平成 19 年度

修士論文

ウエアラブルな床反力推定装置の開発
Development of a Novel Wearable Sensor System to Measure Triaxial Ground Reaction Force

指導教員
井上 喜雄 教授

副指導教員
芝田 京子 准教授

高知工科大学大学院
工学研究科 基盤工学専攻（博士課程前期）知能機械システムコース

○○○○○○ 越智 貴士
目次

第1章 序論... 1
1.1 研究背景と目的.. 1
1.2 本論文の構成.. 2
第2章 現状の床反力計測機器 .. 3
2.1 空間設置式計測法... 3
2.2 身体装着式計測法... 3
第3章 床反力推定装置の試作1.. 4
3.1 特徴.. 4
3.2 構成部品.. 4
3.3 センサの配置.. 6
3.4 構造.. 7
第4章 床反力3成分の計測1.. 8
4.1 床反力の推定方法... 8
4.2 実験.. 9
4.2.1 静的実験.. 10
4.2.2 自由歩行実験... 10
4.3 実験結果... 12
4.3.1 静的実験.. 12
4.3.2 自由歩行時の床反力.. 15
4.4 考察... 18
4.4.1 静的実験考察.. 18
4.4.2 自由歩行実験考察.. 18
第5章 床反力推定装置の試作2.. 19
5.1 構成部品... 19
5.2 構造... 20
第6章 床反力3成分の計測.. 21
6.1 床反力の同定方法... 21
6.2 実験... 22
6.2.1 同定実験.. 22
6.2.2 自由歩行実験... 23
6.3 実験結果... 24
6.3.1 同定実験結果.. 24
6.3.2 自由歩行実験結果.. 26
6.4 考察... 27
6.4.1 同定実験考察.. 27
6.4.2 自由歩行実験考察.. 27
第7章 結論... 31
7.1 研究成果... 31
7.2 今後の課題... 31
謝辞.. 32
参考文献.. 33
第1章 序論

1.1 研究背景と目的

人間にとって歩行動作は日常生活に欠かせないものである。人間の筋肉は、そのうちの3分の2が腰から下についており、歩行によって刺激された筋肉は血管を刺激し血液循環を促進する。そのために、老化・疾病などにより歩行能力が低下し、もしくは筋力低下すると、身体そのものが難しくなる。したがって、今後も歩行能力の維持は重要な課題である。

歩行リハビリテーションにおいて歩行障害の診断・評価を的確にすることは重要であり、歩行検査に定量的分析手法を応用するために様々な方法が考えられている。歩行異常のメカニズムを分析するためには、身体骨格がどのような力学の原理で動いているかを理解する必要がある。これが理解できると、歩行動作の分析にあたって対象者が行うとされている努力を筋活動と言う形で把握することが可能となる。次は逆に、その筋活動がどのような形で歩行動作を生み出しているかを分析することになる。したがって、歩行分析では動作中の筋活動が推定できるかが重要である。

筋活動の分析には長い間、筋電位計測が行われてきたが、この手法では筋張力がどれくらい発揮されているのかを定量的な計算ができない。また計測に時間がかかるなど個々の対象者に適用するのは難しい。そこで筋電位計測に代える計算手法として関節モーメントが筋活動を定量的に評価する手段として使われている。

関節モーメントを計測する手段としては、3次元動作解析装置と床反力計を組み合わせて使用する方法が広く使われている。しかし、これらの装置は計測、解析に時間がかかる被験者が肉体的・精神的苦痛を与えかねない。また計測範囲が狭く連続して計測できない、機器の操作が難しい、高価であるなどの問題がある。そのため、日常的な歩行リハビリテーションを目的とした定量的な歩行の評価は困難である。現在、足底の圧力分布を計測する装置は様々なが床反力を計測できる装置は数少ない。

当研究室では、簡便に連続計測のできる安価な足底圧計測装置により鉛直方向の床反力を計測する方法をすでに考案している。足関節モーメントもせん断力を除いた鉛直力のみの近似式で算出しているが、よい結果を得ている。しかし、簡便かつ安価な足関節モーメントの推定を行えるようになったが、足底圧計測装置にはいくつかの問題点がある。問題点には以下の項目が挙げられる。

