
A Quantitative Measurement of Codebook and its
Specialized Clustering Framework for Image
Representation Strategies

著者 四宮 友貴
year 2018-09
その他のタイトル 画像表現戦略のためのコードブックの定量評価法と

生成手法に関する研究
学位授与機関 高知工科大学
学位授与番号 26402甲第333号
URL http://hdl.handle.net/10173/1981



   

 
 
 
 

A Quantitative Measurement of Codebook and its 
Specialized Clustering Framework for Image 

Representation Strategies  
 
 

 
by 

 
Yuki Shinomiya 

 
 

Student ID Number: 1196005 
 
 

A dissertation submitted to the 
Engineering Course, Department of Engineering, 

Graduate School of Engineering, 
Kochi University of Technology, 

Kochi, Japan 
 
 
 

in partial fulfillment of the requirements for the degree of 
Doctor of Engineering 

 
 

 
Assessment Committee: 

Supervisor: Yukinobu Hoshino 
Co-Supervisor: Shinichi Yoshida 
Co-Supervisor: Kiminori Matsuzaki 
             Yoshiaki Takata 
             Tomoharu Ugawa 

 
 
 
 

September 2018 
 
 
 
 





iii

Abstract
Over the years, image recognition, which is a kind of study fields in artifi-

cial intelligence, is an attractive research due to growing a number of our

familiar image contents. In general, images have no any constraints to a

shooting environment and viewpoint changes, so that the typical difficulty

is to adapt to deformation of objects appeared in the images. Understand-

ing images without any constraints has many important aspects in science,

engineering, and technology. To ignore objects deformation, a popular strat-

egy is a codebook-based image representation framework. This framework

is closely related to document representation in natural language process-

ing, which represents a document as a frequency histogram by counting

the number of words that correspond to a common dictionary. Similarly,

codebook-based image representation frameworks treat an image as a set of

local feature vectors extracted from regions of interest and a local feature as

a visual-word. The earliest codebook-based approach is the Bag-of-Visual-

Words (BoVW), which counts the number of visual-words which correspond

to a dictionary. Here, a dictionary in image recognition is usually constructed

by clustering local features extracted from various images. Variants of the

BoVW, such as the Fisher Vector and the Vector of Locally Aggregated De-

scriptors (VLAD), have recently achieved state-of-the-art performances in

several image recognition tasks and domains. This dissertation focusses on

recent codebook-based approaches and provides our three research articles

below.

The first article provides a low-space complexity codebook using the fuzzy

clustering and its encoding approach. The fuzzy clustering has been ex-

tended from the k-means by fuzzy logic, where the k-means has a disad-

vantage that a quantization error is larger because it assigns a sample located

equidistant to two or more cluster centers to either one. In this article, we
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used the fuzzy c-means (FCM) algorithm, which is a typical fuzzy clustering

and allows that a sample can belong to two or more clusters by represent-

ing belonging probabilities based on a distance metric. Few researchers have

applied fuzzy clustering techniques to image recognition applications. The

FCM has a problem that belonging probabilities of high-dimensional sam-

ples easily converge to a value because of the curse of dimensionality. To

calculate belonging probabilities efficiently, our proposed codebook projects

high-dimensional samples into low-dimensional space only when calculat-

ing the probabilities. Moreover, few related works have extended the earliest

encoding strategy with the fuzzy clustering algorithm. We provide a feature

encoding strategy, which is able to achieve the same level as the state-of-the-

art strategies.

The second article analyzes a relationship between recognition perfor-

mance and codebook parameters in recent state-of-the-art approaches and

presents quantitative measurement to evaluate the quality of a codebook in

image recognition. In the analysis experiment, we have evaluated recogni-

tion performances of the FV and the VLAD. For comparing under the fair

condition, two additional encodings modified from the FV and the VLAD

have also been evaluated. The experimental results suggest that the code-

book parameters for the FV easily over-fit to training data as the codebook

size increases. Here, the over-fitting means that some visual-words are dis-

appeared and do not affect to encoding. In image recognition, the codebook

size is an important parameter to decide the trade-off between recognition

accuracy and computational cost. To investigate the further relationship be-

tween recognition performance and model parameters, we have parameter-

ized the FV from the perspective of fuzzy logic and have statistically ana-

lyzed. The results show a strong negative relationship between recognition

accuracy and the standard deviation of prior probabilities. These results sug-

gest that the quality of encoded signatures can be quantitatively measured
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at the training phase. For optimizing the two scaling parameters when con-

structing a codebook, we have also discussed the influence of the scaling

parameters on recognition accuracy. The space of recognition accuracy with

respect to the scaling parameters is a simple convex structure. This suggests

that exhaustive optimization algorithms, such as grid search, and heuristic

optimization techniques, such as particle swarm optimization, are able to

optimize the scaling parameters. However, there is a limitation that they are

computationally expensive because clustering is necessary for each candi-

date of scaling parameter values.

