修士論文
案内ロボットの消費エネルギーを
最小にする作業計画法の提案

高知工科大学大学院
工学研究科基盤工学専攻
知能機械システム工学コース
知能ロボティクス研究室
学籍番号 1085226
氏名 福谷惇史
目次

第1章 序章
1. 1 はじめに ・・・・・・・・・・・・・・・・・・・・・・・・ 1
1. 2 本研究の目的 ・・・・・・・・・・・・・・・・・・・・ 2
1. 3 案内ロボットとは ・・・・・・・・・・・・・・・・・・・ 3
1. 4 案内ロボットによる案内サービスの概要 ・・・・ 7

第2章 案内ロボットとは
2. 1 案内ロボットとは ・・・・・・・・・・・・・・・・・・・ 10
2. 2 本案内ロボットによる案内サービスの概要 ・・・ 11
2. 3 駆動機構 ・・・・・・・・・・・・・・・・・・・・・・・・ 13

第3章 経路計画・軌道計画・作業計画とは
3. 1 トータルシステム ・・・・・・・・・・・・・・・・・・・ 15
3. 2 作業計画 ・・・・・・・・・・・・・・・・・・・・・・・・ 16
3. 3 経路計画 ・・・・・・・・・・・・・・・・・・・・・・・・ 16
3. 4 軌道計画 ・・・・・・・・・・・・・・・・・・・・・・・・ 17
3. 5 サーボ系 ・・・・・・・・・・・・・・・・・・・・・・・・ 18

第4章 経路計画法
4. 1 評価関数 ・・・・・・・・・・・・・・・・・・・・・・・・ 19
4. 2 地点が2地点の場合 ・・・・・・・・・・・・・・・・ 20
4. 3 地点が3地点の場合 ・・・・・・・・・・・・・・・・ 31

第5章 シミュレーション
5. 1 2点のシミュレーション ・・・・・・・・・・・・ 44
5. 2 3点のシミュレーション ・・・・・・・・・・・・ 58

第6章 結章
6. 1 本研究のまとめ ・・・・・・・・・・・・・・・・・ 66
6. 2 今後の展開 ・・・・・・・・・・・・・・・・・・・ 66

参考文献

謝辞
第1章 序章

1.1 はじめに

産業用ロボットはファクトリーオートメーションなどに代表されるように産業自動化を目的として発展してきている。例えば、室内蛍光灯情報などの環境設備を利用する移動ロボット、障害物回避を目的とするステレオビジョンセンサの利用法などが提案されている。すなわち、産業用ロボットでは製品の品質、生産性の向上の観点から高精度化、高速度化が主要な研究課題である。一方、近年急速に進んでいる少子・高齢化社会においては、病院や老人ホームなどの医療福祉分野では、人間をサポートするパートナーロボットの活躍が望まれている。産業分野と医療福祉分野の両者を比較する中で一番大きな違いをとらえると前者がシステムの中で人間を除外して高精度化・高速度化を図っているのに対して、後者はシステムの中で人間を対象にする点である。そのため後者のように人間と同じ物理空間で作業行動するロボットにとっては、高精度化・高速度化も重要なことながらそれらよりも、人間や環境に対する安全性、人間の感情と行動に対して理解するとともに、ロボットの動作による感情表現、多様な情報を取り込み総合的に判断・行動するなど、ロボットと人間の間の相互関係が重要になってくる。本研究では、病院や老人ホームなどの建物内で人間の誘導をする案内ロボットを開発している。図1.1は日本ロボット工業会が平成13年5月に発表した「平成12年度21世紀におけるロボット社会創造のための技術戦略調査報告書」の中の「次世代ロボット市場規模予想」であるがこのグラフからも見てわかるように産業分野の成長率に比べて生活分野、医療分野の成長率のほうが高くおり分野としての成長が期待されていることがわかる。図1.2は平成12年に総務省が行った国勢調査における年齢5歳階級別人口の割合及び50年後の2050年の推計である。グラフから見て取れるように、21世紀半ばに
第1章 序章

は、国民のおよそ2.8人に1人が65歳以上という“超高齢社会”になることが予測されている。

図1.1 次世代ロボット市場規模予想

図1.2 平成12年度国勢調査統計
1.2 本研究の目的

本研究では、建物内で人間を誘導するための案内ロボットを開発することを目的として、案内ロボットの作業計画法について研究した。案内ロボットは、人間と同じ物理空間を対象として行動するので、どれだけ精度よくかつ素早く物を運ぶことができるかという産業用ロボットと違って、いかに周りの状況を取得し、他のロボットとの相互関係などを考慮に入れ総合的に判断・最適な作業設計を行うことができるというアルゴリズムの開発を目的とする。本研究室ではこれまでに案内ロボットの制御に必要となる軌道計画法を提案し、実験により有効性を確認している。また、1台の案内ロボットにより一人の被案内者に対する案内を実現するための経路計画法も提案しシミュレーションにより有効性を確認している。しかし、実際の案内環境においては複数の被案内者、あるいは複数台の案内ロボットが存在する事が考えられる。こうした状況下においては案内ロボットと被案内者の関係は格段に複雑となるので、よりよく効率的な案内が期待される。本研究では、建物内で人間を誘導するための案内ロボットを開発することを目的とし、被案内者から見て同様な案内を実現する前提の下で、複数台による案内の過程において、複数台ロボットのトータルエネルギーの消費を最小にする作業計画法を提案し、シミュレーション実験により提案する作業計画法の有効性をした上で、実際の案内ロボットに適用するための可能性を検討した。
第2章 案内ロボットとは

2.1 案内ロボットとは

案内ロボットとは、訪問者を目的地まで道案内すると同時にその案内先に関する情報を訪問者に提供するというものである。案内ロボットには移動型案内ロボットと固定型案内ロボットがある。

図2.1にロボットの写真を示す。ロボットの直径は350mm、高さ800mmの円柱の形をしている。本案内ロボットの詳しい機構については後にのべる。

図2.1 案内ロボット Mackey
第2章 案内ロボットとは

以下に本研究以外に研究されているロボットについて比較する。

移動型案内ロボットでは三菱重工株式会社「wakumaru」（図2.2）がある。主な機能は
・障害物を回避する多数のセンサーが搭載されている
・いろいろな単語を認識し、それによって対応を変化させる
・額と頭頂部の2つのカメラがついており周囲の状況を認識
等いろいろな機能を有している。

図2.2（三菱重工株式会社 wakumaru）

また奈良先端科学技术大学院大学の「たけまるくん」（図2.3）がある。主な機能は
・タッチパネルと音声によるインターフェイス
・目的地までのナビゲーション
・人や障害物に対する衝突回避という機能を有している。
第2章 案内ロボットとは