- 鉛直床反力と足関節モーメントの推定しか行えない
- 足関節領域の足部情報が得られない

そこで、それらの問題点を解決するために、当研究室では小型のパラレル型の力センサを開発し、それを履物に取り付けることにより、床反力の前後分力、左右分力も計測できるシステムを考案している。しかし、力センサ自身の剛性により履き心地の点で問題が残った。そのため、計測の際に歩容を乱していない、正常な歩行の診断・評価ができないという問題がある。

本研究では床反力の前後力、左右分力、鉛直分力を計測でき、履き心地の良い床反力推定装置を作り、これまでの研究の問題点を解消する方法を検討する。そこで、直接的にセンサの出力から床反力を推定する方法を間接的にセンサの出力から床反力を推定する方法を用いた2つの装置の製作を行い、それぞれの妥当性を検証した。
1.2 本論文の構成

第1章では研究背景と目的について述べた。
第2章では現在市販されているものや研究報告されている計測機器について述べる。
第3章では第一に試作した床反力推定装置の特徴や仕組みについて述べる。
第4章では第3章において試作した床反力推定装置の床反力推定方法および床反力計との比較実験を行い床反力の計測の可能性を検討する。
第5章では第二に試作した床反力推定装置の特徴や仕組みについて述べる。
第6章では第5章において試作した床反力推定装置の床反力推定方法および床反力計との比較実験を行い床反力の計測の可能性を検討する。
第7章では論文全体を通じて総括を行い、今後の課題について述べる。
第２章 現状の床反力計測機器

現在までに床反力を計測するための機器や手法が数多く研究、報告されている。中には既に商品化されハピリテーションやスポーツ工学などの分野で用いられている。しかし、これら
の機器は一般的に非常に高価であり、研究機関やそれに入居する病院など一部の施設だけで利
用されているため、一般に臨床評価の機器として用いられるケースは数少ないようである。本
章では、まず現在までに研究、報告、及び商品化されている床反力計測装置の特徴を述べる。

2.1 空間設置式計測法

步行中で床から足部に全体としてどのように力が加わっているかを計測するためには、床反
力計のあるMR型、矢板型などは一般的に用いられる(1)。市販されている床反力計はセン
サや形状の違いから多くの種類があり特性も様々である。その原理は平板の左隅に、軸ロード
セル[荷重計]を取り付けたものである。平板の剛性が高くないと、共振周波数が低くなるので
注意が必要である。床反力計には歪みゲージを用いる方法と水晶圧電素子のロードセルを用い
る方法がある。前者は複数のメーカーから、後者は１つのメーカーから市販されている。通常の歩
行では、100kHzくらいの測定周波数帯域が要求される。このような目的のためのロードセルと
しては、普通のひずみゲージ式のロードセルで十分である。硬い踵の靴を履いた義足歩行を計
測するような場合や走行などの速い動作を計測するような場合、これより高い測定周波数を
必要とするときには、ロードセルとして水晶の圧電効果を利用したもののが用いられる。

床反力計の実際的利用において難しいのは配置の仕方である。多くの場合、床反力としては、
片足ごとの床反力を測定できることができるが望ましく、関節モーメントの計算においてはこのことは
必須条件である。片足ごとに床反力を測定する方法は、通り考えられる。図示は、数10cm四方
の床反力計を進行方向に沿って直列に並べる方法がある。この場合、被験者は左右の足で各
床反力計を次々に踏んでいくことを要求されることになる。このことは、被験者の歩幅に物
理的制約を加えることに繋がる。また、被験者の自由な歩行に対し心理的影響を与えることも考
えられる。図示は、長尺の床反力計を進行方向に対して並べる方法である。この
場合、被験者の歩幅に対する制約はなくなるが、被験者は左右の足で左右の床反力計を踏み分
けることを要求され、歩幅に物理的制約や心理的制約を加えることになりかねない。

空間設置方式はセンサを慣性系の特定の場所に固定し、慣性系を基準とする情報を得るよ
とするものであり、逆運動学的手法に適しているが、測定が特定の空間に限定されることと装置
が大になりになるという欠点を持つ。