The third article provides a clustering framework based on the quanti-

tative measurement to construct a codebook. This framework aims to di-

rectly construct a codebook based on the quantitative measurement to relax

the computational cost at the codebook construction phase. The proposed

framework has a general objective function to evaluate quantitative mea-

surement as a minimization problem. In addition, the framework also has

a sub-function that is alternative to the objective function for either the k-

means or the GMM. To minimize the proposed objective, some black-box

optimization algorithms have been evaluated. We first conducted an experi-

ment to compare which black-box optimization algorithm is suitable. Then,

characteristics of the proposed framework and difference to the conventional

clustering techniques have been discussed with synthetic clustering datasets.

The experimental results suggest that the proposed framework which is an

alternative to the k-means showed similar results to k-means results. The

proposed framework which is an alternative to the GMM significantly im-

proved the over-fitting degree when the training samples are complicatedly

distributed. In image recognition experiment, both alternatives applied to

the VLAD and the FV encodings and were evaluated on two image datasets.

For the results of the VLAD with our proposed framework, the recognition

performance frequently tends to be worse when compared with the original
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VLAD performance. On the other hand, the results of the FV with our pro-

posed framework improved the performance, especially when the codebook

size was larger.
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Chapter 1

Introduction

1.1 Motivation and Overview

Image Recognition is a kind of artificial intelligence and has a purpose to de-

velop a computer that is able to understand and explain images in the real

world. In general, the images in the real world have no constraint to view-

points and shooting environments, there are some difficulties to adapt for

deformation and occlusion of objects. Understanding images without any

constraint have many important aspects in science, engineering, and tech-

nology.

The following items briefly summarize some fundamental tasks that many

researchers in artificial intelligence have actively tackled, and their objec-

tives:

• Object recognition [1]: The semantic labels of the objects appeared in

a given image are recognized. If the task is to categorize into generic

groups, such as chair, airplane, and building, it is specifically called

generic object recognition. For more semantically or visually similar ob-

jects, it is called fine-grained object recognition. Both generic and fine-

grained object recognition tasks aim to categorize large-scale classes

and image collections.
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• Object detection [2]: The purpose is to recognize where a specific object

exists in a given image.

• Semantic segmentation [3, 4]: The purpose is to generate pixel-wise

labels for each semantic object.

• Image retrieval [5, 6]: It is an information retrieval with images as

queries.

Clustering is a fundamental technique for several purposes such as sta-

tistical analysis and data mining. The main purpose of clustering is to make

groups called clusters. Each clustering technique has a specific objective to

make groups, such as finding groups that minimize a quantization error and

estimation of the appropriate distribution [7, 8]. This paper focusses on clus-

tering in image recognition algorithms and presents an efficient objective.

In recent image recognition problems, a local feature framework is a key

technique. This detects interest regions on an image and describes a discrim-

inative feature vector from each region. The basic idea of codebook-based

encodings is to capture the statistics of the distribution of local features ex-

tracted from an image. By treating local features as visual vocabularies ap-

peared in an image, images can be processed in the same way as the natural

language processing (NLP). In the NLP, specifically, the bag-of-words (BOW)

model [9] expresses a document feature vector by assigning words existing

in sentences to corresponding common words and counting their frequen-

cies. For images, common visual words, called codebook, are constructed

by clustering local features extracted from various images. The model in

image recognition follows the same procedure as the BOW to represent im-

age feature vectors. This approach is well-known as the bag-of-visual-words

(BoVW) model [10], and its variants [5, 11–15] have achieved excellent per-

formance on several tasks, such as object recognition [11, 12, 14] and image

retrieval [5, 15].
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Gosselin et al. [13] have suggested that increasing the number of common

visual vocabularies is an important factor for improving recognition perfor-

mance. For instance, the best recognition rate has been observed with the

largest vocabulary size in their experiment. It has also been reported that

saturation of the recognition performances accompanying the increase the

vocabulary size has not been observed. On the other hand, a huge vocabu-

lary size becomes a cause of high computational complexity [13] and to pos-

sibly generate not suitable vocabularies due to the over-fitting to clustering

samples [12]. Our previous study [16] has considered that the distribution

of prior probability can be used to measure the quality of image feature vec-

tors in codebook-based feature encoding strategies. In addition, optimization

of the distribution does not require additional computational complexity in

practical applications because it is an offline step in the image recognition

pipeline.

