Individual Recognition using positions of facial parts
要 旨

顔部品の位置情報を用いた顔認識

有澤嘉洋

顔認識システムは、バイオメトリクス認証の一つとして認識対象者の協力をほとんど必要としないその特性が注目されている。顔画像における特徴の次元数は膨大であるため、そのまま認証を行うと計算量も膨大なものとなる。現在、主流となっている手法では、統計的手法を用いて、特徴の低次元化を行っている。しかし、人間が本来注目している特徴が、この手法によって削除されている可能性がある。本研究では、個人を特定する特徴データを、人間の顔認知処理に基づいて作成した。人間は、顔画像から個人を認識する際、目、鼻、口等の顔部品の配置パターンを個人を識別する重要な特徴の一つとしている。この配置パターンから、個人識別を行うための有用な個人特徴データを作成し、同時に低次元の特徴量で個人識別を行う手法について検討した。その上で、顔の部分特徴の配置パターンのみを用いて、個人を特定する有用な特徴を検討した結果を示す。本手法を用いて、識別実験を行った結果、認識率は97.6%となった。

キーワード 顔部品、配置パターン
Abstract

Individual Recognition using positions of facial parts

YOSHIHIRO Arisawa

A facial recognition system is one of the biometric authentication of person. As for this technique, the characteristics of not needing cooperation of a recognized object are attracted attention. The number of dimension of the facial image’s feature is huge. Therefore, computational complexity becomes huge when face recognition is performed. Now, the mainstream technique is reducing the number of dimensions of the feature using the statistical method. However, the feature that human is originally paying attention may be deleted by this technique.

In this research, the feature data which identify an individual was made based on the face cognitive processing of human. When performing individual recognition of a face picture, human is setting arrangement patterns of parts of face such as eyes, noses, and mouths as one of the important features which individual identifies. The useful individual feature data for performing personal identification was created using this arrangement pattern.

This research shows the result of having studied the useful features for performing individual identification using only the arrangement pattern of the partial feature of a face. And the experiment of individual identification was performed using this technique. As a result, the recognition rate became 97.6%.

key words parts of face, arrangement patterns
目次

第 1 章 序論
 1.1 研究背景 ... 1
 1.2 人間における顔認識処理 2
 1.3 課題 ... 3
 1.4 研究目的 .. 4

第 2 章 研究内容
 2.1 部分特徴点の設定 .. 5
 2.2 個人特徴データの作成 7
 2.2.1 個人特徴データの定義 7
 2.2.2 瞳間距離、及び基点の設定 8
 2.2.3 基点間距離の算出 9
 2.2.4 基点間距離と瞳間距離の比率 11

第 3 章 顔画像データ取得
 3.1 撮影機材 .. 13
 3.2 撮影環境 .. 15
 3.3 環境設定 .. 16
 3.3.1 カメラの位置設定 16

第 4 章 実験
 4.1 被験者 .. 17
 4.2 処理の流れ ... 18
 4.3 DB の構成 ... 19
 4.4 画像の前処理 .. 20
目次

4.5 部分特徴点の抽出 ... 21
 4.5.1 改良型ラブラシアンフィルタ 21
 4.5.2 目の検出 ... 24
 4.5.3 瞳の検出 .. 25
 4.5.4 眉の検出 .. 25
 4.5.5 鼻の検出 .. 26
 4.5.6 口の検出 .. 26
 4.5.7 座標の抽出結果 27

4.6 マッチング方法 ... 28

4.7 マッチング手法 1 .. 28

4.8 マッチング手法 2 .. 29

4.9 マッチング手法 3 .. 29

第5章 実験結果 ... 30
 5.1 未知入力画像42枚の認識率 30
 5.2 被験者の特定精度 31

第6章 考察 ... 32

第7章 まとめ .. 34

謝辞 ... 35

参考文献 .. 38
図目次

<table>
<thead>
<tr>
<th>章目</th>
<th>項目</th>
<th>内容</th>
<th>頁码</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>元画像</td>
<td>..........................</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>特徴点の設定</td>
<td>........................</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>瞳間距離及び基点</td>
<td>........................</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>基点と部分特徴点との距離</td>
<td>........................</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>カメラ本体写真</td>
<td>........................</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>撮影環境</td>
<td>........................</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>原画像A</td>
<td>........................</td>
<td>16</td>
</tr>
<tr>
<td>3.4</td>
<td>原画像B</td>
<td>........................</td>
<td>16</td>
</tr>
<tr>
<td>3.5</td>
<td>原画像C</td>
<td>........................</td>
<td>16</td>
</tr>
<tr>
<td>3.6</td>
<td>原画像D</td>
<td>........................</td>
<td>16</td>
</tr>
<tr>
<td>4.1</td>
<td>実験の処理の流れ</td>
<td>........................</td>
<td>18</td>
</tr>
<tr>
<td>4.2</td>
<td>被験者Aの顔画像の正規化</td>
<td>........................</td>
<td>20</td>
</tr>
<tr>
<td>4.3</td>
<td>被験者Bの顔画像の正規化</td>
<td>........................</td>
<td>20</td>
</tr>
<tr>
<td>4.4</td>
<td>フィルタイメージ図</td>
<td>........................</td>
<td>21</td>
</tr>
<tr>
<td>4.5</td>
<td>d=2のエッジ画像</td>
<td>........................</td>
<td>22</td>
</tr>
<tr>
<td>4.6</td>
<td>d=3のエッジ画像</td>
<td>........................</td>
<td>22</td>
</tr>
<tr>
<td>4.7</td>
<td>d=4のエッジ画像</td>
<td>........................</td>
<td>22</td>
</tr>
<tr>
<td>4.8</td>
<td>d=5のエッジ画像</td>
<td>........................</td>
<td>22</td>
</tr>
<tr>
<td>4.9</td>
<td>反転したフィルタイメージ図</td>
<td>........................</td>
<td>23</td>
</tr>
<tr>
<td>4.10</td>
<td>反転した改良型ブラシアンフィルタによるエッジ画像</td>
<td>........................</td>
<td>23</td>
</tr>
<tr>
<td>4.11</td>
<td>被験者Aの輝度分布</td>
<td>........................</td>
<td>24</td>
</tr>
<tr>
<td>4.12</td>
<td>目領域のエッジ画像</td>
<td>........................</td>
<td>24</td>
</tr>
<tr>
<td>章目</td>
<td>領域</td>
<td>ページ</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>眉領域のエッジ画像</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>鼻領域のエッジ画像</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>口領域のエッジ画像</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>
表目次

