平成 14 年度

修士論文

足底圧計測装置による 床反力,及び下肢関節モーメントの推定

Estimation of Ground Reaction Force and

Joint Moment by Plantar Pressure Measurement Device

指導教員 井上喜雄 教授

副指導教員 王 碩玉 教授

高知工科大学大学院 工学研究科 基板工学専攻(博士課程前期) 知能機械システムコース

1055063 松田拓也

目 次

1.	序	詣	命・	• •	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	1
	1.1		緒言	•	•	• •	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	1.2		步行	IJ,	٧t	ا ک	ノテ	-	シ	Ξ	ン	の	Ē	要	性	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	1.3		步行	IJ,	٧t	ا ک	ノテ	-	シ	Ξ	ン	に	お	け	る	運	動	分	析	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	1.4		運動)分	忻核	幾号	呂の)現	状	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	1	.4	a)鉛	窅直	方	向ź	分ナ	っき	測	装	置	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	1	.4	b)関	罰節	Ð	-;	メン	ノト	計	測	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
	1.5		本研	究(₯₿	目白	う・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
	1.6		本論)文(の材	莆瓦	ţ.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3

2. 足	底圧な	り計	測	装置	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•		• 5	,)
2.1	緒言	•••	•	••	•	••	•	•	•	•	•	•	•	•	•••	•	•		•		•	•	•	•	•		•	•	•	•	• 5	j
2.2	種類	と形	態	••	•	••	•	•	•	•	•	•	•	•	••	•	•	•	•		•	•	•	•	•		•	•	•	•	• 5	j
2	.2.1	設置	型	••	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 7	,
	2.2.1	1	足底	€圧ノ	力分	·布詞	計測	멛型	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	• 7	,
	2.2	.1.1.	1	走査	墅	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		,	•	•	•	•	• 7	,
	2.2	.1.1.	2	写像	凤型	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	• 9)
	2.2.1	2	床反	え力言	十測	型	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•		•	•	•	•	•	• 9)
	2.2	.1.2	.1	歪∂	ょゲ	-3	ジ型	<u>!</u> •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11	
	2.2	.1.2	.2	水晶]圧	電	型·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11	
2	.2.2	装着	型	••	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11	
	2.2.2.	.1 .	足底	€圧ノ	り分	布詞	計浿	멛型	<u>!</u> •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11	
	2.2	.2.1	.1	イン	ック	着色	も型	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12	2
	2.2	.2.1	.2	走詟	5型	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13	;
	2.2	.2.1	.3	セン	ノサ	分科	5型	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13	;
	2.2.2.	2	床反	ź力・	•••	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16	;
	2.2	.2.2	.1	全反	え力	計測	則型	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16	;
	2	2.2.2	.2.1	l (a)	鉛	」	方向	〕分	力	計	測	旦	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16	;
	2	2.2.2	.2.1	l (b)	鉛	淔	, t	th	,断	ī方	向	l分	·力	計	測	型	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16	;
	2.2	.2.2	.2	部分	計	測	隹定	<u>'</u> 型	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16	;
2.3	結言	•••	•	•••	•••	•	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17	,

3.	足底	〕圧計測装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・18
	3.1	緒言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・18
	3.2	特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・18
	3.3	センサ配置位置・・・・・・・・・・・・・・・・・・・・・・・・20
	3.4	構成部品 (インソール部)・・・・・・・・・・・・・・・・・・21

4.床/	反	力(鉛	直ス	方向	分	力)言	十涯	IJ.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
4.	1	緒言	•	••	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	23
4.2	2	鉛直方	向	分力	同	定フ	方法	. •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24
4.3	3	実験	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	25
4.4	4	結果,	及	び考	察	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
	4.4	.1(a)	鉛	直方	「向	分	力同	司定	鯭	課	<u>.</u> •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
	4.4	.1(b)	鉛	直方	「向	分	力同	司定	鯭	課	考	察	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	28
	4.4	.2(a)	鉛	直方	「向	分	力言	+浿	川 紀	課	<u>.</u> •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	29
	4.4	.2(b)	鉛	直方	「向	分	力言	+浿	川 紀	課	考	察	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30
4.5	5	結言·	•	• •	• •	•	•	•	• •	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•	•	31

5. 足厄	底圧計測装置による足関節モーメントと実┆	験的検	証 ・	•	•	• •	•	•	32
5.1	緒言・・・・・・・・・・・・・・・・・・・・・・	• • • •	• •	•	•	•	•	•	• 32
5.2	関節モーメントの概要・・・・・・・・・・	• • •	••	••	•	••	•	•	• 33
5.3	足関節モーメントについて・・・・・・・・	•••	••	••	•	••	•	•	• 33
5.4	足関節モーメント推定方法・・・・・・・・	•••	••	••	•	••	•	•	• 33
5.4	.1 足関節モーメント推定方法								
	(3次元動作解析システムと床反力計からの)	算出方法)•	••	•	••	•	•	• 35
5.4	.2 足関節モーメント推定方法								
	(足底圧計測装置単体からの算出方法)・・・	•••	••	•••	•	••	•	•	• 36
5.5	実験・・・・・・・・・・・・・・・・・・	• • • •	•	• •	•	•	•	•	• 38
5.6	実験結果,及び考察・・・・・・・・・・・	• • • •	•	• •	•	•	•	•	• 40
5.6	3.1(a) 足底圧計測装置による自由歩行時								
	足関節モーメントの推定	結果	•	••	•	•••	•	•	• 40
5.6	6.1(b) 足底圧計測装置による自由歩行時								
	足関節モーメントの推定	考察	•	••	•	•••	•	•	• 40
5.6	6.2(a) 足底圧計測装置による規制・負荷歩行時(すり足	によ	るり	行)			
	足関節モーメントの推定	結果	•	••	•	••	•	•	• 41

5	.6.2(b)	足底圧計測装置による規制・負荷歩行時(すり足による歩行)
		足関節モーメントの推定 考察・・・・・・・・42
5	.6.3(a)	足底圧計測装置による規制・負荷歩行時(小刻みによる歩行)
		足関節モーメントの推定 結果・・・・・・・・42
5	.6.3(b)	足底圧計測装置による規制・負荷歩行時(小刻みによる歩行)
		足関節モーメントの推定 考察・・・・・・・・43
5	.6.4(a)	足底圧計測装置による規制・負荷歩行時(大股による歩行)
		足関節モーメントの推定 結果・・・・・・・・43
5	.6.4(b)	足底圧計測装置による規制・負荷歩行時(大股による歩行)
		足関節モーメントの推定 考察・・・・・・・・43
5	.6.5(a)	足底圧計測装置による規制・荷歩行時(後ろ向きによる歩行)
		足関節モーメントの推定 結果・・・・・・・・44
5	.6.5(b)	足底圧計測装置による規制・負荷歩行時(後ろ向きによる歩行)
		足関節モーメントの推定 考察・・・・・・・・44
5	.6.6(a)	足底圧計測装置による規制・負荷歩行時(ぶん回しによる歩行)
		足関節モーメントの推定 結果・・・・・・・・44
5	.6.6(b)	足底圧計測装置による規制・負荷歩行時(ぶん回しによる歩行)
		足関節モーメントの推定 考察・・・・・・・・44
5	.6.7(a)	足底圧計測装置による階段昇降時(上り)
		足関節モーメントの推定 結果・・・・・・・・45
5	.6.7(b)	足底圧計測装置による階段昇降時(上り)
		足関節モーメントの推定 考察・・・・・・・・45
5	.6.8(a)	足底圧計測装置による階段昇降時(下り)
		足関節モーメントの推定 結果・・・・・・・・45
5	.6.8(b)	足底圧計測装置による階段昇降時(下り)
		足関節モーメントの推定 考察・・・・・・・・45
5.7	結言・	•••••••••••••••••••••••

6. 結	論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・47
6.1	緒言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・47
6.2	研究成果概略・・・・・・・・・・・・・・・・・・・・・・・・・・・47
6.3	足底圧計測装置の有用性・・・・・・・・・・・・・・・・・・・・・・47
6.4	今後の足底圧計測装置の課題・・・・・・・・・・・・・・・・・・・48
6.5	結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・48

謝辞・・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	50
参考文献	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	51

付録・付図・付表

第1章 序論

1.1 緒論

ヒトは,乳幼児の"四つ這い"から成長とともに"二足歩行",そして老いて"杖歩行" と歩行パターンは成長・加齢と伴に変化していく.ヒトが動物と異なる決定的な要因の一つ であるこの"直立二足歩行"は,手の自由な使用を確保し脳の発達を促した.結果,高度 な作業能力や豊かな創造性を生み出すに至ったとされる¹.常時二足歩行を行うヒトにとっ て,足裏は身体の中で唯一地面と接している部位であり,ヒトの全荷重を支持している部 分である².そのため,老化・疾病などにより歩行能力が欠如,もしくは著しく低下した時, 全荷重を支えるため足だけでなく手も必要となる.結果,手の自由度は減少し創造性や活 動意欲にも影響してくる.このように人間にとって歩行能力の維持は重要な問題である. まして,近年の世界的に類をみない速度で進行しつつある高齢社会の中で歩行能力の維持, 歩行機能の回復は転倒・転落の事故防止にも必要である.

1.2 歩行リハビリテーションの重要性

「ルーの法則」. 廃用性萎縮理論とも言われる.これは「ヒトの器官,機能は適度に使えば発達するが使わなければ退化し,やがて萎縮していく」という法則である.

特にヒトの筋肉の 2/3 は下半身に集中しているといわれる.労働科学研究所の斉藤の研究 によると,背筋力や腕力など腰より上部の筋肉は 60 代になっても 20 代当時の 70%の力を 保持していたのに対して,脚力など腰より下部の筋力は約 40%の力しかなくなっていると 報告している.このように筋力は足が一番早く衰えるため足を鍛えることは老化の防止に よいとされる³.

健常な高齢者であっても脚筋力低下や関節可動域が減少し踵や爪先の十分な挙上が出来 なくなり歩行能力のみならず平行機能・直立機能も低下するなど歩行は老化の影響を受け やすい.老化の影響を受けた脚筋力,関節は転倒の危険性をふくみ転倒の機会が増加する と考えられている^{4.5}.まして,精神科病棟では,薬物療法の副作用から,転倒・転落事故が 増加しており,その防止策の一つとして筋力トレーニングを実施している⁶.

以上のように,老化による下肢筋力の退化は著しいものがあり歩行能力の欠如,低下を 招きやすい.歩行能力が著しく低下することは移動能力の低下を招くだけでなく,日常生 活動作能力全般にまで影響を及ぼす.さらに手の使用の自由度を損なう恐れがあり,ヒト の創造性や活動意欲など生きがいにも波及するようになる.そのため,常時二足歩行を行 うヒトにとって歩行能力の維持,機能の回復を促す歩行リハビリテーションは重要な課題 である.

1.3 歩行リハビリテーションにおける運動分析

現在,歩行リハビリテーションを効率的に,また回復具合を的確に評価するため分析機器を用いた解析が行われている.運動分析において分析機器を用いる利点として⁷,

- 1) データの長期間の保存が可能である
- 2) 目視では捉えられない高速で起こっている現象を把握できる
- 3) 運動の状態だけでなく力の状態を計測できる

などが挙げられる.

また,このデータを用いて⁸

- 1) 治療評価の客観的評価が可能である
- 2) 分析結果は治療方針の指標となり得る
- 3) 患者やその家族に具体的な回復度合いが説明可能である

以上のように,歩行リハビリテーションにおいて歩行障害の程度を的確に判断,評価することは重要である.そのため,歩行の定量的な評価を目指し種々の歩行計測,解析が試みられている.

リハビリテーションの分析において,足裏への力の掛かり具合や下肢の筋活動状態を把 握することは筋力の回復具合を測る指標となる.力の掛かり具合には床反力計,筋の活動 状態を計測には,主に筋電図を用いた筋電位計測が行われる.筋電位計測において筋電図 を用いるには,1)解剖学的知識を必要とする,2)多数のセンサを直接皮膚に貼付する,3) ノイズに細心の注意を払う必要があるなど簡便に用いるには困難であった.そこで,関節 モーメントは筋活動が高い割合で反映されていることに着目し,筋電位計測に代替する1 つの計測手法として筋活動を定量的に推定する方法が開発され発展してきた⁹.

以上のように歩行リハビリテーションにおいて運動分析を行うことは有用である.また, 近年の急激な高齢化社会や医療情報技術の変化から,歩行リハビリテーションは頻度を増 しており,同時に,効率的なリハビリテーションを行うため定量的な評価の必要性は高く なってきている.

1.4 運動分析機器の現状

1.4.a) 鉛直方向分力計測装置

現在までに,足底圧力を計測するための計測器は数々報告され,また,一部では商品 化されている.歩行分析で用いられている計測器の中では床反力計が主流である.しか し,この機器は非常に大型であるため設置場所が限定されやすく,計測距離も限定され るため連続した計測が行えない.他の分析装置には,計装靴に代表されるように装着型 の計測装置がある.しかし,装置自体が重いと歩容を乱す恐れがある.このように計測 装置にはそれぞれに一長一短がある.

以上のような従来の歩行分析装置は,センサやセンシングの方法などは機器のハード ウェア部分に重点が置かれているため高価なシステムで構成される特徴がある.

1.4.b) 関節モーメントの計測

人間の下肢関節モーメントを計測する方法としては,3次元動作計測システムと床反力 計を組み合わせて関節モーメントを算出する方法が広く用いられている.3次元動作計測 システムと床反力計の組み合わせでは,構成されるシステムが高価になる傾向がある. また,大型機器であるため設置(計測)場所が制限され,計測距離に限界が生じ連続計 測ができない.他に環境因子(光量,障害物)に左右され,空間位置の校正に誤差を含 むなど,3次元動作計測システム自体に問題があることもある.さらに,空間位置を計測 するために被測定者にマーカを取り付けるが,このマーカの取り付け位置と解剖学的関 節中心が必ずしも一致しない問題もある.以上のように,従来の方法では問題点が多く, また簡便に関節モーメントを計測することは困難である¹⁰.

1.5 本研究の目的

リハビリテーションの効果を評価する指標として床反力,関節モーメントなどは歩行分 析において重要なパラメーターである.しかし,床反力,関節モーメントを計測するには, 上述したように床反力計や3次元計測システムなどの機器を組み合わせて使う必要がある. 個々の使用においても難易である機器を組み合わせ使用するため,簡便に計測することは 著しく困難あり,日常的な歩行リハビリテーションを目的とした定量的な歩行の評価は困 難であった.この様に,従来の手法では簡便にリハビリテーションの効果,効率を評価す ることは難しく十分な臨床応用に結実するに至ってない.そこで本研究では,新たに歩行 分析を行える装置を試作し,上述した従来の手法よりさらに安価で簡便な手法を提案する.

1.6 本論文の構成

本論分は6章から構成されている.

第2章では,これまで研究報告,または市販されている足底圧力計測装置について目的, 種類別に分類し特徴を述べる.また,研究報告されている足底圧力計測装置には文献的考 察も加える.

第3章では,低コストかつ簡便な計測装置を提案する.本研究で用いる足底圧計測装置

について詳細を述べる.

第4章では,試作した足底圧計測装置を用いて床反力を推定する手法を提案する.従来 使用されている床反力計を用いて同定実験を行い,足底圧計測装置が床反力を計測可能か 否か実験的に検討する.

第5章では,第3章で得られた床反力を用いて足関節モーメントを推定する手法を提案 する.3次元動作計測システムと床反力計を用いた従来の計測手法との比較を行い,足底圧 計測装置による足関節モーメントの推定の有用性を検討する.

第6章では,第5章まで論文全体を通しての総括を行い足底圧計測装置による計測の有 用性を検討する.また,今後の課題と結論を述べる.

第2章 足底圧力計測装置

2.1 緒言

人が動物と異なる決定的な要因の一つに常時二足歩行を行う点にある.常時二足歩行を 行うことにより,手は歩行において不要となり脳の発達を促したとされている.さらに身 体動揺を制御することも,脳の発達を促したと考えられている.常時二足歩行を行う人に とって,足裏は身体の中で地面と唯一接している部位であり,人の全荷重を支えている部 分である¹¹.そのため,歩行リハビリテーションにおいて足の裏の圧力を計測することは, 下肢筋力の回復具合を客観的に評価する一つの指標となりえる.また,人間に限らずロボ ットなど二足直立歩行を研究する上でも足裏への圧力の係り具合を測定・分析することは 重要とされている.

現在までに,足底を計測するための機器や手法が数多く研究,報告されている.中には 既に商品化され臨床に用いられている機器もある.しかし,これらの機器は一般的に非常 に高価であり,研究機関やそれに付属する病院など一部の施設だけで利用されているため, 一般に臨床評価の機器として用いられるケースは数少ないようである.

従来の機器は,センサ部などハードウェア部分で精度を求めることに重点が置かれているが,本論文においては,ソフトウェアに重点をおいてシンプルな機器の構成を進める.

本章では,まず現在までに研究,報告,及び商品化されている足底圧力計測装置を機能 ごとに分類し特徴を述べる.

2.2 種類と形態

Fig.2.1 に現在までに研究報告,市販されている足底圧力計測装置の分類を示す.Fig.2.1 より足底の圧力を計測する装置は大別して2種類ある.センサ自体を床に設置し計測する 「空間式設置計測法」¹²のタイプと靴などの履物自体がセンサで構成され被測定者の足に直 接装着する「身体装着式計測法」¹³のタイプである.また,設置型,装着型の中でも,足底 面の圧力分布を測定する「足底圧力分布」計測機器と足底にかかる床からの反力を計測す る「床反力」計測機器に分別される.さらに,センサの種類や計測法,機能に応じて細分 化される.

各計測器の長所,短所など特徴.及び,製品名とコストを次節に示す.

Fig. 2.1 Plantar pressure measurement equipment classification

2.2.1 設置型

2.2.1.1 足底圧力分布計測型

歩行中の足部にかかる圧力分布を床面に設置し測定する機器にはマット型の歩行解析 装置が主である.薄いセンサユニットを床面に設置し計測を行うのが特徴である.その ため,計測器を設置するための工事等は不要であり,また足や靴に対する装具(計測器) も不要のため歩容に対する影響は少なく物理的・心理的制約も受けにくいメリットが挙 げられる.しかし,床面に設置し計測を行うため,少なくとも計測装置が敷設できる十 分な空きスペースが必要である.また,マット型の歩行解析装置は,センシング可能部 分は約4mしかないため歩行距離が限定され数歩しか測定ができない.以上のように,計 測装置の設置の自由度は低いため簡便な計測は困難であると考えられる.

マット型の歩行解析装置は,すでに数社から数種類が販売されている.以下に,製品 名,販売元,用途,使用,特徴を述べる.

2.2.1.1.1 走查型

ゲイトスキャン 4000/8000 (ニッタ株式会社製)

開発過程における研究報告は嶌田,大和,数藤ら^{14,15,16,17,18}によって多数報告されて いる.センサは非常に薄い特徴がある.しかし,センサ部は最大でも3500[mm](cf. Table 2.1)なため,数歩の計測しか行えない.

圧力センサは 2 枚の絶縁体シートの内側にストライプ状に平行な電極パターンと感 圧抵抗体が印刷してあり,2枚のシートのストライプが直交するように張り合わせてあ る.そして,行電極,列電極を順次走査してマトリックス上の交点の抵抗値を計測し 空間的な圧力分布を得ている.計測パラメーターには,「時間因子(重複歩時間,両足 接地時間,1歩時間,遊脚時間),距離因子(重複歩幅,歩隔),歩速,歩調,足底圧 分布,床反力パターン」が挙げられており,同時かつリアルタイムに計測可能である. センサシートの空間分解能は最小5mm.センシングポイントは最大73216点あり,高 密度な計測が可能である.用途としては,変型性膝関節症,股関節,椎間板ヘルニア 等の術前・術後の歩行解析,装具歩行,杖歩行の解析,各種病的歩行の解析などが挙 げられている¹⁹.

Fig. 2.2 Gait Scan

Fig. 2.2(a) Sensor (for Gait Scan)

	Gait scan 4000	Gait scan 8000
Product size	Standard specification Option specification 7mm (19mm of connector	780mm x 2680mm 780mm x 3570mm or parts) in thickness
Sensor part Size	Standard specification Option specification 0.15mm in thickness	520mmx2640mm 520mmx3520mm
Sensor part space resolution	7. 1mm x 7.1mm	5mm x 5mm
The number of sensor part measurement points	Standard specification 74x62x6=27528 point Option specification 74x62x8=36704 point	Standard specification 104x88x6=54912 point Option specification 104x88x6=73216 point
Sensor part Measurement range	20 ~ 25	0 (Кра)
Sampling frequency	100Hz (maximum)	60Hz (maximum)
O S	Window	s 95, 98

Table 2.1 Specification of Gait Scan system

GaitRite (CIR Systems, Inc.)

ニッタのゲイトスキャンとは異なり,長さ4572mm,幅902mm,厚さ6.4mmのマ ット内に2304点のセンサを配置したマット型歩行解析装置である.計測可能パラメー ターとして,立脚・遊脚時間,ステップ時間,歩行サイクル時間,総歩行時間,歩行 速度,平均標準化速度,単脚支持期,両脚支持期などの時間因子と,重複歩幅,歩幅, 歩隔,ステップ長,ストライド幅,ステップ/下肢比,爪先イン/アウト角度,歩行距 離などの距離因子の測定も可能である.主な用途には変型性膝関節症,股関節,椎間 板ヘルニア等の術前・術後の歩行解析,装具歩行,杖歩行の解析,各種病的歩行の解 析とされている^{20,21}.