図2.3（奈良先端科学技術大学院大学 たけまるくん）

同じく奈良先端科学技術大学院大学の「受付案内ロボットASKA」（図2.4）は固定型案内ロボットで受付に来た人に目的の場所をその場で案内するといったロボットで主な機能は

・受付の前に立っている人を見つけて、そちらを向く

・音声による質問を認識する

・質問の答えを、ジェスチャを交えて発話する

という機能を有している

図2.4（奈良先端科学技術大学院大学 ASKA）
第2章 案内ロボットとは

またオフィスや美術館のような公共施設で働くロボットの時代を予想され、そのロボットはオフィス内あちこちへと移動して人々と話すことを目的とし設計された産業技術総合研究所のオフィスロボット「Jijoー2」（図2.5）というロボットがある。このロボットの主な機能は
・ 道案内
・ 物を届ける
・ 人のいる場所を記憶する
・ スケジュール機能
・ 会話機能
という機能を有している。

図2.5 （産業技術総合研究所 Jijoー2）

またNECホームロボット「PaPeRo」（図2.6）を用いた奈良先端科学技術大学院大学による館内誘導システムのための複数台ロボット協調機構の研究などもある。このロボットを用いて奈良先端科学技術大学院大学の研究している。主な機能は
・ 館内誘導システムのための複数台ロボット協調機構
・ 自発的にコミュニケーションを図るロボットのための判断基準の構築
・ ロボットに搭載するためのジェスチャ認識
という機能が研究されている。
第2章 案内ロボットとは

図2.6（NECホームロボット PaPeRo）

図2.7（綜合警備保障株式会社 ガードロボットアイ）
第2章 案内ロボットとは

また総合警備保障株式会社 ガードロボットアイ（図2.7）は巡回警備を主な目的として開発されたが警備以外に案内、受付業務も行うことができる。主な機能は

・あらかじめセットしたルートに沿って巡回警備を行なうことができる
・レーザーレンジセンサー、超音波センサーなどで人体検出を行なえる
・案内、受付業務を行うことができる

という機能を有している。

以上のように多種多様な案内ロボットの種類があり、活発な研究開発がなされている。

2.2 本案内ロボットによる案内サービスの概要

案内ロボットによる案内サービスの概要を示す。（図2.7）病院や保健センターなどでの健康診断において人間を案内する場合を例にして説明する。まず、案内ロボットの前に案内する人が来る。そのとき案内ロボットは無線LAN等を使用して、身体測定、採血、血圧、心電図検査、問診、内視鏡検査、胸部X線検査などの各検査を行っている個々の目的地から待ち時間や診察時間、現在地と目的地までの距離などの情報を収集する。個々の目的地から収集した情報を元に、案内ロボットは何らかのアルゴリズムに基づいて、現時点で最適な目的地と目的地までの経路を算出する。次に目的地までの経路が計画されれば、経路に従って人を目的地まで案内することになるが実際の案内を行うためには経路を移動する速度を決定する必要がある。以上のように人間は最適な目的地までロボットに案内され、検診を受ける。案内された目的地での検診が終了すれば、経路計画法により次に移動すべき最適な目的地と経路が計画され、リアルタイムで軌道計画を行いながら人間を案内する。

この計画を繰り返して行っていけば、案内ロボットによる健康診断を目的とする案内サービスを行うことができる。
2.3 駆動機構

移動機構としてこの案内ロボットには3つのホイールが底面ベースに3角形の頂点上にそれぞれ配置されている（図2.8）。1個のモータでタイミングベルトを介して同じ回転数で回転する。ロボットの胴体は同期に回転する3つのホイールによって駆動される。ロボットの進行方向はホイールの向きによって決定されるが、走行の安定性を向上するために、3つのホイールの向きが同じ進行方向に向けように別のモータでタイミングベルトを介してプーリーを回転させることにより同期に操舵される（図2.9）。よって本案内ロボットは準全方向移動機能を持っており任意の姿勢ですべての方向に向かって人を案内することができる。
第2章 案内ロボットとは

2.4 センサ

本案内ロボットの本体には、タッチセンサが6個、赤外線センサが12個、超音波センサが8個、CCDカメラが1個、搭載されている。図2.10に上から見た場合のセンサの配置を示す（図2.10）。タッチセンサ（図2.11）は最下部にあるバンパー内に設置し、障害物にと衝突するときの非常停止動作に利用する。赤外線センサ（図2.12）は中下部に斜め下向き配置し、主に低い障害物を検出する。超音波センサ（図2.13）には2つの役割があり、左右に配置した6個で相対的に高い障害物の検出に、中上部の前方に配置した2個で被験者との距離検出に使用する。CCDカメラは環境認識に使用する。
第2章 案内ロボットとは

図2.10 センサの配置

図2.11 タッチセンサ
第2章 案内ロボットとは

図2.12 赤外線センサ

図2.13 超音波センサ
第3章 経路計画・軌道計画・作業計画とは

3.1 トータルシステム

一般的なシステム制御において主な問題はサーボ問題である。サーボ問題を例にすると次のようになる。ロボットマニピュレータに対して目標軌道が与えられたとする。それにいかに忠実に従って動かすという問題のことを言う。こうした問題はロボットマニピュレータに限らず、メカトロニクスにおける制御問題というと、このようにサーボ問題を考えることが多いが、システム制御の立場からいうとサーボ系に指令を発する機能がどこかにあるはずである。ロボットマニピュレータや移動ロボットでは特にこの問題が重要である。図3.1にトータルシステムの構成を示す。

図3.1 トータルシステム構成
第3章 経路計画・軌道計画・作業計画とは

次にある人が大学から高知市に行く計画を立てる場合を例に作業計画・経路計画・軌道計画を説明する。

3. 作業計画

何からの目的のために高知市内に行き、高知市内のどここの地点に行くことを決定する。例えば目標地点をA地点と決定する。このことを作業計画という。

![図3.2 作業計画](image)

3.3 経路計画

大学のどの場所からいつか車で出発すればいいか、そしてどのような経路を経て高知市に接近するのがいいか、また高知市のどの場所に到着すればいいか
第3章 経路計画・軌道計画・作業計画とは

など数々の観点から検討する。例えば大学のある地点から出発し経路Aを通ってA地点への到着を決定する。このことを経路計画という。 （図3.3）

経路A

図3.3 経路計画

3.4 軌道計画

経路が決まった車をいかなるスピードで運転する必要があるのであろうか。その時々の場面によってスピードの制御が必要である。その後、燃料を節約するために車を最適なスピードで運転することが要求される。そして、予定時刻より遅れそうになるとスピードを早くしなければならない。また信号なので停まったりする必要性もある。このような車の運転スピードを状況に応じて変化させるような計画が必要であり、これを軌道計画という。 （図3.4）
第3章 経路計画・軌道計画・作業計画とは