2.1 部分特徴基点の設定箇所 6
2.2 被験者 A の各部分特徴点と基点間の距離 9
2.3 被験者 B の各部分特徴点と基点間の距離 10
2.4 被験者 C の各部分特徴点と基点間の距離 10
2.5 被験者 A の各部分特徴点と基点間の距離と瞳間距離との比率 11
2.6 被験者 B の各部分特徴点と基点間の距離と瞳間距離との比率 12
2.7 被験者 C の各部分特徴点と基点間の距離と瞳間距離との比率 12

3.1 撮影機材一覧 .. 13
3.2 デジタルビデオカメラ仕様 14
3.3 気泡管型水準器仕様 14

4.1 DB 構成要素 .. 19
4.2 被験者 A の座標抽出例 27
4.3 被験者 B の座標抽出例 27

5.1 各手法における認識結果 30
5.2 被験者 21 人の認識結果 31
第1章

序論

1.1 研究背景

現在、コンピュータを利用して多くの個人認証手法が提案されている。中でも、指紋、静脈、声紋、虹彩、DNA など人の生体情報を利用したバイオメトリックス認証の研究が盛んである。生体認証技術は、人間の持つ身体的な特性を利用した認識技術であり、中でも指紋認証やDNA認証はほぼ100％の認識率となっている[1][2]。

バイオメトリックス認証の一つに顔を生体情報とした顔画像認識技術がある。これは顔の特徴を利用した認証技術の一つで、指紋認証や静脈認証などの認証に比べ、非接触で扱うことができる認証時の抵抗感が少ない。認証を行う際にも、認証対象の協力をほとんど必要とせず、認証・照合することが可能というメリットを持っている。そのため、空港や公共施設など人が集まるところでの監視システムとして利用されており、セキュリティ用の監視カメラを通して、指名手配犯や行方不明者、家出人などのデータベースと連動し威を発揮している。近年では、顔の個人認証を利用して本人の特定を行い、入退出管理等のサービスが提供されるようになってきている。

顔認識システムの認識を阻害する要因のとして、顔の向き、照明条件、装飾品の有無といった要素がある。これは、撮影環境及び認識対象の顔の状態が必ずしも一定なものでないことや原因である。顔画像認識は、認識対象の認識が捗られない場合、認識が可能であるが、同時に認識対象者に認識を上げるための協力を得ることができない場合が多い。認識対象者が顔の向きをカメラに合わせなかったり、付けている眼鏡やサングラス、マスク等をはずさないという状況が出てくると考えられる。そのため顔認識手法は、これらの状況を想定した上でシス
1.2 人間における顔認識処理

顔認識システムを構築するにあたり、人間の顔識別能力が基となっているシステムは非常に多い。これは人間が、照明条件、顔の向き、装飾品の有無に影響を受けることが多い、環境に依存しないロバストな顔認識能力を持っていることがその理由である。我々が顔を認識することで得られる情報は、目・鼻・口のような顔部品の形状やこれら顔部品の微妙な配置等を含む全体の布置などの、視覚的な情報、その顔から読み取られる印象や性格などの意味的な情報、性別や年齢、表情などが表す感情状態など多様である [6]。顔は、顔部品の形状やその配置が非常に良く似ているにも関わらず、人間はその微妙な違いによって個々の顔を識別することが出来る。このことは、顔が非常に卓越したパターン認識がなされる対象であると同時に、人間のパターン認識能力の高度さが伺える点でもある。

前述の通り、人間は個人を識別する上で、対象となる相手から様々な特徴を抽出していると考えられるが、顔という領域のみを用いて個人を認識しなければならない状況に限定すれば、人間が顔から得ている情報としては、
1.3 課題

- 顔部品の大きさや形状
- それらの配置パターン
- 肌の色合い
- その他の要素（顔の傷、黒子などの特徴）

以上が挙げられると考えられる。

その中でも、今回顔部品の大きさや形状、配置パターンに注目した。人間が、日常場面において未知の顔を記憶する際、相手の第一印象として得ている情報に、『目が大きい』、『鼻が小さい』、『眉が離れている』等といったものがある。これは、人間の顔識別処理において、顔部品の形状やその配置パターンが特徴として強く注目されていることを示している [6]。この特徴の重要性は、人の顔を描写する似顔絵の作成技術においても、言及されており、かなりデフォルメされた似顔絵を見た場合でも、顔の位置関係、及び形状が正確に描写されていれば、人間はかなりの確率で似ていると認識してしまう [7]。このことから、顔部品の大きさや形状、配置パターンは、顔における個性を表す特徴量として重要であり、人間の顔認識処理において、重要な役割を担っていると考えられる。今回の研究ではより人間に近い個人認識処理を実現するために、特徴量として顔部品の配置パターンのみ用いた個人認識手法を提案する。

1.3 課題

顔部品の大きさや形状、配置パターンに基づく顔認識システムの構築を行うにあたって課題となるのは以下のものが挙げられる。

1. 顔部分の抽出
2. 顔部品の配置パターンに基づく個人特徴データの作成及びその表現方法
3. 顔部品の形状に対するマッチング
4. 認識に用いる顔部品の特徴の選択
1.4 研究目的

今回の研究ではこれら課題の2について検討を行う。顔検出処理を行った顔画像は顔領域の抽出結果に差異が現れるため、この差異に影響を受けない個人特徴データの作成が必要となる。また、顔に存在する顔部品全ての形状、大きさ、配置パターンデータのマッチングを行う上とすると、次元数が膨大なものとなってしまうため、認識速度を向上させるため、顔部品の特徴量を低次元にする必要がある。

1.4 研究目的

顔の個人性を示す特徴として重要な要素である。各顔部品を抽出しそれらの位置情報を取得する。その上で、装飾品付けた顔画像から、顔部品の配置パターンに基づく顔認識を行うために、顔部品の位置情報を用いた個人特徴データの表現方法、及び作成を目的とする。