Fig. 2.3 GaitRite

2.2.1.1.2 写像型22,23,24,25,26,27,28

1971 年,土屋らが四角錐のゴムマットの頂点をガラス盤に接するように敷き,圧力 を光の全反射を利用して頂点の潰れた面積から求める方法を報告している.これは, 足底の接触部形状の変化に即した足圧分布を求めることが可能である.しかし、実際 計測を行う際,潰れた四角錐の頂点の形状が非常に複雑で,数値解析に多くの時間と 労力を費やすなどの難点がある.また,鉛直方向分力の計測は可能であるが,斜め方 向の力が作用する場合は計測が困難であると考えられる .1976 年には Arcan らが光弾 性による方法を最初に提案した.これは透明で平らな材料上に半円球のマットの頂点 が接するように敷き、材料の光弾性現象を利用し圧力を円形状の等色線パターンから 求める方法である.これも土屋らと同じく足底の接触部形状の変化に即した足圧分布 を求めることが可能である.また,円形の等色線パターンの直径を求めるため数値化 は比較的速く処理が行える利点がある.さらに,衝撃力などの力の測定にも有効であ ることを実験的に報告している.しかし,これも鉛直方向分力のみの測定だけで斜め 方向に関する測定法は考慮されていない.1986年に,中川らが同じく光弾性を用いた 足圧分布測定法を報告している.これは,鋼球をエポキシラバ板に等ピッチ直交格子 の各交差点にあけた円孔の上に置き、光弾性現象を利用し圧力を円形状の等色線パタ ーンから求める方法である.足底の接触部形状の変化に即した足圧分布を求めること が可能である.これらは前述した2つの方法と異なり,接触部に働く力の方向と大き さを同時に計測することができる.しかし,個人によって接地面積や体重が異なるた めエポキシラバの光弾性感度,板厚,円孔の直径,鋼球の直径を測定の対象と目的に 応じて変更する必要がある.

2.2.1.2 床反力 (Force Plate, Force Platform) 計測型

歩行中に床から足部にどのような力が加わっているかを計測するためには,床反力計 (Force Plate, Force Platform)が一般的に用いられる²⁹.市販されている床反力計はセ ンサや形状の違いから数多くの種類があり特性も様々である.床反力計には歪みゲージ を用いる方法と水晶圧電素子のセンサを用いる方法がある.前者は複数のメーカから, 後者は1つのメーカから市販されている.一般的な形状は四角形であるが40×60cmの 小さなものから長さが2mを超えるものまで大きさは様々である.床反力計が大きければ 計測時に歩幅を拘束しないため被測定者への心理的負担が軽減されるが,固有振動,作 用点の精度の点で問題がある³⁰.床反力計の構造は平板の4隅に,3軸のセンサ(ロード セル)(荷重計)を取り付けたものである.そのため,平板の剛性が低いと共振周波数が 低くなるため安定して計測が行えない.固有振動数は支柱の材質や形状,床反力計自体 のプレートの重さに影響されるため,大型で重い床反力計になるほど固有振動数は低下 する.固有振動数はセンサの種類に依存し,歪みゲージ式のセンサでは100Hz 程度,水 晶圧電素子タイプのものでは400Hz 程度である³¹.通常の歩行では,0~50Hz ぐらいの 測定周波数帯域が要求される.この場合,普通の歪ゲージ式ロードセルで十分である. しかし,硬い踵の靴を履いた義足歩行の計測,走行などの速い動作の計測などでは,よ り高い測定周波数を必要とするため圧電素子式のロードセルが用いるのが好ましいとされる³².

床反力計の実際的利用において,配置の仕方が最も難しいとされる.多くの場合,片 足ごとの床反力を測定できることが望ましい.特に,関節モーメントの計算においては このことは必須条件となる.そのため,片足ごとの床反力を測定するために床反力計の 配置方法には2つの方法がある.1つは,数10cm四方の床反力計を進行方向に沿って直 列に並べる方法がある.この場合,被測定者は左右の足で各床反力計を次々に踏んでい くことを要求されることになる.このことは,被測定者へ心理的影響を与え,歩幅にも 物理的制約を加えることに繋がる.2つ目の方法は,長尺の床反力計を進行方向に対し 並列に並べる方法である.この場合,被測定者の歩幅に対する制約はなくなるが,被測 定者は左右の足で左右の床反力計を踏み分けることを要求され,歩隔に物理的制約を加 えることになる.また,床反力計の踏み分けは心理的制約を加えることになりかねない.

Fig. 2.4 Force plate (Distortion gage type)

Fig. 2.5 Force plate (Piezo-electricity type)

2.2.1.2.1 歪みゲージ型

足が床に与える力を計測する方法として,古くは1938年の Elfman の力板をバネ や梁で支え床反力をバネの伸びや梁のたわみなどから歪みゲージを用いて求める方 法がある³³.現在,一般的に用いられている床反力計は平板を4隅のロードセル,ま たは柔軟な弾性要素の支柱で支えてある.被測定物により荷重が掛かると4隅に設 置されたセンサの合力を計算し反力を求める仕組みとなっている.また,同時に荷 重の位置も計算により計測できる.現在は,複数のメーカから市販されており大き さは様々である.

2.2.1.2.2 圧電素子型

水晶圧電式センサを使用した床反力計は, Kistler 社の1社のみから販売されている.水晶圧電式センサの特徴としてドリフトは微小であり,公表値では1秒間に1g 未満とされている.また,水晶圧電式センサは水晶の材料特性から安定した測定が可能であり直線性に優れヒステリシスがないとされている.

センサ自体が小型,堅牢,高感度であるため広い測定範囲を備えており,また高い 固有振動数を備えているため,硬い靴など高い周波数を要する歩行分析に最適であ る³⁴.

2.2.2 装着型

身体装着型の計測装置にはインソール型センサが一般的である.設置型の計測装置と同 じく,歩行中に足部の圧力を計測する装置と床反力を計測する装置の2種類がある.前者 には,導電ゴムを利用した圧力分布測定の計測装置,後者には,厚さ1mmの独立気泡性 のゴムスポンジシートを上下から銅箔で挟みスポンジシートの形状の変化を容量の変化と して銅箔に取り付けた歪みゲージから検出するものである.センサ部を足の前足部と踵部 の二つに切り離すことにより,足関節モーメントの近似値を求めることも可能である³⁵³⁶.

2.2.2.1 足底圧力分布

身体装着式計測法で足底圧分布を計測する機器は,インソール型センサが一般的で, 現在までに複数の製品が販売されている.インソール型の足底圧分布計測装置にはセンサの種類により3種類に分類できる.まず,インクで着色し発色の度合いで足底圧 を計測するプレスケール,電極を行と列で格子状を作りその交点の抵抗値から計測す る走査型の計測器,最後にインソール内に小型のセンサを分布した分布型の計測器に 分類される. 2.2.2.1.1 インク着色型

プレスケールは,富士写真フイルムから販売されている,圧力特性が測定可能な 極薄発色層均一塗布フィルムである.

支持体が紙のAシートとポリエステルフィルムのCシートから構成されている. Aシートにはマイクロカプセルには無色染料が封入されており,圧力がかかるとこの マイクロカプセルが破壊されCシートに塗布された顕色剤と化学反応が起こり赤く 発色する.加圧力の大きさに対応し,一定の強度以下のマイクロカプセル群が破壊 される.この一定の圧力で破壊されるマイクロカプセル内の無色染料を一定にする ことで,発色する色濃度が供給される無色染料の量に比例するため,色濃度から圧 力の大きさが算出できる.

紙とポリエステルフィルムから出来ているため,鋏などで被測定者の足の形や大きさに合わせ自由にトリミングが可能である.しかし,材質が紙や染料などを用いているため紫外線や油,水に弱い欠点がある.また,1度の使用しかできない.

プレスケールを用いた足底面圧の測定法の研究報告には有富³⁷らが行っている. 黒田ら³⁸が RA(慢性関節リウマチ)足の装具治療にプレスケールを用いた研究報告 を行うなど臨床においても使用されている^{39,40,41}.

Fig. 2.6 Prescal sectional view

Table 2.2	Specification of Prescal
-----------	--------------------------

	Two sheet type	Monochrome sheet type
Accuracy	± ' (by densim) at the time	10% or less leter measurement e of 23 -65%RH)
Use recommendation temperature	20) ~ 35
Use recommendation humidity	35%F	RH ~ 80%RH

2.2.2.1.2 走查型

導電ゴムを利用した圧力分布測定の計測器である.このセンサは4層のフィルム シートから構成されており厚さも0.1mmと非常に薄く柔軟性がある.そのため,被 測定者の足の形,サイズに合わせて鋏で自由にトリミングが可能である.センサの 表面はポリエステルフィルム,内側には行と列方向に特殊インク(感圧抵抗性物質) と電極のシルバーペーストが格子状に印刷されている.行と列の交点に圧力が加わ ると圧力の量に応じて特殊インクの抵抗値が変化するので行と列の電極を時間的に 走査することで計測する.しかし,本装置は圧力の校正が難しく,相対計測精度が 15%程度であるなど欠点もある⁴².

本装置は1社から市販されている.

足圧力分布足底システム (F-Scan システム)(ニッタ株式会社製)

サンプリングは 10msec でリアルタイムで見ることが可能である.用途には,靴の 適合評価,設計,スポーツやリハビリテーションの運動解析,床材の評価などとさ れている^{43,44,45}.

Fig. 2.7 F-SCAN system

2.2.2.1.3 センサ分布型

センサ分布型の身体装着式の計測装置は,インソール内部に圧力センサが部分ご とに配置されている.臨床などで研究⁴⁶されている以外でも複数の製品が販売されて いるが.センサの配置位置やセンサの数は千差万別である.また,非拘束で計測が 行える無線式やデータロガー式の製品が多いのもこの種類の特徴である.しかし, センサ部のインソールは一部の特注品を除けば,あらかじめ大きさや形が決められており,前述した 2.2.2.1.2 の走査型の製品のように被測定者の足に合わせてセンサ部の形状を変化させることは出来ない.

パロテックシステム

片足のインソールにセンサを 24 ヵ所,人間工学に基づき配置してある.そのため 足底面に掛かるほとんどの荷重を測定することが可能である.内蔵したセンサには ピエゾ素子を用いており,温度や湿度といった周囲の環境に影響を受けにくいため 安定して測定を行うことができる.データの記録はロガー方式である.サンプリン グレートは 250Hz で歩行解析の他にも様々なスポーツの分析にも使用が可能とされ ている.

インソールの大きさは 15.5cm ~ 32cm,5mm 間隔で 13 種用意されている.また, オリジナルパットの作成も可能である⁴⁷.

medilogic FPMS システム

medilogic FPMS システムもインソールの中にセンサを分布させたタイプである. これは,この種の中で最大の64点(片足)のセンサを配置してある.データの収集 にはテレメトリーを採用しているため被測定者に動作,心理的制約を与えずリアル タイムで計測が可能である.体の重心軌跡(COP)や圧中心を表示.また,各圧力 センサの最大値.平均値,瞬間値をカラーグラフィックや3次元で表示.データの 比較が可能なため,治療前後,治療途中の回復経過を比較して見ることが可能.

応用分野として整形外科,リハビリテーション,脳神経外科,神経科・神経内科, スポーツ医学,労働医学とされている⁴⁸.

GANGAS

GANGAS は片足に 16 個のセンサを埋め込んだ計測器である.センサには感圧抵 抗体素子(FSR)を用いてある.データの収集には medilogic FPMS システムと同 様にテレメトリー式を採用している.ゴニオメータやトレッドミルとの同期計測が 可能.

応用分野として,整形外科,神経内科,脳神経外科,耳鼻科,眼科,スポーツ医学, 労働医学などとされている⁴⁹.

Fig.2.8 Parotec-System

	Parotec-System	medilogic FPMS	GANGAS
Sensor part Size	15.5cm ~ 32.0 cm * They are 13 Sorts at 5mm Interval. * Original Putt Can Also be Created.	23 ~ 24cm 25 ~ 26cm 27 ~ 28cm	-
A sensor resolution	0.25 N/cm2	-	-
Sensor part The number of measurement points	24 (or 16)	64	32
Sensor part Measurement range	62.5 N/cm2	0.5 ~ 64 N/cm2	-
Sampling Frequency	10 ~ 250Hz	60	-
Data collection system	Data Logger	Telemetry	Telemetry
Applicable field	-	Orthopedics, rehabilitation, cranial nerve surgery, neurology and nerve internal medicine, sports medicine, labor medicine, otolaryngology	Orthopedics, nerve internal medicine, cranial nerve surgery, otolaryngology, ophthalmology, sports medicine, labor medicine, etc
A developing agency	Patomed	T&T Medilogic GmbH	T&T Medilogic GmbH
Time of operation	4 hours	-	-
O S	Windows 3.1 or 95	Windows 95 or subsequent ones	Windows 3.1 or 95

Table 2.1 Specification of Sensor distribution type

Notes" - " has no publication in data.

2.2.2.2 床反力

2.2.2.2.1 全反力計測型

2.2.2.2.1(a)鉛直方向のみ計測型

宮崎ら^{50,51,52}はステンレス板に歪みゲージを貼り付けたセンサ部を靴底の中足骨部 分と踵部分に取り付け,片足の床反力がこの二つのセンサのみに加わるようにして 計測装置を試作している.また,FM 変調方式を用いて無線によりデータの収集を行 っている.歩行障害の床反力データも提示されており臨床も視野に入れた計測器で ある.

この計測装置は,ステンレスの板の歪みを検出してそれを床反力として計測して いるため,歩容に対する影響からステンレス板を大きくすることはできない.その ため,センサ部以外で靴底部分が床面と接触する可能性があり,結果,歩調が大き く速歩になると床反力の誤差が大きくなることが報告がされている.

また宮崎らは足関節モーメントの算出も行っている.しかし,実際に足節モーメントの算出については3次元動作計測システムなどを用いての比較検討はなされていない.

2.2.2.2.1(b)鉛直, せん断力計測型

現在までに,島津ら⁵³の研究報告に見受けられる手法である.

島津らはセンサに歪みゲージを用い,靴の接地部分の構造を工夫することで角度計 測を不要とし,3分力を測定できる計装靴を報告している.しかし,靴の重さが片足 800gあり歩容への影響が懸念される.この種類では,せん断力を計測するために機 械的な装置を靴裏に取り付ける例が多い.そのため,計装靴の重量がかさむ傾向に あり歩容の乱れが懸念される.

2.2.2.2.2 部分計測推定型(推定法)

本研究による計測装置である.詳細は後述するのでここでは概略を述べる.計装靴 にはサンダルを用い,センサを埋め込んだインソールを取り付けてある.インソール 内(中敷)には圧力センサ6個を長手方向に向かって配置しているため,足底圧力分 布が計測できる.また,被測定者に応じてキャリプレーション(補正)を行うことに より6個の圧力センサから床反力も同時に計測できる.本計測装置はハードウェア自 体に精度や機能を持たせるのではなく,ソフトウェアによる補正を行うことでハード ウェアの精度・機能不足を補っている.そのため,ハードウェアは非常にコンパクト なシステムで構成され価格も従来の機器と比較して 1/10程度で構成できるメリットが ある.

また,センサの点数が少ないため制御用の足センサとしても利用が可能である54.

2.3 結言

本章では,まず現在までに研究報告,及び市販されている計測装置をセンサの種類,計 測目的ごとに分類した.次に,計測装置の種類ごとに特徴を述べ長短を明示した.

足裏の力を計測するための計測装置は、その計測目的、方法は様々であり多岐にわたる. いずれの計測装置にも一長一短があり、ユーザーは計測装置の特徴を踏まえ計測目的に沿って機器を使い分ける必要がある.しかしながら、上記に挙げた市販品の計測機器は高価であり簡便に使用することは困難であるといえる.

次章では本章において述べたことを踏まえ,本研究目的に沿った足底圧力計測装置の概要を説明する.

第3章 足底圧計測装置の試作

3.1 緒言

前章では,これまでの足底圧力計測装置を分類し特徴を述べた.この章では,前章での 分析機器の一長一短から 1)簡便に計測が可能であること,2)低コストで試作が可能なこと を踏まえた足底圧計測装置を試作した.まず,本研究において試作した足底圧計測装置の 特徴を述べる.次いで,センサの配置位置,構成部品の詳細について述べる.

3.2 特徴

本計測装置の大きさは、小型で連続した計測が可能な計装靴のタイプとした(Table 3.1). 圧力の分布状態を把握することは有用な情報であるが、市販されている計測装置(計装靴) の計測箇所は 32~1000 以上と非常に多い.そのため解析や制御のための情報量の増加を招 き、煩雑化してしまい簡便に計測が行えない恐れがある.そこで、足底を部分毎に区切る ことにより計測箇所を削減した.また、計装靴は重量が増すと歩容の乱れを招く恐れがあ るため、超小型の圧力センサを用い計測装置自体の重量にも注意を払った.圧力センサは 本計測装置に必要とされる鉛直方向(Z軸方向)一軸の荷重のみの計測とした.これらの改 善により従来の足底圧(床反力)計測装置に比べ、コスト、計測箇所、及び大きさは非常 に優れ本目的に沿った形となった.

本装置はマジックテープで調整可能なサンダルとし,被測定者の足背の高さ,足の幅お よび足長に合わせて調節可能なものである.よって,個人の足の大きさや形による制約を 最小限に押さえた.また,歩行中でもずれることなく最適な状態を維持することが可能で ある.

今回試作した足底圧計測装置の特徴を以下に箇条書きにて示す.

- 1) コストは市販品の約 1/5~1/12
- 計測箇所は片足6箇所(全12箇所)
- 3) 鉛直(Z軸)方向一軸の荷重のみの計測
- 4) 計装靴のため連続した計測が可能
- 5) 足の大きさや形に制限されず装着可能

Table 3.1 Spec of Plantar Pressure measurement device

Length	[mm]	300	(270)
Width	[mm]	120	(96)
Height	[mm]	130	(6)
Weight	[mm]	300	(20)

) The inside of () is

an in sole part.

Fig. 3.1.a) Plantar Pressure Measurement Device

Fig. 3.1.b) Plantar Pressure Measurement Device

3.3 センサ配置位置

センサの配置位置は,踵部(Heel),ショパール関節部(Chopart's joint),第1中足骨頭 付近(Metatarsals),第4中足骨頭付近(Metatarsals),母趾部(Thumb),第3趾部付 近(Toe)の6箇所とした.Fig.3.2にセンサの配置図を示す.なお,配置位置の決定には以下 の要素を踏まえ検討し決定した.

実際の試作にあたっては,後述する被測定者[J]の足を参考にした.

a)足底の軌跡

足底の床反力作用点の軌跡は, 踵中央から足底の中央よりやや外側を通り, 第4,5中 足骨付近を経て内方へ進み, 母趾球(第1中足骨頭付近)を通り母趾に抜けていく⁵⁵.

b)体重負荷(足のアーチ)

体重負荷は一般的には踵,第1中足骨頭,第5中足骨頭を中心とした部分の3点に負荷が集中しているとされている.また,体重支持や動作時の力を緩和するために,足には 踵骨と第1,2,3中足骨を繋ぐ内側縦のアーチ(土踏まずを形成), 踵骨と第4,5中足骨を繋ぐ外側縦のアーチ,第1中足骨と第5中足骨を結ぶ横のアーチの3つのア ーチが構成されている.

c)足底圧分布の動的変化の測定⁵⁶

足底圧分布の動的変化を測定することにより,

- 1,床反力の詳細な解析が可能
- 2,足の部分的な歩行時の働きがわかる
- 3,微妙な体重支持(バランス)変化を客観的に評価できる

d)足趾の測定

足趾の機能として

- 1,姿勢の保持
- 2,歩行時の蹴りだし
- 3,左右方向の動きへの敏捷な対応
- 4,斜面や不整地への対応
- 5,爪先立ち

の重要な機能を備えるとともに,足趾の発達は下腿部や大腿部,腰等の筋肉も発達する 傾向があり運動能力の向上に繋がると考えられている⁵⁷.

e)センサの位置

Turu⁵⁸ら佐藤⁵⁹らが試作した,計測装置のセンサの配置例.

Fig. 3.2 Distribution of sensors

3.4 構成部品 (インソール部)

今回,作成に際し使用した部品を以下に示す(サンダルは除く).なお,全ての部品は市 販されているものを用いて構成した.

- ・ 圧力センサ (PS-10KAM183, 共和電業社製, 日本)
- ・ プラスティック製の板 (Pla-Plate 1.0mm,田宮株式会社製,日本)
- ・ スポンジ製インソール 24.0~27.0cm (サンペルカ インソール,木原産業株式 会社,日本)

圧力センサは,スポンジ製のインソールとプラスチック板の間に挟むことで保護した.

Fig. 3.3 Plantar pressure sensor

第4章 床反力(鉛直方向分力)計測

4.1 緒言

歩行時に床と足底との間に働く力は床反力と呼ばれ,一般的には床反力計が用いられる. 床反力計は最も広く普及の進んでいる歩行分析用機器の一つであり,床反力によるデータ は患者の重症度判別や治療効果の判定を行う判別・判定型評価に適している.また,床反 力データは直接的には運動の力学的側面を示すデータであるが,歩行の時間・距離因子, 及び重心の動きに集約された運動学的データを抽出することもでき,さらには筋張力推定 などを行うためのモデル解析にも用いられる重要なデータである⁶⁰.現在までに,様々な歩 行障害における床反力パターンの有効性が示唆されている.

床反力を計測するには,歩行路中にフォースプレート(床反力計)を埋め込む.その上 に,被測定者が乗ったときに加わる力を歪みゲージや,圧電素子によって電気的に検出さ れる.しかし,このような従来の方法では連続計測は難しく装置全体が大掛かりになるた め設置場所も限定される.また,1枚のフォースプレートは高価であるため臨床的に使うに は問題が多いとされている.以上の問題を解決するため,計装靴のような身体に装着して 床反力を測定する機器もいくつか報告されている.

本研究において試作した足底圧計測装置は,後者の計装靴のタイプにあたり片足に 6 個 の小型センサを踵部や中足骨部といった部分毎に配置・内蔵した装置である.そのため, センサ自体で全荷重を支えていないため通常の計測では,床反力ではなく踵部や母趾部と いった各部の圧力分布が得られることになる.