図3.4 軌道計画

3.5 サーボ系

図3.5
車が指定された経路を指定された速度で運転するという操縦の問題がでてくる。このことをサーボ系問題という。（図3.5）

これらの例でわかるように，システム制御ではサーボ系に指令を与えるもっとも上位レベルのいくつかの計画法が極めて重要であることがわかる。つまり，サーボ系，軌道計画，経路計画，作業計画のすべてがトータルとして構成されて初めてシステムの制御がなされるものである。よく知られているようにシステムを構成する要素が複数ある場合，どれか1つが悪いか他のすべてのもののが優れた性能をもっていても，トータルシステムとしての性能は悪い要素に引きずられてしまう。サーボ系がいかにすばらしく設計できたとしても，その上位にある計画問題を適切に解決しなければ望ましい性能のトータルシステムは得られないことに注意すべきである。
第4章 作業計画法

実際の案内環境においては複数の被案内者、あるいは複数台の案内ロボットが存在する事が考えられる。こうした状況下においては案内ロボットと被案内者の関係は格段に複雑となるので、よりよく効率的な案内が期待される。実際に複数台の案内ロボットが強調して案内サービスを行うためには、軌道計画や経路計画の他にも協力して動くための作業計画が必要になる。したがって、本研究では、被案内者から見て効率のよい案内を実現する前提の下で、複数台による案内の過程においては、複数台ロボットのトータル・エネルギーの消費を最小にする作業計画法を求める。

4.1 評価関数

作業計画を行うにあたってどのように評価関数を設定するかというのは重要なことである。本研究は病院や保健センターなどでの健康診断において人間を案内することを想定している。案内するという上で重要な条件はどのようにして最適な目的にスムーズに向かえるかということが重要になる。本研究では2台の案内ロボットの消費エネルギーをできる限り同等の量に、なおかつ最小にするために式4.1を評価関数としてもいる式4.1において

\[J = m_A S_A - m_B S_B \quad [kg \cdot cm] \Rightarrow \min \]

式4.1
4.2 地点が2地点の場合

複数台の案内ロボットが強調して案内サービスを行うためには、軌道計画や経路計画の他にも協力して動くための作業計画が必要になる。そこでA, B点を図4.1のようにXY平面上と定義しその経路上でどのように案内ロボットが動くことにより効率のよい案内サービスが行なえるかを検証する。前提条件として次の条件を設定する。

・A点に現れた人はB点に案内
・B点に現れた人はA点に案内
・案内ロボットは2台
・決定した行動は終了するまで変更しない
・人の居場所は点A, B間
・ロボットAはロボットBを越えない（Xₐ ≤ X₇）
・人の居場所は点A, B間（0 ≤ Xₚ ≤ Sₘₚₙ）

以上の事を本作業計画では必ず満たしているものとする。上の条件においてXₚは被案内者の位置、Xₐは案内ロボットAの現在位置、X₇は案内ロボットBの現在位置である。またA点を(0,0), B点を(Sₘₙ,0)とする。

![図4.1](image-url)
次に実際に評価関数と実際に起こりうる状態を式で表しそれらを連立させることにより、実際の案内ロボットの移動距離を求める。式4.2は2台の案内ロボットを同じ量だけ仕事をさせることを目的としているのでそれぞれの仕事の差をできる限り0に近づけるという状態である。0になることにより本作業計画は目標を達成することができる。

\[0 = m_A S_A - m_B S_B \]

式4.2

4.2.1 点Aから点Bへの案内

まず点Aから点Bへの案内行為について考える。式4.3は案内ロボットBの移動距離を表している。ここで\(l \)は点Bと案内ロボットBが案内ロボットAと被案内者を受け渡す点までの距離とする。また\(S_{\text{max}} \)は点Bの位置、\(X_B \)は案内ロボットBの現在の位置を表しており、ここでは案内行為を開始する初期にいる位置を表している。ここで移動距離\(S_B \)は点Bと被案内者の受け渡し地点の往復の距離\(2l \)から点Bの位置\(S_{\text{max}} \)から案内ロボットBがいる位置\(X_B \)を引いたものとなる。位置関係は図4.2のようになる。

\[S_B = 2l - (S_{\text{max}} - X_B) \]

式4.3

図4.2
次の式 4.4 は案内ロボット A の移動距離を表している。X_A は案内ロボット A の現在の位置を表しておりここでは案内行為を開始する初期にいる位置を表している。ここで移動距離 S_A は点 B の位置から点 B と受け渡し地点の距離を引き、案内ロボット A の位置をたしたものとなる。位置関係は図 4.3 のようになる。

$$S_A = S_{\text{max}} - l + X_A$$

式 4.4

以上の式 4.2 に式 4.3、式 4.4 を代入することにより、式 4.5 を得ることができる。

$$0 = m_A (S_{\text{max}} - l + X_A) - m_B (2l - S_{\text{max}} + X_B)$$

式 4.5

式 4.5 を l について解くことにより、式 4.6 がもとめられる。

$$l = \frac{m_A (S_{\text{max}} + X_A) + m_B (S_{\text{max}} - X_B)}{m_A + 2m_B}$$

式 4.6
式4.6をそれぞれの式に代入することにより案内ロボットA、案内ロボットBのそれぞれの移動距離\(S_A\), \(S_B\)をもとめることができる。

次に実際に想定される案内パターンにあてはめて実際に表現することができるかを検証する。

パターン1（図4.4）

・ロボットAが原点にある \(X_A = 0\)
・ロボットBがB点にある \(X_B = S_{\text{max}}\)
・被案内者が原点にいる \(X_p = 0\)

以上をあてはめることにより点Bから受け渡し地点までの距離\(l\)は式4.5になる。

図4.4

\[
l = \frac{m_A S_{\text{max}}}{m_A + 2m_B}
\]

パターン2（図4.5）

・ロボットAが原点にある \(X_A = 0\)
・ロボットBが点A,B間にある \(X_B = S_{AB}\)
・被案内者が原点にいる \(X_p = 0\)

以上をあてはめることにより点Bから受け渡し地点までの距離\(l\)は式4.6になる。
第 4 章 作業計画法

図 4.5

\[l = \frac{m_A S_{\text{max}} + m_B (S_{\text{max}} - S_{\text{NB}})}{m_A + 2m_B} \]

式 4.6

パターン 3（図 4.6）

・ ロボット A が点 A, B 間にある \[X_A = S_{\text{MA}} \]
・ ロボット B が点 B にある \[X_B = S_{\text{max}} \]
・ 被案内者が原点にいる \[X_p = 0 \]

以上をあてはめることにより点 B から受け渡し地点までの距離 \(l \) は式 4.7 になる。

図 4.6

\[l = \frac{m_A (S_{\text{max}} + S_{\text{NA}})}{m_A + 2m_B} \]