認識対象顔画像は、正面を向いた画像で装飾品をつけていない顔画像を対象とする。この特徴データを基に、認識実験を行い、本手法の有効性の検証を行った。
第2章

研究内容

本研究では、顔の部分特徴の位置情報を基に、位置情報の表現方法を検討し、個人特徴データを作成する。本章では、個人特徴データを作成する流れについて述べる。

2.1 部分特徴点の設定

顔部品の配置パターンを特徴とした顔認識を行うため、顔部品の位置情報を取得する。本研究では、眉、目、鼻、口等の各顔部品の配置パターンが個人の特徴を示していると仮定し、位置特徴のみを用いた認識実験を行う。実験を行うに当たり、顔を構成する主要素である眉、目、鼻、口の輪郭線の端点及び瞳の中心の座標を取得した。この各部分特徴の座標を部分特徴点と定義する。図2.2のように全14個の部分特徴点を設定した。設定した箇所は表2.1の通りである。

図2.1 元画像
図2.2 特徴点の設定
2.1 部分特徴点の設定

<table>
<thead>
<tr>
<th>部分特徴</th>
<th>部分特徴点の位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>眉</td>
<td>左右の眉の輪郭の左端、右端の座標</td>
</tr>
<tr>
<td>目</td>
<td>左右の目の輪郭の目頭、目尻の座標</td>
</tr>
<tr>
<td></td>
<td>左右の瞳の中心点</td>
</tr>
<tr>
<td>鼻</td>
<td>鼻の輪郭の左端、右端の座標</td>
</tr>
<tr>
<td>口</td>
<td>口の輪郭の左端、右端の座標</td>
</tr>
</tbody>
</table>

人間が、顔の特徴として得る情報として、顔部品の大きさ、位置関係に着目しているため、今回これらの部分特徴点の座標を個人特徴として抽出する。顔画像中から、各部分特徴点の座標を取得し、後述する個人特徴データを形成する。
2.2 個人特徴データの作成

ここでは、個人特徴データの作成方法について説明する。

2.2.1 個人特徴データの定義

人間の個人認識処理において、重要な特徴となる顔部品の大きさ、及び配置の情報を、本研究では識別の際の個人特徴として用いる。1.2章で述べたように、人間は視覚的情報として、顔の特徴的な部分、すなわち「目が大きい」、「眉と眉の間隔がせまい」等の顔部品の大きさや配置情報を基にして、特徴的な部分に部分に注目している。本研究では、その顔部品の大きさ及び配置の情報を。

1. 部分特徴点の座標
2. 部分特徴点間の距離
3. 部分特徴点間同士の距離の比率

以上3つのように表現した。これらの値を特徴として用い、未知入力画像とDB登録画像の識別実験を行った。
2.2 個人特徴データの作成

2.2.2 瞳間距離, 及び基点の設定

本研究では、2.2.1章で述べたように個人特徴の作成を行う。その際、各部分特徴点間の距離及び各部分特徴点間同士の比率を対して基点及び基準を設定する。部分特徴点である左右の瞳の中心の座標を基に、瞳間距離とその中点を算出する。瞳間距離の中点は今回距離データを算出するための基点とする。今回は、瞳間距離と基点を基に、部分特徴点間の距離と部分特徴点感動詞の距離の比率を算出する。瞳間距離, 及び基点は図2.4のように設定する。

図2.3 瞳間距離及び基点
2.2 個人特徴データの作成

2.2.3 基点間距離の算出

顔の部分特徴点の座標を抽出したことにより、顔領域において部分特徴の配置パターンがこれによって示された。ここで、基点-各部分特徴点（全14個）間の距離を算出し、基点からどれだけの距離に部分特徴点が配置されているかという情報を個人の特徴量とした。部分特徴点間の距離は、左右の瞳の中心の座標を基点として、基点-各部分特徴点間の距離を算出し特徴として用いる。算出された距離は表2.2.3.4のようになる。

図2.4 基点と部分特徴点との距離

表2.2 被験者Aの各部分特徴点と基点間の距離

<table>
<thead>
<tr>
<th>基点-右眉 (左端)</th>
<th>43.03</th>
<th>基点-左目 (目尻)</th>
<th>73.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>基点-右眉 (右端)</td>
<td>93.99</td>
<td>基点-鼻 (右端)</td>
<td>74.39</td>
</tr>
<tr>
<td>基点-左眉 (右端)</td>
<td>44.90</td>
<td>基点-鼻 (左端)</td>
<td>73.80</td>
</tr>
<tr>
<td>基点-左眉 (左端)</td>
<td>81.19</td>
<td>基点-口 (右端)</td>
<td>122.23</td>
</tr>
<tr>
<td>基点-右目 (目頭)</td>
<td>34.08</td>
<td>基点-口 (左端)</td>
<td>122.31</td>
</tr>
<tr>
<td>基点-右目 (目尻)</td>
<td>80.45</td>
<td>基点-瞳 (右)</td>
<td>50.02</td>
</tr>
<tr>
<td>基点-左目 (目頭)</td>
<td>74.39</td>
<td>基点-瞳 (左)</td>
<td>50.02</td>
</tr>
</tbody>
</table>
2.2 個人特徴データの作成

表2.3 被験者Bの各部分特徴点と基点間の距離

<table>
<thead>
<tr>
<th>基点-右眉 (左端)</th>
<th>32.53</th>
<th>基点-左目 (目尻)</th>
<th>81.69</th>
</tr>
</thead>
<tbody>
<tr>
<td>基点-左眉 (左端)</td>
<td>42.48</td>
<td>基点-鼻 (右端)</td>
<td>68.21</td>
</tr>
<tr>
<td>基点-左眉 (右端)</td>
<td>91.31</td>
<td>基点-鼻 (左端)</td>
<td>71.78</td>
</tr>
<tr>
<td>基点-右目 (目頭)</td>
<td>30.44</td>
<td>基点-口 (左端)</td>
<td>118.90</td>
</tr>
<tr>
<td>基点-右目 (目尻)</td>
<td>83.62</td>
<td>基点-瞳 (右)</td>
<td>51.50</td>
</tr>
<tr>
<td>基点-左目 (目頭)</td>
<td>30.70</td>
<td>基点-瞳 (左)</td>
<td>51.50</td>
</tr>
</tbody>
</table>