そこで,本章ではまず,足底圧計測装置による床反力の同定方法述べる,次いで,床反 力計を用い同定実験を行う.これは,足底圧計測装置の各々の圧力センサが担当する面積 を推定する.最後に足底圧計測装置のセンサから得られた圧力分布値を基に床反力データ (鉛直方向分力)が求められるか否かを検討する.

23

4.2 鉛直方向分力同定方法

足底圧計測装置は小型センサを踵部や中足骨部など部分毎に配置・内蔵した装置である ため各部分の圧力分布は測定できるがセンサ自体で床反力を測定することはできない.そ こで,各々の圧力センサから担当する部分の面積を推定することで足底圧力計測装置が受 ける鉛直方向分力を同定する(Fig 4.1).以下に,パーソナルコンピュータへ取り込んだ各点 の圧力を用いて,鉛直方向分力を求める方法を示す.鉛直方向分力(Y)は,次式のように各 センサ部の圧力(X_i)に圧力が加わる有効面積に相当する係数(A_i)を乗じたものの和である と考え

$$Y = \sum_{i=1}^{6} A_i X_i$$
 (4.1)

と,表記できる.

式(4.1)内の係数(A_i)を重回帰分析法により求める.

Fig.4.1 Image of active area

4.3 実験

具体的に有効面積 (偏回帰係数: A_i)を求めるための同定実験の実験方法を以下に記載する.

- 実験手順 -

床反力計には,共和電業製(EFP-S-2KNSA12)を1枚用いた.被験者は足底圧計測 装置を装着し,右足のみを床反力計に乗せる.左足は床上である.この時,体重の半 分を床反力計と足底圧計測装置で計測するため,体の中心線が床反力計と床の境界上 になるようにした(Fig.4.2).

被験者にはなるべく足位置を固定すること以外は特別な指示は与なかった.足底圧計 測装置の各圧力センサに変化を与えるため,姿勢を上下・前後・左右に変化してもら い床反力計の変化,及び足底圧計測装置の各圧力変化を計測した.姿勢の変化,計測 時間は被験者の任意とした.

得られたデータを元に重回帰分析法を用いて有効面積の係数(A_i)を求めた.その際, 床反力計からの鉛直方向分力[N]を従属変数(Y),足底圧計測装置の6個のセンサからの足底圧力値[kgf/cm2]を独立変数(X_1 ,……, X_6)として用いた(Fig. 4.1).なお, 重回帰分析には統計解析ソフト SPSS Ver.11.0を用い分析した.

被験者は,実験の目的および安全性について説明し,同意の得られた健常な成人男性 10 名であった.年齢は24.7±5.56歳,身長170.1±6.72[cm],体重58.7±9.15[kg], 足長24.7±5.56であった.

Force plate

Fig.4.2 Example of experiment scenery

4.4 結果,及び考察

Table 4.1 に被験者 10 名[A]-[J]の身長,体重,年齢,足長,利き足を示す.左端より足 長差の小さい順で表記する.なお,平均,標準偏差は以下の通りである.年齢 24.7±5.56 歳,身長 170.1±6.72[cm],体重 58.7±9.15[kg],足長 24.7±5.56.

Table 4.1Parameter of subjects

Subject	Α	В	С	D	E	F	G	Н		J
Height[cm]	160	163	163	171	168	170	175	177	173	181
Weight[kg]	52	62	46	55	50	56	65	56	75	70
Âge	22	21	24	24	40	22	21	25	24	24
Foot lengh[cm]	24	24	24	24.5	24.5	25	26	26	26	27.5
An able leg	Right									

4.4.1(a)鉛直方向分力同定結果

Table 4.2.1 - 4.2.10 に被験者[A-J]の足底圧計測装置と床反力計からの鉛直方向分力を用 い,重回帰分析にて導出した偏回帰係数(有効面積の係数(*A_i*))を示す.最大センサ数 6 個,全 63 通りの組み合わせである.左端より「踵部」,「第1中足骨頭部」,「第4中足骨頭 部」,「ショパール関節部」,「母趾部」,「第3趾部」の偏回帰係数,精度の高さを示す「R」 値,「センサの数」の順で表記している.なお,この一覧は精度の良い「R」値の降順で表 記した.

注) R 値・・・従属変数における観測値と予測値の間の相関係数.値の範囲は 0~1.値が小 さいときは従属変数と独立変数との間に線型の関係がないか,殆ど認められないことを意味 する.

Table 4.2.11 に被験者 10 名の組み合わせの平均を示す.なお「R」値の降順で表記した.

Fig.4.3.1 - 4.3.10 に被験者 [A-J] の足底圧力の各部分ごとの面積比率を示す.

Fig.4.3.11 被験者 10 名 [A-J] の足底圧力の各部分ごとの面積比率の平均を示す. Table 4.3 に被験者 [A-J] の足底圧力の各部分ごとの面積比率を示す.

Subject	Heel	Chopart's joint	Metatarsals	Metatarsals	Thumb	Тое
A	16.808	43.663	5.407	8.055	7.623	18.445
В	12.085	34.751	7.112	0.858	7.166	38.029
С	15.156	56.192	9.002	11.423	4.208	4.019
D	12.104	45.762	6.791	14.113	8.007	13.223
E	20.362	44.334	21.192	3.911	6.212	3.989
F	15.890	44.224	6.204	17.567	7.162	8.954
G	14.822	43.832	3.997	9.845	1.584	25.919
Н	18.200	25.531	8.142	21.407	8.615	18.105
I	14.828	44.774	19.307	14.712	2.000	4.379
J	17.876	42.220	5.534	13.616	9.319	11.435

Table 4.3 Plantar area rate of each subjects

4.4.1(b)鉛直方向分力同定結果考察

Table 4.1 より被験者の足長は 24.0~27.5cm と 3.5cm の差があり,また足底圧計測装置 は被験者 [J] の足長に合わせ試作したが他の被験者でも計測が可能であり,6 箇所全ての センサに偏回帰係数を求めることが出来た.このことから,足底圧計測装置単体での測定 に際し,被測定者の足長に左右されることなく計測が可能であると考えられる.

Table 4.2.1 - 4.2.10 より,全ての被験者のセンサの組み合わせにおいて上位に踵部が占 める傾向にあった.これは,矢状面内において踝より前方にある 4 つのセンサに対して後 方のセンサは踵部1のセンサしかない.そのため荷重が後方へ移動した際,唯一圧力を検出 できるセンサとなっている.比較的足長が短い被験者の中で踵部よりショパール部が上位 を占める傾向も見られた.これは,測定に際し足底圧計測装置に対する足の位置を爪先中 心として合わせたため,被験者の踵が足底圧計測装置のショパールから踵にかけて位置し たためと,さらに前述した理由から得られた結果だと考えられる.

Table 4.2.2, 4.2.4, 4.2.6, 4.2.7, 4.2.9, 4.2.10(被験者[B, D, F, G, I, J])においては, 踵部を除くセンサ数5個の組み合わせより踵部を含むセンサ数2個の組み合わせの方が良い精度結果が得られた.前述した内容を含め,以上のことから踵部のセンサは足底の圧力計測において必要なセンサと考えられる.

Table 4.2.11 より, センサ数が多いほど精度が高い結果が得られた.これは, センサの数 が増加することによりさらに詳細に有効面積の推定が可能であることを示唆しているもの と考えられる.また,上位8通りまでは被験者個別の組合せで上位10通り以内に入る組み 合わせである.その中に,センサ数が4個の組合せが3通り含まれていた.主に踵部,シ ョパール部,中足骨部,足趾部(もしくは,足趾部の代替に中足部が2箇所)の組み合わ せである.このことから,組み合わせ次第では,最適な4箇所で鉛直方向分力の計測が可 能であると考えられる.

Fig.4.3.11 より, 踵部の面積比の平均は 28.751 ± 2.618, ショパール部の面積比の平均は 77.324 ± 7.894, MP 部の面積比の平均は 16.852 ± 5.973, 外側部の面積比の平均は 21.001 ± 6.164, 母趾部の面積比の平均は 11.254 ± 2.700 小指部の面積比の平均は 26.636 ± 10.939 であった.

特に踵,母趾の標準偏差は2.7以下と非常に小さく,踵,母趾においては被験者の面積比率は非常に一致していた.踵部は荷重の係り易い部分であり,また前述したように必要な 部分であるため被験者間でばらつきが少なかったものと考えられる.

Marquardt によると, 踵部では体重の 20%, 第1 中足骨から母趾にかけては 17%, 第5 中足骨部付近では 13%の負荷がかかるとされている.また,他説では足部にかかる力を 12 に分け,その内6は踵,第1 中足骨頭では2,第2,3,4,5 中足骨頭では1 つずつである とされる⁶¹.以上の先行研究と比較すると,足部各部の面積比は適切な値が導出できたもの と考えられる.

Fig.4.3.1 - 4.3.10 より,被験者の身長,体重,足長,利き足などからは特徴は見出せなかった.

しかし, 被験者間での割合には踵よりショパール, MP より外側, 母趾より小指の割合が 高い傾向が見られた.

4.4.2(a) 鉛直方向分力計測結果

Fig.4.4.1(a) - 4.4.10(f)に足底圧計測装置の圧力センサに各々の偏回帰係数を付与した足 底圧計測装置による反力と,床反力計による反力の計測結果を示す.

なお,センサの組み合わせには被験者ごとに組合せで最も「R」値が高かった組み合わせ を用いたグラフである.横軸に時間 [msec],縦軸に反力 [N] を表している.

Fig.4.4.1(a) - 4.4.1(f)に被験者 [A] の足底圧計測装置による反力と,床反力計による反力 の計測結果を示す.上段より,センサ数6個(Table 4.2.1:No.1),センサ数5個(Table 4.2.1:No.2),センサ数4個(Table 4.2.1:No.4),センサ数3個(Table 4.2.1:No.10) センサ数2個(Table 4.2.1:No.31)である.

Fig.4.4.2(a) - 4.4.2(f)に被験者 [B]の足底圧計測装置による反力と,床反力計による反力の計測結果を示す.上段より,センサ数6個(Table 4.2.2:No.1),センサ数5個(Table 4.2.2:No.2),センサ数4個(Table 4.2.2:No.4),センサ数3個(Table 4.2.2:No.9)センサ数2個(Table 4.2.2:No.23)である.

Fig.4.4.3(a) - 4.4.3(f)に被験者 [C]の足底圧計測装置による反力と,床反力計による反力の計測結果を示す.上段より,センサ数6個(Table 4.2.3:No.1),センサ数5個(Table 4.2.3:No.2),センサ数4個(Table 4.2.3:No.5),センサ数3個(Table 4.2.3:No.12)センサ数2個(Table 4.2.3:No.19)である.

Fig.4.4.4(a) - 4.4.4(f)に被験者 [D]の足底圧計測装置による反力と,床反力計による反力の計測結果を示す.上段より,センサ数6個(Table 4.2.4:No.1),センサ数5個(Table 4.2.4:No.2),センサ数4個(Table 4.2.4:No.5),センサ数3個(Table 4.2.4:No.10)センサ数2個(Table 4.2.4:No.20)である.

Fig.4.4.5(a) - 4.4.5(f)に被験者 [E] の足底圧計測装置による反力と、床反力計による反力

の計測結果を示す.上段より,センサ数6個(Table 4.2.5:No. 1),センサ数5個(Table 4.2.5:No. 2),センサ数4個(Table 4.2.5:No. 4),センサ数3個(Table 4.2.5:No. 8) センサ数2個(Table 4.2.5:No. 22)である.

Fig.4.4.6(a) - 4.4.6(f)に被験者 [F] の足底圧計測装置による反力と,床反力計による反力 の計測結果を示す.上段より,センサ数6個(Table 4.2.6:No.1),センサ数5個(Table 4.2.6:No.2),センサ数4個(Table 4.2.6:No.4),センサ数3個(Table 4.2.6:No.11) センサ数2個(Table 4.2.6:No.22)である.

Fig.4.4.7(a) - 4.4.7(f)に被験者 [G] の足底圧計測装置による反力と,床反力計による反力 の計測結果を示す.上段より,センサ数6個(Table 4.2.7:No.1),センサ数5個(Table 4.2.7:No.2),センサ数4個(Table 4.2.7:No.4),センサ数3個(Table 4.2.7:No.11) センサ数2個(Table 4.2.7:No.23)である.

Fig.4.4.8(a) - 4.4.8(f)に被験者 [H]の足底圧計測装置による反力と,床反力計による反力の計測結果を示す.上段より,センサ数6個(Table 4.2.8:No.1),センサ数5個(Table 4.2.8:No.2),センサ数4個(Table 4.2.8:No.5),センサ数3個(Table 4.2.8:No.11)センサ数2個(Table 4.2.8:No.28)である.

Fig.4.4.9(a) - 4.4.9(f)に被験者 [I] の足底圧計測装置による反力と,床反力計による反力の計測結果を示す.上段より,センサ数6個(Table 4.2.9:No.1),センサ数5個(Table 4.2.9:No.2),センサ数4個(Table 4.2.9:No.4),センサ数3個(Table 4.2.9:No.8)
センサ数2個(Table 4.2.9:No.22)である.

Fig.4.4.10(a) - 4.4.10(f)に被験者 [J]の足底圧計測装置による反力と,床反力計による反力の計測結果を示す.上段より,センサ数6個(Table 4.2.10:No.1),センサ数5個(Table 4.2.10:No.2),センサ数4個(Table 4.2.10:No.4),センサ数3個(Table 4.2.10:No.14),センサ数2個(Table 4.2.10:No.23)である.

4.4.2(b) 鉛直方向分力計測結果考察

Fig.4.4.1(a) - 4.4.10(f)より,計測時間や,姿勢の変化は個人の任意としたが,いずれも 床反力計とかなり一致した波形が得られた.また,全ての被験者においてセンサ数 4 個以 上ではかなり一致した波形が得られた.特に,被験者 [J]の計測結果は顕著に現れている. 前項で述べたように,被測定者間の足長の差異に関わらずセンサ数 4 個までであればかな り高い割合で精度の良い計測が可能であると考えられる. 0点付近ではいずれの被験者でも,誤差が生じた.これは,足底圧計測装置で計測した結 果に有効面積を乗じて床反力を算出しているため,足底圧計測装置の僅かな値が増幅され, 顕著な誤差として現れたものと考えられる.

4.5 結言

床反力計を用いて,足底圧計測装置の鉛直方向分力を求めるための同定実験を行った. 結果,重回帰分析法を用いることで足底圧計測装置の各センサが担当する面積を求めるこ とが出来た.また,足長が異なる被験者でも各センサが担当する面積を推定することが可 能であり,被測定者の足長による制約を減らすことが出来た.推定した面積は先行研究と 比較してもかなり一致した良好な結果が得られた.

センサの組み合わせでは最適な 4 ヵ所を用いることで鉛直方向分力の計測は十分に行えることを明らかにした.しかし,今回足長の最低は24.0cm でありそれ以下の計測はされていない.よって,足長24.0cm 以下で使用する場合には留意が必要である.
第5章 関節モーメント

5.1 緒論

関節モーメントとは,関節周りの角度変化に関与する全ての筋張力(筋の力)の,関節 軸周りのモーメントの総和と定義される⁶².また,ある関節の遠位と近位をまたがって加わ る力(節間力)の大部分は筋張力であるが,そのほかに靭帯や関節包などの発生する受動 的張力なども含まれる.節間力が関節中心周りに発生するモーメントの(符号付)総和の ことを関節モーメントという⁶³.

従来,関節モーメントの計測にはサイベックスなどの筋力計測装置を用いた最大発揮筋 トルク計測が主流であった.そのため,歩行中や椅子からの立ち上がり動作などに発揮さ れる筋トルクの計測は不可能であった⁶⁴.

現在では,3次元動作計測システムと床反力計を用い計算することにより関節モーメント を算出している.近年,関節モーメントは筋活動状態を反映していることに着目し,筋電 位計測の1つとして用いられ歩行分析の上で有用な情報とされている.

しかしながら,関節モーメントを求めるためには,3次元動作計測システムや床反力計と いった大型の機器が必要であり,またそれらを設置する空間も必要となってくる.さらに, 3次元動作計測システムは空間位置を計測する装置であるため床反力計の座標系を一致さ せる必要がある.床反力計との座標のずれは致命的な誤差を生じさせる.座標系にずれが ある場合,計測対象であるモーメントアームは数 cm 程度の長さであるため深刻な誤差とな る.以上のように,従来の機器を用いて関節モーメントを計測する場合,簡便に関節モー メントを計測するのは困難であり,座標系のずれが計測結果に大きき影響してくる恐れが ある⁶⁵.

本研究において試作した足底圧計測装置は,圧力センサを分布させ配置させてあるため 足関節位置からセンサまでの距離は既知である.また,鉛直方向分力はせん断方向分力な どと比較して大きい事から,足底圧計測装置単体による足関節モーメントの推定を試みた.

本章ではまず,関節モーメントについて述べる.次いで,足底圧計測装置による足関節 モーメントの推定方法述べる.第4章にて求めた各々の圧力センサが担当する面積を用い て足底圧計測装置から足関節モーメントを推定する.さらに同実験にて3次元動作計測シ ステムと床反力計を用いて求めた足関節モーメントと比較検討を行う.最後に足底圧計測 装置から足関節モーメントの推定が可能か否かを検討する.

5.2 関節モーメントの概要

関節モーメントは,関節周りの角度変化に関与する全ての筋張力の,関節軸周りのモー メントの総和であるため表面筋電図にほぼ対応していると言われる.厳密に言えば,筋電 図は筋の収縮要素に対応しているが,関節モーメントは

1,筋の収縮要素が活動してからモーメント発生まで時間がかかる

- 2,筋電図は必ずしも筋群全体を代表しない
- 3, 関節角度によりレバーアーム長が変化する
- 4,筋の収縮速度によって筋電位と収縮力の関係が変化する

などの影響で必ずしも一対一ではない66.

さらに,関節モーメントの短所として拮抗筋が同時収縮を起こし同じ張力であった場合, 筋張力自体が0なのか,それとも拮抗筋によって見かけ上が0なのかの判別ができない. また,共同筋のうちの個々の筋力の発生するモーメントを判別できない.

例として,底屈方向への足関節モーメントには,単関節筋のヒラメ筋と二関節筋の腓腹筋の筋力が寄与するが,単関節筋と二関節筋の区別はつけられない.また,節間力には筋力の他に靭帯や関節包などの関節の周囲の受動的な組織が発生している力も含まれることも考慮しなければならない⁶⁷.

しかしながら,関節モーメントは筋電位計測と比較して力学量[Nm]として計測できる利 点がある.これは,効率的な歩行リハビリテーションを目指すための定量的な指標となる.

5.3 足関節モーメントについて

健常者では足背屈モーメントは円滑な接地と接地後の安定した制動と体支持の補助的な 役割を果たす.足底屈モーメントは駆動(推進)期に身体を前方に蹴り出す働きを持ち, 底屈モーメントが大きくなるにつれ身体が前方へより大きく蹴り出され,歩行スピードが 速くなるとされている⁶⁸.また,高齢者では,踵接地期における足関節の底屈角の減少,蹴 り出し時における足関節の底屈角可動域の減少などが挙げられる.そのため,健常者と比 較して,歩幅,歩行スピードが減少する⁶⁹.上記のように,足関節,及び足関節モーメント は歩行機能において重要な関節に位置づけられている.

5.4 足関節モーメント推定方法

関節モーメントの計測には 3 次元動作計測システムと床反力計を組み合わせて計測し算 出する手法が一般的に用いられている.算出には Fig.5.1 に示すようなプロセスを経て計算 される.しかし足底圧計測装置は,圧力センサで鉛直方向のみの分力しか計測できないた め,従来の計算式では足関節モーメントの推定は出来ない.また,なるべく簡便に関節モ ーメントを推定すること目的とするため,従来の算出方法を簡略化した数式を用いて足関 節モーメントを推定する.

まず,従来の3次元動作計測システムと床反力計からのデータを基に足関節モーメントを 計測する手法を示す.次に,足底圧計測装置から足関節モーメントを推定する方法を示す.

Fig. 5.1 Joint moment calculation process

)臨床歩行分析研究会 編:関節モーメントによる歩行分析,(1997),17,医師薬出版 掲 載図を抜粋 一部変更

5.4.1 足関節モーメント推定方法

(3次元動作計測システムと床反力計からの算出方法)

Fig.5.2 に立脚期に足部にかかる力の矢状面内での様子を示す. 各記号は以下のとおり.

N_{x}	:床反力の前後方向成分
N_y	:床反力の鉛直方向成分
(x_N, y_N)	∶外力座標
(x_{Am}, y_{Am})	:足部質点座標
(x_A, y_A)	:足関節座標
9	:足関節角度
m	:足部質量

Fig. 5.2 Force balance in the foot at stance phase

足関節周りのモーメント (M_A) は

$$M_{A} = I\ddot{\theta} + m_{x}\ddot{x}(y_{A} - y_{Am}) + m_{y}(\ddot{y} + g)(x_{Am} - x_{A})$$
$$-N_{x}(y_{A} - y_{N}) - N_{y}(x_{N} - x_{A})$$
(4.1)

と,表記できる.

5.4.2 足関節モーメント推定方法

(足底圧計測装置単体からの算出方法)

5.4.1 で示したように従来は,足関節モーメント導出のため複雑な計算を行ってきた.ここでは本研究の命題である「簡易」に求めるために以下の数式を用いて足関節モーメントの推定を行う.まず,足底圧計測装置は圧力センサのみを鉛直方向に向けて配置しているため,計測装置本体では床反力前後方向分力(N_x),及び足関節角度の(θ)の計測は不可能である.よって,ここでは4.1式の第1項($I\ddot{\theta}$),および第4項($N_x(y_A - y_N)$)は省略する.また,第2項($m_x\ddot{x}(y_A - y_{Am})$),および第3項($m_y(\ddot{y} + g)(x_{Am} - x_A)$)は第5項($N_y(x_N - x_A)$)の鉛直方向分力に比べ十分小さいと考えられ無視する.