This dissertation focuses on the codebook construction step and presents

some application for image recognition problems.

1.2 Contributions

This dissertation consists of our three research articles, this section introduces

brief summaries and contributions of the articles.

1.2.1 Fuzzy Codebook on Image Recognition Problems

While the purpose of generic image recognition is to recognize the basic level

categories [17], the codebook approach has been applied to more complex

domains such as aesthetics estimation and fine-grained visual categorization

(FGVC), which is difficult to humans [17]. In many cases of FGVC and aes-

thetics estimation, the recognition pipeline consists of multiple local feature
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frameworks; According to [18, 19], the independent four local feature frame-

works has been used, the extracted local features are individually converted

to the global image features. Each image feature is recognized the object

category. After that, final result is determined by combining the results of

each local feature framework. In such the system including multiple local

feature frameworks, the codebook is generated for each local feature frame-

work. Therefore, the codebook with small memory footprints is required for

the large-scale and fine-grained image recognition.

Our objective is to reduce the space complexity of image representation

step with keeping recognition performance. To reduce the space complex-

ity, our approach uses fuzzy clustering to generate the codebook, this code-

book is called fuzzy codebook. To keep recognition performance, an image

is represented to a high dimensional vector in the same way as recent image

representation.

1.2.2 A Quantitative Measurement for Codebook-based Strate-

gies

Codebook-based image representation has been widely used in many image

recognition applications. While each of the applications has an individual

purpose, the pipeline of image representation follows the same approach.

The second article analyzes a relationship between recognition performance

and codebook parameters in recent state-of-the-art approaches and presents

quantitative measurement to evaluate the quality of a codebook in image

recognition. In the analysis experiment, we have evaluated recognition per-

formances of the FV and the VLAD. For comparing under the fair condition,

two additional encodings modified from the FV and the VLAD have also

been evaluated. The experimental results suggest that the codebook param-

eters for the FV easily over-fit to training data as the codebook size increases.
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Here, the over-fitting means that some visual-words are disappeared and do

not affect to encoding. In image recognition, the codebook size is an im-

portant parameter to decide the trade-off between recognition accuracy and

computational cost. To investigate the further relationship between recog-

nition performance and model parameters, we have parameterized the FV

from the perspective of fuzzy logic and have statistically analyzed. The re-

sults show a strong negative relationship between recognition accuracy and

the standard deviation of prior probabilities. These results suggest that the

quality of encoded signatures can be quantitatively measured at the train-

ing phase. For optimizing the two scaling parameters when constructing a

codebook, we have also discussed the influence of the scaling parameters on

recognition accuracy. The space of recognition accuracy with respect to the

scaling parameters is a simple convex structure. This suggests that exhaus-

tive optimization algorithms, such as grid search, and heuristic optimization

techniques, such as particle swarm optimization, are able to optimize the

scaling parameters. However, there is a limitation that they are computation-

ally expensive because clustering is necessary for each candidate of scaling

parameter values.

1.2.3 Optimization Frameworks Based on the Quantitative

Measurement

The second article requires the much expensive computattional cost, so that

the third article provides a clustering framework based on the quantitative

measurement to construct a codebook. This framework aims to directly con-

struct a codebook based on the quantitative measurement to relax the compu-

tational cost at the codebook construction phase. The proposed framework

has a general objective function to evaluate quantitative measurement as a

minimization problem. In addition, the framework also has a sub-function
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that is alternative to the objective function for either the k-means or the GMM.

To minimize the proposed objective, some black-box optimization algorithms

have been evaluated. We first conducted an experiment to compare which

black-box optimization algorithm is suitable. Then, characteristics of the pro-

posed framework and difference to the conventional clustering techniques

have been discussed with synthetic clustering datasets. The experimental

results suggest that the proposed framework which is an alternative to the

k-means showed similar results to k-means results. The proposed frame-

work which is an alternative to the GMM significantly improved the over-

fitting degree when the training samples are complicatedly distributed. In

image recognition experiment, both alternatives applied to the VLAD and

the FV encodings and were evaluated on two image datasets. For the re-

sults of the VLAD with our proposed framework, the recognition perfor-

mance frequently tends to be worse when compared with the original VLAD

performance. On the other hand, the results of the FV with our proposed

framework improved the performance, especially when the codebook size

was larger. The results suggest that the proposed framework is able to im-

prove recognition performance in other domains.

1.3 Organization

This dissertation consists of six chapters. The contents is organized as

• Chapter 1 introduces the general overview of this research.