2.2 身体装着式計測法

步行中に足部に加わる圧力を計測する方法として、圧力により導電性の変わる導電性ゴムを
利用した足圧計がある。これは、導電性ゴムの上下を0.001mm間隔の行電極ストライプと列電極ス
トライプを張ったフレキシブルシートでさえぎり、各電極を時間的に走査することにより、各々
0.001mmの区画に加わる圧力を検出することができる。センサは厚さ0.01mmと大変薄く、被験者の
足の大きさに応じてはめ込みができる。しかし、この装置は圧力の校正が難しい、相対
計測精度が0%程度であるなど、欠点がある。このほかにも、圧電素子を用いた装置も市販さ
れている。足部に加わる床反力を計測するものもいくつか試みられている。

3
第3章 床反力推定装置の試作1

前章では、これまでの床反力計測装置を分類し特徴を述べた。この章では、前章での計測機器の長所短所から、簡便に計測が可能であること、低コストで試作が可能なことを踏まえて床反力計測装置を試作した。本章では、試作した装置の特徴、原理、構成部品の詳細について述べる。

3.1 特徴

今回試作した床反力計測装置の特徴を以下に箇条書きにて示す。

- コストは市販品の約1/3
- 計測箇所は片足
- 鉛直、前後、左右方向の荷重を計測できる
- 身体装着式のため連続した計測が可能
- 重量は1kg

3.2 構成部品

製作に際し使用した部品を以下に示す。なお、全ての部品は市販されているものを用いて構成した。センサの仕様について詳細に示す。

- 小型軸力覚センサ（テック技販製）
- ゴム板
- アルミ板

小型軸力覚センサの仕様について詳細に示す。

Fig. 3.1 試作した床反力計測装置の詳細
<table>
<thead>
<tr>
<th>サポートデバイス</th>
<th>製品名</th>
<th>备考</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3 センサの配置

図3.3にセンサの配置図を示す。図中出てくる数字はそれぞれのセンサにつけた番号である。なお、配置位置の決定には以下の要素を踏まえた上で、歩行に支障をきたさないよう検討し、決定した。

足底の軌跡
足底の床反力作用点の軌跡は、踵中央から足底の中央よやや外側を通り、第1、中足骨付近を経て内方へ進み、母趾球（第1中足骨頭付近）を通る母趾に抜けていく。

体重負荷（足のアーチ）
体重負荷は一般的には踵、第1中足骨頭、第1中足骨頭を中心とした部分の点に負荷が集中しているとされている。また、体重支持や動作時の力を緩和するために、足には踵骨と第1、中足骨を繋ぐ内側縦のアーチ（土踏まずを形成）、踵骨と第1、中足骨を繋ぐ外側縦のアーチ、第1中足骨と第1中足骨を結ぶ横のアーチの1つのアーチが構成されている。

足底圧分布の動的変化の測定
足底圧分布の動的変化を測定することにより、
①、床反力の詳細な解析が可能
②、足の部分的な歩行時の動きがわかる
③、微妙な体重支持（バランス）変化を客観的に評価できる

足趾の測定
足趾の機能として
①、姿勢の保持
②、歩行時の蹴りだし
③、左右方向の動きへの敏捷な対応
④、斜面や不整地への対応
⑤、爪先立ち

の重要な機能を備えるとともに、足趾の発達は下腿部や大腿部、腰等の筋肉も発達する傾向があり運動能力の向上に繋がると考えられている。

Fig. 3.3 Sensor configuration
3.4 構造

計測装置(Fig.3.4)は，靴のソールにアルミ板を取り付け，その下面に小型3軸力センサを固定した底板を取り付けてある．センサは中心部で力を検出するため中心をネジで固定してあり，そのネジ部に力が加わることでセンサを反応させている．そして，ソールにアルミ板を取り付けすることで靴の着用時の変形を小さくし，センサを取り付けた底板のみが接地するようになってある．これは，底板を受けた力が全てセンサに伝わるようにするためである．しかし，履き心地を保つため，ソールに取り付けてあるアルミ板は靴の前部と後部で分離してある．底板は，靴の履き心地が低下しないように，Fig.3.5，Fig.3.6のように力センサごとに分離した構造とした．

![Sectional view](image1)

Fig.3.4 Sectional view

![Side view](image2)

Fig.3.5 Side view

![Under view](image3)

Fig. 3.6 Under view
第4章 床反力3成分の計測1

本章ではまず、第1章で作成した床反力推定装置による床反力の推定方法を述べ、次いで、床反力計を用いた静的実験と自由歩行実験を行い、床反力推定装置のセンサから得られる値を基に床反力データ（成分）が求められるか否かを検討する。