表2.4 被験者Cの各部分特徴点と基点間の距離

<table>
<thead>
<tr>
<th>基点-右眉 (左端)</th>
<th>34.71</th>
<th>基点-左目 (目尻)</th>
<th>84.29</th>
</tr>
</thead>
<tbody>
<tr>
<td>基点-左眉 (右端)</td>
<td>94.36</td>
<td>基点-鼻 (右端)</td>
<td>76.69</td>
</tr>
<tr>
<td>基点-左眉 (右端)</td>
<td>36.07</td>
<td>基点-鼻 (左端)</td>
<td>77.39</td>
</tr>
<tr>
<td>基点-左目 (左端)</td>
<td>97.53</td>
<td>基点-口 (右端)</td>
<td>123.66</td>
</tr>
<tr>
<td>基点-右目 (目頭)</td>
<td>29.12</td>
<td>基点-口 (左端)</td>
<td>124.60</td>
</tr>
<tr>
<td>基点-右目 (目尻)</td>
<td>82.30</td>
<td>基点-瞳 (右)</td>
<td>53.01</td>
</tr>
<tr>
<td>基点-左目 (目頭)</td>
<td>32.98</td>
<td>基点-瞳 (左)</td>
<td>53.01</td>
</tr>
</tbody>
</table>
2.2 個人特徴データの作成

2.2.4 基点間距離と瞳間距離の比率

部分特徴点の座標によるマッチング、基点-部分特徴点間の距離によるマッチングは、顔の検出精度に大きく依存する。少しでも、顔が左右にずれたり、顔領域が大きく検出されたりすると、DB と未知入力画像の差異が大きくなってしまう。これに、対応するため瞳間距離を基準とした、各部分特徴の比率データを個人特徴として用いる。部分特徴点感動詞の距離の比率は、左右の瞳の座標同士の距離（瞳間距離）を基準とし、基点-各部分特徴点間の距離に対しての比率を用いる。基点と各部分特徴点との距離と瞳間距離に対する比率は式 2.1 により算出する。

\[F_i = \frac{\sqrt{(x_i - x_c)^2 + (y_i - y_c)^2}}{d} \]

式 2.1

\(x_i, y_i \) : 部分特徴点の \(x, y \) 座標、\(x_c, y_c \) : 基点の \(x, y \) 座標、\(n \) : 部分特徴点、\(d \) : 瞳間距離

表 2.5 被験者 A の各部分特徴点と基点間の距離と瞳間距離との比率

<table>
<thead>
<tr>
<th>基点-右眉 (左端)</th>
<th>0.430</th>
<th>基点-左目 (目頭)</th>
<th>0.340</th>
</tr>
</thead>
<tbody>
<tr>
<td>基点-右眉 (右端)</td>
<td>0.939</td>
<td>基点-左目 (目尻)</td>
<td>0.804</td>
</tr>
<tr>
<td>基点-左眉 (右端)</td>
<td>0.449</td>
<td>基点-鼻 (右端)</td>
<td>0.743</td>
</tr>
<tr>
<td>基点-左眉 (左端)</td>
<td>0.918</td>
<td>基点-鼻 (左端)</td>
<td>0.738</td>
</tr>
<tr>
<td>基点-右目 (目頭)</td>
<td>0.305</td>
<td>基点-口 (右端)</td>
<td>1.222</td>
</tr>
<tr>
<td>基点-右目 (目尻)</td>
<td>0.812</td>
<td>基点-口 (左端)</td>
<td>1.223</td>
</tr>
</tbody>
</table>
2.2 個人特徴データの作成

表 2.6 被験者 B の各部分特徴点と基点間の距離と瞳間距離との比率

<table>
<thead>
<tr>
<th>基点-右眉 (左端)</th>
<th>基点-左目 (目頭)</th>
<th>0.298</th>
</tr>
</thead>
<tbody>
<tr>
<td>基点-右眉 (右端)</td>
<td>基点-左目 (目尻)</td>
<td>0.793</td>
</tr>
<tr>
<td>基点-左眉 (右端)</td>
<td>基点-鼻 (右端)</td>
<td>0.662</td>
</tr>
<tr>
<td>基点-左眉 (左端)</td>
<td>基点-鼻 (左端)</td>
<td>0.697</td>
</tr>
<tr>
<td>基点-右目 (目頭)</td>
<td>基点-口 (右端)</td>
<td>1.155</td>
</tr>
<tr>
<td>基点-右目 (目尻)</td>
<td>基点-口 (左端)</td>
<td>1.154</td>
</tr>
</tbody>
</table>

表 2.7 被験者 C の各部分特徴点と基点間の距離と瞳間距離との比率

<table>
<thead>
<tr>
<th>基点-右眉 (左端)</th>
<th>基点-左目 (目頭)</th>
<th>0.311</th>
</tr>
</thead>
<tbody>
<tr>
<td>基点-右眉 (右端)</td>
<td>基点-左目 (目尻)</td>
<td>0.795</td>
</tr>
<tr>
<td>基点-左眉 (右端)</td>
<td>基点-鼻 (右端)</td>
<td>0.723</td>
</tr>
<tr>
<td>基点-左眉 (左端)</td>
<td>基点-鼻 (左端)</td>
<td>0.730</td>
</tr>
<tr>
<td>基点-右目 (目頭)</td>
<td>基点-口 (右端)</td>
<td>1.166</td>
</tr>
<tr>
<td>基点-右目 (目尻)</td>
<td>基点-口 (左端)</td>
<td>1.175</td>
</tr>
</tbody>
</table>
第 3 章

顔画像データ取得

3.1 攝影機材

顔画像データ撮影にあたり、撮影に必要なカメラシステムの構築を行った。今回の実験では、デジタルビデオカメラを三脚に固定して撮影した。実験に用いた撮影機材は表 3.1 の 3 点である。撮影に使用した各機材の使用を表に示す。

<table>
<thead>
<tr>
<th>機材</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>デジタルビデオカメラ</td>
<td>Victor 製 GZ-MG77</td>
</tr>
<tr>
<td>三脚</td>
<td>カメラの固定に使用</td>
</tr>
<tr>
<td>気泡管型水準器</td>
<td>三脚雲台の水平調整に使用</td>
</tr>
</tbody>
</table>

なお、今回使用した機材は、いずれも特に高精度な部類のものではなく、量販店でも比較的安価に入手可能な民生用のものを使用している。
3.1 撮影機材

<table>
<thead>
<tr>
<th>型名</th>
<th>Victor 製 GZ-MG77</th>
</tr>
</thead>
<tbody>
<tr>
<td>撮像素子</td>
<td>1/3.9 型 218 万画素 CCD</td>
</tr>
<tr>
<td>撮像エリア</td>
<td>動画時 123 万画素</td>
</tr>
<tr>
<td></td>
<td>静止画時 200 万画素</td>
</tr>
<tr>
<td>レンズ</td>
<td>F1.2→2.0</td>
</tr>
<tr>
<td></td>
<td>(f = 3.8\sim38mm(35mm 棟算 35.8\sim457mm))</td>
</tr>
<tr>
<td>記録方式</td>
<td>映像：MPEG-2</td>
</tr>
<tr>
<td></td>
<td>音声：Dolby Digital</td>
</tr>
<tr>
<td>信号方式</td>
<td>NTSC 日米標準信号方式</td>
</tr>
<tr>
<td>記録メディア</td>
<td>内臓 HDD, SD メモリーカード</td>
</tr>
</tbody>
</table>

