
2002

Master’s thesis

A One-Time Password

Authentication Method

1055124 Takasuke TSUJI

Advisor Akihiro SHIMIZU

January 31, 2003

Course of Information Systems Engineering,

Graduate School of Engineering,

Kochi University of Technology

Abstract

A One-Time Password Authentication Method

Takasuke TSUJI

Applications for transferring money or personal information are increasingly

common on the Internet and in mobile communications. These applications require

user authentication for confirming legal users. One-time password authentication

methods change the verifier every time by sending the present verifier along with the

next verifier. However, such methods risk attacks because those protocols use two

verifiers every session. The SAS (Simple And Secure password authentication protocol)

is a one-time password authentication method that uses a hash function five times, but

it requires high overhead on low spec machines. In this paper, I propose a new method,

SAS-2, which reduces hash function adaptation overhead by 40%. This method has a

mutual authentication phase which maintains synchronous data communications in its

authentication procedure. Moreover, SAS-2 can be applied to key-free systems.

key words cryptography, hash function, one-way function, password authentica-

tion, one-time password

– i –

Contents

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Existing Studies . 2

1.3 Statememt Problems . 3

1.4 Objective . 4

1.5 Study Scope and Contents . 4

Chapter 2 Secure One-Time Password Authentication Protocols 6

2.1 Definitions and Notations . 6

2.2 Lamport’s Protocol . 7

2.2.1 Registration Phase of Lamport’s Protocol 7

2.2.2 Authentication Phase of Lamport’s Protocol 8

2.2.3 Considerations of Lamport’s protocol 9

2.3 The Revised SAS Protocol . 9

2.3.1 Registration Phase of the Revised SAS Protocol 10

2.3.2 Authentication Phase of the Revised SAS Protocol 11

2.3.3 Considerations of the Revised SAS protocol 13

Chapter 3 New Protocol 14

3.1 Definitions and Notations . 14

3.2 SAS-2 Protocol . 15

3.2.1 Registration Phase of the SAS-2 Protocol 15

3.2.2 Authentication Phase of the SAS-2 Protocol 16

3.3 SAS-2 Protocol Using a Challenge Response Method 19

– ii –

Contents

3.3.1 Registration Phase Using a Challenge Response Method 19

3.3.2 Authentication Phase Using a Challenge Response Method . . . 20

3.4 Protocol Considerations . 23

Chapter 4 Security and Performance Analysis 27

4.1 Security Considerations . 27

4.1.1 Attacks on One-Time Password Methods 27

Replay Attack . 28

Forgery Attack . 28

Impersonation Attack . 29

Denial of Service Attack . 30

4.1.2 Considerations on the SAS-2 . 31

4.2 Performance Considerations . 32

4.2.1 Calculation Costs . 32

4.2.2 Mutual Authentication . 33

Chapter 5 Algorithm Variations of the SAS-2 34

5.1 Combination Variations . 34

5.1.1 Useful Data and Necessary Data 34

5.1.2 Combination Type . 35

5.1.3 Operators for the SAS-2 . 36

5.2 Preconditions for Secure Variations . 38

5.3 Secure Variations . 40

5.4 Defective Combinations on the SAS-2 41

5.5 Strong Variations . 44

5.6 Considerations of the SAS-2 Variations 44

– iii –

Contents

Chapter 6 Applications 45

6.1 An Application for Key-Free Systems . 45

6.1.1 The SAS-2 Protocol for Key-Free Systems 45

Registration Phase for Key-Free Systems 45

Authentication Phase for Key-Free Systems 46

6.1.2 Way to cut Calculation Cost . 49

6.2 Other Applications . 49

Chapter 7 Conclusions and Discussions 51

Acknowledgement 52

References 53

– iv –

List of Figures

2.1 Registration phase of Lamport’s method 7

2.2 The ith authentication phase of Lamport’s method 8

2.3 Registration phase of the revised SAS 10

2.4 The ith authentication phase of the revised SAS 12

3.1 Registration phase of the SAS-2 . 15

3.2 The ith authentication phase of the SAS-2 18

3.3 Registration phase using a challenge response method 19

3.4 The ith authentication phase using a challenge response method 22

3.5 An Lamport type procedure . 23

3.6 An SAS type procedure . 24

3.7 An SAS-2 type procedure . 25

5.1 Probability of dangerous combinations 42

5.2 Difference between defective combinations and strong combinations . . . 43

6.1 Registration phase for key-free systems 46

6.2 The ith authentication phase for key-free systems 47

– v –

List of Tables

4.1 Performance evaluations of the SAS-2 and other methods 32

5.1 Results of 1bit calculation . 36

5.2 Evaluation of operator values . 37

– vi –

Chapter 1

Introduction

1.1 Background

The Internet and mobile communications have been developing, and related

applications for managing money or personal information are increasing in number.

However, there is a risk that such private data can be wiretapped. Therefore, it is

necessary to authenticate users. If a user sends the same password every session, an

attacker can masquerade as the user, because the attacker can get the user’s password

via the Internet. So, the user requires one-time password authentication methods that

change the verifier every time.

Those techniques are guaranteed secure by the use of a one-way function with

which it is easy to compute f(x) from x and difficult to compute x such that y = f(x).

Usually hash functions such as MD5 (Message Digest 5) [6], SHA-1 (Secure Hash

Algorithm 1) [7], [8] or RIPEMD-160 (RACE Integrity Primitives Evaluation Message

Digest 160) [9] are employed for this purpose. In the same manner, with a one-way

function it is easy to compute g(s, t) from s and t, but difficult to compute s such

that y = g(s, t) from y and t. Usually common-key cryptosystems such as DES

(Data Encryption Standard) [1], FEAL (Fast Data Encryption Algorithm) [2], MISTY

(Mitsubishi Electric’s Information Security Technology) [3], Rijndael [4], [5] be AES

(Advanced Encryption Standard) are employed for this purpose.

Public-key cryptosystems are one-way functions, too. The K1P method [10], [11]

– 1 –

1.2 Existing Studies

and the OKGS method [12] are one-time password authentication methods. Those

methods apply public-key cryptosystems and hash functions. However, public-key

encryptions have high calculation costs in comparison with hash or common-key

encryptions. In this thesis, I set forth one-time password authentication methods that

apply hash functions or common-key cryptosystems.

1.2 Existing Studies

When a user logs in to the system, the user sends masking data to the server, and

the server certifies the user using those masking data and the stored verifier. Then the

user and the server use a one-time password authentication method apply a one-way

function.

Lamport’s method [19] is a one-time password authentication method, and uses a

one-way function, but this method has two practical difficulties: high hash overhead

and the requirement of resetting the verifier. The CINON (chained one-way data

verification method) [20], [21] has solved those problems, but that method has another

problem in that the user must memorize a random number. The PERM (Privacy

Enhanced information Reading and writing Management method) [23] eliminates this

problem by generating and sending a random number from the server. A. Shimizu

et al. have detected a possible security flaw in both CINON and PERM methods: a

kind of ‘Man in the Middle’ attack that modifies the authentication data by tapping

the communication data in two consecutive sessions. To counter this, M. Sandirigama

et al. propose the SAS (Simple And Secure) password authentication protocol [24],

which eliminates the ‘Man in the Middle’ attack and reduces storage, processing, and

transmission overhead. However, the method suffers from vulnerability to both replay

– 2 –

1.3 Statememt Problems

and denial of service attacks [25].