4.1 床反力の推定方法

床反力推定装置は底板のみが接地するような構造となっており、全ての力はセンサに伝達するので、左右方向分力（F_x）、前後方向分力（F_y）、鉛直方向分力（F_z）は、次式のように各センサ部の出力（$f_{x_i}, f_{y_i}, f_{z_i}$）($i=1$~$4$)の和であると考え、

\[
F_x = \sum_{i=1}^{4} f_{x_i}
\]

\[
F_y = \sum_{i=1}^{4} f_{y_i}
\]

\[
F_z = \sum_{i=1}^{4} f_{z_i}
\]

と表記できる。

なお、座標系の向きはI・II・IIIのようになる。床からの鉛直方向をZ軸とし、体の正面の方向をY軸で進行方向が正である。また左足の外側をX軸の正の方向にしている。

Fig.4.1 床反力推定装置

8
4.2 実験

従来法としては一般的な床反力計を用い、提案するシステムと床反力計の出力の比較を行う。床反力計には、共和電業製（共和電業製）を用い、データ収集システムには共和電業製（共和電業製）を用いた。

実験装置の全体の略図を図示した。実際に計測する際は、データ収集システムにデータを保存し、その後、データを移すことができるので、データ収集システムとを接続する必要はない。

Fig. 4.2 Entire measurement system
4.2.1 静的実験

静的な実験では、被験者は床反力推定装置を左足に装着し、左足のみを床反力計に乗せる。右足は床上である。体重を任意に変化させ床反力計と床反力推定装置の時刻歴波形を同時にコンピュータに取り込む。

被験者にはなるべく足位置を固定することを要請した。床反力推定装置の各圧力センサに変化を与えるため、姿勢を前後・左右に変化してもよい床反力計の変化、及び床反力推定装置の各出力変化を計測した。なお、被験者は実験の目的および安全性について説明し、同意の得られた年齢50歳、身長170cm、体重70kgの健常な成人男性3名であった。

静的実験の様子の簡略図をFig. 4.3に示す。

4.2.2 自由歩行実験

自由歩行を行った場合の床反力を測定するため、提案する手法による推定結果と床反力計の結果との比較を行う。実験では、歩行中に左足が一度だけ床反力計に乗るようにして計測した。

自由歩行実験の簡略図をFig. 4.4に示す。
Fig. 4.4 Example of experiment scenery

Direction of movement
4.3 実験結果

4.3.1 静的実験

静的実験における床反力計と提案するシステムによる床反力の結果を Fig. 4.5, 4.6, 4.7 に示す。(a) は 2 つの方法の比較結果であり、(b) は提案するシステムの各センサの出力値である。

Fig. 4.5 X-axis direction force
Fig. 4.6 Y-axis direction force
Fig. 4.7 Z-axis direction force
4.3.2 自由歩行時の床反力

自由歩行時における床反力計と提案する方法による床反力の結果を Fig. 4.8, 4.9, 4.10 に示す。

Fig. 4.8 X-axis direction force
Fig. 4.9 Y-axis direction force
Fig. 4.10 Z-axis direction force
4.4 考察

4.4.1 静的実験考察

左右分力の結果（X軸，Fig.4.5）では，波形は似ているものの提案する方法で推定した床反力の値の変動が大きくなくなっている。これはセンサ2の影響が大きいことがFig.4.5(b)より読み取れ，体重心を変化させる際に，センサ2にモーメントの影響があったためと考えられる。

前後分力（Y軸，Fig.4.6）においては波形，値の変動の大きさ共に良く一致しているが，両者の値が離れたところに出入っている。これは靴を履いて足を地面に敷けて静止した状態で，床反力計では検出されない靴と足の接触により発生する力をセンサが検出したためであると考えられる。このことから，ゼロ点の調節のやり方に問題があると考えられる。

鉛直方向の結果（Z軸，Fig.4.7）では，提案する方法で推定した床反力の値が床反力計の値よりも小さく出ているが，良く似たものが得られた。

4.4.2 自由步行実験考察

左右分力の結果（X軸，Fig.4.8）では，全体的に値にずれが出てくる。足首の左右方向の角度，センサが受けるモーメントの影響が強くたためであると考えられる。

前後分力の結果（Y軸，Fig.4.9）では，爪先で蹴り出す際に，提案する方法で推定した床反力が床反力計の値とは逆方向に発生している。これは爪先で蹴り出す際に，床反力計が水平な角度に対して，足が角度を持つため，その影響によりセンサで検出した力と床反力計で検出した力に違いが生じたと考えられる。