• Chapter 2 reviews recetn approaches in image recognition problems.

• Chapter 3 focuses on a clustering using fuzzy theory. We first discuss

the behavior on high-dimensional space and slightly modify to efficient

calculation. After that, it is applied to image recognition problems.
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• Chapter 4 analyzes codebook-based image representation approaches.

The results suggest the strong relationship between the model parame-

ters of a codebook and its recognition performance in the object recog-

nition task. A quantitative measurement is also presented.

• Chapter 5 proposes a clustering framework developed from the per-

spective of the quantitative measurement.

• Chapter 6 concludes this dissertation.
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Chapter 2

Literature Review

2.1 Introduction to Image Representation Approaches

2.1.1 General Procedure on Image Recognition

In the early researches in image recognition, primitive information, such as

color, texture, and shape, has been used to describe feature vectors from an

image. Such image features are treated as visual-words appeared in the im-

age. To encode these features into a single vector as a global image signature,

a general theory follows the vector quantization, which is inspired by doc-

ument representation in the natural language processing. In the theory, a

codebook, which is a set of some basis vectors, vocabularies, are constructed

from the image features extracted from a lot of images before feature encod-

ing. At the encoding phase, each image feature is assigned to its closest basis

vector. The global image signature represents the frequency of assigned fea-

tures for each vocabulary. This approach is called the Bag-of-Visual-Words

(BoVW) [1].

The primitive image features have some problems due to their low-level

information to describe object deformations. To extract more discriminative

and robust image features, several local feature frameworks [2–4] have been

presented, where the Scale-Invariant Feature Transform (SIFT) framework [2,

3] is well-known as the de-facto standard in image recognition experiments.
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The local feature frameworks generally consist of the detection and the de-

scription steps. In the case of the SIFT, the detection step explores interest

regions that are invariant to scale and location of objects on images, and then

remove unstable points that are on edge and flat areas. At the description

step, local descriptors are described from each interest region. Each interest

region is first normalized by rotating its direction according to the strongest

gradient direction, where this process gives the invariance to the orientation

change. The local descriptors are then represented by aggregating the quan-

tized relative directions with weighting by corresponding gradient magni-

tudes and Gaussian weight. Image signatures encoded from invariant local

descriptors have achieved good recognition performances in image recogni-

tion tasks, such as object categorization and image retrieval. To recognize

labels and categories of encoded global image signatures, discriminant mod-

els are well used.

As further improvements for the BoVW variants, the sampling strategy

[5] is the critical factor for recognition performance. Their evaluation of sam-

pling approaches has experimentally showed that the detection step in the

local feature frameworks is not always effective in practical applications.

The basic pipeline for recognizing objects consists of the following steps.

1. Extract local features. A given image is first converted to a set of d-

dimensional local features. The local features [2–4] have the robustness

to some deformations, such as scale, rotation, occlusion.

2. Encode to an image feature. The above set is then encoded to a single

feature vector based on a codebook, which is a set of basis vectors.

3. Recognize object labels. A discriminant model is used to predict object la-

bels. Typically, the support vector machine (SVM) with a linear kernel
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is used because of its computational efficiency. The computational com-

plexity at the model construction phase is a linear order with respect to

the number of training samples [6, 7].

Here, the codebook is constructed in advance in an offline step. This section

reviews the codebook construction step and the feature encoding step. Figure

2.1 illustrates an example of the above procedure.

Given image 1. Local feature extraction 2. Feature encoding 3. Recognition

Airplane

Leopard

Pizza

FIGURE 2.1: Illustrative example of a general procedure in ob-
ject recognition. The given images are taken from the Caltech-

101 dataset [8].

2.1.2 Codebook construction

The basic clustering algorithms are the k-means [9] and the Gaussian mixture

model (GMM) [10]. The aim of the k-means algorithm is to find the clusters

that minimize the quantization error between given samples and the corre-

sponding mean vector. The GMM constructs Gaussians that well represents

the normal distribution of given samples. In general, clustering algorithms

cannot directly find global optimal by any analysis. To find an optimal so-

lution, the above algorithms follow an iterative procedure, called the expec-

tation and maximization (EM) algorithm, for exploring local minima. This

algorithm consists of the following two steps: the expectation step and the

maximization step.
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In the case of the k-means, let X = {xt 2 Rd}T
t=1 and Q = {µk 2 Rd}K

k=1

respectively be the clustering samples and the model parameters, the objec-

tive function is defined as follows:

Jk-means =
T

Â
t=1

K

Â
k=1

p (xt; µk) kxt � µkk2 , (2.1)

where Jk�means is the objective value, which measures the quantization error

between the samples and the clusters, p(xt; µk) is a probability function that

becomes 1 if µk is the nearest cluster to xt and 0 otherwise, and k · k is the

Euclidean norm operator. To minimize the quantization error, the k-means

algorithm iteratively optimizes the model parameters with Eq. (2.2) for the

expectation step and Eq. (2.3) for the maximization step.

qt,k =

8
>><

>>:

1 if k = arg minj kxt � µjk2

0 otherwise
, (2.2)

bµk =
ÂT

t=1 qt,kxt

ÂT
t=1 qt,k

, (2.3)

In the expectation step, the probabilities qt,k of a sample xt are computed

using the current mean vectors. Then, the maximization step updates the

positions. The EM algorithm iterates the above two steps until termination

criteria, such as a designated maximum number of iterations and the conver-

gence of the moves, are satisfied. Fig. 2.2 shows an example of the cluster

centers estimated by the k-means and their areas.

The GMM also follows the EM algorithm. The GMM model contains

{wk 2 R, µk 2 Rd, Sk 2 Rd⇥d}K
k=1, where µk and Sk denote the mean po-

sition vector and the covariance matrix to represent k-th Gaussian and wk is

a mixing weight to linear combine K Gaussians. The mixing weight wk is

also called “prior probability”, which means ease of assignment to the k-th
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FIGURE 2.2: Example of the k-means clusters and their bound-
aries. The clustering samples, denoted by the black circles, are
taken from the iris dataset. The yellow stars denote the clus-
ter centers constructed by the k-means clustering. Each colored

region shows the area that corresponding cluster covers.

Gaussian.

In the expectation step of the EM procedure, the assignment probability

of a sample xt to the k-th Gaussian, represented by µk and Sk, is estimated as:

p(xt; µk, Sk) =
1p

(2p)d|Sk|
exp


�1

2
(xt � µk)

>S�1
k (xt � µk)

�
, (2.4)

qt,k =
wk p(xt; µk, Sk)

ÂK
j=1 wj p(xt; µj, Sj)

. (2.5)

The maximization step of the EM procedure updates the Gaussians with

the predicted assignment probabilities at the expectation step as:

bwk =
ÂT

t=1 qt,k

ÂT
t=1 ÂK

k=1 qt,k
, (2.6)

bµk =
ÂT

t=1 qt,kxt

ÂT
t=1 qt,k

, (2.7)

bSk =
ÂT

t=1 qt,k(xt � bµk)(xt � bµk)
>

ÂT
t=1 qt,k

. (2.8)
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FIGURE 2.3: Example of the Gaussians estimated by the GMM.
The clustering samples, denoted by the black circles, are taken
from the iris dataset. The colored ellipses show the Gaussians.

Fig. 2.3 shows an example of the estimated Gaussian mixture on a toy

example.

2.1.3 Feature encoding

As introduced in the previous section, the BoVW is the simplest approach to

represent image features and well performs in image recognition issues. The

BoVW usually uses the k-means codebook. Let I = {xi 2 Rd}N
i=1 be a set of

d-dimensional local descriptors extracted from an image, the BoVW feature

is defined as:

FBoVW = [· · · fk · · · ]> , fk =
N

Â
i=1

p(xi; µk), (2.9)

where fk 2 R1 is the frequency of the local descriptors assigned to the k-

th visual vocabulary. For precisely capture image information, the BoVW

requires a huge codebook, because the dimensionality of the BoVW is equal

to a codebook size K, and it increases the computational cost, such as the

finding nearest neighbors as in Eq. (2.2). Recently developed approaches
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[7, 11] relax this issue by capturing higher order statistics on d-dimensional

local feature space with a smaller codebook. In recent reports, the Fisher

Vector (FV) [7, 12] and the Vector of Locally Aggregated Descriptors (VLAD)

[11, 13] encodings are well known as state-of-the-art approaches.

The FV supplements two higher-order statistics with the GMM codebook,

in addition to the frequency as follows:

FFV =
h
· · · F (w)

k · · · F (µ)
k · · · F (s)

k · · ·
i

, (2.10)

where F (w) 2 R1, F (µ) 2 Rd, and F (s) 2 Rd respectively denote frequency,

mean, and covariance. These are captured as:

F (w)
k =

1
N

p
wk

N

Â
i=1

(gi (k) � wk) , (2.11)

F (µ)
k =

1
N

p
wk

N

Â
i=1

gi
xi � µk

sk
, (2.12)

F (s)
k =

1
N

p
2wk

N

Â
i=1

gi

"✓
xi � µk

sk

◆2
� 1

#
, (2.13)

where the Gaussians are assumed to have diagonal covariances because of

the derivation [7] and computational reasons [12, 14]. So that, a FV signa-

ture have K(2d + 1)-dimensions. The VLAD captures only mean statistics by

aggregating the residuals between the local features and the mean vectors of

the codebook as follows:

FVLAD =
h
· · · F (µ)

k · · ·
i

, (2.14)

F (µ)
k =

N

Â
i=1

p(xi, µk)(xi � µk), (2.15)

where the dimensionality of a VLAD signature is Kd.

