alkali metals at low temperatures
	Author(s)	Barrett, C.S.
	Reference	Acta Crystallographica (1.1948-23.1967)
		(1956). 9. 671-677
		Journal of Chemical Physics(1971), 54, 2768-2770
Ba		
	Title	The crystal structure of barium and europium at 293, 78 and 5 K
	Author(s)	Barrett, C.S.
	Reference	Journal of Chemical Physics(1956), 25, 1123-1124
		Journal of Physical Chemistry(1956), 60, 302-304

Phase Transition(1992), 38, 127-220

Та

W

Ir

Pt

Au

Pb

Title	Standard X-ray diffraction powder patterns I
Author(s)	Swanson, H.E.;Tatge, E.
Reference	National Bureau of Standards (U.S.), Circular(1953), 359, 1-95
Title	X-ray determination of the thermal expansion of tungsten
Author(s)	Deshpande, V.T.;Pawar, R.
Reference	Current Science(1962), 31, 497-499
Title	Standard x-ray diffraction powder patterns
Author(s)	Swanson, H.E.;Ugrinic, G.M.
Reference	National Bureau of Standards (U.S.), Circular(1955), 539, 1-75
	Philosophical Magazine, Serie 7(1926-46,1955)
	(1933), 15, 472-487
	Zeitschrift fuer Metallkunde(1972), 63, 12-16
Title	Standard X-ray diffraction powder patterns I
Author(s)	Swanson, H.E.;Tatge, E.
Reference	National Bureau of Standards (U.S.), Circular(1953), 359, 1-95
Title	Eine Versuchsanordnung und Beispiele zur kontinuierlichen
	Strukturanalyse mit Roentgenstahlen
Author(s)	Couderc, J.J.;Garigue, G.;Lafourcade, L.;Nguyen, Q.T.
Reference	Zeitschrift fuer Metallkunde(1959), 50, 708-716
Title	Standard X-ray diffraction powder patterns
Author(s)	Swanson, H.E.;Tatge, E.
Reference	National Bureau of Standards (U.S.), Circular(1953), 359, 34-34
	Proceedings of the Physical Society, London(1941), 53, 658-662