表 3.2 デジタルビデオカメラ仕様

<table>
<thead>
<tr>
<th>感度</th>
<th>1mm/m=0.0527</th>
</tr>
</thead>
<tbody>
<tr>
<td>精度</td>
<td>5.25mm/m= 0.2999以内</td>
</tr>
</tbody>
</table>

図 3.1 カメラ本体写真
3.2 撮影環境

撮影には研究室の一角を利用した。光源は、研究室内の自然光（蛍光灯）と、スタジオ左側にある窓からブラインドを下ろした状態での太陽光がある。しかし、撮影時間は一定ではないため、太陽光の強さは一定である保障はない。パーティションに暗幕をかぶせたものを背景として、カメラの正面に椅子を配置し、被験者を座らせた状態で顔画像データの撮影を行った。

撮影環境の状態は図のようになる。

カメラの光軸は、カメラが人物の中心を捕らえるように配置する。カメラの高さは、被験者の体格に合わせて三脚のエレベータ機能を利用して調整するため、特に指定しない。

図 3.2 撮影環境
3.3 環境設定

3.3.1 カメラの位置設定

カメラを三脚に取り付ける際に、水準器を用いてカメラが水平になるよう雲台を調整する。調整を行ったら、雲台を固定する。

カメラの液晶モニターに背景を映し出し、目標物をモニターの中央に捕らえるようにカメラの調整する。目標物との高さが合わない場合は、三脚のエレベータ機能を使用して高さを合わせるようにする。

図 3.3 原画像 A
図 3.4 原画像 B
図 3.5 原画像 C
図 3.6 原画像 D
第4章

実験

4.1 被験者

本研究では、男性21名、女性2名の被験者に対し、3枚ずつ正面を向いた680×480サイズの画像を撮影した。一人当たり3枚の画像のうち、1枚をDB登録画像とし、残りの2枚を未知入力画像として用いた。DB登録者は21名、未知入力画像は42枚となる。未知入力画像が入力されると各部分特徴点を抽出した後、個人特徴データを作成しDB登録データを比較を行う。
4.2 処理の流れ

実験の処理の流れは以下のようになる。

図 4.1 実験の処理の流れ
4.3 DB の構成

DB に登録する 21 名分データは、各部分特徴点の座標、基点-部分特徴点間距離、瞳間距離と基点-部分特徴点間距離の比率のデータを保持している。

<table>
<thead>
<tr>
<th>部分特徴点座標</th>
<th>左眉 (右端)</th>
<th>左眉 (左端)</th>
</tr>
</thead>
<tbody>
<tr>
<td>右眉 (右端)</td>
<td>右眉 (左端)</td>
<td></td>
</tr>
<tr>
<td>左目 (右端)</td>
<td>左目 (左端)</td>
<td></td>
</tr>
<tr>
<td>右目 (右端)</td>
<td>右目 (左端)</td>
<td></td>
</tr>
<tr>
<td>左目 (右端)</td>
<td>左目 (左端)</td>
<td></td>
</tr>
<tr>
<td>鼻 (右端)</td>
<td>鼻 (左端)</td>
<td></td>
</tr>
<tr>
<td>口 (右端)</td>
<td>口 (左端)</td>
<td></td>
</tr>
<tr>
<td>瞳 (右)</td>
<td>瞳 (左)</td>
<td></td>
</tr>
</tbody>
</table>

表 4.1 DB 構成要素

基点-部分特徴点間距離

<table>
<thead>
<tr>
<th>基点-右眉 (右端)</th>
<th>基点-右眉 (左端)</th>
<th>基点-左眉 (右端)</th>
<th>基点-左眉 (左端)</th>
<th>基点-右目 (右端)</th>
<th>基点-右目 (左端)</th>
<th>基点-左目 (右端)</th>
<th>基点-左目 (左端)</th>
<th>基点-鼻 (右端)</th>
<th>基点-鼻 (左端)</th>
<th>基点-口 (右端)</th>
<th>基点-口 (左端)</th>
<th>基点-瞳 (右)</th>
<th>基点-瞳 (左)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

瞳間距離との比率

<table>
<thead>
<tr>
<th>基点-右眉 (右端)</th>
<th>基点-右眉 (左端)</th>
<th>基点-左眉 (右端)</th>
<th>基点-左眉 (左端)</th>
<th>基点-右目 (右端)</th>
<th>基点-右目 (左端)</th>
<th>基点-左目 (右端)</th>
<th>基点-左目 (左端)</th>
<th>基点-鼻 (右端)</th>
<th>基点-鼻 (左端)</th>
<th>基点-口 (右端)</th>
<th>基点-口 (左端)</th>
<th>基点-瞳 (右)</th>
<th>基点-瞳 (左)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
4.4 画像の前処理

4.4 画像の前処理

DB 登録画像、未知入力画像共に、元画像から顔領域をプログラムを用いて検出した。顔
検出プログラムは、OpenCV で公開されている顔検出プログラムが基となっている。顔画像
データにより学習によってあらかじめ獲得された、分類器のカスケードが記述された xml
ファイルを読み込み、顔領域を検出する [9][10]。

検出された顔領域は 256 × 256 のサイズでリサイズした。また、撮影時の照明条件の若干
の違いを考慮し、輝度の平坦化のためイコライズ処理を施した。今回顔の検出処理を施した
画像は全て顔領域の抽出に成功している。