式 4.7
パターン4（図4.7）

・ロボットAが点A,B間にある \(X_A = S_{NA} \)
・ロボットBが点A,B間にある \(X_B = S_{NB} \)
・被案内者が原点にいる \(X_p = 0 \)

以上をあてはめることにより点Bから受け渡し地点までの距離\(l \)は式4.8になる。

\[
\begin{align*}
 l &= \frac{m_A(S_{\text{max}} + S_{NA}) + m_B(S_{\text{max}} - S_{NB})}{m_A + 2m_B} \\
\end{align*}
\]
式4.8

以上により、被案内者がA点に表れB点に案内するパターンの検証を行ない、すべての場合において成り立つ結果が得られた。しかし被案内者がB点に現れA点に案内する場合においては式4.3、式4.4が成り立たないため別の式を求める必要性がある。

4.2.2 点Bから点Aへの案内

次に点Bに被案内者が現れ、点Aに案内する場合を表す。評価関数は同一なので式4.2をもちいる。式4.9は案内ロボットBの移動距離である。ここで\(l \)は点Bと案内ロボットBが案内ロボットAと被案内者を受け渡す
点までの距離とする。また S_{max} は点 B の位置、X_B は案内ロボット B の現在の位置を表しており、ここでは案内行為を開始する初期にいる位置を表している。ここで移動距離 S_B は点 B と被案内者の受け渡し地点の距離 l に点 B の位置 S_{max} たし、案内ロボット B がいる位置 X_B を引いたものになる。位置関係は図 4.8 のようになる。

$$S_B = l + (S_{\text{max}} - X_B)$$

式 4.9

図 4.8

次に式 4.10 は案内ロボット A の移動距離を表している。X_A は案内ロボット A の現在の位置を表しておりここでは案内行為を開始する初期にいる位置を表している。ここで移動距離 S_A は点 B の位置の 2 倍から点 B と受け渡し地点の距離の 2 倍を引いたものとなる。位置関係は図 4.9 のようになる。

$$S_A = 2S_{\text{max}} - 2l - X_A$$

式 4.10
図4.9

式4.2に式4.9、式4.10に代入すると式4.11となる。

\[0 = m_A (2S_{\text{max}} - 2l - X_A) - m_B (l + (S_{\text{max}} - X_B)) \]

式4.11

式4.11をlについて解くと式4.12となる。

\[l = \frac{m_A (2S_{\text{max}} - X_A) - m_B (S_{\text{max}} - X_B)}{2m_A + m_B} \]

式4.12

式4.12をそれぞれの式に代入することにより案内ロボットA、案内ロボットBのそれぞれの移動距離S_A、S_Bをもとめることができる。

次に実際に想定される案内パターンにあってはめて実際に表現することがで
きているかを検証する。
第 4 章 作業計画法

パターン 5（図 4.10）

・ロボット A が原点にある
 \(X_A = 0 \)

・ロボット B が B 点にある
 \(X_B = S_{max} \)

・被案内者が B 点にいる
 \(X_P = S_{max} \)

以上をあてはめることにより点 B から受け渡し地点までの距離 \(l \) は式 4.13 になる。

\[
l = \frac{2m_A S_{max}}{2m_A + m_B}
\]

式 4.13

パターン 6（図 4.11）

・ロボット A が点 A, B 間にある
 \(X_A = S_{NA} \)

・ロボット B が B 点にある
 \(X_B = S_{max} \)

・被案内者が B 点にいる
 \(X_P = S_{max} \)

以上をあてはめることにより点 B から受け渡し地点までの距離 \(l \) は式 4.14 になる。
第4章 作業計画法

図4.11

$$l = \frac{m_A (2S_{\max} - S_{NA})}{2m_A + m_B}$$

式4.14

パターン7（図4.12）

・ロボットAが原点にある \(X_A = 0 \)
・ロボットBが点A,B間にある \(X_B = S_{NB} \)
・被案内者がB点にいる \(X_B = S_{\max} \)

以上をあてはめることにより点Bから受け渡し地点までの距離\(l \)は式4.15になる。

図4.12
パターン8（図4.13）

・ロボットAが点A,B間にある
・ロボットBが点A,B間にある
・被案内者がB点にいる

以上をあてはめることにより点Bから受け渡し地点までの距離lは式4.16になる。

式4.16

\[l = \frac{2m_A S_{\text{max}} - m_B (S_{\text{max}} - S_{NB})}{2m_A + m_B} \]
4. 3 地点が3点の場合

次に3点の場合を説明する. まず始めに前提条件を設定する. 本作業計画において以下の条件をみたしているものとする.

・A点に現れた人はB点に案内
・案内ロボットの初期位置は点C
・案内ロボットは2台
・決定した行動は終了するまで変更しない
・人の居場所は点A,B間
・ロボットAはロボットBを越えない（X_A ≤ X_B）
・人の居場所は点A,B間（0 ≤ X_p ≤ S_{max}）

以上の事を本作業計画では必ず満たしているものとする. 上の条件においてX_pは被案内者の位置, X_Aは案内ロボットAの現在位置, X_Bは案内ロボットBの現在位置である. またA点を(0,0), B点を(S_{max},0)とする.

図4.14
図4.14は3点の案内行為の位置関係を図示したものである。案内ロボットの初期位置は案内ロボットAが点A，案内ロボットBが点Cにいるものとし，目標点は点Bとする。それぞれの座標を点A(0,0)点B(S_{\text{max}},0)点C(x_c,y_c)とする。点Dは案内ロボットAと案内ロボットBが被案内者を受け渡す点，点Eは点CからX軸に垂線を下ろした点である。この時にm_aはロボットAの重さ，m_bはロボットBの重さ，S_dはロボットAの移動距離，S_BはロボットBの移動距離，S_{\text{max}}は点AB間の距離，lは点BD間の距離であり点Bから被案内者を受け渡す地点までの距離である。dは点BE間の距離である。hは点CE間の距離である。以上の事より式を求めると以下のようになる。

以上の条件において，評価関数は2点と同等の式4.17をもっている。2台の案内ロボットを同じ量だけ仕事をさせるということを目的としているのでそれぞれの仕事の差をできる限り0に近づけるという状態である。

\[J = m_A S_A - m_B S_B \ [kg \cdot cm] \Rightarrow \min \]

式4.17

4.3.1 3点でA点からB点への案内

式4.18は案内ロボットBの移動距離を表している。ここでlは点Bと案内ロボットBが案内ロボットAと被案内者を受け渡す点までの距離とする。またS_{\text{max}}は点Bの位置，ここで移動距離S_{B'}は点Bと被案内者の受け渡し地点の距離lと点Cの位置から被案内者の受け渡し地点の距離lを足したものとなる。位置関係は図4.15のようになる。

\[S_B = l_1 + l \]