C. L. Lin et al. have argued that the OSPA (Optimal Strong-Password Authen-

tication) [25] method and the revised SAS [26] method have solved those security

problems, but C. -M. Chen et al. found a stolen-verifier problem on those methods

[28]. This attacker has to steal the verifier from the server, but the attack will be

unsuccessful if the server has strong management.

The authors have performed successful impersonation attacks on the OSPA

method [29]. In this attack, the attacker intercepts the authentication data from the

Internet and impersonates the user using the previous verifiers. Therefore, the only

secure protocol with a one-time password method for changing verifiers infinitely is the

revised SAS.

1.3 Statememt Problems

The revised SAS method uses a one-way function five times. This function has

high overhead, because a one-way function apply hash functions or common-key

cryptosystems. It’s desirable to reduce the number of times this function is used in

the revised SAS method, because authentication methods are now being applied to

mobile communications and Internet protocols. The revised SAS and other methods

are useless for low spec machines such as mobile phones.

It is possible that communications on the Internet can be interrupted and become

asynchronous. In that case, an authentication method has to maintain the security of

the system, but previous authentication methods have coped with those problems.

– 3 –

1.4 Objective

1.4 Objective

The Internet and mobile communications have been developing, and related

applications for managing money or personal information have to authenticate the user.

However, one-time password authentication methods use one-way functions extensively.

So, I reduce the times a one-way function is used.

Moreover, a synchronous data communication procedure is possible for one-time

password authentication methods. I realized mutual authentication using a one-time

password method.

1.5 Study Scope and Contents

In this thesis, I propose a new method, Simple And Secure password authentication

protocol, ver.2 (SAS-2) [27], applying a one-way function only three times by using

two verifiers and another for masking. This reduces hash overhead by about 40%

in comparison with the revised SAS. SAS-2 and other methods generate a random

number, but this operation has high overhead such as the calculation of a one-way

function. In consideration of that problem, I appended a procedure which can use a

verifier instead of a random number. In addition, a synchronous data communication

procedure is possible for one-time password authentication methods. The SAS-2

method solved this problem using a mutual authentication protocol.

The SAS-2 method has variations, and I have considered all variations of the

SAS-2 and produced safe combinations. Moreover, I examined problems in the SAS-2

protocol and determined the most secure combinations remaining [30]. In addition I

suggest here an application for key-free systems using the SAS-2 method. In addition,

I have written a paper about this thesis, and have submitted it to a learned society.

– 4 –

1.5 Study Scope and Contents

In chapter 2, secure one-time password methods are explained. Those methods

have some problems, which I discuss here. In chapter 3, SAS-2 protocol is explained.

As well, I illustrate the SAS-2 protocol using a challenge response method. In chapter

4, security and performance analysis of SAS-2 is discussed. Security is proven by

elimination of existing attacks. Performance evaluations are shown for some costs.

Moreover, I discuss mutual authentication. The SAS-2 has algorithm variations. In the

chapter 5, I show how to make such algorithm variations, and lay out preconditions

for secure variations. Moreover, I discuss defective combinations of SAS-2, and show 7

strong variations. In chapter 6, applications apply SAS-2 are presented.

– 5 –

Chapter 2

Secure One-Time Password

Authentication Protocols

Secure one-time password authentication methods are Lamport’s method and the

revised SAS method. In this chapter, those two procedures are explained.

2.1 Definitions and Notations

The following definitions and notations are used throughout in this chapter.

• User is a computer user who employs the protocol for authentication.

• Server is the server that authenticates users.

• ID is the user’s identity.

• x and P are user’s passwords.

• M is the maximum number of hash iterations (ranging from about 500 to 1000).

• i is an integer indicating the number of authentication sessions.

• Ni represents a random number corresponding to the ith authentication.

• F and E are one-way hash functions. For example, F (x) means x is hashed once,

En
i means x is hashed nth using the randome number for the ith verifier.

• ⊕ represents a bitwise XOR operation.

– 6 –

2.2 Lamport’s Protocol

2.2 Lamport’s Protocol

The mechanism of Lamport’s method consists of two phases: the registration

phase and the authentication phase. The registration process is performed only once,

and the authentication procedure is executed every time the user logs in to the system.

These two phases are described below.

2.2.1 Registration Phase of Lamport’s Protocol

Figure 2.1 shows the initial registration phase of Lamport’s method.

Fig. 2.1 Registration phase of Lamport’s method

1. The user inputs own password and calculates the verifier for the 1st authentication

session. The user inputs the user’s password x and sets M when registering in

the systems; then calculates FM (x) equals F (F (· · ·F (x) · · ·)) using the password x.

2. The user sends the registration data to the server for subsequent authentication.

The user sends FM (x) to the server through a secure channel.

– 7 –

2.2 Lamport’s Protocol

3. The server stores the verifier for subsequent authentication. The server stores

FM (x) for subsequent authentication.

2.2.2 Authentication Phase of Lamport’s Protocol

To log in, the user executes the ith authentication session of Lamport’s protocol.

Then the server stores the verifier FM−i+1(x). Figure 2.2 shows the ith authentication

phase of the SAS-2 protocol.

Fig. 2.2 The ith authentication phase of Lamport’s method

1. The user inputs own password and calculates authentication data for the ith

authentication session. The user inputs the user’s password P when joining the

system. Then the user calculates FM−i(x) equals F (F (· · ·F (x) · · ·)) using input

data.

– 8 –

2.3 The Revised SAS Protocol

2. The user sends the authentication data to be authenticated by the server. The user

sends FM−i(x) to the server through a common network such as the Internet.

3. The server authenticates the user with the stored verifier and the transmission

data. The server compares the verifier FM−i+1(x) and the computed F (FM−i(x)).

Then if they don’t match, the user is rejected and the server refuses the user. If

they do match, the user is authenticated and the next process is executed.

4. The server stores the verifier for the next authentication session. The server stores

FM−i(x) in place of FM−i+1(x) for the next authentication session.

2.2.3 Considerations of Lamport’s protocol

Lamport’s method is a simple procedure, but the user must use a one-way hash

function many times in every authentication session. This technique is useless because

the method costs a lot of loads and times. Moreover, the user has to register after the

Mth authentication session. The registration step is troublesome to the user.

Those problems are solved by changing the verifier every session.

2.3 The Revised SAS Protocol

Lamport’s method has two practical difficulties: high hash overhead and the

requirement of resetting the verifier. Some one-time password authentication methods

have solved such problems. However, most of those methods have security problems.

The revised SAS is the only surviving one-time password authentication method which

can change verifiers without limit.

– 9 –

2.3 The Revised SAS Protocol

The mechanism of the revised SAS method consists of two phases: the registration

phase and the authentication phase. The registration process is performed only once,

and the authentication procedure is executed every time the user logs in to the system.

These two phases are described below.

2.3.1 Registration Phase of the Revised SAS Protocol

Figure 2.3 shows the initial registration phase of the revised SAS protocol.