(a) 原画像

(b) 正規化画像

図 4.2 被験者 A の顔画像の正規化

(a) 原画像

(b) 正規化画像

図 4.3 被験者 B の顔画像の正規化
4.5 部分特徴点の抽出

4.5.1 改良型ラプラシアンフィルタ

今回、部分特徴点の抽出は手動で行った。このとき顔画像中の陰影に左右されないように、顔画像のエッジ抽出処理を施した上で部分特徴点の抽出を行った。通常の Laplacian, Sobel フィルタでは顔の陰影に大きな影響を受けてしまい、正確な抽出を行うことができない。そこで今回、エッジ抽出処理は、改良したラプラシアンフィルタを用いて行った [8]。用いたフィルタの式及びイメージ図は、式 4.1, 4.2、図 4.4 のようになる。抽出したエッジ画像の閾値は \(d=2, 3, 4, 5\) とし、それぞれ図 4.5, 図 4.6, 図 4.7, 図 4.8 のようになる。また、閾値が 5 を超えるとノイズが多く確認されたため。今回、エッジの抽出結果を確認した結果、フィルタの閾値 \(d\) の値は 5 とし、部分特徴点の抽出処理を行った。このフィルタは目、及び瞳の部分特徴点の抽出に用いた。

\[
\begin{align*}
 f_{xx} &= -f(i + d, j) + 2f(i, j) - f(i - d, j) \\
 f_{yy} &= -f(i, j + d) + 2f(i, j) - f(i, j - d)
\end{align*}
\]

(4.1) (4.2)

図 4.4 フィルタイメージ図
4.5 部分特徴点の抽出

図 4.5 d=2 のエッジ画像
図 4.6 d=3 のエッジ画像
図 4.7 d=4 のエッジ画像
図 4.8 d=5 のエッジ画像
4.5 部分特徴点の抽出

眉、鼻、口の部分特徴点の抽出は、反転した改良ラブラシアンフィルタを用いる。反転した改良ラブラシアンフィルタのイメージ図は図 4.9、処理したエッジ画像は図 4.10 となる。改良ラブラシアンフィルタでは、十分に検出できなかった眉、鼻、口のエッジが反転した改良ラブラシアンフィルタからは、改良ラブラシアンフィルタよりも元画像の顔部の形状特徴が正確に検出できたため、眉、鼻、口の部分特徴点の抽出は反転したラブラシアンフィルタを用いた。

\[
\begin{align*}
 f_{xx} &= f(i + d, j) - 2f(i, j) + f(i - d, j) \\
 f_{yy} &= f(i, j + d) - 2f(i, j) + f(i, j - d)
\end{align*}
\]

図 4.9 反転したフィルタイムイメージ図
図 4.10 反転した改良型ラブラシアンフィルタによるエッジ画像
4.5 部分特徴点の抽出

4.5.2 目の検出

エッジ画像から、左右の目と瞳の部分特徴点の座標を取得する。座標は、エッジ画像の目視、及びX軸方向とY軸方向の輝度分布基値を用いた。下記の図は、図4.11が被験者AのX軸方向、Y軸方向の輝度分布、図4.12が目領域のエッジ画像となる。目領域のエッジ画像を基に、目の輪郭線の左右の端点、及び左右瞳の中心点を部分特徴点座標として抽出した。

エッジ画像からX軸方向に輝度値の周辺分布を取り出し、取り出した値の中心から上の値の隣接した2区間の差を順次求める。画像からX軸方向の輝度値を抽出した後、次にY軸方向の輝度値の周辺分布を取り出す。取り出した値の中心から左側と右側の値を別々に着目し、隣接した4区間の移動平均の差を順次求め、中心から左及び右方向に探索していき、輝度変化が連続している部分の始点と終点の座標を基に、左右の目の部分特徴点の座標を抽出する。

![X軸方向輝度分布](image1)

図4.11
被験者Aの輝度分布

![目領域のエッジ画像](image2)

図4.12
目領域のエッジ画像
4.5 部分特徴点の抽出

4.5.3 瞳の検出

目的の検出時と同様に、エッジ画像からX軸方向に輝度値の周辺分布を取り出し、取り出した値の中心から上の値の隣接した2区間の差を順次求める。X軸方向の輝度分布を抽出した後、今度はY軸方向の輝度値の周辺分布を取り出す。取り出した値のから隣接した4区間の差を順次求める。中心から左及び右方向に探索していき、輝度変化が連続している部分で、輝度変化が小さくなる始点と終点の座標を基に、始点と終点の座標の中点を、左右の瞳の部分特徴点として座標を抽出する。

4.5.4 眉の検出

エッジ画像からX軸方向に輝度値の周辺分布を取り出し、取り出した値の上から隣接した2区間の差を順次求める。X軸方向の画像を抽出した後、今度はY軸方向の輝度値の周辺分布を取り出す。取り出した値の中心から左側と右側の値を別々に着目し、隣接した2区間の移動平均の差を順次求める。中心から左及び右方向に探索していき、輝度変化が連続している部分の始点と終点の座標を基に、左右の眉の部分特徴点の座標を抽出する。

図4.13 眉領域のエッジ画像
4.5 部分特徴点の抽出

4.5.5 鼻の検出

エッジ画像から X 軸方向に輝度値の周辺分布を取り出し、取り出した値の検出した目の下端の値から下の隣接した 2 区間の差を順次求める。X 軸方向の画像を抽出した後、今度は Y 軸方向の輝度値の周辺分布を取り出す。取り出した値の中心から左側と右側の値を別々に着目し、隣接した 4 区間の差を順次求める。中心から左右別々に探索していき、輝度変化が連続している部分の終点を鼻の部分特徴点の座標を抽出する。

図 4.14 鼻領域のエッジ画像

4.5.6 口の検出

エッジ画像から X 軸方向に輝度値の周辺分布を取り出し、取り出した値の鼻の下端の値から下の隣接した 2 区間の差を順次求める。X 軸方向の画像を抽出した後、今度は Y 軸方向の輝度値の周辺分布を取り出す。取り出した値から隣接した 2 区間の移動平均の差を順次求める。取り出したから探索していき、輝度変化が連続している部分の終点の座標を基に、口の部分特徴点の座標を抽出する。

図 4.15 口領域のエッジ画像
4.5 部分特徴点の抽出

4.5.7 座標の抽出結果

各部分特徴点の抽出を行い、検出された部分特徴点の座標の例は、表 4.2 4.3 のようになる。

<table>
<thead>
<tr>
<th>表 4.2 被験者 A の座標抽出例</th>
</tr>
</thead>
<tbody>
<tr>
<td>右眉 (左端)</td>
</tr>
<tr>
<td>右眉 (右端)</td>
</tr>
<tr>
<td>左眉 (右端)</td>
</tr>
<tr>
<td>左眉 (左端)</td>
</tr>
<tr>
<td>右目 (目頭)</td>
</tr>
<tr>
<td>右目 (目尻)</td>
</tr>
<tr>
<td>左目 (目頭)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表 4.3 被験者 B の座標抽出例</th>
</tr>
</thead>
<tbody>
<tr>
<td>右眉 (左端)</td>
</tr>
<tr>
<td>右眉 (右端)</td>
</tr>
<tr>
<td>左眉 (右端)</td>
</tr>
<tr>
<td>左眉 (左端)</td>
</tr>
<tr>
<td>右目 (目頭)</td>
</tr>
<tr>
<td>右目 (目尻)</td>
</tr>
<tr>
<td>左目 (目頭)</td>
</tr>
</tbody>
</table>