式4.18
次に式 4.19 は案内ロボット A の移動距離を表している。ここで移動距離 S_A は点 B の位置から点 B と受け渡し地点の距離を引いたものである。位置関係は図 4.16 のようになる。

$$S_A = S_{\text{max}} - l$$

式 4.19
次に式4.20は案内ロボットBの点Cから受渡地点までの移動距離を表している。位置関係は図4.17のようになる。

\[l_1 = \sqrt{h^2 + |l - d|^2} \]

式4.20

次に式4.21は点CからX軸に垂線を下ろし交差した点Eと点Bの距離を表している。位置関係は図4.18のようになる。

\[d = \sqrt{l_{BC}^2 - h^2} \]

式4.21
以下の5つの式を連立させて代入することにより式4.22となる

\[0 = m_A (S_{\text{max}} - l) - m_B \sqrt{h^2 + \left| l - \sqrt{l_{BC}^2 - h^2} \right|^2} + l \]

式4.22

式4.22を\(l \)について解くと式4.23となる。

\[
l = \frac{-2\sqrt{l_{BC}^2 - h^2} m_B^2 + 2m_A^2 S_{\text{max}} + 2m_A m_B S_{\text{max}}}{2m_A(m_A + m_B)}
\]

\[
\sqrt{(2\sqrt{l_{BC}^2 - h^2} m_B^2 - 2m_A^2 S_{\text{max}} - 2m_A m_B S_{\text{max}})^2 - 4m_A (m_A + m_B)(-B^2 m_B^2 + m_A^2 S_{\text{max}}^2)}
\]

式4.23
実際に想定される環境変数を代入して本作業計画が表現できているかを確認する。初期の条件を以下に示す。また図4.19に位置関係を示す。

- 案内ロボットAの初期位置はA点
- 案内ロボットBの初期位置はC点(70, 30)
- 目標点B(100, 0)
- 案内ロボットAの重さ1kg
- 案内ロボットBの重さ1kg

図4.19

式4.23に代入しそれぞれの移動距離を求めると以下のようになる。

距離l 34.81
C点とD点の距離lは30.38
案内ロボットAの移動距離65.19
案内ロボットBの移動距離65.19

以上よりこの作業計画が成り立つことが分かる。
次に案内ロボットAの初期位置が点A以外にいる場合について示す。

図4.20は3点の案内行為の位置関係を図示したものである。案内ロボットの初期位置は案内ロボットAが点F、案内ロボットBが点Cにいるものとし、目標点は点Bとする。それぞれの座標を点A(0,0)、点B(S_{\text{max}},0)、点C(x_c,y_c)、点F(x_F,y_F)とする。点Dは案内ロボットAと案内ロボットBが被案内者を受け渡す点、点Eは点CからX軸に垂線を下ろした点である。この時にm_aはロボットAの重さ、m_bはロボットBの重さ、S_AはロボットAの移動距離、S_BはロボットBの移動距離、S_{\text{max}}は点A、B間の距離、lは点B、D間の距離であり点Bから被案内者を受け渡す地点までの距離である。dは点B、E間の距離である。hは点C、E間の距離である。以上の事より式を求めると以下のようになる。

\[S_A = S_{\text{max}} - l + X_A \]

式4.24
第4章 作業計画法

$$d = \sqrt{l_{BC}^2 - h^2}$$
式4.25

$$l_1 = \sqrt{h^2 + |l - d|^2}$$
式4.26

$$S_B = l_1 + l$$
式4.27

$$X_A = \sqrt{x_f^2 + y_f^2}$$
式4.28

以上の式より式4.29が求められる。

$$0 = m_A(S_{max} - l + X_A) - m_B \sqrt{h^2 + (l - \sqrt{l_{BC}^2 - h^2})^2} + l$$
式4.29

式4.30をlについて求めると、

$$l = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$$
式4.31

それぞれA,B,Cは式4.32,式4.33,式4.34が入る。
第4章 作業計画法

\[A = m_A (m_A + 2m_B) \]
式 4.32

\[B = (2\sqrt{l_{BC}^2 - h^2} m_B^2 - 2m_A^2 S_{\text{max}} - 2m_A m_B S_{\text{max}} - 2m_A^2 X_A - 2m_A m_B X_A) \]
式 4.33

\[C = -B^2 m_B^2 + m_A^2 S_{\text{max}}^2 + 2m_A^2 S_{\text{max}} X_A + m_A^2 X_A^2 \]
式 4.34

以上のようになり、案内ロボットが A 点にいない場合の案内行為についても表現することができた。

4.3.2 3点で B 点から A 点への案内

次に被案内者が B 点に現れ、A 点に案内する場合について考える。図 4.21 2 0 は 3 点の案内行為の位置関係を図示したものである。

図 4.21
第4章 作業計画法

案内ロボットの初期位置は案内ロボットAが点F, 案内ロボットBが点Cにいるものとし, 目標点は点Bとする. それぞれの座標を点A (0,0) 点B (S_{max}, 0) 点C (x_c, y_c) 点F (x_F, y_F) とする. 点Dは案内ロボットAと案内ロボットBが被案内者を受け渡す点, 点Eは点FからX軸に垂線を下ろした点である. この時に m_a はロボットAの重さ, m_b はロボットBの重さ, S_a はロボットAの移動距離, S_b はロボットBの移動距離, S_{max} は点AB間の距離, l は点B D間の距離であり点Bから被案内者を受け渡す地点までの距離である. d は点B E間の距離である. h は点F E間の距離である. 以上の事より式を求めると以下のようになる.

$$0 = m_A S_A - m_B S_B$$

式4.35

次に式4.36は案内ロボット A の移動距離を表している. ここで移動距離 S_a は点A と被案内者の受け渡し地点D距離と点Fの位置から被案内者の受け渡し地点の距離 l を足したものとなる

$$S_A = l_1 + S_{max} - l$$

式4.36

図4.22
次に式4.23は案内ロボットBの移動距離を表している。ここで移動距離S_Bは点Bと被案内者の受け渡し地点D距離と点Cの位置から被案内者の出現位置、点Bまで距離X_Bを足したものとなる。

$$S_B = l + X_B$$

式4.37

次に式4.38は案内ロボットAの点Fから受渡地点までの移動距離を表している。

$$l_1 = \sqrt{h^2 + \left| l-d \right|^2}$$

式4.38

次に式4.39は点FからX軸に垂線を下ろし交差した点Eと点Bの距離を表している。

$$d = \sqrt{l_{BF}^2 - h^2}$$

式4.39
また案内ロボット B の初期位置の点 B からの距離は式 4. 40 で表す。

\[X_B = \sqrt{(S_{\text{max}} - x_c)^2 + y_c^2} \]

式 4. 40

以上の式をまとめると式 4. 41 になる

\[0 = m_A (\sqrt{h^2 + (l - d)^2 + S_{\text{max}} - l} - m_B (l + X_B) \]