Table 2.1 summarizes the dimensionality of represented signatures and

the space complexity of model parameters.
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TABLE 2.1: The signature dimensionality and the space com-
plexity of model parameters regarding to the local feature di-

mensionality D and the codebook size K.

Method Signature dimensionality Space complexity of model parameters

BoVW K Kd
FV K(2d + 1) K(2d + 1)
VLAD Kd Kd
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Chapter 3

Fuzzy Clustering for Codebook

Construction and Its Application to

Image Representation

3.1 Introduction

While the purpose of generic image recognition is to recognize the basic level

categories [1], the codebook approach has been applied to more complex do-

mains such as aesthetics estimation and fine-grained visual categorization

(FGVC), which is difficult to humans [1]. In many cases of FGVC and aes-

thetics estimation, the recognition pipeline consists of multiple local feature

frameworks; According to [2, 3], the independent four local feature frame-

works has been used, the extracted local features are individually converted

to the global image features. Each image feature is recognized the object

category. After that, final result is determined by combining the results of

each local feature framework. In such the system including multiple local

feature frameworks, the codebook is generated for each local feature frame-

work. Therefore, the codebook with small memory footprints is required for

more complex domains.

Our objective is to reduce the space complexity of image representation
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step with keeping recognition performance. To reduce the space complex-

ity, our approach uses fuzzy clustering to generate the codebook, this code-

book is called fuzzy codebook. To keep recognition performance, an image

is represented to a high dimensional vector in the same way as recent image

representation.

3.2 Fuzzy Clustering Principle

A fuzzy c-means (FCM) is a basic fuzzy clustering technique and extend the

k-means by fuzzy theory [4]. In particular, the FCM is derived by adding a

fuzzifier parameter m to the objective function of the k-means. The objective

of the FCM is defined as:

JFCM =
K

Â
k=1

T

Â
t=1

(qt,k)
mkxt � µkk2, (3.1)

where qt,k denotes a belonging probability of the t-th sample xt for the k-th

cluster µk. The belonging level qt,k is given by:

qt,k =

2

4
K

Â
j=1

 
kxt � µkk
kxt � µjk

! 2
m�1
3

5
�1

, (3.2)

The fuzzy codebook is generated by iterative optimization by s-step, the cen-

ter of each vocabulary of the codebook at s-step is:

bµk =
ÂT

t=1 qt,kxt

ÂT
t=1 qt,k

. (3.3)

In our implementation of the fuzzy clustering, the termination criterion is

defined as:

max kQ(s+1)
t � Q(s)

t k < e, (3.4)

where Q(s)
t = [qt,1 . . . qt,k]

> is a distribution of belonging levels of the sample
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xi to all vocabulary of the codebook µk at s-step. The distribution of belong-

ing levels is a probability distribution, the termination criterion is treated as

a minimization of KL divergence which is optimization to local solution. e

is a threshold for termination criterion. The FCM cannot effectively calcu-

late the belonging level of high dimensional sample such as the local feature.

Fig. 3.1 shows the frequency distribution of the Euclidean distance between

each vectors in the D-dimensional uniform distribution. The following is the

property of the D-dimensional vectors:

3.3 Problems on High-dimensional Samples

The FCM cannot effectively calculate the belonging level of high dimensional

sample such as the local feature. Fig. 3.1 shows the frequency distribution of

the Euclidean distance between each vectors in the D-dimensional uniform

distribution. The following is the property of the D-dimensional vectors:

• In the case of small D, the frequency distribution has spread.

• The frequency distribution is narrowed with increasing of D.

• The frequency distribution has a limitation of the distance of most fre-

quent.

By these properties, belonging levels are easily converged to limkxik!• =

1/K in high-dimensional space. Therefore, the FCM has a problem that some

of vocabularies of the fuzzy codebook are converged to the same point.
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FIGURE 3.1: Example of the curse of dimensionality.