鉛直方向の結果（Z軸，Fig.4.10）は，波形は似ているが，提案する方法で推定した床反力が床反力計の値よりも小さくなっている。これは，前後分力の場合と同じように足の角度が力の大きさに影響したと考えられる。
第5章 床反力推定装置の試作2

本章では第4章の実験結果を受けて、特に結果に影響が出ていると考えられるモーメントの問題を解決するために新たに床反力推定装置の試作を行う。

なお、第3章で試作したものと左右逆ではあるが、特徴、センサの配置は同一であるので省略する。

5.1 構成部品

製作に際し使用した部品を以下に示す。なお、全ての部品は市販されているものを用いて構成した。

・小型I軸力覚センサ（テック技販製）
・インソール
・アルミ板

計測装置の全体の重量は###である。

Fig.5.1 設計図の床反力推定装置の試作品
5.2 構造

力センサは履物の下の部分に取り付けている。構造は図5.2に示す。センサは中心部で力を検出するため、中心でアルミ板を固定し、アルミ板が受ける力がセンサに伝わるような構造となっている。後に詳しく述べるが力センサの値に校正係数を掛ける事で力を導出することにする。

Fig.5.2 Sectional view
第6章 床反力3成分の計測

前章で述べた床反力推定装置は，身体装着式のタイプにあたり片足に4個の小型センサを内蔵した装置である．第1章で述べたものとは違い，センサ部以外にも床反力が伝わるので，計測するには校正をする必要がある．そこで，本章ではまず，床反力推定装置による床反力の同定方法を述べ，次いで，床反力計を用いた同定実験を行う，これにより床反力推定装置の各々の圧力センサの校正係数を決定する．最後に床反力推定装置のセンサから得られる値を基に床反力データ（成分）が求められるか否かを検討する．

6.1 床反力の同定方法

床反力推定装置は小型力センサを用いているためセンサ自体で床反力を測定することはできない．そこで，各々の力センサの校正係数を求めて床反力推定装置が受ける床反力を同定する．以下に，コンピュータで取り込んだ各点の力を用いて，床反力（分力）を求める方法を示す．左右方向分力（F_x），前後方向分力（F_y），鉛直方向分力（F_z）は，次式のように各センサ部の出力（f_x, f_y, f_z）（i = 1~4）に係数（A_{x}, A_{y}, A_{z}）を乗じたものの和であると考え

$$F_x = \sum_{i=1}^{4} A_{xi} f_{xi}$$

$$F_y = \sum_{i=1}^{4} A_{yi} f_{yi}$$

$$F_z = \sum_{i=1}^{4} A_{zi} f_{zi}$$

と表記できる．

上記の式の係数（A_{x}, A_{y}, A_{z}）を重回帰分析法により求める．

なお，座標系は第4章Fig.4.10のようになる．床からの鉛直方向をZ軸とし，体の正面の方向をY軸で進行方向が正である．また右足の外側をX軸の正の方向にしている．
6.2 実験

従来法としては、一般的な床反力計を用いる。床反力計には、共和電業製（モデル）を用い、データ収集システムには、製（モデル）を用いた。実験装置の全体の略図を図に示す。

![Fig. 6.1 Entire measurement system]

6.2.1 同定実験

具体的に校正係数（A_1, A_2, A_3）を求めるための同定実験の実験方法を以下に記載する。

- 実験手順 -

 □ 被験者は床反力推定装置を右足に装着し、右足のみを床反力計に乗せる。左足は床上である。

 □ 被験者にはなるべく足位置を固定すること以外は特別な指示は与なかった。床反力推定装置の各力センサに変化を与えるため、姿勢を上下、前後、左右に変化しても床反力計の変化、及び床反力推定装置の各力変化を計測した。得られたデータを基に、節で述べたように重回帰分析法を用いて校正係数（A_1, A_2, A_3）を求める。なお、重回帰分析には統計解析ソフトを用い、図を示す。