よって,

$$M_A \cong N_y(x_N - x_A) \tag{4.2}$$

となる.

次に,足底圧計測装置は圧力センサをx方向に向かって6個配置しているので,床反力鉛 直方向分力(N,)は6分割される.

よって,簡略化された立脚期に足部にかかる力の矢状面内は Fig.5.2 に示すようになる.

$A_1 X_1$, $A_i X_i$: 各センサにかかる床反力の鉛直方向成分
$(x_1, y_1), (x_i, y_i)$	∶外力座標
(x_A, y_A)	:足関節座標

Fig. 5.3 Force balance in the foot at stance phase

前章で得られた各センサの偏回帰係数(有効面積: A)を用いれば,床からの半力(N_y) は Fig. 5.3 のように各センサの位置に加えられる鉛直方向分力($A_i X_i$)の合力であると見な せる.各センサの足関節に対する位置は既知であるので,足関節周りのモーメント(M_A) は慣性力を無視すれば,

$$M_{A} \cong \sum_{i=1}^{6} A_{i} X_{i} (x_{i} - x_{A})$$
 (4.3)

となる.

なお,足関節位置から各センサまでの相対位置($(x_1 - x_A), \dots, (x_i - x_A)$)はセンサの 取付け位置から定数として決定する.

5.5 実験

実験方法

以下に,実験により足底圧計測装置からパーソナルコンピュータへ取り込んだ各点の圧力を用いて,足関節モーメント(*M*_A)を求めるための実験方法を以下に記載する.

- 実験手順 -

被験者に足底圧計測装置を装着してもらい,踝(原点)の位置を決定し各センサとの距離を決定する.実験前後で原点位置の確認を行い原点の位置にずれがないことを確認する.

足底圧計測装置によって得られたデータを比較検証するため,3次元動作計測シス テムと床反力計を設置する.約7mの歩行路中に床反力計1枚(60mm×90mm) を敷設し,その周囲に3次元動作計測システムを設置する(Fig.5.4).

3次元動作計測システムには Quick MAG (応用計測研究所)を,床反力計には 共和電業製(EFP-S-2KNSA12)を1枚用いる.被験者は,足底圧計測装置を装着 した状態で歩行をしてもらう.

自由歩行においては,被験者にはなるべく自然な歩行を行うよう心がけてもらうた め歩行中に一度だけ右足が必ず床反力計に乗る指示だけを与える.規制・負荷歩行 においては自由歩行と同じように歩行中に一度だけ右足が必ず床反力計に乗る指示 だけを与え,各歩行に対してさらに特別な指示を与える.全ての歩行において出来 るだけ自然な歩行ができるまで歩行練習を繰り返した後,実験を行う.

前章において重回帰分析で求めた有効面積の係数(*A_i*)と, において決定した踝から各センサまでの距離,計測により得られた圧力値を式(4.3)に代入し足関節モーメントを求めた.

被験者は,実験の目的および安全性について説明し,同意の得られた年齢23歳, 身長180[cm],体重70[kg]の健常な成人男性1名であった.

Fig.5.4 Example of experiment scenery

5.6 実験結果,および考察

以下に,各歩行時における実験結果,および考察を示す.

各グラフの横軸に時間 [msec],縦軸に 1/10 の反力 [1/10 N],モーメント [Nm] を表 している.なお,Quick MAG と床反力計からの足関節モーメント算出には床反力鉛直方 向分力の他に,足底圧計測装置では無視した床反力前後分力,足部質量,慣性モーメント, 加速度,角加速度,重力を与え算出しており,より正確な値を推定してある.

5.6.1 足底圧計測装置による

自由歩行時足関節モーメントの推定

(a)結果

Fig. 5.5.1(a)-5.5.3(e) に自由歩行の足底圧計測装置による反力と足関節モーメント, 床反力計による反力と3次元動作計測システム(以下,Quick MAG :応用計測研 究所)による足関節モーメントの計測結果を示す.各々の上段 Fig. 5.5.1(a),5.5.2(a), 5.5.3(a) よりセンサ数6個(Table 4.2.10:No.1),センサ数5個(Table 4.2.10:No.2), センサ数4個(Table 4.2.10:No.4),センサ数3個(Table 4.2.10:No.14),センサ 数2個(Table 4.2.10:No.23)である.

(b)考察

踵接地時に底屈モーメント(負のモーメント)を発生し,その後足底接地を境に背 屈モーメントを発生し踵離地でピークを迎える.これは先行研究と一致した波形であ った.また,床反力も2峰性の波形を描くなど特徴ある波形を描くことが出来た.

足底圧計測装置による自由歩行時の床反力波形は,センサ数4個までは床反力計に 一致した波形が得られた.また,センサ数4個までであれば足関節モーメントも,Quick MAG と床反力計との計算結果に近い波形が得られた.しかし,センサ数が3個以 下になると精度は著しく低下した.これは,足底圧計測装置による床反力を導出のた めのパラメータ数が少なくなったため各センサの有効面積の精度が落ちたためと考え られる.ここで示した図すべてにおいて,接床直後に差異が見られた.Quick MAG と床反力計との計算結果では,足関節底屈モーメントは計測されていないが足底圧計 測装置では底屈モーメントを計測した.この理由は,以下の事が考えられる.

足底圧計測装置に起因する誤差

Quick MAG と床反力計の座標系の誤差

マーカ取り付け位置による誤差

足底圧計測装置に起因する誤差

通常,1歩行周期が1000[msec]程度であれば,足関節モーメントは踵接地から足 底接地までは底屈モーメントが発生し,踵離地から足先離地まで背屈モーメントが 発生するとされている.これより遅い歩行になると,接床が足底接地に近くなり底 屈モーメントが消失するとされている.今回の実験の自由歩行では十分な歩行距離 がとれなかったため前述した例と比較して,1歩行周期に 1200[msec]を要す遅い歩 行であった.そのため,接床が足底接地に近い状態であったと考えられ,床反力の ベクトルは足関節上,若しくは足関節より前方上を通ったと考えられる.よって, 床反力計と Quick MAG の計算結果からは足関節モーメントが計測できなかった ものと考えられる.

また,足底圧計測装置は足関節を挟み,前部に5つのセンサに対して,後部には1 つのセンサ配置となっている.つまり,背屈モーメント時は,細分化され配置され た前方の5つのセンサが相互に代償し補完することになる.よって,精度の高い計 測が可能であり,計算結果に近似した波形となったと考えられる.しかし,後部は1 つのセンサで計測しているため,周囲のセンサの代償,及び補完が得られない支配 的な存在となる.よって,踵接地時は周囲の複数のセンサによる補完が得られず, 踵部1つのセンサで底屈モーメントが決定したためだと考えられる.

Quick MAG にと床反力計の座標系の誤差

5.1 でも述べたが,3次元動作計測システムは空間位置を計測する装置であるため 床反力計の座標系を一致させる必要があり,床反力計との座標のずれは致命的な誤 差を生じさせる.座標系にずれがある場合,計測対象であるモーメントアームは数 cm 程度の長さであるため誤差に繋がったと考えられる.実際,足底圧計測装置のセ ンサの足関節からの相対距離のパラメータを変化させた場合,Quick MAG にと床 反力計の計算結果に非常に近い波形を得ることが出来たことから,座標系の誤差に よる影響も考えられる,

マーカ取り付け位置による誤差

マーカの取り付け位置と解剖学的関節中心が一致しなかったため誤差が生じたものと考えられる.

5.6.2 足底圧計測装置による

規制・負荷歩行時(すり足歩行)足関節モーメントの推定

(a)結果

Fig. 5.5.4(a)-5.5.6(e) にすり足での歩行の足底圧計測装置による反力と足関節モー メント,床反力計による反力と3次元動作計測システム(以下,Quick MAG :応 用計測研究所)による足関節モーメントの計測結果を示す.各々の上段 Fig. 5.5.4(a), 5.5.5(a),5.5.6(a) よりセンサ数6個(Table 4.2.10: No.1),センサ数5(Table 4.2.10: No.2), センサ数 4 個 (Table 4.2.10: No.4), センサ数 3 個 (Table 4.2.10: No.14), センサ数 2 個 (Table 4.2.10: No.23) である.

(b)考察

床面を擦るような歩行であるため,自由歩行のような起伏に富まない波形が得られた.具体的には,床反力では踵接地,足先離地における力は少なく全体的に台形の波形を描き,関節モーメントでは踵接地時の底屈モーメントの発生が認められず,その後緩やかに背屈モーメントへ移行する特徴ある波形であった.

足底圧計測装置によるすり足歩行時の床反力波形は,Fig.5.5.4(a) - 5.5.4(c)までは床 反力計に一致した波形が得られた.また,同じく足関節モーメントも,Quick MAG と床反力計との計算結果に近い波形が得られた.この理由として次のことが考えられ る.足底圧計測装置はサンダルの厚みがあるため,実際の床反力より床からは数十 mm 高い位置にある.そのため,すり足など遊脚期から踵接地にかけて足関節の背屈が少 なく接床した場合,自由歩行などと比較して接床した瞬間の接地面積は大きくなる. 接地面積が大きくなると床反力計による床反力作用点はより前方(進行方向)になり, 足底圧計測装置のセンサ位置とのずれが少なくなるため,自由歩行時に比べかなり高 い精度で一致したものと考えられる.

しかし, Fig.5.5.4(a)-5.5.4(c)を除くその他の図では精度は著しく低下した. 理由としては以下の事が考えられる.

センサ数の減少による有効面積の精度の低下

せん断力による影響

センサ数の減少による有効面積の精度の低下

前述した自由歩行と同じくセンサ数が低下すると有効面積の精度が低下し波形に 差が生じたと考えられる.

せん断力による影響

自由歩行と異なり,床面を擦るような歩行であったため足関節モーメント量に鉛 直方向の影響だけでなくせん断力の影響が大きく関与したものと考えられる.

5.6.3 足底圧計測装置による

規制・負荷歩行時(小刻み歩行)足関節モーメントの推定

(a)結果

Fig. 5.5.7(a)-5.5.7(e) に小刻みでの歩行の足底圧計測装置による反力と足関節モー メント,床反力計による反力と3次元動作計測システム(以下,Quick MAG :応 用計測研究所)による足関節モーメントの計測結果を示す.上段 Fig. 5.5.7(a) よりセ ンサ数 6 個 (Table 4.2.10 : No.1), センサ数 5 (Table 4.2.10 : No.2), センサ数 4 個 (Table 4.2.10 : No.4), センサ数 3 個 (Table 4.2.10 : No.14), センサ数 2 個 (Table 4.2.10 : No.23) である.

(b)考察

通常の歩行より歩幅を小さくした歩行を行ったため,1歩行周期が非常に短い波形を 描くことが出来た.

足底圧計測装置による小刻みでの歩行時の床反力波形は,センサ数 4 個までは床反 力計に一致した波形が得られた.しかし,足関節モーメントは Quick MAG と床反 力計との計算結果より低い波形となった.センサ数が変化してもこの状態は殆ど同じ 傾向にあるため,センサ数による影響よりはせん断力による影響だと考えられる.こ れは,前述したが接床時に足部前方(足趾,中足骨付近)でブレーキをかけるような 歩容であったことによる影響を受けたと考えられる.

5.6.4 足底圧計測装置による

規制・負荷歩行時(大股歩行)足関節モーメントの推定

(a)結果

Fig. 5.5.8(a)-5.5.8(e) に大股での歩行の足底圧計測装置による反力と足関節モーメ ント,床反力計による反力と3次元動作計測システム(以下,Quick MAG :応用 計測研究所)による足関節モーメントの計測結果を示す.上段 Fig. 5.5.8(a) よりセン サ数6個(Table 4.2.10: No.1),センサ数5(Table 4.2.10: No.2),センサ数4個(Table 4.2.10: No.4),センサ数3個(Table 4.2.10: No.14),センサ数2個(Table 4.2.10: No.23)である.

(b)考察

床反力,足関節モーメントともに一致した波形を描くことが出来た.

足底圧計測装置による大股による歩行時の床反力波形は,センサ数4個までは床反力 計に一致した波形が得られた.また,センサ数4個までであれば足関節モーメントも, Quick MAG と床反力計との計算結果に近い波形が得られた.しかし,センサ数が3 個以下になると精度は著しく低下した.これは,自由歩行時と同じ現象であること, すり足歩行のようにせん断方向の力は考えにくいことから,誤差の原因は自由歩行時 の原因と同じだと考えられる.

5.6.5 足底圧計測装置による

規制・負荷歩行時(後ろ向き歩行)足関節モーメントの推定

(a)結果

Fig. 5.5.9(a)-5.5.9(e) に後ろ向きでの歩行の足底圧計測装置による反力と足関節モ ーメント,床反力計による反力と3次元動作計測システム(以下,Quick MAG : 応用計測研究所)による足関節モーメントの計測結果を示す.上段 Fig. 5.5.9(a) より センサ数6個(Table 4.2.10: No.1),センサ数5(Table 4.2.10: No.2),センサ数4 個(Table 4.2.10: No.4),センサ数3個(Table 4.2.10: No.14),センサ数2個(Table 4.2.10: No.23)である.

(b)考察

床反力,足関節モーメントともに一致した波形を描くことが出来た.

足底圧計測装置による後ろ向きによる歩行時の床反力波形は,センサ数 4 個までは床 反力計に一致した波形が得られた.また,センサ数 4 個までであれば足関節モーメン トも,Quick MAG と床反力計との計算結果に近い波形が得られた.しかし,センサ 数が 3 個以下になると精度は著しく低下した.これは,自由歩行時と同じ現象である こと,すり足歩行のようにせん断方向の力は考えにくいことから,誤差の原因は自由 歩行時の原因と同じだと考えられる.

5.6.6 足底圧計測装置による

規制・負荷歩行時(ぶん回し歩行)足関節モーメントの推定

(a)結果

Fig. 5.5.10(a)-5.5.10(e) にぶん回し歩行の足底圧計測装置による反力と足関節モー メント,床反力計による反力と3次元動作計測システム(以下,Quick MAG :応 用計測研究所)による足関節モーメントの計測結果を示す.上段 Fig. 5.5.10(a) より センサ数6個(Table 4.2.10: No.1),センサ数5(Table 4.2.10: No.2),センサ数4 個(Table 4.2.10: No.4),センサ数3個(Table 4.2.10: No.14),センサ数2個(Table 4.2.10: No.23)である.

(b)考察

床反力,足関節モーメントともに一致した波形を描くことが出来た.しかし,誤差 も大きかった.センサ数4個までのグラフであればセンサの数に限らず波形の形は一 致していた.センサ数が3個以下になると精度は著しく低下した.これは,自由歩行 時と同じ現象であること,すり足歩行のようにせん断方向の力は考えにくいことから, 誤差の原因は自由歩行時の原因と同じだと考えられる.

5.6.7 足底圧計測装置による

階段昇降時(上り)足関節モーメントの推定

(a)結果

Fig. 5.5.11(a)-5.5.11(e) に階段の昇降(上り)の足底圧計測装置による反力と足関節 モーメント,床反力計による反力と3次元動作計測システム(以下,Quick MAG : 応用計測研究所)による足関節モーメントの計測結果を示す.上段 Fig. 5.5.11(a) セ ンサ数6個(Table 4.2.10: No.1),センサ数5(Table 4.2.10: No.2),センサ数4個 (Table 4.2.10: No.4),センサ数3個(Table 4.2.10: No.14),センサ数2個(Table 4.2.10: No.23)である.

(b)考察

床反力,足関節モーメントともに一致した波形を描くことが出来た.

一部においては先行研究と一致した波形を描いた.足底圧計測装置による階段昇降の 床反力波形は,センサ数4個までは床反力計に一致した波形が得られた.また,セン サ数4個までであれば足関節モーメントも,Quick MAG と床反力計との計算結果 に近い波形が得られた.しかし,センサ数が3個以下になると精度は著しく低下した. これは,自由歩行時と同じ現象であること,すり足歩行のようにせん断方向の力は考 えにくいことから,誤差の原因は自由歩行時の原因と同じだと考えられる.

5.6.8 足底圧計測装置による

階段昇降時(下り)足関節モーメントの推定

(a)結果

Fig. 5.5.12(a)-5.5.12(e) に階段昇降(下り)の足底圧計測装置による反力と足関節モーメント,床反力計による反力と3次元動作計測システム(以下,Quick MAG : 応用計測研究所)による足関節モーメントの計測結果を示す.上段 Fig. 5.5.12(a) センサ数6個(Table 4.2.10: No.1),センサ数5(Table 4.2.10: No.2),センサ数4個(Table 4.2.10: No.4),センサ数3個(Table 4.2.10: No.14),センサ数2個(Table 4.2.10: No.23)である.

(b)考察

床反力,足関節モーメントともに一致した波形を描くことが出来た. は先行研究と一致した波形を描いた.足底圧計測装置による階段降段の床反力波形は, 床反力計の波形よりはるかに下回っていた.また,足関節モーメントも,Quick MAG と床反力計との計算結果よりはるかに下回った結果であった.

最後に本研究で用いた3次元動作計測システムの精度をTable 5.1 に示す.

Product name	True value	Direction	Average value	Standard deviation	Ave.Abs.	Max Err+	Max Err-
		Z	899.2	0.94	0.95	1.66	-3.47
Quick MAG	800 O	Х	897.8	1.55	2.25	2.48	-5.68
[OKK INC]	099.9	Y	900.4	2.26	1.67	8.90	-3.18
		(1993)		2.8	3.2	9.5	-4.6

Table	5.1	Distance	accuracy	of	f 3-dimensional 1	measurement	S'	ystem

A numerical unit is mmmm
 Ave.Abs. : The average of an absolute value with error
 Max Err+ : Maximum value - True value
 Max Err- : Minimum value - True value
 Z is Upper and lower sides, X is Advance, Y is Right and left
 (1993) is the error of the vertical direction by the result of 1993.

) 臨床歩行分析研究会 編: 関節モーメントによる歩行分析, 医師薬出版, 1997, p201 掲載表を抜粋 一部変更

5.7 結言

足底圧計測装置単体を用いて,様々な歩行パターンの時の床反力,足関節モーメントの 計測を行い,従来用いられてきた機器と比較検討した.

足底圧計測装置のセンサ数は,多いほど従来の機器の計測結果と一致した.また,セン サの配置位置次第ではセンサの数は4個からでもかなり高い精度で計測が可能であること を確認した.自由歩行や,すり足での歩行ではかなり高い割合で波形が一致したが,階段 の昇降では波形は一致していたが誤差が大きく検討の余地を残した.これらは,センサの 配置位置,もしくは偏回帰係数の値を変えることで改善されるものと考える.

従来の計測装置・方法と足底圧計測装置単体,双方において,全く異なる手法で足関節 モーメントの計測を行ったがどちらも先行研究に一致した波形を描くことが出来た.また, 先行研究の例のない歩行パターンでも双方の波形はかなり一致したことから,計測結果自 体に間違いは少ないと思われる,

誤差の要因は,足底圧計測装置,3次元動作計測システム,マーカの取り付け位置,せん 断力による影響など様々な要因が考えられる.今回は,足底圧計測装置から足関節モーメ ントを計測することが可能か否かのみを検討したため前述した誤差要因を事前に考慮しな かった.今後,この誤差要因を限定する検定作業を必要とするものと考えられる.

第6章 結論

6.1 緒論

ここでは,5章までの一連の研究内容について全体を通して整理統括する.まず,第1章 から第5章までの研究内容概略を示す.次に足底圧計測装置の有用性について検討し,最 後に今後の課題,及び結論を述べる.

6.2 研究成果概略

第1章では,まずヒトの歩行機能の重要性,及びそれを維持するためのリハビリテーションの重要性を示唆した.次に,リハビリテーションにおける運動分析の役割を示し現在 行われている手法,機器について問題点を挙げた.

第2章では,現在までに研究報告,流通している足底圧力計測装置を機能,形態,計測 目的等に応じて分類し説明を行った.また,計測手法の現状と課題を述べた.

第3章では,第2章において得られた知見を考慮し本研究目的に沿う足底圧計測装置を 試作した.まず,足底圧計測装置の特徴を述べ,次にセンサの配置位置について先行研究 に基づき複数の要因から配置位置を決定した.

第4章では,足底圧計測装置による床反力の推定をおこなった.まず,足底圧計測装置 で床反力を推定するための手法を提案した.次に既に市販されている床反力計を用いて, 足底圧計測装置と同定を行い,足底圧計測装置単体から床反力が計測可能か否かを検討し た.結果,センサ4個までであれば高い精度で計測可能であることを示した.

第 5 章では,足底圧計測装置による足関節モーメントの推定を行った.まず,足底圧計 測装置で足関節モーメントを推定するための手法を説明した.次に,実験を行い3次元動 作計測システムと床反力計からの足関節モーメント算出値と足底圧計測装置単体からの算 出値を比較・検討した.結果,自由歩行においてはセンサ数4 個以上では非常に一致した 波形が得られ十分な精度で計測可能なことを示した.また,規制・負荷など特異な歩行に おいてもセンサ数が4個以上であれば一致した計測が行えることを示した.

6.3 足底圧計測装置の有用性

床反力において,現在までの計測装置は足底全てを支持した形で計測していたため,装置自体が大型化,高価となっていた.関節モーメントの計測では,3次元動作計測システム と床反力座標系との空間座標の一致が難しく,計測準備に多大な時間と労力を必要として いた.このように,従来の計測装置・手法では手軽に用いることは困難であった.

そこで今回,試作した足底圧計測装置単体で,床反力,及び足関節モーメントの計測を 推定する方法を用いて計測を行った.足底圧計測装置を用いた推定による計測でも高い精 度で計測が可能であることを実験を通して示した.また,足底圧計測装置は本研究の命題 であった,簡便にかつ低コストで運動分析を行うことができ,リハビリテーションなどに おいて有用な装置であると考えられる.