Fig. 2.3 Registration phase of the revised SAS

1. The user inputs own personal data and calculates the verifier for the 1st authen-

tication session. The user inputs the user’s identity ID and password P when

registering in the systems; then generates and stores a random number N1, and

calculates E2
1 equals E(E(P ⊕N1)) using the random number and input data.

– 10 –

2.3 The Revised SAS Protocol

2. The user sends the registration data to the server for subsequent authentication.

The user sends ID and E2
1 to the server through a secure channel.

3. The server stores the verifier for subsequent authentication. The server stores E2
1

with ID for subsequent authentication.

2.3.2 Authentication Phase of the Revised SAS Protocol

To log in, the user executes the ith authentication session of the revised SAS

protocol. Then the user stores Ni, and the server stores the verifier E2
i with ID. Figure

2.4 shows the ith authentication phase of the revised SAS protocol.

1. The user inputs own personal data and calculates two data for the ith authentication

session. The user inputs the user’s identity ID and password P when joining the

system. Then the user calculates E1
i equals E(P ⊕Ni) and E2

i equals E(E1
i) using

input data and the stored Ni. Next the user generates a random number Ni+1 and

stores Ni+1. Then the user calculates E2
i+1 equals E2(P ⊕ Ni+1) and E3

i+1 equals

E(E2
i+1) using the random number Ni+1 and input data, where E2

i+1 is the next

verifier. Next the user computes α equals E2
i+1 ⊕ E2

i and β equals E1
i ⊕E3

i+1.

2. The user sends the authentication data to be authenticated by the server. The user

sends ID, α, and β to the server through a common network such as the Internet.

3. The server authenticates the user with the stored verifier and the transmission

data. The server retrieves E2
i+1 from α ⊕ E2

i with the stored verifier E2
i and gets

E1
i from β ⊕ E3

i+1 using E(E2
i+1). Next the server compares the computed E(E1

i)

– 11 –

2.3 The Revised SAS Protocol

and the stored E2
i . If they don’t match, the attempt is rejected and the server

refuses the user. If they do match, the user is authenticated and the next process

is executed.

4. The server stores the verifier for the next authentication session. The server stores

E2
i+1 in place of E2

i for the next authentication session.

Fig. 2.4 The ith authentication phase of the revised SAS

– 12 –

2.3 The Revised SAS Protocol

2.3.3 Considerations of the Revised SAS protocol

The revised SAS method uses a one-way function five times. This function has

high overhead, because a one-way function apply hash functions or common-key

cryptosystems. It’s desirable to reduce the number of times this function is used in

the revised SAS method, because authentication methods are now being applied to

mobile communications and Internet protocols. The revised SAS and other methods

are useless for low spec machine such as mobile phones.

In the revised SAS method, a one-way hash function is used five times to generate

the authentication data. The functions of each encryption are the following in the ith

authentication session.

1. E1
i is used to authenticate the user on the ith authentication session.

2. E2
i is the verifier of the ith authentication session, and this verifier is used to remove

the masking data on this authentication session.

3. E1
i+1 is used to authenticate the user on the next authentication session.

4. E2
i+1 is the verifier of the next authentication session.

5. E3
i+1 is used for masking the authentication data.

When the server authenticates the user on the ith authentication session, the E1
i

is necessary because the server verifies the legal user by the hashed E1
i . The user has

to make the E2
i+1, because the E2

i+1 is used on the next authentication session. Before

the E2
i+1 is calculated, the user must calculate the E1

i+1. Therefore, the E2
i+1 is needful,

too. Moreover, the E3
i+1 is necessary for masking the authentication data.

The E2
i is maybe needless, because the user can substitute the other data for the

E2
i . Moreover, the user can reduce the hash overhead by using epochal new method.

– 13 –

Chapter 3

New Protocol

The SAS-2 method can change verifiers every time and without limit. Moreover,

SAS-2 applyies its function only three times by using two verifiers and another for

masking. This reduces hash overhead by about 40% in comparison with the revised

SAS. In addition, SAS-2 has a synchronous data communication procedure.

3.1 Definitions and Notations

The following definitions and notations are used throughout this thesis.

• User is a computer user who employs the protocol for authentication.

• Server is the server that authenticates users.

• ID is the user’s identity.

• P is the user’s password.

• X,F and H are one-way hash functions. For example, H(x) means x is hashed

once.

• i is an integer indicating the number of authentication sessions.

• Ni represents a random number corresponding to the ith authentication.

• + represents the addition operation.

• ⊕ represents a bitwise XOR operation.

– 14 –

3.2 SAS-2 Protocol

3.2 SAS-2 Protocol

The SAS-2 protocol consists of two phases: the registration phase and the authen-

tication phase. The registration process is performed only once, and the authentication

procedure is executed every time the user logs in to the system. These two phases are

described below.

3.2.1 Registration Phase of the SAS-2 Protocol

Figure 3.1 shows the initial registration phase of the SAS-2 protocol.

Fig. 3.1 Registration phase of the SAS-2

1. The user inputs own personal data and calculates the verifier for the 1st authen-

tication session. The user inputs the user’s identity ID and password P when

registering in the systems; then generates and stores a random number N1, and

calculates A equals X(ID, P ⊕N1) using the random number and input data.

– 15 –

3.2 SAS-2 Protocol

2. The user sends the registration data to the server for subsequent authentication.

The user sends ID and A to the server through a secure channel.

3. The server stores the verifier for subsequent authentication. The server stores A

with ID for subsequent authentication.

3.2.2 Authentication Phase of the SAS-2 Protocol

To log in, the user executes the ith authentication session of the SAS-2 protocol.

Then the user is storing Ni, and the server stores the verifier A with ID. Figure 3.2

shows the ith authentication phase of the SAS-2 protocol.

1. The user inputs own personal data and calculates two data for the ith authen-

tication session. The user inputs the user’s identity ID and password P when

joining the system. Then the user calculates A equals X(ID, P ⊕ Ni) using

input data and the stored Ni. Next the user generates a random number Ni+1

and stores Ni+1. At that time, the user can use A instead of Ni+1. Then the

user calculates C = X(ID, P ⊕ Ni+1) and F (C) = F (ID,C) using the random

number Ni+1 and input data, where C is the next verifier. Next the user computes

α = C ⊕ (F (C) + A) and β = F (C) ⊕ A. Then the user can substitute other

combinations for α and β.

2. The user sends the authentication data to be authenticated by the server. The user

sends ID, α, and β to the server through a common network such as the Internet.

– 16 –

3.2 SAS-2 Protocol

3. The server authenticates the user with the stored verifier A and the transmission

data. The server retrieves F (C) from β ⊕ A with the stored verifier A and gets

C from α ⊕ (F (C) + A) using F (C). Next the server compares F (C) and the

computed F (ID,C). If they don’t match, the attempt is rejected and the server

refuses the user. If they do match, the user is authenticated and the next process

is executed.

4. The server stores the verifier for the next authentication session and calculates the

data for a mutual authentication protocol. The server stores C in place of A for

the next authentication session, and calculates γ equals H(ID, F (C)).

5. The server sends the authentication data to be authenticated by the user. The

server sends γ to the user through a common network.