3.4 Modification of Fuzzy Codebook and its Ap-

plication to Feature Encoding

In our approach, both local features and means of the fuzzy codebook are

dimensionality reduced by the PCA in the only function of belonging prob-

abilities. In addition, the fuzzy codebook is updated 1-step to the local de-

scriptors for each image, an image is represented by capturing the frequency

fk, mean u(1)
k and gradient v(2)

k components as follows:

fk = Â
xi2µk

qik, (3.5)

v(1)
k = Â

xi2µk

qik (xi � µk) , (3.6)

v(2)
k = Â

xi2µk

qik
xi � µk

KL
⇣

Q(s+1)
i kQ(s)

i

⌘ , (3.7)
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where KL(·k·) is a function of KL divergence that is a measure of the difer-

ence between two probabilistic distributions. KL divergence is given by:

KL(PkQ) = Â
i

Pi log
Pi
Qi

. (3.8)

An image is represented to K(2D + 1)-dimensional image feature. This im-

age feature consists of various statistics components, each component of vo-

cabularies of the fuzzy codebook is applied the component-wise L2-norm-

alization. After that, the image feature is applied the power normalization

and global L2-normalization. The function of KL divergence includes the

logarithmic function that is high computational cost. To reduce the compu-

tational cost, in this paper, we use the L2-norm as a measure of the difference

between two probabilistic distributions for gradient component as follows:

vk = Â
xi2µk

qik
xi � µk���Q(s+1)

i � Q(s)
i

���
. (3.9)

3.5 Experiments

Our approach was compared with the recent feature encoding techniques

(the BOVW and FV encodings). As the experimental setup, Caltech-101 dataset

[5] was used, which consists of 9,145 images from 101 object categories and

background categories, and each category contains about 40 to 800 images.

Standard SIFT was used as the local feature framework. SIFT descriptors

were described from four scale levels (16, 22, 31 and 44 pixels) on the inter-

section of regular grid of 6 pixel spacing. For creating codebook, the SIFT

descriptors extracted from 510 images that were randomly selected 5 im-

ages from each category were used and the termination criterion was 30-step

iterations. The dimensionality of local feature in Eq. 3.2 was reduced to

16-dimensional local feature. As the online classifier, one-versus-rest online



26
Chapter 3. Fuzzy Clustering for Codebook Construction and Its

Application to Image Representation

passive-aggressive (PA) classifier [6] was used. In addition, hinge loss was

used as a loss function. The number of training image features were used 15

and 30 images per category and training image features were not divided.

The hyper parameter was optimized by 5-fold cross validation. The recog-

nition performance was evaluated over 5 trials of independent training and

test images.

For the parameters of the fuzzy codebook, the dimensionality of the re-

duced SIFT descriptors was set to D0 = 16 because the cumulative contribu-

tion ratio over the 60 % as shown in Fig. 3.2, and the fuzzifier parameter was

set to m = 1.4 empirically.

Table 3.1 shows the experimental results. Our approach was recorded

0.94% (at 15 training images) and 1.00% (at 30 training images) higher recog-

nition rates than recent feature encoding techniques. However, the difference

between KL divergence and L2-norm are not clear. To clear the difference, we

should evaluate on the other number of training images. Additionally, the

memory footprint of image feature is important for the application on the

real world, the sparsity of image features should be compared with recent

feature encodings.

Table 3.2 shows the results of our approach and the VLAD encoding with

K = 16, 32, 64. At all of the numbers of training samples, our approach sig-

nificantly outperformed to the results of VLAD.
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FIGURE 3.2: Cumulative contribution ratio of the eigen values
of the PCA model fitted to the local descriptors.