また,被測定者の足長,及び歩行形態の違いに左右されることなく計測できることも示し,その汎用性も含め有用な装置である.

6.4 今後の課題

残された研究課題として,誤差の要因がある.本研究において関節モーメントの導出の 際,十分に足底圧計測装置,3次元動作計測システム,マーカの取り付け位置,せん断力に よる影響など様々な要因を考慮しなかった.今回は,足底圧計測装置から足関節モーメン トを計測することが可能か否かを主題として検討したため上記にあげた誤差要因を事前に 考慮しなかった.今後,この誤差要因を減らしていくことが必要と思われる.また,より 精度の高い計測値を得るために,今後実験を重ねさらにその有用性を実証していく必要が あると考えられる.同時に今回の結果よりセンサの配置場所,数などの機器の改良も必要 であると考えられる.

また,本研究では足関節モーメントだけに限定したが,実際リハビリテーションにおい て膝・股関節モーメントの評価も重要である.よって,今後は膝関節・股関節のモーメン トも簡便に計測を行える手法を考案する必要があると考える.

6.5 結論

常時二足歩行を会得したヒトにとって歩行機能は,手の自由度を確保する上で重要な機 能である.しかしながら,近年の世界的に類を見ない速さで進行する高齢社会に後押しさ れ歩行機能を維持・回復するためのリハビリテーションの頻度は増してきている.さらに 現在まで主流であった目視,観察による主観的評価から,客観的評価のために分析装置を 用いて定量的な評価が行われる傾向にある.しかし,運動分析を行う装置は一般には高価 であり,また計測・解析には時間を要するなど簡便に計測を行うことは困難であった.

今回用いた足底圧計測装置は,以上のような困難さ,高価さのない計測装置として試作 した.結果,1)センサ自体で全荷重を支えず足裏を部分ごとに計測し推定により床反力を求 めることで従来の計測装置の 1/10 程度のコストに抑えた,2)床反力鉛直方向分力は,せん 断力,慣性モーメントに比べ十分大きいことに着目し足底圧計測装置単体から足関節モー メントを求めることで従来の計測の煩雑さを解消した.よって,これらの知見は,近い将 来歩行障害を抱える人々の診断や歩行指導に有効に活用可能であると考えられる.また, 簡易な運動分析装置としてリハビリテーションの他にスポーツ工学やアミューズメント機 器へのセンサとしても応用が可能である.

謝辞

本研究をまとめるにあたり,終始懇切なるご指導賜りました高知工科大学教授 井上喜 雄博士に謹んで深甚の感謝の意を表します.また,副指導教員である高知工科大学教授 王 碩玉博士には,研究に対する貴重なご意見を賜りました.ここに深く感謝の意を表します. 高知工科大学助手 甲斐義弘博士には,本論文および実験についての有益なご助言を賜り ました.ここに深く感謝の意を表します.また,高知工科大学大学院知能機械コース博士 課程前期 川澤延弘氏には3次元動作計測システム(Quick MAG)によるデータを提 供して頂きました.この場を借りて厚くお礼を申し上げます.実験にご協力を頂きました 高知工科大学知能機械力学研究室メンバーの皆様にも,改めて感謝の意を表します.

さらに,徳島大学医学部保健学科 谷岡哲也博士,及び細木ユニティ病院院長 高坂要 一郎博士には,本研究を進めるにあたり貴重なご意見を賜りました.ここに深甚の感謝の 意を表したいと思います.

参考文献

¹臨床歩行分析研究会 編,関節モーメントによる歩行分析,(1997),167,医師薬出版 ²野田雄二,足の裏からみた体,(1998),51,講談社

3野田雄二,足の裏から見た体,(1998),42,講談社

⁴石山育郎・鈴木政登・町田勝彦,中高年者の転倒と筋力および姿勢保持機能との関連,日本体力医学会,810

5鈴木みずえ・浜砂貴美子・満尾恵美子,高齢者の転倒ケア,(2001),5-6,医学書院

⁶藤野ユリ子・坂本洋子・高川茂・出口由美・鶴田忍・鶴賀里美,精神科病棟における筋力 トレーニングの意義の検討,産業医科学会,107

⁷黒川幸雄・高橋正明・鶴見隆正・山本澄子,理学療法 MOOK6 運動分析,(2000),11-12, 三輪書店

⁸黒川幸雄・高橋正明・鶴見隆正・山本澄子,理学療法 MOOK6 運動分析,(2000),19, 三輪書店

9臨床歩行分析研究会 編,関節モーメントによる歩行分析,(1997),3,医師薬出版

¹⁰石田明允・宮崎信次・林豊彦・廣川俊二・阿江通良 ,身体運動のバイオメカニクス ,(2002) , 109 , コロナ社 ,

11野田雄二,足の裏からみた体,(1998),51,講談社

¹²石田明允・宮崎信次・林豊彦・廣川俊二・阿江通良,身体運動のバイオメカニクス,(2002), 112,コロナ社

¹³石田明允・宮崎信次・林豊彦・廣川俊二・阿江通良,身体運動のバイオメカニクス,(2002), 112,コロナ社

¹⁴大和淳司・嶌田聡・大塚作一・伴野明,大面積圧力センサを用いた歩行パターン計測装置の開発,電子情報通信学会論文誌 D- ,Vol.J84-D- No.2 (2001), 380-389,

¹⁵ 嶌田聡・大塚作一・伴野明・新井雅信, 圧力センサによる歩行運動分析装置の検討, 信学 技報, MBE96-138 (1997), 107-113

¹⁶嶌田聡・佐藤敦・大塚作一・新井雅信,足圧中心軌跡による健常者の歩行分析,信学技報, MBE97-89 (1997), 21-28

¹⁷大和淳司・数藤恭子・伴野明・石井健一郎,圧力センサマットを用いた足圧画像からの個 人識別の検討,信学技報,PRU94-61 (1994),15-22

¹⁸澤田義則・伊田紀世・坪井安広・加藤好道・新井雅信・大和淳司・数藤恭子・伴野明,大 面積足圧センサによる歩行分析,理学療法学,23巻(1996),278

¹⁹http://www.kamata.co.jp/

²⁰http://www.henley-jp.com/

²¹八並光信・上迫道代・遠藤敏・寺門早苗・大木修子・須藤彰一・今井覚志・小林賢・市川 雅彦・正門由久・千野直一,簡易歩行分析装置(GAITRite)及び FAP(Functional Ambulation Profile)に関する検討,理学療法学,25巻(1998),598

²²新津靖・野田雄二,感光圧の画像処理による接触面圧力分布の測定,日本機械学会論文集, 52-476,C(1986),1141-1147

²³中川博文,高橋賞:光弾性を用いた足圧分布測定法(第1報,足底各部に働く力の方向床面に対する角度と大きさの同時測定法に関する研究),日本機械学会論文集,52-480,A (1986),2109-2113

²⁴中川博文・高橋賞,光弾性を用いた足圧分布測定法(第2報,健常児,ダウン症候群児の 歩行解析への応用),日本機械学会論文集,53-488,A(1987),834-842

²⁵中川博文・飯沼和三・高橋賞,光弾性を用いた足圧分布測定法の医学への応用(ダウン症候群児立位時の足の力学的特性の解析),日本機械学会論文集,56-529,A(1990),102-106 ²⁶中川博文・高橋賞,光弾性を用いた足圧分布測定法(第1報,足底各部に働く力の方向床 面に対する角度 と大きさの同時測定法に関する研究),日本機械学会論文集,52-480,A (1986),2109-2113

²⁷C. I. Franks ,R. P. Betts ,T. Duckworth: Microprocessor-based image processing system for dynamic foot pressure studies , Medical & Biological Engineering & Computing , 21 (1983) , 566-572

²⁸K. M. Patil , M. S. Srinath : New image-processing system for analysis, display and measurement of static and dynamic foot pressure , Medical & Biological Engineering & Computing , 28 (1990) , 416-422

²⁹石田明允・宮崎信次・林豊彦・廣川俊二・阿江通良 ,身体運動のバイオメカニクス ,(2002) , 112-113 , コロナ社

30臨床歩行分析懇談会 編,臨床歩行分析入門,(1989),78,医歯薬出版,

31臨床步行分析懇談会 編,臨床步行分析入門,(1989),79,医歯薬出版,

³²石田明允・宮崎信次・林豊彦・廣川俊二・阿江通良,身体運動のバイオメカニクス,(2002), 112-113,コロナ社

³³中川博文・高橋賞,光弾性を用いた足圧分布測定法(第1報,足底各部に働く力の方向床面に対する角度と大きさの同時測定法に関する研究),日本機械学会論文集,52-480,A (1986),2109-2113

³⁴ http://www.kistler.co.jp/

³⁵宮崎信次・岩倉博光,歩行評価のための床反力連続計測装置,医用電子と生体工学,15 巻7号 (1977),47-52

³⁶石田明允・宮崎信次・林豊彦・廣川俊二・阿江通良,身体運動のバイオメカニクス,(2002), 112,コロナ社

³⁷有富寛・森田真史,感圧フィルム「プレスケール」を応用した簡易足底面圧の測定法について,整形外科,30巻3号(1979),339-342

³⁸黒田康二・高岸直人・山下信哉・中村明生・荒木義雄 , 足底圧にもとづいた RA 足の装具

治療について プレスケールの応用 ,整形災害外科,29巻(1986),1695-1698 ³⁹山根友二郎・田中広光・吉田清和・林一徳,超低圧プレスケールによる足底圧測定 靴を はいた歩行時の圧について ,臨床整形外科,17巻2号(1982),132-138 ⁴⁰野田雄二,足の裏からみた体,(1998),52,講談社,

⁴¹http://www.prescale.com/

⁴²石田明允・宮崎信次・林豊彦・廣川俊二・阿江通良,身体運動のバイオメカニクス,(2002), 112,コロナ社

⁴³http://www.kamata.co.jp/

44志波直人・今石喜成・牛島茂樹・池田香苗・後藤武・斉藤隆・井上明生・松尾重明・田川 善彦・川上篤志,足底圧分圧測定システム(F-SCAN)の再現性について,リハビリテーショ ン医学,34巻11号(1997),818

45今石喜成・前田貴司・牛島茂樹・中島義博・池田香苗・志波直人・後藤武史・井上明生・ 松尾重明・田川善彦,動的足底圧の評価法について 足底圧分圧測定システム(F-SCAN)の 検討 ,理学療法学,25巻(1998),155

⁴⁶佐藤幸治・木山喬博・吉田和昭・林満彦・久野皓・古川一憲 , 圧力センサーによる歩行時 足底圧力の計測 , 理学療法学 , 12 巻 (1985) , 89 , 1985

47http://www.henley-jp.com/

⁴⁸http://www.mpjapan.co.jp/index.htm

⁴⁹http://www.mpjapan.co.jp/index.htm

⁵⁰宮崎信次・岩倉博光,歩行評価のための床反力連続計測装置,医用電子と生体工学,15 巻7号 (1977),47-52

⁵¹宮崎信次・竹内孝仁・岩倉博光・窪田俊夫,歩行機能評価のための床反力波形処理,医用 電子と生体工学,17巻2号(1979),32-38

⁵²S. Miyazaki , A. Ishida : Capacitive transducer for continuous measurement of vertical foot force , Medical & Biological Engineering & Computing , 22 (1984) , 309-316

⁵³島津秀昭・山越憲一・神谷瞭・戸川達男・土屋喜一,床反力3成分の連続測定用計装靴, 医用電子と生体工学,20巻3号(1982),32-38

⁵⁴松田拓也・甲斐義弘・井上喜雄・谷岡哲也,足底圧計測装置を用いたインテリジェント歩 行支援機の制御,第45回システム制御情報学会研究発表講演会講演論文集(2000),221-222 ⁵⁵野田雄二,足の裏からみた体,(1998),29,講談社,

⁵⁶今井至・分木ひとみ・武仲善孝,歩行分析 足底圧分布を中心に 臨床理学療法,第9巻 3号152

57野田雄二,足の裏から見た体,1998),96,講談社

⁵⁸ Takayuki Turu, Koreaki Yamakuma, Yasuhiro Oniki : Dynamic Pressure Distribution beneath the Foot during Walking,整形外科と災害外科 39(2) (1990), 839-842

⁵⁹佐藤幸治・木山喬博・吉田和昭・林満彦・久野皓・古川一憲, 圧力センサーによる歩行時

足底圧力の計測,理学療法学,12巻(1985),89

⁶⁰窪田俊夫・山崎信寿編著:歩行分析データ活用マニュアル 床反力編 ,(1994),97,て らぺいあ

61 明石謙,運動学,228,(1973),医歯薬出版株式会社

⁶²黒川幸雄・高橋正明・鶴見隆正・山本澄子,理学療法 MOOK6 運動分析,(2000),33, 三輪書店

⁶³石田明允・宮崎信次・林豊彦・廣川俊二・阿江通良,身体運動のバイオメカニクス,(2002), 117-118,コロナ社

⁶⁴黒川幸雄・高橋正明・鶴見隆正・山本澄子,理学療法 MOOK6 運動分析,(2000),33, 三輪書店

⁶⁵黒川幸雄・高橋正明・鶴見隆正・山本澄子,理学療法 MOOK6 運動分析,(2000),31, 三輪書店

⁶⁶黒川幸雄・高橋正明・鶴見隆正・山本澄子,理学療法 MOOK6 運動分析,(2000),34, 三輪書店

⁶⁷石田明允・宮崎信次・林豊彦・廣川俊二・阿江通良,身体運動のバイオメカニクス,(2002), 117-118,コロナ社

⁶⁸山本摂・柴田典子,脳卒中方麻痺患者の歩行スピードと観閲モーメント,理学療法学,22 (1995),4

⁶⁹植松光俊・金子公宥,高齢女性の自由歩行における下肢関節モーメント,理学療法学,24(7), 369-376

付録目次

Table 4.2.1	Experiment result of Subject A \cdot
Table 4.2.2	Experiment result of Subject B $\cdots \cdots 2$
Table 4.2.3	Experiment result of Subject C \cdot · · · · · · · · · · · · · · · · · · ·
Table 4.2.4	Experiment result of Subject D \cdot · · · · · · · · · · · · · · · · · · ·
Table 4.2.5	Experiment result of Subject E $\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot5$
Table 4.2.6	Experiment result of Subject F \cdot
Table 4.2.7	Experiment result of Subject G $\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot$
Table 4.2.8	Experiment result of Subject H $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \otimes 8$
Table 4.2.9	Experiment result of Subject I $\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot9$
Table 4.2.10	Experiment result of Subject J \cdot · · · · · · · · · · · · · · · · 10
Table 4.2.11	Experiment result of all Subject average • • • • • • • • • 11

Fig. 4.3.1	The area ratio of each portion of Subject A's plantar $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 12$
Fig. 4.3.2	The area ratio of each portion of Subject B's plantar $\cdot\cdot\cdot\cdot\cdot\cdot12$
Fig. 4.3.3	The area ratio of each portion of Subject C's plantar $\cdot \ \cdot $
Fig. 4.3.4	The area ratio of each portion of Subject D's plantar \cdot · · · · · 13
Fig. 4.3.5	The area ratio of each portion of Subject E's plantar \cdot · · · · · 13
Fig. 4.3.6	The area ratio of each portion of Subject F's plantar $\cdot \ \cdot \ 13$
Fig. 4.3.7	The area ratio of each portion of Subject G's plantar $~\cdot~\cdot~\cdot~\cdot~14$
Fig. 4.3.8	The area ratio of each portion of Subject H's plantar $~\cdot~\cdot~\cdot~\cdot~14$
Fig. 4.3.9	The area ratio of each portion of Subject I's plantar $\cdot\cdot\cdot\cdot\cdot\cdot14$
Fig. 4.3.10	The area ratio of each portion of Subject J's plantar \cdot · · · · · 15
Fig. 4.3.11	The average of the area ratio of each portion of all subjects plantar • 15

Ground reaction force of Subject A	(6 sensors) •	•	•	•	•	•	•	•	16
Ground reaction force of Subject A	(5 sensors) $\boldsymbol{\cdot}$	•	•	•	•	•	•	•	16
Ground reaction force of Subject A	(4 sensors) $\boldsymbol{\cdot}$	•	•	•	•	•	•	•	16
Ground reaction force of Subject A	(3 sensors) $\boldsymbol{\cdot}$	•	•	•	•	•	•	•	17
Ground reaction force of Subject A	(2 sensors) $\boldsymbol{\cdot}$	•	•	•	•	•	•	•	17
	Ground reaction force of Subject A Ground reaction force of Subject A Ground reaction force of Subject A Ground reaction force of Subject A	Ground reaction force of Subject A(6 sensors) •Ground reaction force of Subject A(5 sensors) •Ground reaction force of Subject A(4 sensors) •Ground reaction force of Subject A(3 sensors) •Ground reaction force of Subject A(2 sensors) •	Ground reaction force of Subject A(6 sensors) • •Ground reaction force of Subject A(5 sensors) • •Ground reaction force of Subject A(4 sensors) • •Ground reaction force of Subject A(3 sensors) • •Ground reaction force of Subject A(2 sensors) • •	Ground reaction force of Subject A(6 sensors) • • •Ground reaction force of Subject A(5 sensors) • • •Ground reaction force of Subject A(4 sensors) • • •Ground reaction force of Subject A(3 sensors) • • •Ground reaction force of Subject A(2 sensors) • • •	Ground reaction force of Subject A(6 sensors) · · · ·Ground reaction force of Subject A(5 sensors) · · · ·Ground reaction force of Subject A(4 sensors) · · · ·Ground reaction force of Subject A(3 sensors) · · · ·Ground reaction force of Subject A(2 sensors) · · · ·	Ground reaction force of Subject A(6 sensors) · · · ·Ground reaction force of Subject A(5 sensors) · · · ·Ground reaction force of Subject A(4 sensors) · · · ·Ground reaction force of Subject A(3 sensors) · · · ·Ground reaction force of Subject A(2 sensors) · · · ·	Ground reaction force of Subject A(6 sensors) · · · · ·Ground reaction force of Subject A(5 sensors) · · · · ·Ground reaction force of Subject A(4 sensors) · · · · ·Ground reaction force of Subject A(3 sensors) · · · · ·Ground reaction force of Subject A(2 sensors) · · · · ·	Ground reaction force of Subject A(6 sensors) · · · · · ·Ground reaction force of Subject A(5 sensors) · · · · · ·Ground reaction force of Subject A(4 sensors) · · · · · · ·Ground reaction force of Subject A(3 sensors) · · · · · · ·Ground reaction force of Subject A(2 sensors) · · · · · · · ·	Ground reaction force of Subject A(6 sensors) · · · · · · ·Ground reaction force of Subject A(5 sensors) · · · · · · · ·Ground reaction force of Subject A(4 sensors) · · · · · · · · ·Ground reaction force of Subject A(3 sensors) · · · · · · · · · ·Ground reaction force of Subject A(2 sensors) · · · · · · · · · · · · ·

Fig. 4.4.2 (a)	Ground reaction force of Subject B	(6 sensors) $\cdot \cdot \cdot \cdot \cdot \cdot 18$
Fig. 4.4.2 (b)	Ground reaction force of Subject B	$(5 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 18$
Fig. 4.4.2 (c)	Ground reaction force of Subject B	$(4 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 18$
Fig. 4.4.2 (d)	Ground reaction force of Subject B	$(3 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot 19$
Fig. 4.4.2 (e)	Ground reaction force of Subject B	$(2 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot 19$
Fig. 4.4.3 (a)	Ground reaction force of Subject C	(6 sensors) $\cdot \cdot \cdot \cdot \cdot \cdot 20$
Fig. 4.4.3 (b)	Ground reaction force of Subject C	$(5 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot 20$
Fig. 4.4.3 (c)	Ground reaction force of Subject C	$(4 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 20$
Fig. 4.4.3 (d)	Ground reaction force of Subject C	$(3 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 21$
Fig. 4.4.3 (e)	Ground reaction force of Subject C	$(2 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 21$
Fig. 4.4.4 (a)	Ground reaction force of Subject D	(6 sensors) $\cdot \cdot \cdot \cdot \cdot \cdot \cdot 22$
Fig. 4.4.4 (b)	Ground reaction force of Subject D	$(5 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 22$
Fig. 4.4.4 (c)	Ground reaction force of Subject D	$(4 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 22$
Fig. 4.4.4 (d)	Ground reaction force of Subject D	$(3 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 23$
Fig. 4.4.4 (e)	Ground reaction force of Subject D	$(2 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 23$
Fig. 4.4.5 (a)	Ground reaction force of Subject E	(6 sensors) $\cdot \cdot \cdot \cdot \cdot \cdot 24$
Fig. 4.4.5 (b)	Ground reaction force of Subject E	$(5 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 24$
Fig. 4.4.5 (c)	Ground reaction force of Subject E	$(4 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 24$
Fig. 4.4.5 (d)	Ground reaction force of Subject E	$(3 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot 25$
Fig. 4.4.5 (e)	Ground reaction force of Subject E	$(2 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot 25$
Fig. 4.4.6 (a)	Ground reaction force of Subject F	(6 sensors) $\cdot \cdot \cdot \cdot \cdot \cdot 26$
Fig. 4.4.6 (b)	Ground reaction force of Subject F	$(5 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot 26$
Fig. 4.4.6 (c)	Ground reaction force of Subject F	$(4 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 26$
Fig. 4.4.6 (d)	Ground reaction force of Subject F	$(3 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 27$
Fig. 4.4.6 (e)	Ground reaction force of Subject F	$(2 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 27$
Fig. 4.4.7 (a)	Ground reaction force of Subject G	$(6 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 28$
Fig. 4.4.7 (b)	Ground reaction force of Subject G	$(5 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 28$
Fig. 4.4.7 (c)	Ground reaction force of Subject G	$(4 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 28$
Fig. 4.4.7 (d)	Ground reaction force of Subject G	$(3 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 29$
Fig. 4.4.7 (e)	Ground reaction force of Subject G	$(2 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 29$