6. The user authenticates the server with the transmission data and the data which

was used in the user’s authentication. The user calculates H(ID, F (C)) and

compares H(ID, F (C)) , which is transmission data γ. If they match, the server is

authenticated. If they don’t match, the user tries to log in again.

– 17 –

3.2 SAS-2 Protocol

Fig. 3.2 The ith authentication phase of the SAS-2

– 18 –

3.3 SAS-2 Protocol Using a Challenge Response Method

3.3 SAS-2 Protocol Using a Challenge Response

Method

If user can’t store any data, the system can use the SAS-2 protocol using a

challenge response method. In this procedure, the user need not store the random

number, but transmission iterations are increased.

3.3.1 Registration Phase Using a Challenge Response Method

Figure 3.3 shows the initial registration phase of the SAS-2 protocol using a

challenge response method.

Fig. 3.3 Registration phase using a challenge response method

1. The user inputs own personal data and calculates the verifier for the 1st authen-

tication session. The user inputs the user’s identity ID and password P when

registering in the systems; then generates a random number N1, and calculates A

– 19 –

3.3 SAS-2 Protocol Using a Challenge Response Method

equals X(ID, P ⊕N1) using the random number and input data.

2. The user sends the registration data to the server for subsequent authentication.

The user sends ID, A, and N1 to the server through a secure channel.

3. The server stores the verifier for subsequent authentication. The server stores A

and N1 with ID for subsequent authentication.

3.3.2 Authentication Phase Using a Challenge Response

Method

To log in, the user executes the ith authentication session of the SAS-2 protocol

using a challenge response method. Then the user is storing Ni, and the server stores

the verifier A with ID. Figure 3.4 shows the ith authentication phase of the SAS-2

protocol using a challenge response method.

1. The user inputs own personal data and sends the service request to log in. The

user inputs the user’s identity ID and password P when joining the system. Next

the user sends the service request along with ID to the server.

2. The server receives the seed to the user. The server receives the random number

Ni to the user.

3. The user calculates two data for the ith authentication session. The user calculates

A equals X(ID, P ⊕ Ni) using input data and the stored Ni. Next the user

generates a random number Ni+1. At that time, the user can use A instead of

Ni+1. Then the user calculates C = X(ID, P ⊕ Ni+1) and F (C) = F (ID,C)

– 20 –

3.3 SAS-2 Protocol Using a Challenge Response Method

using the random number Ni+1 and input data, where C is the next verifier. Next

the user computes α = C ⊕ (F (C) + A) and β = F (C) ⊕ A. Then the user can

substitute other combinations for α and β.

4. The user sends the authentication data to be authenticated by the server. The user

sends α, β, and Ni+1 to the server through a common network such as the Internet.

5. The server authenticates the user with the stored verifier A and the transmission

data. The server retrieves F (C) from β ⊕ A with the stored verifier A and gets

C from α ⊕ (F (C) + A) using F (C). Next the server compares F (C) and the

computed F (ID,C). If they don’t match, the attempt is rejected and the server

refuses the user. If they do match, the user is authenticated and the next process

is executed.

6. The server stores the verifier for the next authentication session and calculates the

data for a mutual authentication protocol. The server stores C and Ni+1 in place of

A and Ni for the next authentication session, and calculates γ equals H(ID, F (C)).

7. The server sends the authentication data to be authenticated by the user. The

server sends γ to the user through a common network.

8. The user authenticates the server with the transmission data and the data which

was used in the user’s authentication. The user calculates H(ID, F (C)) and

compares H(ID, F (C)) , which is transmission data γ. If they match, the server is

authenticated. If they don’t match, the user tries to log in again.

– 21 –

3.3 SAS-2 Protocol Using a Challenge Response Method

Fig. 3.4 The ith authentication phase using a challenge response method

– 22 –

3.4 Protocol Considerations

3.4 Protocol Considerations

The SAS-2 protocol eliminates hash overhead by using a radical new method.

The theories of existing one-time password authentication methods are two kinds:

procedures such as Lamport’s method and techniques such as the SAS method. Figure

3.5 shows such a procedure:

Fig. 3.5 An Lamport type procedure

1. The user calculates the authentication data F (x) with the user’s identity number

ID, the user’s password P , and a random number N .

2. The user send the authentication data F (x) to the server.

3. The server compares the stored verifier F 2(x) and the calculated F (F (x)).

This process is simple, but it can’t change the verifier adinfinitum. This problem is

solved by the user sending two verifiers at the same time. Figure 3.6 shows an SAS

– 23 –

3.4 Protocol Considerations

type procedure which eliminates such problem (U(s) using a masking function using ⊕
and +).

Fig. 3.6 An SAS type procedure

1. The user calculates the authentication data A1, A2, C1, C2, C3 with the user’s iden-

tity number ID, the user’s password P , and a random number N .

2. The user calculates the masking data U(s) with the authentication data.

3. The user send the masking data U(s) to the server.

4. The server gets A1 using the stored verifier A2.

5. The server compares the stored verifier A2 and the calculated F (A1).

– 24 –

3.4 Protocol Considerations

This procedure can change the verifier adinfinitum, but uses a one-way function a lot

on low spec machines. Figure 3.7 shows an SAS-2 type procedure which solves such

cost as below.

Fig. 3.7 An SAS-2 type procedure

1. The user calculates the authentication data A,C, F (C) with the user’s identity

number ID, the user’s password P , and a random number N .

2. The user calculates the masking data U(s) with the authentication data.

3. The user send the masking data U(s) to the server.

4. The server gets C and F (C) using the stored verifier A.

5. The server compares the retrieved F (C) and the calculated F (ID,C).

– 25 –

3.4 Protocol Considerations

In existing protocols, the user is authenticated when the server compares the

stored verifier and the retrieved and hashed data using the authentication data and

the verifier. In the new method proposed us here, the user is authenticated when the

server compares the retrieved data and the retrieved and hashed data using the verifier

and the authentication data. In this way, the number of hash iterations are reduced.

Moreover, the SAS-2 protocol can authenticate the server using the authentication

data. If the system doesn’t need such a function, the SAS-2 can remove it.

– 26 –

Chapter 4

Security and Performance

Analysis

The SAS-2 method eliminates previous attacks, and the SAS-2 method is the most

efficient of the one-time password methods.

4.1 Security Considerations

One-time password authentication methods are vulnerable to certain kinds of

attacks [22] , [25] , [29]. The security of the SAS-2 method was evaluated in this study.

4.1.1 Attacks on One-Time Password Methods

Attacks on one-time password authentication methods are the replay attack, the

forgery attack, the impersonation attack, and the denial of service attack.

– 27 –

4.1 Security Considerations

Replay Attack

The replay attack replays communication data and changes the verifier. The

attacker intercepts authentication data and replaces the next verifier after the authen-

tication session. Then the attacker can impersonate the user or confuse the server.

It assumes that an attacker has intercepted the following two sets continuously

from the Internet.

αi ← F (C)⊕ F (A) ,

βi ← C ⊕ A ,

and

αi+1 ← F (E)⊕ F (C) ,

βi+1 ← E ⊕ C .

Then the replay attack succeeds by replacing the authentication data with the following

data.