なお、被験者は実験の目的および安全性について説明し、同意の得られた年齢、身長、体重、体質の健常な成人男性1名であった。第1章の図と重なるが同定実験の図を図に示す。
6.2.2 自由歩行実験

4.2.2 節と同様に自由歩行を行った場合の床反力について提案する手法による推定結果と床反力計の結果との比較を行う。実験では、歩行中に右足が一度だけ床反力計に乗るようにして計測した。

Fig.4.4 と重なるが自由歩行実験の図を Fig.6.3 に示す。
6.3 実験結果

6.3.1 同定実験結果

各センサの校正係数および重回帰分析を行った際の回帰式の精度を示す R 値を Table 6.1，6.2 に示す。

<table>
<thead>
<tr>
<th>Table 6.1 Calibration value of sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6.2 Index of accuracy of multiple regression expression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>F_x</td>
</tr>
<tr>
<td>F_y</td>
</tr>
</tbody>
</table>

次に 6.2.1 節の実験における床反力計のデータと床反力推定装置より推定した床反力との比較を Fig.6.4，6.5，6.6 に示す。
Fig. 6.4 X-axis direction force

Fig. 6.5 Y-axis direction force

Fig. 6.6 Z-axis direction force
6.3.2 自由歩行実験結果

自由歩行を行った場合の床反力について提案する手法による推定結果と床反力計の結果との比較を行う。実験方法は歩行中に右足が一度だけ乗るようにして計測した。同定実験より求めた校正係数と圧力センサの値を式(6.1)〜(6.3)に代入して床反力を算出した。

Fig.6.7 X-axis direction force

Fig.6.8 Y-axis direction force

Fig.6.9 Z-axis direction force
6.4 考察

6.4.1 同定実験考察

重回帰式の精度は鉛直方向(Z軸, Fig.6.6)では R 値 0.94 以上の良い結果が得られた。左右方向(X軸, Fig.6.4)では0.90, 前後方向(Y軸, Fig.6.5)では0.87程度で若干低い結果になった。しかし, Fig6.7, 6.8, 6.9から床反力推定装置と床反力計の波形はよく一致していることがわかりこの同定方法の妥当性を示すことができた。

6.4.2 自由歩行実験考察

左右方向(X軸, Fig.6.7), 前後方向(Y軸, Fig.6.8), 鉛直方向(Z軸, Fig.6.9)とともに結果は両者の波形に誤差が生じた。これは、まず第一に床反力計が水平であるのに対して歩行時の足は角度を持つため,座標の違いや検出される力の大きさに違いが生じたためであると考えられる。Fig6.10は歩行時の一歩の床と足の間の角度変化をクレアクト・インターナショナル社の3軸角度センサ（3DM-GX）Ver2.0.3を用いて計測し，グラフ化したものである。踵で踏み込み始めから爪先で蹴り出すまでの間に約85[°]と大きく変化しており，この影響により誤差が生じていることが考えられる。

Fig6.11 Angle variation

足が角度を持ったときの床反力推定装置に加わる力について Fig.6.11 に示す。Fig.6.11の左の図が角度に沿って床反力推定装置の加わる力（床反力推定装置が水平方向の力として検出する力）とその水平成分の力を示し，右図が推定装置の角度と垂直な方向に加わる力とその水平成分の力を示している。左図の力と比べ，右図の力は非常に大きい。そのため，右図の力の水平成分も非常に大きい。両者の力の水平成分の和が床反力計では検出されるので，右図の水平成分の力が大きいことにより，床反力推定装置が検出する力と床反力計の検出する力に誤差が
生じたと考えられる。

鉛直方向の結果では，床反力推定装置では床反力計が検出する鉛直方向に加わる力の足の角度と垂直な成分が検出されるため，床反力計で検出された力より出力が小さくなったと考えられる。(Fig.6.12)

以上のような角度の問題については床反力推定装置に角度センサを取り付け，歩行時の角度と床反力を同時に計測し，角度の影響を考慮した床反力の計算をすることで誤差をなくすことができると考えられる。