被験者の各部分特徴点が存在する座標は、概ね類似した配置傾向を示した。これは、人間の顔部品の普遍的な配置がほぼ等しいからである。しかし、被験者によって特徴的な部分特徴点の配置が確認でき、この特徴的な配置に「眉の間隔が開いている」、「口が大きい」等の人間が本来顔から特徴として得ている情報が含まれていると考えられる。

— 27 —
4.6 マッチング方式

買い物, マッチング手法については以下の3つの手法それぞれ試し, 結果の比較を行った。

4.7 マッチング手法1

DB登録者と入力顔画像の各部分特徴基点の座標の距離によるマッチング（手法1）

\[F_1 = \sum_{i=1}^{n} \sqrt{(x_i - x'_i)^2 + (y_i - y'_i)^2} \] \hspace{1cm} (4.5)

\[x_i, y_i : DB 登録画像の部分特徴点の \(x, y \) 座標 \]
\[x'_i, y'_i : 未知入力画像の部分特徴点の \(x, y \) 座標 \]
\[n : 部分特徴点数 \]

DB登録画像と未知入力画像の部分特徴点の座標の距離を基に, マッチングを行う。DB登録画像と未知入力画像が同一の場合, 部分特徴点の座標は限りなく近くなるため, DB登録画像と未知入力画像の各部分特徴点の座標ごとに距離を調べ, 各部分特徴点との距離の差分の総和の絶対値が最小となるDB登録画像を探索する。この時, 差分の総和が最小となったDB登録画像を未知入力画像と同一の人物として出力する。
4.8 マッチング手法 2

基点と各部分特徴基点との距離によるマッチング (手法 2)

\[F_2 = \sum_{i=1}^{n} \sqrt{(x_i - x_c)^2 + (y_i - y_c)^2} \quad (4.6) \]

\(x_c, y_c \): 基点の \(x, y \) 座標

DB 登録画像と未知入力画像の基点-部分特徴点間の距離を基に、マッチングを行う。基点-各部分特徴点間距離の差分を算出し、差分の絶対値が最小となる DB 登録画像を探索する。この時、差分の総和が最小となった DB 登録画像を未知入力画像と同一の人物として出力する。

4.9 マッチング手法 3

基点と各部分特徴基点との距離と瞳間距離との比率のによるマッチング (手法 3)

\[F_3 = \sum_{i=1}^{n} \frac{\sqrt{(x_i - x_c)^2 + (y_i - y_c)^2}}{d} \quad (4.7) \]

\(d \): 瞳間距離

DB 登録画像と未知入力画像それぞれ、基点-各部分特徴点間距離と瞳間距離との比率を算出し、各部分特徴点での比率の差分の総和の絶対値が最小となる DB 登録画像を探す。この時、差分の総和が最小となった DB 登録画像を未知入力画像と同一の人物として出力する。

— 29 —
第5章

実験結果

3種類のマッチング方式による認識率はそれぞれ以下のようになった。

5.1 未知入力画像42枚の認識率

<table>
<thead>
<tr>
<th>表5.1 各手法における認識結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>手法1</td>
</tr>
<tr>
<td>認識率</td>
</tr>
</tbody>
</table>

この認識率は、未知入力画像42枚がDBに登録された本人画像データと合致した比率を示している。
5.2 被験者の特定精度

5.2 被験者の特定精度

各手法における未知入力画像で用いた 21 名の被験者の特定精度を以下に示す。表の項目は、

- 不一致は未知入力画像を認識することができなかった被験者の総数
- 部分一致どちらか片方を認識できた被験者の総数
- 完全一致は 2 枚とも認識することができた被験者の総数

というものを、表している。

<table>
<thead>
<tr>
<th>認識度</th>
<th>不一致</th>
<th>部分一致</th>
<th>完全一致</th>
</tr>
</thead>
<tbody>
<tr>
<td>手法 1</td>
<td>5 人</td>
<td>5 人</td>
<td>11 人</td>
</tr>
<tr>
<td>手法 2</td>
<td>7 人</td>
<td>6 人</td>
<td>8 人</td>
</tr>
<tr>
<td>手法 3</td>
<td>0 人</td>
<td>1 人</td>
<td>20 人</td>
</tr>
</tbody>
</table>

第6章

考察

手法1及び手法2によるマッチングの結果はそれぞれ64.3%、52.4%となった。これは、入力画像を顔検出プログラムにより切り出した顔領域の部分特徴点のずれ及び検出した顔領域の大きさの微妙な違いが認識に影響したと考えられ、本研究で用いた顔検出処理が完全でな
いことが示される結果となった。

手法3に関しては、97.6%という認識結果が示された。これは、部分特徴点の抽出が正確にできていたことが認識率の向上につながったと考えられる。顔検出の際座標のずれが発生しても、顔画像中の基点と各部分特徴点間の距離データは正確に抽出できている。そのため、瞳間距離を基準とした比率という個人特徴データは座標のずれによるノイズの影響が小さい。これにより、個人特徴データの個人性が損なわれなかったことが認識率の向上につながったと考えられる。また、今回認識できなかった未知入力画像に対しても、認識結果の評価値に次いで、総和のデータが小さくなっていた。本研究により、顔の特徴として有用なデータを抽出することができ、また顔部品の位置情報の表現方法についても適正な表現ができたと考えられる。

本手法のメリットとしては、サンプル数及び特徴点の次元数が少ない状況下であっても、精度を保って認識ができたことが挙げられる。そのため、より簡単処理に個人を識別することが可能であると考えられ、携帯端末等における個人認識処理の実現が期待できる。

しかし、顔に装飾品をつけた画像への個人認識に本手法を適用する場合、サングラスをかけた顔画像等、瞳間距離を基準とできない可能性があるため、そうした状況にも対応できるよう、基点の設定をする必要がある。サングラスや眼鏡等を付け、目の領域が正確に抽出できない画像に本手法を適用する場合、顔の輪郭線データを用いて顔に基点を設定すれば、目の領
域を失った画像に対しての認識が可能であると考えられる。