α′
i+1 ← αi = F (A)⊕ F (C) ,

β′
i+1 ← βi = A⊕ C .

In this way, the attacker will be able to impersonate the user from the next authenti-

cation session.

Forgery Attack

When an attacker steals communication data from some continuous authentication

sessions, the attacker can change the verifier using assorted authentication data. Then

the attacker can impersonate the user or replace the verifier in the server.

If a user sends the following data,

– 28 –

4.1 Security Considerations

αi ← F (A)⊕A ,

βi ← C ⊕ A .

β is meaningless, because C isn’t used in α. Then an attacker can intercept those data,

set x to any value, and forge as below.

α′
i ← αi = F (A)⊕ A ,

β′
i ← x .

Due to the sending of those data, the ith user’s authentication is successful. Therefore,

the attacker can’t impersonate the user, but the user will be denied from the next

authentication session.

Impersonation Attack

An attacker replaces the intended verifier using a replay attack or a forgery attack.

Then the attacker can impersonate the user from the next authentication session

onward.

For example, a user sends the following data using the verifiers A and C (J(x, y)

where J is a masking function using x and y),

αi ← Jα(A, C) ,

βi ← Jβ(A, C) .

Then an attacker intercepts transmission data up to the ith authentication session.

The attacker then computes the following data where (K(x, y) is a masking function

using x and y).

α′
i ← Kα(A, y) ,

β′
i ← Kβ(A, y) .

– 29 –

4.1 Security Considerations

Therefore, the attacker will be able to impersonate the user using the next verifier y

on the next authentication session. In the same manner, the attacker will be able to

impersonate from the (i + 2)th authentication session.

Denial of Service Attack

The denial of service attack rejects all or specific users by means of an offensive

action on the server or by means of a falsification of user’s verifier. Then the attacker

can inconvenience the user but cannot imitate the user.

When a user sends the following data using the verifiers A and C where (J(x, y)

is a masking function using x and y),

αi ← Jα(A,C) ,

βi ← Jβ(A,C) .

Then an attacker can intercept transmission data until the ith authentication session,

and compute the following data. However, the attacker can’t know the next verifier z

where (L(x, y) is a masking function using x and y).

α′
i ← Lα(A, z) ,

β′
i ← Lβ(A, z) .

Therefore, the attacker can’t impersonate, but the user will be denied from the next

authentication session.

– 30 –

4.1 Security Considerations

4.1.2 Considerations on the SAS-2

When a user tries to be authenticated by the server on the (i+ 1)th authentication

session, it is assumed that an attacker has intercepted transmission data before the

(i + 1)th authentication sessions. Then the user sends the following authentication

data.

αi+1 ← E ⊕ (F (E) + C) ,

βi+1 ← F (E)⊕ C ,

and ID.

If the attacker takes the offensive, he has to send the following data.

α′
i+1 ← x⊕ (F (x) + C) ,

β′
i+1 ← F (x)⊕ C ,

and ID.

However, the attacker can’t make those combinations with the transmission data until

the (i + 1)th authentication session, because the combination such (F (x) + C) isn’t

used for creating the authentication data. Therefore, the SAS-2 method is secure.

– 31 –

4.2 Performance Considerations

4.2 Performance Considerations

Secure one-time password authentication methods include the Lamport, the

revised SAS, and the SAS-2. Those methods’ performance are evaluated here.

Table 4.1 summarizes the performance of the Lamport, the revised SAS, and the

SAS-2 in the ith authentication session. M is the maximum number of hash iterations

(ranging from about 500 to 1000), h represents the hash value, Vi is the verifier in ith

authentication session, and L(x) represents the data length of x.

Table 4.1 Performance evaluations of the SAS-2 and other methods

4.2.1 Calculation Costs

In Lamport’s method, the user used hash functions extensively and had to register

the verifier before it expired. Those problems were solved with the revised SAS, but

there was a little more overhead. The SAS-2 method uses a hash function only three

times in comparison with five times in the revised SAS method. This means that hash

overhead is reduced by about 40%, and the server uses a hash function only once. Then

– 32 –

4.2 Performance Considerations

other performances are under the same or better conditions, data storage, transmission

iterations, and transmission bulk.

4.2.2 Mutual Authentication

A synchronous data communication procedure is possible for one-time password

authentication methods. The SAS-2 method solved this problem by using a mutual

authentication protocol. When carrying out a mutual authentication in the SAS-2

method, the user uses a hash function four times and the server uses it twice.

– 33 –

Chapter 5

Algorithm Variations of the

SAS-2

The base type of the SAS-2 is defined by the following two data.

α← C ⊕ (F (C) + A)

β ← F (C)⊕A

The SAS-2 method is capable of other variations without additional overhead.

This section deals with SAS-2 variations.

5.1 Combination Variations

The SAS-2 method has some elements that are useful data, combination types,

and operations. Those factors are considered here.

5.1.1 Useful Data and Necessary Data

In the base type, the user uses A,C, and F (C). The user uses other data ID (or

other arbitrary number), P , Ni and Ni+1 in the ith authentication session of the SAS-2

system. As well the user can use F (A) in place of F (C). However, P,Ni , and Ni+1

– 34 –

5.1 Combination Variations

shouldn’t be adopted, because that allows a verifier to be created by an attacker.

In view of these facts, the useful data are ID (or other arbitrary number), A, C,

and F (C) (or F (A)). Even if the user uses those data, the calculation load doesn’t

improve.

It is necessary to adopt A (or F (A)) and C because A (or F (A)) is used to remove

masking data in this authentication session and C is used to authenticate the user in

the next authentication session.

5.1.2 Combination Type

In the base type, a one sum operation and two XOR operations are used. Conse-

quently, the user can create a combination type as follows.

α← s⊕ (t + u)

β ← v ⊕ w

We can use other types in place of those combinations, for example as follows.

α← s⊕ (t + u)

β ← v ⊕ (w + x)

But these are defective in that not only are operations increased but also an attacker

can crack or impersonate easily, because this method makes the same styles and works

from a small amount of data.

– 35 –

5.1 Combination Variations

5.1.3 Operators for the SAS-2

In the base type, a user uses only XOR and addition operations. I considered

the usefulness of other operators: NOT, AND, OR, subtraction, multiplication, and

division.

Division is useless, because the SAS-2 method uses 0, and 0 has no factors. Table

5.1 shows results of 1 bit calculation using 6 operators, provided that 1 + 1 = 0 and

0− 1 = 1.

Table 5.1 Results of 1bit calculation

x y XOR AND OR addition subtraction multiplication

0 0 0 0 0 0 0 0

0 1 1 0 1 1 1 0

1 0 1 0 1 1 1 0

1 1 0 1 1 0 0 1

sum 2 1 3 2 2 1

Table 5.2 shows an evaluation of operator values. Hamming distance represents

the distance of expectations from half. If Hamming distance is 0, the operators are

useful. However, if it isn’t 0, the operators are useless. In calculations with other

numbers of bits, Hamming distances are similar.

If the AND operator is used, the results don’t occur with equal frequency. As a

result the AND creates weak combinations, which is an issue. In the same manner,

the operators OR and multiplication are not feasible. Therefore, a user can use XOR,

addition, and subtraction.