式 4. 41

式 4. 41 を l について求めると、式 4. 42 となる

\[l = \frac{-B + \sqrt{B^2 - 4AC}}{2A} \]

式 4. 42

このときの A, B, C それぞれの変数は以下のようになる。

\[A = 2m_B (2m_A - m_B) \]

式 4. 43

\[B = 2dm_A^2 - 2m_A^2 S_{\text{max}} - 2m_A m_B S_{\text{max}} + 2m_A m_B \sqrt{(S_{\text{max}} - x_c)^2 + y_c^2} + 2m_B^2 \sqrt{(S_{\text{max}} - x_c)^2 + y_c^2} \]

式 4. 44
以上のようになり、被案内者が点Bにあらわれた場合の案内行為についても表現することができた。

\[C = -d^2 m_A^2 - h^2 m_A^2 + m_A^2 S_{\text{max}}^2 \]

\[-2 m_A m_B S_{\text{max}} \sqrt{(S_{\text{max}} - x_c)^2 + y_c^2} \]

\[+ m_B^2 ((S_{\text{max}} - x_c)^2 + y_c^2) \]

式 4. 45
第5章 シミュレーション

本章では第4章で導いた作業計画をもとに、シミュレーションを行ない、その結果をグラフ及び図をもとに検証する。

5.1 2点のシミュレーション

図5.1にシミュレーションソフトを示す。シミュレーションはVisual Basicをもとに作成したソフトをもとに、計算結果をプログラム上で示す。
実際に複数のパターンの数値を入力し、えられた結果をパターンで分けて以下に示す。まず 2 点間の案内行為についてのシミュレーションを行う。

パターン 1

各変数は次の以下とする。

・目標点座標 100
・ロボット A の重さ 1 kg
・ロボット B の重さ 1 kg
・ロボット A の初期位置 0
・ロボット B の初期位置 100

図 5.2 はシミュレーション結果を表したものである。

<table>
<thead>
<tr>
<th>共通変数</th>
<th>2点間変数</th>
<th>3点間変数</th>
<th>計算結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ロボットAの初期位置</td>
<td>ロボットAの初期位置</td>
<td>点 A-B 距離</td>
</tr>
<tr>
<td>100</td>
<td>ロボットAの重さ</td>
<td>ロボットBの初期位置</td>
<td>点 B-C 距離</td>
</tr>
<tr>
<td>1</td>
<td>ロボットBの重さ</td>
<td>ロボットBの初期位置</td>
<td>点 B-C 距離</td>
</tr>
<tr>
<td>66.67</td>
<td>ロボットAの移動距離</td>
<td>点のX座標</td>
<td>A点-B点案内</td>
</tr>
<tr>
<td>66.67</td>
<td>ロボットBの移動距離</td>
<td>点のY座標</td>
<td>3点(A-B)案内</td>
</tr>
<tr>
<td>33.33</td>
<td>点A-Bの距離</td>
<td>点のX座標</td>
<td>B点-A点案内</td>
</tr>
<tr>
<td>33.33</td>
<td>点A-Bの距離</td>
<td>点のY座標</td>
<td>3点(B-A)案内</td>
</tr>
</tbody>
</table>

図 5.2

点 B から受け渡し地点 (I) 33.33
ロボット A の移動距離 (S_A) 66.67
ロボット B の移動距離 (S_B) 66.67
第5章 シミュレーション

また実際に移動している時間ごとのそれぞれの案内ロボットの位置を示したグラフが図5.3である。

図5.3
原点からの距離が80の地点で受け渡し作業が行われていることがわかる。

パターン2

各変数は次の以下とする。

・目標点座標 100
・ロボットAの重さ 1 kg
・ロボットBの重さ 2 kg
・ロボットAの初期位置 0
・ロボットBの初期位置 100

となる時、シミュレーション結果は以下のとおりとなる。ロボットBの重さがロボットAに比べて2倍なので移動距離はロボットBの移動距離の方が2分の1となっている。

点Bから受け渡し地点（I） 20.0
ロボットAの移動距離（S_A） 80.0
ロボットBの移動距離（S_B） 40.0
また実際に移動している時間ごとのそれぞれの案内ロボットの位置を示したグラフが図5.4である。

パターン3

各変数は次の以下とする。

- 目標点座標 100
- ロボットAの重さ 2 kg
- ロボットBの重さ 1 kg
- ロボットAの初期位置 0
- ロボットBの初期位置 100

となる時、シミュレーション結果は以下のとおりとなる。

点Bから受け渡し地点（I） 50.0
ロボットAの移動距離（Sₐ） 50.0
ロボットBの移動距離（Sₖ） 100.0

また実際に移動している時間ごとのそれぞれの案内ロボットの位置を示したグラフが図5.5である。
パターン4

各変数は次の以下とする。

・目標点座標 100
・ロボットAの重さ 1 kg
・ロボットBの重さ 1 kg
・ロボットAの初期位置 0
・ロボットBの初期位置 80

となる時、シミュレーション結果は以下のとおりとなる。

点Bから受け渡し地点（l） 40.0
ロボットAの移動距離（S_a） 60.0
ロボットBの移動距離（S_b） 60.0

また実際に移動している時間ごとのそれぞれの案内ロボットの位置を示したグラフが図5.6である。
パターン5

各変数は次の以下とする。

・目標点座標 100
・ロボットAの重さ 1 kg
・ロボットBの重さ 1 kg
・ロボットAの初期位置 20
・ロボットBの初期位置 100

となる時、シミュレーション結果は以下のとおりとなる。

点Bから受け渡し地点（I） 40.0
ロボットAの移動距離（Sₐ） 80.0
ロボットBの移動距離（Sₐ） 80.0

また実際に移動している時間ごとのそれぞれの案内ロボットの位置を示したグラフが図5. 7である。
パターン 6

各変数は次の以下とする。

- 目標点座標 100
- ロボット A の重さ 1 kg
- ロボット B の重さ 1 kg
- ロボット A の初期位置 20
- ロボット B の初期位置 80

となる時、シミュレーション結果は以下のとおりとなる。

点 B から受け渡し地点 (l) 46.67
ロボット A の移動距離 (S_A) 73.33
ロボット B の移動距離 (S_B) 73.33

また実際に移動している時間ごとのそれぞれの案内ロボットの位置を示したグラフが図 5.8 である。
第5章 シミュレーション

図5.8

以上6パターンの場合においてそれぞれm_A, m_B, l, S_A, S_Bの値は以下のようになる。

<table>
<thead>
<tr>
<th>m_A</th>
<th>m_B</th>
<th>l</th>
<th>S_A</th>
<th>S_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>33.33</td>
<td>66.67</td>
<td>66.67</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>20</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>40</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>40</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>46.67</td>
<td>73.33</td>
<td>73.33</td>
</tr>
</tbody>
</table>