また、基点-部分特徴点の距離データの他の距離データに対する比率を示すデータを、各部分特徴点分用いればさらに、認識率を向上させることができると考えられる。この場合、各部分特徴点分のデータの中から、有用な基点-部分特徴点間距離を選び出し、精度を保ったまま、次元数をどこまで低減できるか検証する必要がある。その上で、より個人性を多く含む距離の重みを強くし、個人性が少ない距離の重みを弱くするといった、個人特徴の重み付けに関して検討する必要がある。
第7章

まとめ

本論文では、顔の部分特徴の位置情報利用した認識手法の検討を行った。実験結果より、顔に瞳間距離のような基準パターンを設け、基点間の距離に基づく相対比較ができれば、各部分特徴点の座標データのみによる認識でも、精度を保って個人を特定できることが分かった。

しかし、部分特徴点の自動抽出処理が行われていないため、各部分特徴点を正確に抽出する自動処理手法を実現する必要がある。その上でサンプル数を増やし本手法の有効性を評価を行いたい。個人認識処理の処理速度の検証を行う必要がある。また、DBに登録されていない画像が未知入力画像として入力された場合、本手法では排除することができないため、未登録者排除に関する手法について考える必要がある。
謝辞

本論文では、主査である情報システム工学コース岡田守教授に丁寧な指導と、研究を進めていく上での相談を親身になってお聞きくださったことに対してまずお礼を申し上げたいと思います。研究テーマをいつまでも決める、のらりくらりとうかわってしまい、挙句の果て正月明けにインフルエンザぞうに感染して 10 日近くも休んで、非常に不愉快な思いをされたと思います。真に申し訳ありませんでした。私が岡田研究室で過ごした 4 年間、良い同期や後輩に恵まれ、本当に充実した学生生活を送ることができました。この 4 年間は、この 4 年間は私の一生の財産になります。本当にありがとうございました。

また、本研究で副査を勤めていただいた岩田誠先生、妻島貴彦先生にも御礼申し上げます。岩田先生は、卒業論文時も副査になっていただき、色々と助言してくださったにも関わらず、その貴重なアドバイスをこの度研究に生かせなかったことを深くお詫び申し上げると共に、自分自身の至らさを恥じるばかりです。しかし、岩田先生の助言で自分の研究に対して明確なイメージを持つことができました。このおかげでモチベーションを上げることができ、最後まで研究をやろうという意思を保つことができました。重ねて御礼申し上げます。

妻島先生は、他研究室の学生であるにも関わらず、よく飲み会に誘ってくださったことをまず御礼申し上げます。愚痴を聞いてくださったり、様々なことを教えてくださったことに本当に感謝しています。自分自身の見識を深めることができ、非常に貴重な時間を過ごせました。私の修士としての学生生活を語る上で、先生との飲み会をはずすことは決してできません。本当に感謝しています。ですので、飲み会の席での私の狼藉に関しては、寛大な心で見逃していただけたら幸いです。高知に帰ってきたら、また飲みに行きましょう。

そして、吉田真一先生にも御礼申し上げます。修士 1 年時に着任された吉田先生ですが、本当に気軽に色々な相談にのっていただき、とても感謝しています。ファジィの輪講にも参加させて頂き、自分自身の知識を深めることができたことは大変うれしく思っています。そんな優しい吉田先生、高知県はお酒の国です。お酒に早く強くなってください。ぜひ、一晩飲み
謝辞

明かす体力と気力を養っていたいただきと思います。

NTT ラーニングシステムズ株式会社の高木翔平氏にも御礼申し上げます。本校 OB の高木氏ですが、電話やメール、メッセージで色々なことを教えてくださったこと、本当に感謝しています。来年度には社会人となる私ですが、社会人になる上での心構え、現在の社会の情勢等色々と興味深い話を聞かせていただき本当にありがとうございました。たくさんの方がいなければならないことを、ほぼ同時に進行させるという業務を涼しい顔でやってのける高木氏を本当に尊敬しております。東京で会う際は、ぜひ色々お話をお聞かせいただきたいと思います。お互い共通の趣味を持つ身ですので、また共に戦場へ向かいましょう。

そして、同期の大西将史君にも御礼申し上げます。ちゃんとぽかんに私に代わり、研究室の業務を色々と肩代わりさせてしまい申し訳ありませんでした。私の学生生活において、色々な助言、忠告、指導者を下さったこと、自分自身とても考えさせられました。また、月の満ち欠けのような体験変化も、見ていて楽しいものでした。是非、社会人になった際には、月齢を下げていただきたく存じます。

そして、苦楽を共にした研究室の仲間たちにも感謝の言葉を述べたいです。社会人として、私より先に進立って行った同期の、永野雄士氏、西本美勇士氏、平井太郎氏、福光大輔氏、藤谷一洋氏、山口公一氏、後輩の末光誠氏、田中智文氏、棚橋麻里乃氏、長尾伸吾氏、橋本雄太氏、東志保氏、宮脇拓郎氏、私と共に進立っていく、海老名智一氏、小松翔太氏、谷口昇氏、濱田美美氏、平橋航氏、前田菜帆氏、和田翔太氏、本当に感謝しています。特に本研究でも、色々と助けてくれた安部氏どうもありがとうございました。また、濱田さんに関しては、来年から同じ会社の同期になることになりますが、その節はよろしくお願いします。まさかあなたと同じ会社に行くとは思ってもみませんでした。

また、卒業しても色々と相談にのって下さった先輩の藤村和人氏には改めて感謝の言葉を述べたいと思います。本当にありがとうございました。最後に、私が学生生活をおくるにあたり多大なサポートをしてくれた両親、弟や妹たち、叱咤激励してくれた祖母には心からのお礼の言葉を。6年間自由に学ばせてくれてありがとうございました。論文期限前に、色々と無理を言った私を黙って、サポートしてくれて本当に感謝しています。4人兄弟の長男でありな
謝辞

がら、いつも迷惑ばかりかけてしまい大変申し訳ありませんでした。自宅に帰れば、温かいご飯を常に出してくれたことや掃除の行い届いた環境で過ごすことができたこと等、同期の一人暮らしの友達の状況から見ても、私は大変恵まれたサポートを受けられたと思います。大学生活6年間で学んできたことを誇りにし、今後の人生にしっかりと役立てていき、「これでもか！」というほど恩返しをしようと思います。本当にありがとうございました。
参考文献