– 36 –

5.1 Combination Variations

Table 5.2 Evaluation of operator values

XOR AND OR addition subtraction multiplication

expectation 1
2

1
4

3
4

1
2

1
2

1
4

Hamming distance 0 1
4

1
4 0 0 1

4

The NOT has no problem but it is useless because it increases calculation costs,

and it isn’t strong in the SAS-2 protocol. Its meaning is shown below.

The following relational expression is realized for NOT calculations.

A⊕ {not(A⊕B)} = not{A⊕A⊕B} = not(B)

It is clear that those combinations are useless. In the same way, the following relational

expression is realized.

A⊕ {not(B + C)} = not{A⊕ (B + C)}

This means that the following expressions have the same strength.

A⊕ {not(B + C)}
A⊕ (B + C)

Therefore, the NOT is useless on the SAS-2 protocol.

In the SAS-2 method, the user can use subtraction in place of addition, but

subtraction complicates the operation. Therefore, it is preferable that the user uses

XOR and addition operators.

– 37 –

5.2 Preconditions for Secure Variations

5.2 Preconditions for Secure Variations

It is assumed that the user sends the authentication data as below.

α← s⊕ (t + u)

β ← v ⊕ w

The following are preconditions for secure variations of the SAS-2.

• One of A or F (A) has to be used in s, v, or w.

The characteristics of the SAS-2 authentication protocol are the following two

operations. One is taking out C or F (C) with A or F (A), and the other is

confirmation that an expression using F (C) (or C) is regular. A or F (A) is

necessary when the user retrieves C or F (C) from the communication data,

because only A is stored in the server, and the server can make F (A) from A.

• C or F (C) have to be used in α(β).

If α(β) is made from ID, A, and F (A), an attacker can change β(α) at will.

Therefore, a denial of service attack can succeed. For example, if α and β are as

follows,

α← F (A)⊕ (A + ID)

β ← C ⊕ F (A) ,

the attacker can change β to anything, and the authentication will be successful,

because there is only one C , and C isn’t related to the authentication.

• It is necessary that v be different from w.

If v equals w, then β equals 0, and the expression β is meaningless. Then the

server can’t authenticate the user using only α.

– 38 –

5.2 Preconditions for Secure Variations

• The user has to use A, C, or F (C) (or F (A)) in s, v, and w.

If expressions adopt ID or other arbitrary numbers in a, v or w, an attacker could

remove the masking data.

• In α , t must not be identical with u.

If they are same, t + u equals 2t. Then an attack becomes simple.

Now, let α and β be defined as follows.

α← F (C)⊕ (A + A)

β ← C ⊕ A

Then an attacker can compute 2β equals 2C⊕2A, and calculate α′ ← F (C)⊕(C+C)

with α⊕ 2β. Next the attacker sends α′ with β′ ← C ⊕C (= 0). Therefore, he can

impersonate the user from the next authentication session.

• The user must use F (C) or F (A).

It is clear that an attack is easy if the user creates α and β without using F (C)

and F (A) as follows.

α← A⊕ (C + ID)

β ← C ⊕ A

Then an attacker could compute C⊕ (C + ID) from α⊕β, and send it with C⊕C,

and thus impersonate the user.

– 39 –

5.3 Secure Variations

5.3 Secure Variations

Attacks were tried on all variations of the SAS-2, and 32 secure variations were

found that met the preconditions. These patterns have the same calculation cost as

the base type. The following combinations are 32 secure variations.

1. α← C ⊕ (F (C) + A) , β ← F (C)⊕ A

2. α← C ⊕ (F (C) + ID) , β ← F (C)⊕ A

3. α← C ⊕ (A + ID) , β ← F (C)⊕ A

4. α← A⊕ (F (C) + C) , β ← F (C)⊕ A

5. α← A⊕ (C + ID) , β ← F (C)⊕ A

6. α← A⊕ (C + A) , β ← F (C)⊕ A

7. α← F (C)⊕ (C + ID) , β ← F (C)⊕ A

8. α← F (C)⊕ (C + F (C)) , β ← F (C)⊕ A

9. α← F (C)⊕ (C + A) , β ← F (C)⊕ A

10. α← A⊕ (F (C) + ID) , β ← F (C)⊕C

11. α← A⊕ (F (C) + A) , β ← F (C)⊕C

12. α← A⊕ (C + ID) , β ← F (C)⊕C

13. α← A⊕ (C + A) , β ← F (C)⊕C

14. α← F (A)⊕ (C + ID) , β ← F (A)⊕ C

15. α← F (A)⊕ (C + F (A)) , β ← F (A)⊕ C

16. α← F (A)⊕ (C + A) , β ← F (A)⊕ C

17. α← C ⊕ (C + ID) , β ← F (A)⊕ C

18. α← C ⊕ (C + F (A)) , β ← F (A)⊕ C

19. α← C ⊕ (C + A) , β ← F (A)⊕ C

20. α← A⊕ (C + ID) , β ← F (A)⊕ C

– 40 –

5.4 Defective Combinations on the SAS-2

21. α← A⊕ (C + F (A)) , β ← F (A)⊕ C

22. α← A⊕ (C + A) , β ← F (A)⊕ C

23. α← F (C)⊕ (A + ID) , β ← C ⊕A

24. α← F (C)⊕ (A + F (C)) , β ← C ⊕A

25. α← F (C)⊕ (A + C) , β ← C ⊕A

26. α← F (A)⊕ (C + ID) , β ← C ⊕A

27. α← F (A)⊕ (C + F (A)) , β ← C ⊕A

28. α← F (A)⊕ (C + A) , β ← C ⊕A

29. α← C ⊕ (A + F (C)) , β ← C ⊕A

30. α← C ⊕ (C + F (A)) , β ← C ⊕A

31. α← A⊕ (A + F (C)) , β ← C ⊕A

32. α← A⊕ (C + F (A)) , β ← C ⊕A

5.4 Defective Combinations on the SAS-2

One-time password authentication methods are vulnerable to some kinds of

attacks. The SAS-2 method has another problem.

If the user sends the following combinations, the danger of attack is higher than

with other strong combinations.

α← F (C)⊕ (A + F (C))

β ← C ⊕ A

Then there is a high probability that α is the same as A. Figure 5.1 shows the

probability of dangerous combinations.

– 41 –

5.4 Defective Combinations on the SAS-2

Fig. 5.1 Probability of dangerous combinations

The equation of this curve is y1 =
400
3
×

(
3
4

)x

. If the hash length is enough long,

the probability approaches 0 %.

Figure 5.2 shows the difference between defective combinations and strong combi-

nations.

The equation of the secure combination curve is y2 = 100×
(

1
2

)x

. The probabili-

ties shown are asymptotic for long bits, but the probabilities of defective combinations

are high for small bits. This result means that defective combinations are weak because

low bits can be discovered easily.

If an attacker computes A from α, the attacker can generate x freely and create

the following data using A (= α).

α′ ← F (x)⊕ (A + F (x))

β′ ← x⊕A

When the attacker sends those data, the attacker can impersonate the user from the

next authentication session using a substituted x.