Fig. 4.4.8 (a)	Ground reaction force of Subject H	(6 sensors) $\cdot \cdot \cdot \cdot \cdot \cdot 30$
Fig. 4.4.8 (b)	Ground reaction force of Subject H	$(5 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 30$
Fig. 4.4.8 (c)	Ground reaction force of Subject H	$(4 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 30$
Fig. 4.4.8 (d)	Ground reaction force of Subject H	$(3 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 31$
Fig. 4.4.8 (e)	Ground reaction force of Subject H	$(2 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 31$
Fig. 4.4.9 (a)	Ground reaction force of Subject I	(6 sensors) $\cdot \cdot \cdot \cdot \cdot \cdot \cdot 32$
Fig. 4.4.9 (b)	Ground reaction force of Subject I	$(5 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 32$
Fig. 4.4.9 (c)	Ground reaction force of Subject I	(4 sensors) $\cdot \cdot \cdot \cdot \cdot \cdot 32$
Fig. 4.4.9 (d)	Ground reaction force of Subject I	$(3 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 33$
Fig. 4.4.9 (e)	Ground reaction force of Subject I	(2 sensors) $\cdot \cdot \cdot \cdot \cdot \cdot 33$
Fig. 4.4.10(a)	Ground reaction force of Subject J	(6 sensors) $\cdot \cdot \cdot \cdot \cdot \cdot 34$
Fig. 4.4.10(b)	Ground reaction force of Subject J	(5 sensors) $\cdot \cdot \cdot \cdot \cdot \cdot 34$
Fig. 4.4.10(c)	Ground reaction force of Subject J	(4 sensors) $\cdot \cdot \cdot \cdot \cdot \cdot 34$
Fig. 4.4.10(d)	Ground reaction force of Subject J	$(3 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 35$
Fig. 4.4.10(e)	Ground reaction force of Subject J	$(2 \text{ sensors}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 35$

Fig. 5.5.1 (a)	Normal gait	$(6 \text{ sensors}) \cdot \cdot$
Fig. 5.5.1 (b)	Normal gait	$(5 \text{ sensors}) \cdot \cdot$
Fig. 5.5.1 (c)	Normal gait	$(4 \text{ sensors}) \cdot \cdot$
Fig. 5.5.1 (d)	Normal gait	$(3 \text{ sensors}) \cdot \cdot$
Fig. 5.5.1 (e)	Normal gait	$(2 \text{ sensors}) \cdot \cdot$
Fig. 5.5.2 (a)	Normal gait	$(6 \text{ sensors}) \cdot \cdot$
Fig. 5.5.2 (b)	Normal gait	$(5 \text{ sensors}) \cdot \cdot$
Fig. 5.5.2 (c)	Normal gait	$(4 \text{ sensors}) \cdot \cdot$
Fig. 5.5.2 (d)	Normal gait	$(3 \text{ sensors}) \cdot 39$
Fig. 5.5.2 (e)	Normal gait	$(2 \text{ sensors}) \cdot 39$
Fig. 5.5.3 (a)	Normal gait	$(6 \text{ sensors}) \cdot \cdot$
Fig. 5.5.3 (b)	Normal gait	$(5 \text{ sensors}) \cdot \cdot$
Fig. 5.5.3 (c)	Normal gait	$(4 \text{ sensors}) \cdot \cdot$
Fig. 5.5.3 (d)	Normal gait	$(3 \text{ sensors}) \cdot \cdot$
Fig. 5.5.3 (e)	Normal gait	$(2 \text{ sensors}) \cdot \cdot$

Fig. 5.5.4 (a)	Regulation gait A	(6 sense	ors) \cdot	•	•	•	•••	•	•	•	•	•	•	•	•	• 42
Fig. 5.5.4 (b)	Regulation gait A	(5 sense	ors) \cdot	•	•	•	••	•	•	•	•	•	•	•	•	• 42
Fig. 5.5.4 (c)	Regulation gait A	(4 sense	ors) \cdot	•	•	•	•••	•	•	•	•	•	•	•	•	• 42
Fig. 5.5.4 (d)	Regulation gait A	(3 sense	ors) \cdot	•	•	•	•••	•	•	•	•	•	•	•	•	• 43
Fig. 5.5.4 (e)	Regulation gait A	(2 sense	ors) \cdot	•	•	•	•••	•	•	•	•	•	•	•	•	• 43
Fig. 5.5.5 (a)	Regulation gait A	(6 sense	ors) •	•	•	•	••	•	•	•	•	•	•	•	•	• 44
Fig. 5.5.5 (b)	Regulation gait A	(5 sense	ors) •	•	•	•	••	•	•	•	•	•	•	•	•	• 44
Fig. 5.5.5 (c)	Regulation gait A	(4 sense	ors) •	•	•	•	••	•	•	•	•	•	•	•	•	• 44
Fig. 5.5.5 (d)	Regulation gait A	(3 sense	ors) •	•	•	•	••	•	•	•	•	•	•	•	•	• 45
Fig. 5.5.5 (e)	Regulation gait A	(2 sense	ors) \cdot	•	•	•	•••	•	•	•	•	•	•	•	•	• 45
Fig. 5.5.6 (a)	Regulation gait A	(6 sense	ors) \cdot	•	•	•	•••	•	•	•	•	•	•	•	•	• 46
Fig. 5.5.6 (b)	Regulation gait A	(5 sense	ors) •	•	•	•	••	•	•	•	•	•	•	•	•	• 46
Fig. 5.5.6 (c)	Regulation gait A	(4 sense	ors) \cdot	•	•	•	•••	•	•	•	•	•	•	•	•	• 46
Fig. 5.5.6 (d)	Regulation gait A	(3 sense	ors) \cdot	•	•	•	•••	•	•	•	•	•	•	•	•	• 47
Fig. 5.5.6 (e)	Regulation gait A	(2 sense	ors) \cdot	•	•	•	•••	•	•	•	•	•	•	•	•	• 47
Fig. 5.5.7 (a)	Regulation gait B	(6 sense	ors) •	•	•	•	••	•	•	•	•	•	•	•	•	• 48
Fig. 5.5.7 (b)	Regulation gait B	(5 sense	ors) •	•	•	•	••	•	•	•	•	•	•	•	•	• 48
Fig. 5.5.7 (c)	Regulation gait B	(4 senso	ors) •	•	•	• •	•	•	•	•	•	•	•	•	•	• 48
Fig. 5.5.7 (d)	Regulation gait B	(3 sense	ors) •	•	•	•	••	•	•	•	•	•	•	•	•	• 49
Fig. 5.5.7 (e)	Regulation gait B	(2 sense	ors) •	•	•	• •	••	•	•	•	•	•	•	•	•	• 49
Fig. 5.5.8 (a)	Regulation gait C	(6 sense	ors) •	•	•	•	••	•	•	•	•	•	•	•	•	• 50
Fig. 5.5.8 (b)	Regulation gait C	(5 sense	ors) •	•	•	•	••	•	•	•	•	•	•	•	•	• 50
Fig. 5.5.8 (c)	Regulation gait C	(4 senso	ors) •	•	•	• •	•	•	•	•	•	•	•	•	•	• 50
Fig. 5.5.8 (d) $\ensuremath{Fig.}$	Regulation gait C	(3 sense	ors) •	•	•	• •	••	•	•	•	•	•	•	•	•	• 51
Fig. 5.5.8 (e)	Regulation gait C	(2 sense	ors) •	•	•	• •	••	•	•	•	•	•	•	•	•	• 51
Fig. 5.5.9 (a)	Backward gait (6 se	nsors) •	•••	•	•	•	•••	•	•	•	•	•	•	•	•	• 52
Fig. 5.5.9 (a)	Backward gait (5 se	nsors) •	•••	•	•	•	•••	•	•	•	•	•	•	•	•	• 52
Fig. 5.5.9 (a)	Backward gait (4 se	nsors) •	•••	•	•	•	•••	•	•	•	•	•	•	•	•	• 52
Fig. 5.5.9 (a)	Backward gait (3 se	nsors) •	•••	•	•	•	•••	•	•	•	•	•	•	•	•	• 53
Fig. 5.5.9 (a)	Backward gait (2 se	nsors) •	•••	•	•	•	•••	•	•	•	•	•	•	•	•	• 53

Fig.	5.5.10(a)	Regulation gait	D	(6	senso	rs)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 54
Fig.	5.5.10(b)	Regulation gait	D	(5	senso	rs)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 54
Fig.	5.5.10(c)	Regulation gait	D	(4	senso	rs)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 54
Fig.	5.5.10(d)	Regulation gait	D	(3	senso	rs)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 55
Fig.	5.5.10(e)	Regulation gait	D	(2	senso	rs)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 55
Fig.	5.5.11(a)	Stairs going up	(6	sen	sors) •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 56
Fig.	5.5.11(b)	Stairs going up	(5	sen	sors) •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 56
Fig.	5.5.11(c)	Stairs going up	(4	sen	sors) •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 56
Fig.	5.5.11(d)	Stairs going up	(3	sen	sors) •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 57
Fig.	5.5.11(e)	Stairs going up	(2	sen	sors) •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 57
Fig.	5.5.12(a)	Stairs going up	(6	sen	sors) •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 58
Fig.	5.5.12(b)	Stairs going up	(5	sen	sors) •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 58
Fig.	5.5.12(c)	Stairs going up	(4	sen	sors) •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 58
Fig.	5.5.12(d)	Stairs going up	(3	sen	sors) •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 59
Fig.	5.5.12(e)	Stairs going up	(2	sen	sors) •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 59

Table 4.2.1	Experiment Result of subject A
-------------	--------------------------------

No.	Heel	Chopart's joint	Metatarsals	Metatarsals	Thumb	Тое	R	Sensors
1	59.85187	155.48295	19.25302	28.68327	27.14543	65.68177	0.99554	6
2	57.71654	170.32322	24.47786		29.26790	66.83261	0.99506	5
3	61.12235	148.31997	18.89847	32.81147		91.81711	0.99465	5
4	58.76681	164.84135	24.91124			95.51277	0.99400	4
5	60.97133	155.32746	24.28318	30.38171	46.97643		0.99389	5
6	58.72800	171.05991	29.91661	00 50 400	49.59534	400 40007	0.99335	4
/	58.89345	142.47929		86.53488	25.12706	103.42067	0.99191	5
8	60.08743	136.06177	00 004 47	89.37389		127.00174	0.99114	4
9 10	62 21121	157.70055	20.30147	42.10239			0.99009	4
11	60 50354	135 89685	30.39701	117 68438	60 89079		0.90901	<u> </u>
12	42,92809	217.86866		117.00-00	35.62254	179,34971	0.98202	4
13	43.89143	212.19933			00.02201	216.82562	0.98043	3
14	66.10416	107.48878		153.35037			0.98030	3
15		254.87637	17.75599	-8.24707	38.44245	78.80045	0.97778	5
16		251.47269	16.16531		37.92427	78.59468	0.97774	4
17		247.65646	17.20401	-3.46880		116.54019	0.97593	4
18		246.25483	16.53284			116.23731	0.97592	3
19	102.21586		10.59578	138.07840	-0.00217	64.90513	0.97586	5
20	102.21591	050 00700	10.59577	138.07847	00 57707	64.90294	0.97586	4
21		256.92783	23.77974	-7.03357	62.57797		0.97536	4
22	00 64169	254.01929	22.40918	165 02005	02.08210	06 50000	0.97532	3
23	99.04100			165 02//0	0.14200	86 66724	0.97470	4
24	33.03703	241 39918		45 71884	36 41 166	113 45435	0.97464	4
26	103.28023	211100010	15.57508	139.64866	19.62140	110.10100	0.97422	4
27	103.00522		17.81419	139.34490			0.97349	3
28		234.94692		48.66051		148.23717	0.97297	3
29		270.82426			40.91651	157.80345	0.97142	3
30	99.41202			189.09518	31.26306		0.97123	3
31		265.66014				200.43555	0.96929	2
32	97.96432	007 40050		200.94838	70.0000		0.96921	2
33		237.13356	00.04.004	/8./5389	76.08880		0.96869	3
34		242.40862	29.21034	5.44198			0.96830	3
36	33 1770/	266 31015	30.31900		128 82665		0.90029	2
37	33.17704	212 78253		119 76634	120.02005		0.95763	2
38	116.65919	212.10200	43.88962	110.10001	-3.54962	73.05506	0.95756	4
39	116.76574		43.91370			69.47169	0.95754	3
40	118.04407		49.92895		18.52413		0.95543	3
41		303.76946			124.13639		0.95526	2
42	117.75409		51.97254				0.95477	2
4344	24.60684	301.85941					0.91381	2
45		328.93056					0.90994	1
46	120.49406				-10.01204	336.16128	0.90028	3
4/	120.80083		11 00560	241 04200	10 00560	320.45152	0.90013	2
404			-11.33300	241.01390	- 10.09502	95 27747	0.07499	4
40 50			-11.47551	212 50601	-19 59535	80 99525	0.87342	3
51				213 35702	10.00000	60,98697	0.87286	2
52			-3.65437	245.28569	12.51365	00.00001	0.87022	3
53				234.09493	9.58426		0.87003	2
54			-2.19230	244.91221			0.86989	2
55				237.56286			0.86982	1
56			47.57462		-31.02528	131.02992	0.80319	3
57	107 0 100-		47.81622		100.0000	99.95276	0.80165	2
58	137.94085		E0 5000 4		183.23704		0.79989	2
59			58.58884		8.35166		0.79492	2
60 61			29.00105		-30 021/1	110 09751	0.79470	1
62					-33.03141	381 78220	0.72092	<u> </u>
63	146.09617					501110223	0.66820	1
62					205.38120		0.49461	1

No.	Heel	Chopart's ioint	Metatarsals	Metatarsals	Thumb	Тое	R	Sensors
1	57.31462	164.81556	33.72869	4.07079	33.98562	180.36570	0.99702	6
2	56.66704	168.03509	34.76819		33.05672	186.12529	0.99702	5
3	57.19108	164.57423	37.66169	-0.70276		213.85301	0.99670	5
4	57.30598	163.99884	37.49547			212.98902	0.99670	4
5	60.85522	153.36883		23.19783	48.06791	218.86598	0.99587	5
6	57.26714	172.47154			44.77020	265.15195	0.99559	4
7	61.28521	151.02648		19.41821		275.30575	0.99519	4
8	58.33232	162.86141	45.78163	37.24830	71.52252		0.99510	5
9	58.22281	167.33358			_ / /	311.21049	0.99499	3
10	50.72411	201.91306	63.40036	10.01.005	74.85931		0.99424	4
11	58.50550	161.26201	62.11804	40.91835	100.00040		0.99329	4
12	03.00423 50.11709	140.42020	00 10000	15.70077	103.90942		0.99279	4
13	67 57327	131 86051	02.40322	105 07110			0.99220	3 3
14	90 64926	131.00031	14 67168	102.69626	32 54702	169 97366	0.90021	5
15	91 20409		14.07100	102.03020	38 96812	187 73173	0.98739	4
17	90.48419		18,46516	97.98617	00.00012	202.06003	0.98732	4
18	91.17683			104.12575		234.00612	0.98694	3
19	45.33164	254.68472			157.46956		0.98688	3
20	91.23626		26.25102	132.88083	67.96145		0.98589	4
21	92.43779			149.86979	87.69767		0.98509	3
22	91.09370		41.96398	135.47701			0.98424	3
23	93.33843			169.80777			0.98176	2
24		322.58450	61.62692	-89.81894	30.50032	205.98045	0.98150	5
25		322.06262	65.10339	-93.92224		235.99065	0.98123	4
26		323.55454	75.99352	-53.74264	73.40557		0.97893	4
27	90.82072		46.62861		-13.28778	436.10277	0.97837	4
28	90.89619	040 04000	45.61263	0445740	57.00450	427.42581	0.97831	3
29		319.31002	02 05244	-64.15746	57.20153	283.16048	0.97737	4
30		322.40230	92.00041	-50.25295	57.04400	12 74605	0.97700	3
32		219.10552	40.01377	-69 39681	57.04409	350 95628	0.97043	4
33		285 24371	47 03014	00.00001	66 86004	000.00020	0.97627	3
34	92.85317	200.21071			0.90837	551.98264	0.97572	3
35	92.85099					552,76666	0.97572	2
36		274.87346	44.86181			86.67380	0.97546	3
37		286.46738	64.19905				0.97465	2
38		286.18248			70.83921	132.09187	0.97450	3
39	38.34618	311.83174					0.97353	2
40		281.00497				202.13680	0.97295	2
41		319.62133		-0.80598	131.20433		0.97204	3
42		318.73743		0040704	130.51822		0.97204	2
4344		315.23663		32.18701			0.96446	2
40 46	03 85030	330.90400	1/6 20065		01 00504		0.90249	3
40	93.72696		170 65290		91.00594		0.95000	2
484	00.72000		49.12559	104,54830	15,19736	225.87575	0.89555	4
49			50.86930	102.34528	10.10100	240.82500	0.89547	3
50	114.46171				395.43219		0.89310	2
51				123.47043	36.65010	287.36506	0.89267	3
52				119.58255		330.85957	0.89223	2
53			64.84318	144.76176	62.20995		0.89217	3
54			79.17307	147.12155			0.89064	2
55				187.94918	111.73250	400.00	0.88665	2
56			81.72630		-31.49903	496.92118	0.88496	3
5/			19.38437	212 002 12		410.448/1	0.88462	2
58 50				213.09343	-6.01759	705 02000	0.00002	1
60 09					-0.31730	100.90000 600 08658	0.07576	ے 1
61			197 17990		87 19936	000.00000	0.85373	2
62			220.44215		01110000		0.85057	1
63	146.85698						0.74017	1
62					530 16955		0 70402	1

Table 4.2.2Experiment Result of subject B

No.	Heel	Chopart's	Metatarsals	Metatarsals	Thumb	Toe	R	Sensors
1	59,47766	220,50988	35,32686	44,82711	16.51212	15,77048	0.99389	6
2	59 37208	222 34631	35 55572	46 38189	20 82094		0.99380	5
3	57.67781	209.71333	39.33348	46.50929		47,56221	0.99322	5
4	49,41007	306.08753	37,60363	.0.00020	18,29424	27,92367	0.99197	5
5	48 58275	314 82833	38 16365		26 24555	21.02001	0.99170	4
6	54 01737	203 47143	47 44279	59 19610	20.24000		0.99157	4
7	46 98759	207 64953	42 15578	00.10010		63 79720	0.00107	4
, 8	40.00700	327 37994	39 37376	27 83417	13 20360	14 37758	0.00110	5
Q		328 88147	39 57589	20 27035	17 22777	14.07700	0.000000	4
10		316.01713	42 51 939	29 61295	11.22111	40 15867	0.98916	4
11		372 15803	40 42989	20.01200	14 83757	22 59761	0.98880	4
12		378 35616	40.84612		21 33988	22.00701	0.98862	3
13		362 59857	44 04300		21.00000	52 17871	0.98826	3
14		304 94115	49 26230	41 34623		02.17071	0.98796	3
15	37 26051	323 89595	55 28861	41.04020			0.98786	3
16	108 70671	020.00000	35 53007	111 36496	7 61889	26 93151	0.98655	5
17	106 71146		37 42413	110 61826	7.01000	41 73892	0.98640	4
18	109 22964		35 92612	114 98775	14 89354	÷1.70002	0.98629	- - -
10	.00.22004	373 47855	54 87289	11-1.00770	14.00004		0.98596	2
20	102 20200	510.41000	44 61666	120 11184			0.98511	3
20	74 90595	222 19168		59 47780	43 82599	27 28195	0.98414	5
22	74 89617	225 40262		62 34523	51 62297	21.20100	0.98388	4
23	62 60828	338 32844		02.04020	48 62736	44 75965	0.98066	4
20	61 58805	353 24288			62 21888	44.70000	0.00000	3
24	74 74248	187 54135		70 40235	02.21000	135 41453	0.97830	5 4
25	74.74240	361 15545		30 5000/	13 70086	27 18566	0.97030	4
20		36/ 33600		12 15083	51 / 703/	27.10500	0.97678	7
28	124 60207	304.33033		126 61000	35 02286	38 50533	0.97661	J 1
20	125 61027			122.07260	45 03857	30.33333	0.97609	3
29	123.01027	126 80500		132.07209	45.95657	20 50887	0.97008	3
30		420.09099			<u>47.10339</u> 50.14760	39.30007	0.97540	2
22	50 965 49	430.00903			39.14700	170 02764	0.97403	2
32	118 07262	323.24000		126 08657		126 34666	0.97329	3
34	110.07505	326 20/27		50 53887		120.04000	0.97273	3
35		108 502/0		50.55007		162 03212	0.97119	2
36		400.30249	19 19156	157 02122	- 15 35780	30 18002	0.90044	<u> </u>
30			40.10130	162 52125	-10.00700	39.10902	0.90217	4
30			40.04700	161 23802	-4.91013	8 07203	0.90102	3
30			44.03339	162 80067		0.07203	0.90132	2
40	161 66715		40.01445	102.00907	-2 16281	122 52070	0.90147	2
40	162 34015		49.00090		-2.10201	110 47620	0.95807	4
41 10	7/ 0220	137 80120	40.01011	151 200/2		113.47030	0.90007	3 2
42	106 54010	131.02130		180 665/0			0.90007	ວ າ
4044 15	173 32800		53 70027	103.00049	33 06021		0.90294	2
40	175.52009	275 50245	55.12251	131 /7182	JJ.30031		0.00102	5 2
40 17	163 2/212	213.30243	76 65510	101.4/103			0.34092	2
47 / Q /	100.24210		10.00012	180 /7020	10 02002	58 13999	0.04020	2
404 10				187 8/500	19.09803	106 72150	0.34230	ວ າ
49 50				107.04022	35 12020	100.13130	0.94109	2
50	105 61066			130.34737	36 06163	160 02007	0.34104	2
51	180 10/01				30.00102	250 76297	0.02201	<u> </u>
52	103.10491			236 50052		200.10201	0.33204	ے 1
55	215 14202			200.00900	88 61177		0.92030	ו ס
54	210.14280	515 22505			00.04477		0.92000	2
00 50	21.00103	551 225000					0.92103	<u>ک</u>
00 57		001.22001	83 72022		- 52 70076	221 84024	0.92000	<u> </u> 2
5/			03.13032		-22.10910	221.04034	0.00000	ა ი
58			13.01840		0.46500	123.42780	0.06040	2
59			90.02/34		9.10539		0.000010	<u>ک</u>
60			102.58416		0 40744	225 40500	0.00202	1
61	<u> </u>				2.19/11	335.46590	0.00743	<u> </u>
02 60	270 05670					340.00522	0.00/41	1
03	219.90018				110 04540		0.70030	1
62					118.01516		0.74178	1