表5.1

次にB点に被案内者が現れ、A点に案内する場合においてシミュレーションを行なう。
パターン 7

各変数は次の以下とする。

・目標点座標 100
・ロボット A の重さ 1 kg
・ロボット B の重さ 1 kg
・ロボット A の初期位置 0
・ロボット B の初期位置 100

となる時，シミュレーション結果は以下のとおりとなる。

点 B から受け渡し地点 (I) 66.67
ロボット A の移動距離 (S_a) 66.67
ロボット B の移動距離 (S_b) 66.67

また実際に移動している時間ごとのそれぞれの案内ロボットの位置を示したグラフが図 5.9 である。
パターン8

各変数は次の以下とする。

・目標点座標 100
・ロボット A の重さ 1 kg
・ロボット B の重さ 2 kg
・ロボット A の初期位置 0
・ロボット B の初期位置 100

となる時，シミュレーション結果は以下のとおりとなる。

点 B から受け渡し地点 (l) 50.0
ロボット A の移動距離 (S_A) 100.0
ロボット B の移動距離 (S_B) 50.0

また実際に移動している時間ごとのそれぞれの案内ロボットの位置を示したグラフが図5.10である。

図5.10
パターン9

各変数は次の以下とする。

・目標点座標 100
・ロボットAの重さ 2 kg
・ロボットBの重さ 1 kg
・ロボットAの初期位置 0
・ロボットBの初期位置 100

となる時、シミュレーション結果は以下のとおりとなる。

点Bから受け渡し地点 (l) 80.0
ロボットAの移動距離 (Sa) 40.0
ロボットBの移動距離 (Sb) 80.0

また実際に移動している時間ごとのそれぞれの案内ロボットの位置を示したグラフが図5.11である。

図5.11
パターン10

各変数は次の以下とする。

・目標点座標 100
・ロボットAの重さ 1 kg
・ロボットBの重さ 1 kg
・ロボットAの初期位置 0
・ロボットBの初期位置 80

となる時，シミュレーション結果は以下のとおりとなる。

点Bから受け渡し地点（I） 60.0
ロボットAの移動距離（S_A） 80.0
ロボットBの移動距離（S_B） 80.0

また実際に移動している時間ごとのそれぞれの案内ロボットの位置を示したグラフが図5.11である。
パターン11

各変数は次の以下とする。

・目標点座標 100
・ロボットAの重さ 1 kg
・ロボットBの重さ 1 kg
・ロボットAの初期位置 20
・ロボットBの初期位置 100

となる時、シミュレーション結果は以下のとおりとなる。

点Bから受け渡し地点（l） 60.0
ロボットAの移動距離（Sa） 60.0
ロボットBの移動距離（Sb） 60.0

また実際に移動している時間ごとのそれぞれの案内ロボットの位置を示したグラフが図5.13である。

![図5.13](image-url)
パターン12

各変数は次の以下とする。

・目標点座標 100
・ロボット A の重さ 1 kg
・ロボット B の重さ 1 kg
・ロボット A の初期位置 20
・ロボット B の初期位置 80

となる時，シミュレーション結果は以下のとおりとなる。

点 B から受け渡し地点 (I) 53.33
ロボット A の移動距離 (S_A) 73.33
ロボット B の移動距離 (S_B) 73.33

また実際に移動している時間ごとのそれぞれの案内ロボットの位置を示したグラフが図 5.14 である。
以上6パターンの場合においてそれぞれ\(m_A, m_B, l, S_A, S_B \)の値は以下のようになる。

<table>
<thead>
<tr>
<th>(m_A)</th>
<th>(m_B)</th>
<th>(l)</th>
<th>(S_A)</th>
<th>(S_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>66.67</td>
<td>66.67</td>
<td>66.67</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>50</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>80</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>60</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>53.33</td>
<td>73.33</td>
<td>73.33</td>
</tr>
</tbody>
</table>

表5.2

5.2 3点のシミュレーション

次に3点の場合についてのシミュレーション結果について説明します。まず被案内者が点Aに現れB点に案内する場合について説明します。

パターン1

各変数は次の以下とする。

・目標点座標 100
・ロボットAの重さ 1 kg
・ロボットBの重さ 1 kg
・ロボットAの初期位置 (0, 0)
・ロボットBの初期位置 (50, 50)

となる時、シミュレーション結果は以下のとおりとなる。
点 B から受け渡し地点（I） 21.13
ロボット A の移動距離（S_A） 78.87
ロボット B の移動距離（S_B） 78.87
点 C と受渡地点 D の距離（l_l） 57.74

実際に案内ロボットが行う行動の様子を図 5.15 に示す。それぞれの線は各ロボットの軌跡である。

![図 5.15](image)

パターン 2

各変数は次の以下とする。

- 目標点座標 100
- ロボット A の重さ 2 kg
- ロボット B の重さ 1 kg
- ロボット A の初期位置 (0, 0)
- ロボット B の初期位置 (70, 30)
となる時，シミュレーション結果は以下のとおりとなる。

点 B から受け渡し地点 (l) 53.88
ロボット A の移動距離 (S_A) 46.12
ロボット B の移動距離 (S_B) 92.23
点 C と受渡地点 D の距離 (l_1) 38.35

実際に案内ロボットが行う行動の様子を図 5.16 にしめす。それぞれの線は各ロボットの軌跡である。

パッターン 3

各変数は次の以下とする。

・目標点座標 (0, 0)
・ロボット A の重さ 1 kg
・ロボット B の重さ 1 kg
・ロボット A の初期位置 (10, 10)
・ロボット B の初期位置 (80, 30)

となる時、シミュレーション結果は以下のとおりとなる。

点 B から受け渡し地点 (l) 41.02
ロボット A の移動距離 (S_a) 72.98
ロボット B の移動距離 (S_b) 72.98
点 C と受渡地点 D の距離 (l_r) 31.96

実際に案内ロボットが行う行動の様子を図5.17にしめす。それぞれの線は各ロボットの軌跡である。

表5.3はそれぞれの結果を表にして出力したものである。
第5章 シミュレーション

次に、被案内者が点Bに現れA点に案内する場合についてのシミュレーション結果を示す。

パターン4

各変数は次の以下とする。

・目標点座標 100
・ロボットAの重さ 1 kg
・ロボットBの重さ 1 kg
・ロボットAの初期位置 (50, 50)
・ロボットBの初期位置 (100, 0)

となる時、シミュレーション結果は以下のとおりとなる。

点Bから受け渡し地点 (l) 78.87
ロボットAの移動距離 (Sa) 78.87
ロボットBの移動距離 (Sb) 78.87
点Cと受渡地点Dの距離 (lD) 57.74