– 42 –

5.4 Defective Combinations on the SAS-2

Fig. 5.2 Difference between defective combinations and strong combinations

Some other combinations are similarly dangerous. For example, the following

combinations are defective.

α← A⊕ (C + A)

β ← F (C)⊕A

or

α← A⊕ (F (C) + A)

β ← F (C)⊕ C

These two combinations use A in both neighborhoods of α. Then an attacker can

extract C or F (C) easily. Therefore, the attacker can impersonate the user.

– 43 –

5.5 Strong Variations

5.5 Strong Variations

The following strong variations of the SAS-2 have no defective combinations. 7

combinations survived as strong variations among the 32 patterns.

1. α← C ⊕ (F (C) + A) , β ← F (C)⊕A

2. α← C⊕ (F (C) + ID) , β ← F (C)⊕A

3. α← C ⊕ (A + ID) , β ← F (C)⊕A

4. α← A⊕ (C + ID) , β ← F (C)⊕A

5. α← F (C)⊕ (C + ID) , β ← F (C)⊕A

6. α← A⊕ (F (C) + ID) , β ← F (C)⊕C

7. α← A⊕ (C + ID) , β ← F (C)⊕C

5.6 Considerations of the SAS-2 Variations

The SAS-2 method has 32 secure variations and 7 strong variations among the

32 patterns. The 32 secure variations have defective combinations. However, those

combinations are secure enough if the hash length is long bit. Therefore, the system

can choose and use a combination from those 32 patterns.

– 44 –

Chapter 6

Applications

6.1 An Application for Key-Free Systems

Here I introduce key-free systems as one type of application system. These systems

open and shut a key using the SAS-2 method, and this system is practicable not only

in cars but also in cellular phones, PDAs, and ICs. Further more, in this system, one

key device can deal with many open and shut devices. Moreover, it is easy to have a

spare key.

6.1.1 The SAS-2 Protocol for Key-Free Systems

Key-free systems consist of two phases: the registration phase and the authenti-

cation phase. The registration process is performed only once, and the authentication

procedure is executed every time the user opens or closes a lock such as a door. We

describe these two phases below.

Registration Phase for Key-Free Systems

Figure 6.1 shows the initial registration phase of key-free systems. Then a lock has

its own identity ID, the key’s identity K, and secret key P .

– 45 –

6.1 An Application for Key-Free Systems

Fig. 6.1 Registration phase for key-free systems

1. The lock calculates the verifier for the 1st authentication session. The lock generates

and stores a random number N1, and calculates A1 = X(ID ⊕ K,P ⊕ N1) using

the random number and input data.

2. The lock sends the registration data to the key for the subsequent authentication.

The lock sends ID, K, and A to the key through a secure channel.

3. The key stores the verifier for subsequent authentication. The key stores A with ID

and K for subsequent authentication.

Authentication Phase for Key-Free Systems

When the user wants to open or close the lock, the following ith authentication

protocol is executed on the lock and the key. Then the key has stored A with ID, and

the apparatus has stored ID,K, P , and Ni. Figure 6.2 shows the ith authentication

phase of key-free systems.

– 46 –

6.1 An Application for Key-Free Systems

Fig. 6.2 The ith authentication phase for key-free systems

– 47 –

6.1 An Application for Key-Free Systems

1. The key sends the key’s identity to open or close the lock. The key sends the key’s

identity K to the lock.

2. The lock calculates two data for the ith authentication session. The lock calculates

A = X(ID⊕, P ⊕Ni) using stored ID, P,K, and Ni. Then the lock generates and

stores a random number Ni+1. At that time the lock can use A instead of Ni+1.

Next the lock calculates C = X(ID⊕K,P⊕Ni+1) and F (C) = F (ID⊕K,C) using

the random number and stored data. Then the lock computes α = C⊕ (F (C) +A)

and β = F (C)⊕A.

3. The lock sends the authentication data to be authenticated by the key. The lock

sends ID, α and β to the key through a common network such as the Internet.

4. The key authenticates the lock with the stored verifier A and the transmission data.

The key retrieves F (C) from β ⊕ A with the stored verifier A, and gets C from

α ⊕ (F (C) + A) using F (C). Next the key compares F (C) and the computed

F (ID⊕K,C). If they don’t match, the attempt is rejected. If they do match, the

next process is executed.

5. The key stores the verifier for the next authentication session and calculates the

data for a mutual authentication protocol. The key stores C in place of A for the

next authentication session, and calculates γ equals F (ID ⊕K,F (C)).

6. The key sends the authentication data to be authenticated by the lock. The key sends

γ to the lock through a common network.

7. The lock authenticates the key with the transmission data and the data which was

used on the lock’s authentication. The lock calculates F (ID ⊕K,F (C)) and com-

pares F (ID ⊕ K,F (C)) which is transmission data γ. If they match, the key is

authenticated and the lock opens or shuts. If they don’t match, the user tries

again.

– 48 –

6.2 Other Applications

6.1.2 Way to cut Calculation Cost

When this system is used on low spec machines such as key devices, it operates

well at low cost. We suggest using XOR operations in place of hash functions.

For example, let a hash function be applied to data E, and let L denote the left

half of E, and R denote the right half of E. Then the hash function F is calculated as

follows.

L← L⊕R

R← L⊕R

Further let L1 denote the left half of L, and L2 denote the right half of L. In the same

way let R1 and R2 be the half of R. Then the hash function H functions as follows.

L1 ← L1 ⊕ L2

L2 ← L1 ⊕ L2

R1 ← R1 ⊕R2

R2 ← R1 ⊕R2

If these operations are used, the quality of security drops, but costs are lowered

considerably, because only XOR operations are managed on the SAS-2 method.

6.2 Other Applications

Lamport’s method is applied to an S/KEY one-time password system in UNIX

[16] , [17]. Consequently one-time password authentication methods can be regarded

as practical techniques.

Some authentication systems using hash algorithms exist on the Internet: HMAC

– 49 –

6.2 Other Applications

(The Key-Hash Massage Authentication Code) [13], [14] and TLS (Transport Layer

Security) [15]. Lamport’s method maybe unfit for Internet protocols because Lamport’s

method has high hash overhead. Besides, an authentication procedure must be light

because the systems on the Internet manage many users. The hash iterations in the

SAS-2 method are the same in number as in HMAC. Therefore, SAS-2 can be used on

Internet protocols.

The SAS method is applied to billing systems [18] for mobile phones. The SAS-2

method is useful for low spec machines such as the cellular phone because the SAS-2

method is light and such machines cannot bear heavy calculation costs.

The SAS-2 is a simple and limitless authentication method. Therefore, the SAS-2

is suitable for application in low spec machines and in Internet protocols.

– 50 –

Chapter 7

Conclusions and Discussions

In this thesis, I focused on hash overhead, and proposed a new method, SAS-2,

which eliminates 40% overhead of hash function adaptation. The method has a

mutual authentication phase which maintains synchronous data communications in an

authentication procedure.

The SAS-2 method has many variations, and those algorithm variations are

examined here. Then 7 strong patterns were identified. Moreover, the SAS-2 can be

applied to low spec machines and Internet protocols.