Table 4.2.3 Experiment Result of subject C

No.	Heel	Chopart's	Metatarsals	Metatarsals	Thumb	Тое	R	Sensors
1	47.10065	178.07656	26.42431	54.91884	31,15914	51,45479	0.99798	6
2	46.43337	164.34281	30.79748	62.53151	39.62879		0.99727	5
3	46.05924	173.32296	32.36554	53.51045		67.60985	0.99716	5
4	54.51124		23.66238	76.78709	30.08834	45.55392	0.99693	5
5	53.40472		27.75885	82.08042	37.72736		0.99637	4
6	53.31350		29.47597	74.86164		61.32037	0.99616	4
7	44.69399	151.73730	40.96786	63.89658			0.99583	4
8	50.65423	139.11080		73.29450	50.04038	77.96381	0.99578	5
9	56.28183			89.24200	47.60655	71.03108	0.99512	4
10	51.23174		37.69971	81.95202			0.99505	3
11	42.52181	423.08263	41.01701		27.60470	88.10077	0.99434	5
12	50.52309	105.68005	45 000 40	90.94169	69.24571	404 04000	0.99400	4
13	41.70083	413.27616	45.96343	400 40040	00,00000	101.61993	0.99370	4
14	54.90069	440.00000		102.10312	66.03069	440.00007	0.99361	3
10	54 97259	113.90333		01 22601		119.00237	0.99333	4
10	J4.07330 40.04837	461 51006	53 16770	91.33001	12 75886	111.09030	0.99200	3
18	38 01772	454 89803	64 68816		42.7 5000		0.39203	4
19	49 62107	31 49370	04.00010	115 87409			0.33034	3
20	50 98250	01.40070		118 95578			0.98807	2
21	46.37094	504,98177		110.00070	61,29156	161,92316	0.98780	4
22	45.44202	505.16430			01.20100	220.29748	0.98404	3
23		608.13438	41.04169	31.20150	17.54534	34.81649	0.98172	5
24		600.02511	44.23600	30.69888		44.21112	0.98145	4
25		594.65724	43.87362	36.60466	23.43374		0.98139	4
26	71.88089		57.03696		14.54106	133.76966	0.98109	4
27	71.08119		59.47367			140.40621	0.98091	3
28		577.40722	49.68702	38.00766			0.98087	3
29		728.63836	48.85297		16.22228	57.50809	0.98048	4
30		719.33447	51.69351			65.86646	0.98025	3
31		742.39864	56.64422		26.75924		0.97946	3
32	10 11 150	729.09457	63.88091		100 707 15		0.97877	2
33	43.11158	658.24503		50.00.405	122.73745	75 74000	0.97731	3
34	70 4 0 0 7 0	597.56761	70 74 004	58.08495	46.48377	75.74836	0.97608	4
35	72.18878	E62 02120	78.71631	75 07010	36.79695		0.97542	3
30 37	70.04064	563.93120	88 33 464	75.27016	00.10000		0.97430	ა ე
38	70.04004	570 / 1038	00.33404	62 01 701		113 08601	0.97414	23
30		861 /2335		02.31701	55 80202	1/3 62/55	0.97092	3
40		486 34909		99.01752	33.00202	140.02400	0.96904	2
41	-	855.07729		00.01702		197,20048	0.96770	2
42	86.22045				61.41215	258.11950	0.96716	3
4344	85.30414				• · · · · • •	316.64355	0.96331	2
45		976.05460			111.08542		0.96243	2
46			38.49654	131.09472	-0.14973	-12.10263	0.96142	4
47			38.46861	131.11059		-12.18931	0.96142	3
484			37.46161	129.95193	-2.40013		0.96138	3
49			36.82684	130.08999			0.96138	2
50				154.70839	27.31210	27.09783	0.95635	3
51				159.06810	34.64202		0.95612	2
52				154.97325		51.31784	0.95558	2
53	00 54004	000 00407		166.01227			0.95448	1
54	36.51391	832.08127					0.95320	2
55	102 /0222	<i>######</i> ##############################			180 07024		0.94211	T O
57	103.40232		122/6020		-55 6/000	1/1 82816	0.80801	2
50			115 55850		- 33.04990	141.02010	0.09004	ა ე
50 50			145 75771		-32 36612	110.00004	0.09493	2
60			138.65504		02.00012		0.88992	ے 1
61	119,12146		100.00004				0.86938	1
62					35.86989	492.54582	0.80263	2
63						525.41893	0.80104	1
62					302.58856		0.60014	1

Table 4.2.4 Experiment Result of subject D

Table 4.2.5	Experiment	Result	of	subject	Е
--------------------	------------	--------	----	---------	---

No.	Heel	Chopart's ioint	Metatarsals	Metatarsals	Thumb	Тое	R	Sensors
1	63.01023	137.19360	65.57970	12.10378	19.22447	12.34272	0.99416	6
2	63.47256	135.90790	65.09269	14,18258	20.79255		0.99415	5
3	59,76369	147.10450	69.71499		17.49017	18.98783	0.99412	5
4	59.60223	147.81046	70.09336		19.64334		0.99408	4
5	55.99963	141.11978	83.32472	-8.95322		73.20239	0.99332	5
6	58.29326	132.73465	81.10097			72.18919	0.99329	4
7	54.91334	131.54154	92.85269	-5.36933			0.99251	4
8	56.30558	126.56483	91.43213				0.99250	3
9	106.89333		59.10075	87.98810	21.70039	-19.12537	0.99038	5
10	106.81223		59.77747	85.81701	19.24797		0.99035	4
11		240.65964	83.24599	-46.50469	8.80076	39.02286	0.99007	5
12		238.96815	82.09787	-41.20795	13.59260		0.98992	4
13		236.96410	90.93341	-53.58640		67.22626	0.98988	4
14	100.37338	047.04004	78.99518	66.59163	44,00000	48.80626	0.98930	4
15		217.21334	66.73574		14.92983	12.04145	0.98921	4
16		217.54125	66.98105 00 F6166	10 10250	16.30105		0.98919	3
10	07 57794	220.44374	99.00100	-49.49350			0.98918	3
10	97.37704	110 20121	00.09020	10101054	52 02765	22 50060	0.90093	5
19	84.97452	120 3/212		104.91004	10 55056	-22.39000	0.90000	5
20	04.41430	203 42494	76 55290	102.01970	43.33030	57 76540	0.98860	
22		196 51201	85 00149			57.70540	0.00000	2
23	105 87796	100.01201	107 82911		1 03254	38 96539	0.98615	4
24	105,48951		108.32728		1.00201	42,29718	0.98615	3
25	106.00139		108.98679		5.31064		0.98600	3
26	121.41147			163.19463	51.35952	-47.07104	0.98600	4
27	102.99142		113.74326				0.98587	2
28	121.62457			159.91575	46.07102		0.98579	3
29	53.73075	264.44454			57.63654	51.95211	0.98248	4
30	53.19434	268.15356			64.18566		0.98220	3
31		264.57958		54.90210	49.66569	3.10115	0.98057	4
32		264.41688		55.21587	50.00602		0.98057	3
33		323.22141			53.77555	44.40789	0.97844	3
34		325.89413			59.41477		0.97824	2
35	79.60833	112.10332		125.31796		235.84636	0.97732	4
36	114.25381	040 00044		180.37562		209.47136	0.97471	3
37	40 79505	249.89211		//.45526		248.90882	0.96994	3
30	40.76505	209.7 1000		207 1 1 2 1 0		300.79017	0.90709	2
39	80.57050	30.40230		207.11219		330 00811	0.90009	2
40		333.73330	104 76663	83 05885	-8 87358	-8 59108	0.96518	4
42			105 05517	82 08488	-9 96524	0.00100	0.96518	3
4344	104,61805		100.00017	231.57009	0.00024		0.96498	2
45	10 10 1000		97.11277	92.49623		-38.69339	0.96498	3
46			91.94289	93.97694			0.96473	2
47			150.37995		-28.11968	46.18002	0.96132	3
484			151.81108		-23.08866		0.96110	2
49			139.98810			-54.23764	0.95861	2
50			133.66274				0.95811	1
51		203.59828		159.77889			0.95681	2
52				230.68122	41.64286	-61.10450	0.94930	3
53				226.57643	34.75193		0.94893	2
54				241.50662		149.92740	0.94152	2
55	400.00000			275.26796	75 4 4000	470 00040	0.93625	1
56	190.22296				75.14096	173.09019	0.93534	3
5/	194.96927	120 E 1770			98.54420		0.93200	2
58 50	-2.1/302	430.34776					0.92520	2 1
60 29	100 356/0	420.02007				603 30472	0.92020	1 2
61	130.33040				75 38108	330 68402	0.30033	2
62					121,14432	000.00400	0.78985	1
63					121114402	762.39040	0.77269	1
62	264.23892						0.69961	1

No.	Heel	Chopart's ioint	Metatarsals	Metatarsals	Thumb	Тое	R	Sensors
1	57.49978	160.02909	22.44985	63.56682	25.91588	32.40042	0.99741	6
2	56.96583	159.30810	24.34026	62.11576		44.09813	0.99732	5
3	58.46649	154.46178	24.41053	75.02696	39.52509		0.99728	5
4	58.11846	149.32227	29.30032	80.08268			0.99703	4
5	52.39176	214.06420	25.91720		17.80673	87.44928	0.99621	5
6	52.10294	212.71163	27.17067			94.67494	0.99616	4
7	59.00937	155.69391		76.80809	66.25985	68.36687	0.99579	5
8	61.57625	141.80071		106.28789	106.29195		0.99516	4
9	57.81228	152.49832		75.81925		111.69812	0.99513	4
10	52.57003	230.30598	35.97801		65.06921		0.99487	4
11	51.28708	230.25655	45.73615				0.99415	3
12	52.92325	222.31926			63.91514	144.02903	0.99397	4
13	51.84361	218.40757				184.90593	0.99336	3
14	62.69360	110.60211		152.28991			0.99240	3
15	78.71929		20.38797	161.71066	18.59768	-16.17209	0.99190	5
16	78.59896		19.31771	157.47379	11.29705		0.99187	4
17	78.26694		21.75296	160.35032		-7.60968	0.99186	4
18	78.30094		20.79894	158.15081			0.99185	3
19	79.57031			171.34526	55.50819	17.77050	0.99056	4
20	79.77407			177.20193	66.91645		0.99051	3
21	78.20940			168.88316		55.06478	0.99009	3
22	77.79562			198.03844			0.98931	2
23	53.76910	265.08950			207.23100		0.98910	3
24		389.56105	30.21629	-36.79003	-32.70978	123.63345	0.97584	5
25		393.23854	27.87209	-36.12075		109.64461	0.97569	4
26	89.65097		35.11543		-37.63158	189.22545	0.97544	4
27		366.91241	28.34661		-30.75683	92.03187	0.97536	4
28	90.78111		32.53857			175.03511	0.97525	3
29		370.76193	26.17198	0.05440	17.05000	79.40509	0.97523	3
30		382.71861	38.59265	2.35448	17.85286		0.97384	4
31		384.55579	38.94522	404450	18.81728		0.97384	3
32		3/9.//385	40.77027	4.84158			0.97379	3
33 24		201 95790	41.79007	22 20227	10 00915	175 72046	0.97370	Z 1
34		391.03700		-22.30337	19.99010	175.75940	0.97200	4
36		377 6/730		-22.07003	10 18232	154 02505	0.97274	3
37		375 49163			13.10252	166 40870	0.97202	2
38	92 35488	070.40100			22 77115	272 34120	0.97119	3
30	91 71582				22.11110	286 25777	0.07110	2
40	46 28280	338 44712				200.20111	0.97105	2
41	96 78367	000.11112	60 65028		64 55850		0.96839	3
42	00110001	381 86965	00.00020	47 04754	124 89557		0.96823	3
4344	95 50137	001.00000	70.32660	47.04704	124.00001		0.96767	2
45	00.00101	426 09460	10.02000		171 84948		0.96691	2
46		350.22876		100.00608			0.96430	2
47		469.36668					0.95394	1
484	111.59610				331.75286		0.94947	2
49			34.37562	279.25368	#########	46.55124	0.90242	4
50			37.53665	292.04251	#########		0.90211	3
51				297.77828	#########	105.36046	0.89817	3
52			20.93824	300.54857		-39.24330	0.89728	3
53			16.00758	289.49981			0.89700	2
54				334.89023	-57.69243		0.89637	2
55				308.66286		21.10783	0.89547	2
56				319.59104			0.89534	1
57	127.94836						0.89035	1
58			66.39443		#########	457.79970	0.84080	3
59					#########	635.02755	0.82251	2
60			44.15551			347.70639	0.81956	2
61			4 40 6 2 2 2 2			501.61621	0.81042	1
62			142.82306		#########		0.78517	2
63			124.54462		E70 00000		0.78129	1
62					572.62233		0.60216	1

Table 4.2.6Experiment Result of subject F

No.	Heel	Chopart's ioint	Metatarsals	Metatarsals	Thumb	Toe	R	Sensors
1	61.79714	182.74939	16.66590	41.04495	6.60590	108.06511	0.99631	6
2	62.27123	179.52366	20.90946	37.47575		124.35865	0.99622	5
3	61.95349	174.61151		56.39879	14.27191	109.40726	0.99589	5
4	63.52942	158.36501		57.44232		160.42153	0.99528	4
5	60.77993	207.56012	17.24924	53.56841	19.39903		0.99513	5
6	58.84865	223.67366	37.02773		-1.94494	146.27723	0.99494	5
7	58.60630	225.92452	36.20729			141.97397	0.99493	4
8	60.92874	199.45281		69.62763	27.50134		0.99468	4
9	62.11019	209.69670	35.21525	46.59619			0.99400	4
10	55.94023	280.26513	47.33942		13.50749		0.99250	4
11	57.36126	274.95385	57.52474		40.00500	040.05045	0.99194	3
12	54.97525	253.01585		0440252	16.33500	210.25915	0.99111	4
13	04.00000	103.02000		94.10355		270 04504	0.99007	ა ა
14	80 72524	230.03360	5 50904	83 35100	-1 38316	270.94594	0.99031	5
15	80.69529		4 55900	84 27531	-1.50510	183 13597	0.30330	4
17	80 49133		4.00000	87 94130	1 34997	185 59633	0.98993	4
18	80.47595			87,74595	1.01001	190,13341	0.98993	3
19	83.69404		3.72809	118.28275	21.00602		0.98605	4
20	83.52766			121.29969	22.79850		0.98603	3
21	48.44924	359.01823			49.95954		0.98535	3
22	85.39135		23.04815	111.44847			0.98472	3
23	85.15260			138.42329			0.98321	2
24	84.13159		52.67116		-28.68203	333.48240	0.98256	4
25	84.33823		41.32381			292.07546	0.98025	3
26	83.29322				-6.43554	466.81850	0.97423	3
27	83.39754	004 44500	40.005.40	7 40054	40 50444	447.92549	0.97409	2
28		391.11560	19.02549	7.49051	19.53144	72.74381	0.97254	5
29		390.99927	22.07000	1634006	28 04560	00.32042	0.97249	4
31		382 42423	19.39400	24 92752	28 32330	74 17448	0.97199	4
32		423 97092	29 05499	24.02102	25,92100	74.17440	0.97172	3
33		386.23119	31.81784	-3.99593	20.02100	120.83911	0.97170	4
34		382.32646	30.14627			118.80636	0.97169	3
35		397.01311		34.29907	37.18202		0.97141	3
36		408.36247			28.54986	123.61091	0.97096	3
37		415.03296	45.69236	4.97125			0.96956	3
38		420.70771	48.15527				0.96953	2
39		360.11427		25.42212		176.19109	0.96945	3
40		462.48746			48.43814	007 44000	0.96883	2
41	46 76745	380.38933				227.44882	0.96839	2
42	40.70745	401.01430		65 12204			0.90049	2
4344 15	95 89264	391.04100	100 78006	05.15294	0.60843		0.90373	2
40	95,92310		101 20174		0.00043		0.90344	2
47	00.02010	558.57855	101120111				0.95079	1
484			-15.28894	112.82486	6.27791	294.54060	0.92593	4
49			-11.00308	108.67483		309.23388	0.92584	3
50				100.18694	-1.32880	297.46905	0.92553	3
51				100.38161		293.02246	0.92553	2
52			-19.40116	170.99872	42.89778		0.91515	3
53				155.65453	33.68248		0.91450	2
54	107.53963		40.04057		102.96351	E00.0000.4	0.91339	2
55			48.31057	450.074.04	-30.78923	503.02204	0.91110	3
<u>57</u>			36 11586	100.97101		450 01210	0.90903	2 2
58			30.11300	182 18673		459.01210	0.90024	2 1
59				102.10073	-10.34838	623,86948	0.90354	2
60					10.0-000	593,78281	0.90315	1
61			125.44115		16.29413		0.85964	2
62			137.01447				0.85865	1
63	152.50881						0.78099	1
62					150.04085		0.76746	1

Table 4.2.7Experiment Result of subject G

Table 4.2.8	Experiment	Result	of subj	ject H
--------------------	------------	--------	---------	--------