実際に案内ロボットが行う行動の様子を図5.18に示す。それぞれの線は各ロボットの軌跡である。

<table>
<thead>
<tr>
<th>m_A</th>
<th>m_B</th>
<th>l</th>
<th>l'</th>
<th>S_A</th>
<th>S_B</th>
<th>x_A</th>
<th>y_A</th>
<th>x_B</th>
<th>y_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>21.13</td>
<td>57.74</td>
<td>78.87</td>
<td>78.87</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>53.88</td>
<td>38.35</td>
<td>46.12</td>
<td>92.23</td>
<td>0</td>
<td>0</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>39.19</td>
<td>35.61</td>
<td>74.81</td>
<td>74.81</td>
<td>10</td>
<td>10</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>17.95</td>
<td>30.07</td>
<td>96.05</td>
<td>48.02</td>
<td>10</td>
<td>10</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>46.11</td>
<td>39.77</td>
<td>85.89</td>
<td>85.89</td>
<td>30</td>
<td>10</td>
<td>80</td>
<td>30</td>
</tr>
</tbody>
</table>

表5.3
パターン5

各変数は次の以下とする。

- 目標点座標 100
- ロボットAの重さ 2 kg
- ロボットBの重さ 1 kg
- ロボットAの初期位置 (30, 30)
- ロボットBの初期位置 (100, 0)

となる時、シミュレーション結果は以下のとおりとなる。

点Bから受け渡し地点 (l) 91.13
ロボットAの移動距離 (S_a) 45.56
ロボットBの移動距離 (S_b) 91.13
点Cと受渡地点Dの距離 (d) 36.69
実際に案内ロボットが行う行動の様子を図5.19に示す。それぞれの線は各ロボットの軌跡である。

図5.19

パターン6

各変数は次の通りとする。

・目標点座標100
・ロボットAの重さ1kg
・ロボットBの重さ1kg
・ロボットAの初期位置(30,30)
・ロボットBの初期位置(80,10)

となる時、シミュレーション結果は以下の通りとなる。

点Bから受け渡し地点(l)55.63
ロボットAの移動距離(Sₐ)77.63
ロボット B の移動距離 (S_B) 77.63
点 C と受渡地点 D の距離 (l) 33.26

実際に案内ロボットが行う行動の様子を図 5.20 に示す。それぞれの線は各ロボットの軌跡である。

<table>
<thead>
<tr>
<th>m_a</th>
<th>m_B</th>
<th>i</th>
<th>h</th>
<th>S_A</th>
<th>S_B</th>
<th>x_C</th>
<th>y_C</th>
<th>x_D</th>
<th>y_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>78.87</td>
<td>57.74</td>
<td>78.87</td>
<td>78.87</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>65.19</td>
<td>30.38</td>
<td>65.19</td>
<td>65.19</td>
<td>30</td>
<td>30</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>91.13</td>
<td>36.69</td>
<td>45.56</td>
<td>91.13</td>
<td>30</td>
<td>30</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>75.63</td>
<td>33.26</td>
<td>77.63</td>
<td>77.63</td>
<td>30</td>
<td>30</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>74.37</td>
<td>18.56</td>
<td>44.19</td>
<td>88.37</td>
<td>10</td>
<td>10</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>27.33</td>
<td>46.67</td>
<td>118.8</td>
<td>118.8</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

表 5.4
第6章 結章

6.1 本研究のまとめ

本研究では、病院や老人ホームなどの建物内の案内サービスにおいて、2台の案内ロボットがどのように行動すれば、複数の案内ロボットが同等のエネルギーを消費してなおかつ、最省エネルギーで目的地まで人を案内することができるか、ということを目標とした作業計画法を提案した。2点間の作業計画と3点間の作業計画を提案しそれぞれの場合において考えられる環境を想定し、それぞれの場合において条件をみたしているかを検証した。またその提案した手法をもちいてVisualBasicをもちいてシミュレーションを行ない、有効性の検証をおこない確認した。

6.2 今後の展開

今後の展開としてはより複雑な環境下においての作業計画法や被案内者や案内ロボットが変化した場合の作業計画法を提案するとともに、作業計画、経路計画、起動計画をまとめ案内サービスの構築を目指すことが今後の課題となる。またその中で通信方法の確立や混雑状況の情報取得など実際にサービスを行ううえで必要となる機能を案内ロボットに付加することが必要となってくる。また被案内者の待ち時間を考慮した作業計画法の提案及び実際の環境下で実際に複数の案内ロボットをもちいて実験をすることにより被案内者及び案内ロボット双方に効率のよい作業計画を求めることも今後の課題となる。
参考文献

溝渕・王・河田・山本, 人間との相互関係に基づく案内ロボットの制御, 第20回日本ロボット学会学術講演会論文集 CD-ROM, 2B18, 2002

土谷 武士, 深谷 健一：メカトロニクス入門、森北出版株式会社

菅原 研次：人工知能、森北出版株式会社

パーソナルロボット PaPeRo2003

館内案内ロボット たけまるくん、奈良先端科学技術大学
http://robotics.aist-nara.ac.jp/~yoshio/research/takemaru/

奈良先端科学技術大学 知能情報処理学講座 ロボットグループ

受付案内ロボット ASKA 奈良先端科学技術大学
http://robotics.aist-nara.ac.jp/~yoshio/research/aska_robofesta/index.html

オフィスロボット jijo-2 産業技術研究所

三菱重工業株式会 ホームユースロボット wakumaru
http://www.mhi.co.jp/kobe/wakamaru/
溝渕宣誠，王碩玉，河田耕一，山本正樹：距離型ファジィ推論法に基づく案内ロボットの軌道計画法，知識と情報，日本知能情報ファジィ学会誌，Vol17，No1，pp.112-121，2005

溝渕宣誠，王碩玉，河田耕一，山本正樹：ゴムストリング型連想記憶アルゴリズムを用いた軌道計画法，第14回インテリジェント・システム・シンポジウム講演論文集，pp243-244，2004

溝渕宣誠，王碩玉，河田耕一，山本正樹：人間との相互関係を考慮した案内ロボットの制御・Prat2，第7回知能メカトロニクスワークショップ論文集，pp45-50，2002

溝渕宣誠，王碩玉，河田耕一，山本正樹：人間を誘導する案内ロボットの軌道計画法・Prat2，第20回ファジィシステムシンポジウム講演論文集，CD-ROM，pp631-632，2004
謝辞

本論文は、筆者が高知工科大学大学院工学研究科基盤工学専攻知能機械システム工学コースにおいて行った研究をまとめたものであります。本研究を行うにあたって終始ご指導ご鞭撻くださった、高知工科大学知能機械システム工学科王碩玉教授に対して深く感謝いたします。また本研究に関して様々なご指導くださった高知工科大学知能機械システムコース博士課程の溝渕宜誠氏に深く感謝いたします。最後に筆者のために大学および大学院の6年間の学生生活を支えてくださった両親に心より深く感謝いたします。