One-time password authentications suffer from the stolen-verifier problem in which

the attacker steals the user’s verifier from the server and impersonates the user. The

SAS-2 method suffers from this problem. Future research will examine new methods

to eliminate such problems. It seems clear that this strong method will be applied to

remote control systems.

One-time password authentication methods use two verifiers, one to authenti-

cate the user, and the other after the authentication session. Those two verifiers

have to be encrypted by a one-way function. This means that the user must use a

one-way function twice. Therefore, a method using a one-way function twice is the

minimum one-time password authentication method. I will research such minimum

methods, as well. Such a fast method will be applicable to strong authentication servers.

– 51 –

Acknowledgement

I would like to express my deep gratitude to my thesis advisor, Professor Akihiro

Shimizu, for his enthusiastic guidance, constructive criticism, and superior suggestions

throughout the study. My grateful appreciation is extended to Professor Makoto Iwata

and Professor Masanori Hamamura for their kindness and valuable advice. I would

also like to thank Professor Takahiko Mendori for his instructions.

Grateful thanks are also extended to Professor Lawrence Hunter and Professor

Mikio Kadota for their helpful English teaching towards the writing of this thesis.

Thanks a lot to Mr. Takashi Kamioka and Ms. Yoko Tanaka for their helpful in

the analysis of proposed new methods. I would also like to thank the members of the

Shimizu Laboratory for their precious opinions and support.

I would like to give special thanks to the faculty and staff of the Course of

Information Systems Engineering during my studies at Kochi University of Technology.

Finally, deep thanks are extended to my father, mother, and brother for their

endless love and emotional support.

– 52 –

References

[1] NBS, “Data Encryption Standard,” FIPS-PUB-45, 1977.

[2] A. Shimizu, and S. Miyaguchi, “Fast data encipherment algorithm FEAL,” IEICE

Trans., vol.J70-D, no.7, pp.1413-1423, July 1987. (Japanese)

[3] M. Matsui, “New block encryption algorithm MISTY,” Lecture Notes in Computer

Science, FSE 1997, pp.54-68, 1997.

[4] J. Daemen and V. Rijmen, “The block cipher rijndael,” Smart Card Research and

Applications, LNCS 1820, J.-J. Quisquater and B. Schneier, Eds., Springer-Verlag,

pp.288-296, 2000.

[5] J. Daemen and V. Rijmen, “Rijndael, the advanced encryption standard,” Dr.

Dobb’s Journal, vol.26, no.3, pp.137-139, March 2001.

[6] R. Rivest, “The MD5 message-digest algorithm,” Internet Request For Comments

1321, April 1992.

[7] National Institute of Standards and Technology, “Secure hash standard,” FIPS

Publication 180-1, April 1995.

[8] W. Stallings, “Secure hash algorithm,” in Cryptography and Network Security:

Principles and Practice Second Edition, pp.193-197, Prentice-Hall, 1999.

[9] H. Dobbertin, A. Bosselaers and B. Preneel, “RIPEMD-160: A strengthened ver-

sion of RIPEMD,” Fast Software Encryption, Third International Workshop, Lec-

ture Notes in Computer Science 1039, Springer-Verlag, pp.71-82, 1996.

[10] T. Kwon, and J. Song, “Efficient key exchange and authentication protocols pro-

tecting weak secrets,” IEICE Trans. Commun., vol.E81-A, no.1, pp.156-163, Jan-

uary 1998.

[11] T. Kwon, M. Kang, S. Jung, and J. Song, “An improvement of the password-based

– 53 –

References

authentication protocol (K1P) on Security against replay attacks,” IEICE Trans.

Commun., vol.E82-B, no.7, pp.991-997, July 1999.

[12] J.-Y. Park, D.-I. Lee, H.-H. Lee, and J.-G. Park, “One-time key generation system

for agent data protection,” IEICE Trans. Commun., vol.E85-D, no.3, pp.535-545,

March 2002.

[13] H. Krawczyk, M. Bellare, and R. Coretti, “HMAC: Keyed-hashing for massage

authentication,” Request For Comments 2104, February 1997.

[14] H. Krawczyk, M. Bellare, and R. Coretti, “The key-hash massage authentication

code(HMAC),” Federal Information Processing Standards Publication 198, March

2002.

[15] T.Dierks, and C. Allen, “The TLS protocol version 1.0,” Request For Comments

2246, January 1999.

[16] N. Haller, “The S/KEY(TM) one-time password system,” Proc. Internet Society

Symposium on Network and Distributed System Security, pp.151-158, 1994.

[17] N. Haller, C. Metz, P. Nesser, and M. Straw, “A one-time password system,”

Request For Comments 2289, February 1998.

[18] M. Sandirigama, A. Shimizu, and M.T. Noda, “Simple and secure coin(SAS-Coin)

- A practical micropayment system,” IEICE Trans. Commun., vol. E83-A, no.12,

pp.2679-2688, December 2000.

[19] L. Lamport, “Password authentication with insecure communication,” Communi-

cations of the ACM, vol.24, no.11, pp.770-772, 1981.

[20] A. Shimizu, “A dynamic password authentication method by one-way function,”

IEICE Trans., vol.J73-D-I, no.7, pp.630-636, July 1990. (Japanese)

[21] A. Shimizu, “A dynamic password authentication method by one-way function,”

System and Computers in Japan, vol.22, no.7, 1991.

[22] N. Haller, and R. Atkinson, “On Internet Authentication,” Request For Comments

– 54 –

References

1704, October 1994.

[23] A. Shimizu, T. Horioka, and H. Inagaki, “A password authentication method for

contents communication on the internet,” IEICE Trans. Commun., vol.E81-B, no.8,

pp.1666-1673, August 1998.

[24] M. Sandirigama, A. Shimizu, and M.T. Noda, “Simple and secure password authen-

tication protocol (SAS),” IEICE Trans. Commun., vol.E83-B, no.6, pp.1363-1365,

June 2000.

[25] C. Lin, H. Sun, and T. Hwang, “Attacks and solutions on strong-password au-

thentication,” IEICE Trans. Commun., vol.E84-B, no.9, pp.2622-2627, September

2001.

[26] T. Kamioka, and A. Shimizu, “The examination of the security of SAS one-time

password authentication,” IEICE Technical Report, OFS2001-48, no.435, pp.53-58,

2001.

[27] T. Tsuji, T. Kamioka, and A. Shimizu, “Simple and secure password authentication

protocol, ver.2 (SAS-2),” IEICE Technical Report, OIS2002-30, vol.102, no.314,

pp.7-11, September 2002.

[28] C.-M. Chen and W.-C Ku, “Stolen-verifier attack on two new strong-password au-

thentication protocols,” IEICE Transactions on Communications, vol.E85-B, no.11,

pp.2519–2521, November 2002.

[29] T. Tsuji, and A. Shimizu, “An impersonation attack on one-time password authen-

tication protocol OSPA,” IEICE Technical Report, ISEC2002-81, vol.102, no.436,

pp.67-72, November 2002.

[30] T. Tsuji, and A. Shimizu, “Algorithm variations of SAS-2,” IEICE Technical Re-

port, IN2002-149, vol.102, no.498, pp.25-30, December 2002.

– 55 –