1 87.7882 123.16790 39.27779 103.27433 14.15117 87.34231 0.98865 6 2 76.467401 132.57325 53.57997 101.87016 10.96967 0.98765 5 3 86.6340 122.93633 157.4133 107.13179 0.98765 5 5 76.07843 137.94219 164.71684 140.22232 0.98563 5 6 78.23207 157.66986 0.82466 39.54704 80.92262 0.98466 4 6 70.529406 166.17864 103.78503 162.26663 64.63563 72.54155 0.98454 4 10 84.24033 162.24663 64.63563 72.54155 0.98147 3 11 75.63525 105.66067 127.86603 162.24663 64.63563 72.54155 0.98140 5 12 145.990805 4 147.09049 22.85530 12.01776 4 145.990805 54.6011 155.70097 13.7776 4 2	No.	Heel	Chopart's joint	Metatarsals	Metatarsals	Thumb	Тое	R	Sensors
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	87.79882	123.16790	39.27779	103.27433	41.56117	87.34231	0.98895	6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	79.64701	132.57325	53.57997	101.87015		100.69087	0.98791	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	88.68340	122.93633		143.43493	57.54133	107.13179	0.98785	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	94.55542	116,74047	58,14816	98.50590	55.78313		0.98663	5
6 76 23207 167 66447280 1286696 24.8821 95.48510 93.54704 80.92262 0.98466 4 9 98.66815 113.03649 103.78503 163.42862 87.68362 0.98394 4 10 84.92403 150.21359 106.16434 52.85500 0.98394 4 11 75.63355 160.66067 127.86555 160.66067 127.86555 0.98140 5 12 145.14130 207.88391 42.14734 79.10014 12.01473 110.32766 0.98140 5 14 208.355180 54.60411 155.7139 75.54330 0.97976 4 15 145.90605 54.60411 157.1339 0.96673 12.18774 0.97976 4 16 142.92556 54.60411 157.133430 0.97778 4 21 220.80243 67.5174 70.52333 131.82745 0.97776 4 221 220.80243 67.6117 70.52333 131.827	5	76.07843	137.94219		164.71684		140.22232	0.98555	4
7 84.47260 82.48221 95.48510 93.71577 0.98431 4 10 84.92403 150.21359 106.16434 52.85500 0.98325 4 11 75.8355 160.0007 127.86650 162.28663 64.63593 72.54185 0.98147 3 12 145.01473 207.88391 42.14773 79.10014 11.03.2766 0.98033 4 15 145.90005 208.55180 201.81734 79.10014 12.01473 9.036679 24.8543 0.97975 4 16 148.29556 54.60411 12.164949 22.8541 0.97975 4 17 208.55180 12.164949 22.8541 0.97975 4 21 228.3100 87.25448 107.03449 0.97750 3 21 12.08497 105.09805 0.97753 3 2 97750 3 21 14.292774623 82.42571 150.67339 137.97913 0.97753 3 9 97775 <td< td=""><td>6</td><td>78.23207</td><td>157.66986</td><td>90.83446</td><td></td><td>39.54704</td><td>80.92262</td><td>0.98526</td><td>5</td></td<>	6	78.23207	157.66986	90.83446		39.54704	80.92262	0.98526	5
8 70.59406 166.17864 103.78503 71577 0.994314 4 10 84.92403 150.21359 106.16434 52.85500 0.98325 4 11 175.63555 160.56667 127.86631 162.28663 64.63593 72.54185 0.98140 5 12 145.14130 207.88391 42.14734 79.10014 12.01473 110.32786 0.98140 5 14 200.80049 46.9162 79.36023 113.79909 0.99091 4 16 148.29556 54.60411 155.7103 75.54430 0.97973 4 20 227.74623 82.42554 12.96207 103.31366 0.97773 4 21 31.008294 61.93377 167.32463 92.28514 0.97765 4 22 81.2035 136.16326 213.34607 107.03449 0.97765 3 21 81.2035 136.7824 213.34607 107.03449 0.97759 3 3 22	7	84.47280	128.66969	82.48821	95.48510			0.98466	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	70.59406	166.17864	103.78503			93.71577	0.98431	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	98.56815	113.93649		163.42862	87.68362		0.98394	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	84.92403	150.21359	106.16434		52.85500		0.98325	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	75.63555	160.56067	127.86650				0.98147	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12	145.14130		38.76933	162.28663	64.63593	72.54185	0.98140	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13		207.88391	42.14734	79.10014	12.01473	110.32786	0.98100	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14		208.36049	46.49162	79.36023		113.79890	0.98091	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	145.90805			201.81879	80.36679	92.10310	0.98033	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	148.29556		54.60411	155.71039	75.54430		0.97978	4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17		208.55180		121.96499	28.85533	131.82745	0.97973	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18		210.08294		135.09814		147.79243	0.97910	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	139.01372		61.93377	167.32463		92.38514	0.97877	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20		227.74623	82.42354		12.96207	103.31368	0.97876	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21		228.33100	87.25448			107.03449	0.97865	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	81.20305	136.16326		213.34607			0.97750	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	150.85536			215.47340	105.09805		0.97738	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24		208.00243	66.76117	70.55383	27.41927		0.97719	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25		209.14465	78.93366	70.53292			0.97668	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	141.84448		88.29579	159.67939			0.97600	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	137.65927			243.51506		137.97913	0.97555	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28		225.83451	101.52881		27.39051		0.97539	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29		226.97025	113.67824				0.97488	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30		209.23751		144.19399	62.88587		0.97358	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	64.83675	219.95567			111.33544	162.61283	0.97321	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	157.29471		134.95891		72.96059	52.77492	0.97043	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33		213.34154		184.42927			0.97007	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34	159.25280		143.74012		80.73698		0.96955	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35		274.11192			83.34965	175.09892	0.96863	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	141.92134			290.37608		74 50005	0.96768	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	150.77776		164.59595			74.56835	0.96702	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38	152.64520		182.24335				0.96517	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	39	75.56990	227.35661			1/2.914/5		0.96330	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	28.57125	286.00456				255.44325	0.96298	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41		305.26057			4.45.45000	249.88077	0.96194	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42		291.96149	40.0000		145.45820		0.95692	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4344			46.33228	211.55435	23.59081	110.97657	0.94100	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	45			54.89999	212.66371	40 4 5007	117.80994	0.94062	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46				239.1583/	42.15037	134.020/6	0.93940	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4/			71 00000	219.00404	20.00004	100.00079	0.93/99	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	484	100.00000		71.09332	203.03372	39.09261	100 505 47	0.93698	3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	49	190.09060		00 50070	204 04240	229.21004	102.32347	0.93004	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50			88.52273	204.04349	76 04005		0.93590	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51				202.32003	76.94905		0.93271	<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	7 16207	386 96170		333.10038			0.92110	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	53	1.10307	300.00172					0.92033	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	54	206 03803	331.20970			303 00517		0.92020	ו ס
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50	200.93003		175 8/107		303.09317	88 81130	0.92009	2
58 191.61450 42.42642 0.91828 2 59 211.18910 480.78608 0.86844 2 60 194.15375 235.02663 279.75222 0.85520 2 61 354.69378 0.81945 1 62 354.69378 0.63109 1 62 0.95.19464 0.63109 1	57			187 66700		50.12000	00.04130	0.92093	<u> </u>
59 211.18910 42.42042 0.31020 2 60 194.15375 211.18910 480.78608 0.86844 2 61 235.02663 279.75222 0.85520 2 62 354.69378 0.81945 1 63 0.295.19464 0.63109 1	57			101.00790		42 42642	31.43214	0.92030	2
60 194.15375 211.10310 480.78608 0.81090 1 61 235.02663 279.75222 0.85520 2 62 354.69378 0.81945 1 63 62 0.77580 1 62 0.63109 1	50			211 12010		72.72042		0.016020	2 1
61 235.02663 279.75222 0.85520 2 62 354.69378 0.81945 1 63 62 0.63109 1 62 0.63109 1	59 59	194 15375		211.10310			480 78608	0.91090	י 2
62 354.69378 587.86795 0.77580 1 62 0.619464 0.61945 1 1 1	61	134.13373				235 02663	279 75222	0.00044	2
63 62 295.19464 00.77580 1 62 295.19464 00.63109 1	62					354 69378	LI 0.1 0222	0.81045	1
62 295,19464	63					007.00010	587 86795	0.77580	1
	62	295,19464					501.00100	0.63109	1
Table 4.2.9	Experiment	Result	of subj	ject I					
-------------	------------	--------	---------	--------					
-------------	------------	--------	---------	--------					

No.	Heel	Chopart's joint	Metatarsals	Metatarsals	Thumb	Тое	R	Sensors
1	49.00016	147.96150	63.80461	48.61884	6.60977	14.47094	0.99617	6
2	49.23246	144.12301	62.98965	53.45417	7.27772		0.99616	5
3	48.39803	157.07585	71.42063	39.00850		37.94315	0.99601	5
4	48.93571	147.92655	71.27851	51.12677			0.99593	4
5	46.46657	185.64579	82.34419		2.27062	91.19005	0.99564	5
6	46.42657	186.30321	83.90399			94.46938	0.99562	4
7	46.20427	184.43755	96.05931		5.42189		0.99480	4
8	46.08004	185.98062	101.21909				0.99467	3
9	49.18263	128.73901		116.36056	19.17442	-32.77500	0.99363	5
10	48.63912	137.23079		106.97747	17.97506		0.99357	4
11	68.09641		51.11185	139.53957	16.53851	##########	0.99227	5
12	47.00494	154.32941		110.64064		34.13932	0.99189	4
13	47.49131	146.10061	00.05500	121.41795		00 70704	0.99182	3
14	69.67958		69.95539	128.48386	44 400 40	-92.70724	0.99117	4
15	71.30628		57.14772	108.76016	11.43842	липпппппп	0.99114	4
10	00.20037 71 00407		70 1 20 00	100.00170	25.60997	<i>***********</i> ***	0.99060	4
17	60 86007		70.12009	107.37332	21 00555		0.99000	3
10	30 20722	257 82172		155.12550	21.00555	220 53761	0.90900	3
20	37 75313	274 40650			10.40003	267 47138	0.30031	3
21	67 94998	214.40000		197 13870		-94 19605	0.98720	3
22	70.12545			175.86333		0	0.98656	2
23	80.86554		134.99738		6.61706	82.87731	0.98389	4
24	81.10560		140.12104			92.41280	0.98370	3
25	80.42342		147.15801		9.45704		0.98319	3
26	80.70785		156.96462				0.98279	2
27		355.72421	65.11546	-17.88693	-0.52669	111.21999	0.98207	5
28		355.19435	64.50172	-17.17684		109.42049	0.98207	4
29	34.54796	292.06240			33.84080		0.98206	3
30		345.05790	57.80242		1.04510	82.82717	0.98200	4
31		345.29744	58.53041			84.34057	0.98199	3
32		333.07479	58.69626	17.99014	4.50649		0.98146	4
33		334.72856	63.85673	16.67833	0.04545		0.98137	3
34		343.14215	70.39208		3.91515		0.98130	3
35		343.94886	74.17062	50,00000	10.00005	62.26744	0.98123	2
30		330.09493		50.99900	12.20993	03.30741	0.97939	4
30		324.32329		40 16146	14.31404	10/ 11227	0.97910	3
30		370 86107		49.10140	11 50358	179.02016	0.97000	3
40		328 13289		80 75839	11.55550	173.02010	0.978027	2
41		388,47595		00.70000		213.65028	0.97761	2
42	28.02936	355,68989					0.97490	2
4344	20.02000	396.24987			26.54444		0.97388	2
45		432.20144					0.96925	1
46	94.20607				41.14629	358.04004	0.95784	3
47	99.99341					512.95455	0.94853	2
484	98.88788				77.82145		0.93857	2
49			0.43079	327.26853	37.42600	#########	0.93042	4
50				327.62198	37.50133	#########	0.93042	3
51			41.61587	311.66853		#########	0.92420	3
52				350.19311		#########	0.92268	2
53			14.94927	239.54738	20.91308		0.91302	3
54			20 24457	251.13495	23.40224		0.91286	2
55 56			30.3115/	230.3400/			0.91090	2
00 57	122 0/127			214.00093			0.80403	1
507	122.34131		233 74005		18 50126	8 82117	0.00102	3
50 50			234 98441		18 88845	0.00117	0.86240	2
60			249.04133		10.00040	35,14596	0.86072	2
61			255,26296				0.86057	1
62					90.47047	526.58472	0.75584	2
63					149.39391		0.70025	1
62						918.85752	0.69189	1

Table 4.2.10	Experiment Result of subject	J
--------------	------------------------------	---

No.	Heel	Chopart's joint	Metatarsals	Metatarsals	Thumb	Toe	R	Sensors
1	65.12621	153.81279	20.16244	49.60612	33.95004	41.65836	0.99769	6
2	65.05497	161.67693		57.34554	50.84707	23.22553	0.99696	5
3	66.29236	149.55557	4.99892	73.48467	47.59307		0.99645	5
4	66.07415	153.17774		72.43447	51.62861		0.99638	4
5	66.29826	136.03894	51.81174	44.19181		72.72233	0.99539	5
6	59.19192	196.29412	33.86485		28.83231	93.04953	0.99451	5
7	60.76321	176.94346	59.90150			115.02885	0.99283	4
8	57.31858	223.52180			59.07847	73.48190	0.99221	4
9	70.37902	107.62376	45.71717	98.28849			0.98999	4
10	86.21271		33.94170	91.64823	17.32349	32.59075	0.98792	5
11	85.52872		50.19874	86.09212		49.95914	0.98728	4
12	86.67120		21.70669	109.52659	28.42379	0.07454	0.98715	4
13	87.96907			108.89816	45.31518	-0.37151	0.98576	4
14	87.97220		15 06660	108.00090	45.29706		0.98576	3
10	40,80606	285 22576	43.90002	119.42243	00 31001		0.90455	3
10	49.89000	280 63280	- 13.23030		80 73247		0.97917	4
18	85 94633	200.00200	76 17366		-6.09790	150 51259	0.97356	4
10	86 20240		70 92192		0.00700	146 59415	0.97347	3
20	72.31400	124.50363		103.45385		37.80666	0.97314	4
21	74.17258	109.59464		129.41990			0.97156	3
22	89.78856			140.20979		17.91597	0.96618	3
23	89.67024			151.11602			0.96580	2
24		343.43878	19.03994	-3.20778	43.80965	63.99475	0.95997	5
25		341.63397	18.05136		44.24048	60.46026	0.95995	4
26		350.66967		4.15577	59.75676	46.56399	0.95929	4
27		353.87647			60.34093	50.43148	0.95926	3
28	90.94649				63.01457	118.95882	0.95906	3
29		342.10209	-4.51093	32.36275	65.24480		0.95690	4
30		339.38844	00.00005	33.19349	61.63302	404.04000	0.95684	3
31		324.80947	60.06905	-11.46414		104.81222	0.95597	4
3Z 22	59 70502	317.32000	57.92300			93.32420	0.95577	ວ 2
34	56.70595	240.20902	-12 63686		81 81831	140.93400	0.95461	3
35		382 59033	- 12.03000		75 71787		0.95207	2
36	45 95496	295 95029	80 82845		10.11101		0.94469	3
37	10100100	299.92602	51.79289	63.60514			0.94391	3
38		331.38927	00200	52.30990		67.16335	0.92419	3
39		389.59100	76.13023				0.92149	2
40		314.00266		96.99509			0.91882	2
41		374.23508				124.92197	0.91879	2
42	92.32850		13.42912		96.44165		0.91527	3
4344	93.10889				106.58829		0.91469	2
45	95.13784					201.35523	0.91462	2
46	89.79911		115.21158	00.40070	0.11500	57 (70 (0	0.87286	2
47			68.89625	89.48279	-6.11503	57.17340	0.87213	4
484			63.19435	91.45919	40.04000	51.04558	0.87204	3
49			41.01300	120.95252	13.21092		0.86943	3
50	36 74410	130 01666	50.07745	125.51770			0.00079	2
52	30.74419	439.91000		125 15620	50 03125	-10 13023	0.86179	2
53				119 46284	50 44214	-10.15025	0.86165	2
54			110 02791	110.40204	-28 91398	172 24324	0.85659	3
55			85.32905		_0.01000	153,76445	0.85433	2
56		508.90167	00.02000			100.10110	0.84566	1
57				160.81783		10.24906	0.83322	2
58				167.04486			0.83308	1
59					71.59598	127.33071	0.82082	2
60			40.35438		87.74179		0.76681	2
61					118.53320		0.76048	1
62						221.98038	0.75204	1
63			132.51184				0.72462	1
62	111.57773						0.61597	1

Lank	Lank AVG.	Sensor	Heel	Chopart's joint	Metatarsals	Metatarsals	Thumb	Тое
1	1.0	6						
2	3.1	5						
3	3.6	5						
4	5.0	5						
5	6.8	4						
6	7.3	4						
7	8.4	5						
8	9.5	4						
9	11.6	4						
10	12.6	5						
11	14.0	4						
12	14.1	3						
13	15.1	4						
14	15.7	4						
15	17.3	4						
16	18.2	4						
17	19.5	3						
18	19.7	5						
19	21.1	3						
20	21.7	3						
21	22.0	4						
22	23.3	4						
23	23.4	3						
24	23.6	3						
25	23.8	4						
26	26.5	3						
27	27.1	3						
28	27.3	3						
29	27.7	4						
30	28.7	3						
31	28.7	2						
32	28.9	4						
33	29.2	3						
34	31.9	2						
35	33.7	3						
36	34.2	3						
37	34.3	3						
38	37.5	3						
39	38.8	2						
40	39.5	2						
41	39.6	2						
42	41.1	3						
43	41.6	2						
44	44.8	4						
45	44.9	2						
46	46.4	3						
4/	47.2	2						
48	41.0	3						
49	49.0	3						
50	49.7							
51	49.9	2						
52	51.0	2						
53	51.4	2						
54	51.7	2						
50	5/ /	1						
57	55.2	2						
57	57.6	2						
50	50.0							
60	50.0 50.1	2		l				
61	60.0							
62	61.0	1						
62	62.2	1		l				
03	UZ.Z	1		1	1	1		I

 Table 4.2.11
 Experiments result of all subjects average

Fig. 4.3.1 The area ratio of each portion of Subject A's plantar

Fig. 4.3.2 The area ratio of each portion of Subject B's plantar

Fig. 4.3.3 The area ratio of each portion of Subject C's plantar

Fig. 4.3.4 The area ratio of each portion of Subject D's plantar

Fig. 4.3.5 The area ratio of each portion of Subject E's plantar

Fig. 4.3.6 The area ratio of each portion of Subject F's plantar

Fig. 4.3.7 The area ratio of each portion of Subject G's plantar

Fig. 4.3.8 The area ratio of each portion of Subject H's plantar

Fig. 4.3.9 The area ratio of each portion of Subject I's plantar

Fig. 4.3.10 The area ratio of each portion of Subject J's plantar

Fig. 4.3.11 The average of the area ratio of each portion of all subjects plantar

Fig. 4.4.1(a) Ground reaction force of Subject A (6 Sensors)

Fig. 4.4.1(b) Ground reaction force of Subject A (5 Sensors)

Fig. 4.4.1(c) Ground reaction force of Subject A (4 Sensors)

Fig. 4.4.1(d) Ground reaction force of Subject A (3 Sensors)

Fig. 4.4.1(e) Ground reaction force of Subject A (2 Sensors)

Fig. 4.4.2(b) Ground reaction force of Subject B (5 Sensors)

Fig. 4.4.2(c) Ground reaction force of Subject B (4 Sensors)

Fig. 4.4.2(d) Ground reaction force of Subject B (3 Sensors)

Fig. 4.4.2(e) Ground reaction force of Subject B (2 Sensors)

Fig. 4.4.3(a) Ground reaction force of Subject C (6 Sensors)

Fig. 4.4.3(b) Ground reaction force of Subject C (5 Sensors)

Fig. 4.4.3(c) Ground reaction force of Subject C (4 Sensors)

Fig. 4.4.3(d) Ground reaction force of Subject C (3 Sensors)

Fig. 4.4.3(e) Ground reaction force of Subject C (2 Sensors)

Fig. 4.4.4(a) Ground reaction force of Subject D (6 Sensors)

Fig. 4.4.4(b) Ground reaction force of Subject D (5 Sensors)

Fig. 4.4.4(c) Ground reaction force of Subject D (4 Sensors)

Fig. 4.4.4(d) Ground reaction force of Subject D (3 Sensors)

Fig. 4.4.4(e) Ground reaction force of Subject D (2 Sensors)

Fig. 4.4.5(a) Ground reaction force of Subject E (6 Sensors)

Fig. 4.4.5(b) Ground reaction force of Subject E (5 Sensors)

Fig. 4.4.5(c) Ground reaction force of Subject E (4 Sensors)

Fig. 4.4.5(d) Ground reaction force of Subject E (3 Sensors)

Fig. 4.4.5(e) Ground reaction force of Subject E (2 Sensors)

Fig. 4.4.6(a) Ground reaction force of Subject F (6 Sensors)

Fig. 4.4.6(b) Ground reaction force of Subject F (5 Sensors)

Fig. 4.4.6(c) Ground reaction force of Subject F (4 Sensors)

Fig. 4.4.6(d) Ground reaction force of Subject F (3 Sensors)

Fig. 4.4.6(e) Ground reaction force of Subject F (2 Sensors)

Fig. 4.4.7(a) Ground reaction force of Subject G (6 Sensors)

Fig. 4.4.7(b) Ground reaction force of Subject G (5 Sensors)

Fig. 4.4.7(c) Ground reaction force of Subject G (4 Sensors)

Fig. 4.4.7(d) Ground reaction force of Subject G (3 Sensors)

Fig. 4.4.7(e) Ground reaction force of Subject G (2 Sensors)

Fig. 4.4.8(a) Ground reaction force of Subject H (6 Sensors)

Fig. 4.4.8(b) Ground reaction force of Subject H (5 Sensors)

Fig. 4.4.8(c) Ground reaction force of Subject H (4 Sensors)

Fig. 4.4.8(d) Ground reaction force of Subject H (3 Sensors)

Fig. 4.4.8(e) Ground reaction force of Subject H (2 Sensors)

Fig. 4.4.9(a) Ground reaction force of Subject I (6 Sensors)

Fig. 4.4.9(b) Ground reaction force of Subject I (5 Sensors)

Fig. 4.4.9(c) Ground reaction force of Subject I (4 Sensors)

Fig. 4.4.9(d) Ground reaction force of Subject I (3 Sensors)

Fig. 4.4.9(e) Ground reaction force of Subject I (2 Sensors)

Fig. 4.4.10(a) Ground reaction force of Subject J (6 Sensors)

Fig. 4.4.10(b) Ground reaction force of Subject J (5 Sensors)

Fig. 4.4.10(c) Ground reaction force of Subject J (4 Sensors)

Fig. 4.4.10(d) Ground reaction force of Subject J (3 Sensors)

Fig. 4.4.10(e) Ground reaction force of Subject J (2 Sensors)

Fig. 5.5.1(b) Normal gait 5 Sensors

Fig. 5.5.1(c) Normal gait 4 Sensors

Fig. 5.5.1(e) Normal gait 2 Sensors

Fig. 5.5.2(b) Normal gait 5 Sensors

Fig. 5.5.2(c) Normal gait 3 Sensors

Fig. 5.5.2(e) Normal gait 2 Sensors

Fig. 5.5.3(b) Normal gait 5 Sensors

Fig. 5.5.3(c) Normal gait 4 Sensors

Fig. 5.5.3(e) Normal gait 2 Sensors

Fig. 5.5.4(b) Regulation gait A 5 Sensors

Fig. 5.5.4(c) Regulation gait A 4 Sensors

Fig. 5.5.4(e) Regulation gait A 2 Sensors

Fig. 5.5.5(b) Regulation gait A 5 Sensors

Fig. 5.5.5(c) Regulation gait A 4 Sensors

Fig. 5.5.5(e) Regulation gait A 2 Sensors

Fig. 5.5.6(b)Regulation gait A5 Sensors

Fig. 5.5.6(c) Regulation gait A 4 Sensors

Fig. 5.5.6(e) Regulation gait A 2 Sensors

Fig. 5.5.7(a) Regulation gait B 6 Sensors

Fig. 5.5.7(b) Regulation gait B 5 Sensors

Fig. 5.5.7(c) Regulation gait B 4 Sensors

Fig. 5.5.7(d) Regulation gait B 3 Sensors

Fig. 5.5.7(e) Regulation gait B 2 Sensors

Fig. 5.5.8(a) Regulation gait C 6 Sensors

Fig. 5.5.8(b) Regulation gait C 5 Sensors

Fig. 5.5.8(c) Regulation gait C 4 Sensors

Fig. 5.5.8(d) Regulation gait C 3 Sensors

Fig. 5.5.8(e) Regulation gait C 2 Sensors

Fig. 5.5.9(b) Backward gait 5 Sensors

Fig. 5.5.9(c) Backward gait 4 Sensors

Fig. 5.5.9(d) Backward gait 3 Sensors

Fig. 5.5.9(e) Backward gait 2 Sensors

Fig. 5.5.10(a) Regulation gait D 6 Sensors

Fig. 5.5.10(b) Regulation gait D 5 Sensors

Fig. 5.5.10(c) Regulation gait D 4 Sensors

Fig. 5.5.10(d) Regulation gait D 3 Sensors

Fig. 5.5.10(e) Regulation gait D 2 Sensors

Fig. 5.5.11(a) Stairs going up 6 Sensors

Fig. 5.5.11(b) Stairs going up 5 Sensors

Fig. 5.5.11(c) Stairs going up 4 Sensors

Fig. 5.5.11(e) Stairs going up 2 Sensors

Fig. 5.5.12(b) Stairs going down 5 Sensors

Fig. 5.5.12(c) Stairs going down 4 Sensors

Fig. 5.5.12(d) Stairs going down 3 Sensors

Fig. 5.5.12(e) Stairs going down 2 Sensors