Fig.6.11 Horizontal component

Fig.6.12 Vertical component

次に靴が柔軟なために曲げによる引っ張りが結果に影響したことが考えられる。Fig.6.13，6.14，6.15 に自由歩行実験時の床反力推定装置の各センサの検出した力を示す。Fig.6.13，6.14からセンサ3が爪先で蹴り出す際接地していないにも関わらず反応していることがわかる。この原因として靴の柔軟性による曲げが影響していると考えられ，他の部分においてもこの曲げによる引っ張りがセンサの出力に影響を及ぼしていることが考えられる。

この問題についてはFig.6.16に示すようにソール部とセンサ部の間にアルミ板のような軽く硬いものを取り付け，曲げを小さくすることで解消できると考えられる。
Fig. 6.13 X-axis direction force

Fig. 6.14 Y-axis direction force

Fig. 6.15 Z-axis direction force
また、試作機1で問題となっていたモーメントについては、試作機1の場合、歩行時の床反力推定装置と床反力計で検出された水平方向の力の大きさにかなりの誤差があったが、試作機2ではその差がかなり抑えられたものとなり、その影響は改善できたと考えられる。そして、試作機1に比べ、試作機2の方が柔軟性もあり、一般の靴と履き心地の差がほとんどないものとなった。
第7章 結論
7.1 研究成果

本研究では簡便に床反力成分を計測でき、計測の際、歩容を乱すことのない服着心地の良い装負を提案した。第1章の直接的な方法を用いた床反力推定装置では、水平方向において実際の床反力に比べ大きな床反力を検出した。これにはモーメントの影響が短くでていることが考えられた。このモーメントの影響については第1章の間接的な方法を用いた床反力推定装置で解決された。

第1章の同定実験では床反力推定装置でもある程度の精度で床反力成分を計測することができた。しかし、步行時においては左右、前後、鉛直方向とも誤差が生じた。この問題については、第1に床反力推定装置との比較のために使用した従来法の床反力計が水平であるのに対し、步行時に足が角度をもってしまうことが影響していることが考えられる。そして、第2の要因として、床反力推定装置が柔軟なことにより、曲げが生じ、その引張りによるセンサの出力への影響が考えられる。これらのことから、第1章の床反力推定装置の問題は角度の影響を考慮した床反力の計算、そして靴の曲げによる引張りの影響の除去により解決できると考えられる。

よって、本システムの構築により、歩行リハビリテーションの場で步行時の床反力を推定し、その床反力を下肢関節モーメントの導出に適用することで、歩行障害の診断・評価を的確にすることにつながると考えられる。

7.2 今後の課題

今後の課題としては、同定実験の精度をより向上させ、步行時の足角度を床反力推定装置の出力と同時に検出し、データの補正を行う必要がある。そして、靴の曲げの影響が少ない構造の床反力推定装置の試作が必要となる。

また、本研究ではセンサを4個使用したが、これは足の大きさに対しセンサの数が少ないことが考えられるので、センサ数を増やすことで校正係数の同定の精度が向上することが考えられる。今後はセンサの配置方法を含めこれらの配置方法について検討していく。
謝辞

本研究を行うにあたってご指導とご高配を賜りました高知工科大学 井上喜雄教授に謹んで深甚の感謝の意を表します。そして、副指導教員である高知工科大学 芝田京子准教授には研究に対する貴重なご意見とご教示を賜りました。ここに深く感謝の意を表します。

また、高知工科大学知能機械力学研究室メンバーの皆様にも深甚の感謝の意を表します。特に助教 劉博士には、私が本研究の理解を深める為の有益な助言を頂きました。この場を借りて厚くお礼を申し上げます。皆様、本当にありがとうございました。
参考文献

1) 臨床歩行分析研究会編 関節モーメントによる歩行分析
 鈴白川、劉、井上、芝田：足底圧を用いた床反力センサに関する研究，日本機械学会中国四国学生会第37回
 学生発表研究発表講演会 p.205

2) 創田、井上喜雄、芝田京子：歩行解析のためのウェアラブルなセンサシステムの開発，日本機械学会年次大会
 パンフレット，p.4

4) 石田明允・宮崎信次・林豊彦・廣川俊二・阿江通良，身体運動のバイオメカニクス，コロナ社

5) 野田雄二，足の裏から見た体，コロナ社，講談社

6) 今井至・分木ひとみ・武仲善孝，歩行分析で足底圧分布を中心に，9臨床理学療法，巻1号 p.99
 野田雄二，足の裏から見た体，コロナ社，講談社