We verified the robustness of our approach with the dimensionality re-

duction of the SIFT descriptors. The dimensionalities of the reduced SIFT

feature were used 4, 8, 12, 16, 20, 24, 28 and 32. The codebook sizes were

used 32, 64 and 256. For evaluation of the recognition performance, we

used randomly selected 30 images from all the categories for training im-

ages, the rest images were used for test. The recognition rate was an average

of 10 trials. Fig. 3.3 shows the experimental result. The best performance

in each codebook size was recorded at 32-dimensional SIFT feature. Over-

all the recognition rate was increased with increasing the dimensionality of

SIFT descriptors. In addition, on the whole, the image feature generated by

the large codebook recorded higher recognition rate in the same dimension-

ality of the SIFT feature. In the case of same dimensionality image feature,

with the small codebook and the high-dimensionality SIFT feature, the recog-

nition rate became high. However, the case of 576- dimensionality image

feature (K = 32, D0 = 4) achieved higher the recognition rate than 2,304-

dimensionality image feature (K = 256, D0 = 4). The best performance of

our approach (K = 256, D0 = 32) achieved almost the same recognition rate

as the FV encoding (K = 256, D0 = 80). In comparison of our approach and

the FV encoding, the difference between the recognition rates was 0.08% in

less than the half dimensionality of image feature.
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FIGURE 3.3: Evaluation of robustness of our approach for the
dimensionality reduction of SIFT features. The baseline is the
FV performance, denoted as “FV, K=256”, reported in [7]. It is
evaluated with 80-dimensional SIFT features and a codebook
of K = 256 vocabularies, where the dimensionality of image
features is 40, 960. Our proposed approach was evaluated with
the three codebook sizes of K = {32, 64, 256}, respectively de-
noted as “Proposed, K=32”, “Proposed, K=64”, and “Proposed,

K=256”.
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Chapter 4

Analysis of Characteristics of

Codebook-based Approaches

4.1 Introduction

Codebook-based image representations are useful approaches to recent im-

age recognition problems, such as generic objects, more complex domains,

and image retrieval. The most advantage is that it is easy to control recog-

nition performance and practical computational costs by manipulating the

codebook size. As introduced in the previous chapter, the dimensionality of

image signatures is usually defined by the local feature dimensionality D and

the codebook size K. The local feature dimensionality depends on the algo-

rithm, for example, 128-dimensional for the original SIFT framework [1]. On

the other hand, since the codebook size is a hyper-parameter in codebook-

based image representation approaches, it can be increased as much as the

limitation of computational cost. Moreover, it has been reported that increas-

ing the codebook size frequently leads to improve recognition performance.

The FV, which is the state-of-the-art in the codebook-based image rep-

resentation uses a mixture of Gaussians as the codebook. It is empirically

known that the Gaussians are easy to overfit to training samples. Due to

the overfitting, some Gaussians represent the same distribution or disappear.
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This is an inappropriate property in image representation.

This chapter first analyzes the influence of the overfitting on recognition

performance. After that, we show how to measure the quality of codebook

from the model parameters. The main contribution of this chapter is to sta-

tistically analyze the relationship between codebook and recognition perfor-

mance and present an indicator to quantitatively measure the quality of code-

book.

4.2 Dependency of Model Parameters in Image Rep-

resentation Approaches

4.2.1 Comparison of Codebook-based Image Representation

Approaches

Here, we evaluate the following codebook-based image representation ap-

proaches, the FV and the VLAD. As mentioned in chapter 2, these approaches

encode different statistics: frequency, mean, and variance in the FV, and only

mean in the VLAD. In this section, these are notated as follows:

• FV(g + µ + s): The FV signatures including full components.

• VLAD: The original VLAD signatures.

In order to compare these approaches under fair conditions, the following

additional approaches are also evaluated:

• FV(µ): The FV signatures represented by only mean components. Their

dimensionality is also the same as VLAD signatures.

• VLAD+PN: The VLAD signatures to which the power normalization

[2] is applied.
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The above approaches were evaluated on the Caltech101 datasets [3], which

is the most popular dataset in generic object recognition. The Caltech101 con-

sists of 9,145 images from 101 generic object categories and one background

category. Each category contains about 40 to 800 images.

To extract local descriptors, the SIFT [1] framework was used with the

dense sampling strategy and PCA whitening. For each image, SIFT descrip-

tors were extracted from the four scales 16, 22, 33, 44 pixels from the inter-

section of the dense grid with 8 pixels interval. Then, the extracted SIFT

descriptors were reduced to 80-dimensional descriptors.

To construct a codebook, training samples were SIFT descriptors extracted

from 510 images that were a set of randomly selected five images from each

category. The termination criterion of the EM algorithm was that the number

of iterations reaches to 30 times. The following codebook sizes were eval-

uated: 16, 32, 64, 128, and 256. In the GMM, each covariance matrix was

assumed to be a diagonal matrix.

As a linear discriminant model, we used the SVM was used. The recog-

nition performance was measured as an average of five trials of independent

training and testing sets. The following numbers of images per category were

used as the training set: 5, 10, 15, 20, 30. The rest was used as the testing set.

The hyper-parameter C was optimized by 5-fold cross validation with the

training set.

Figure 4.1 shows the recognition performances of the FV(g+µ+s), VLAD,

FV(µ), and VLAD+PN regarding the number of training images per category.

FV(g + µ + s) achieved the best performance because it captures rich in-

formation compared with the others. For example, when the codebook size

is K = 256, FV(g + µ + s) signatures have 41,216 dimensions, and the others

have 20,480 dimensions. According to the results of VLAD and VLAD+PN,

the power normalization improved about 3% recognition accuracy. In the

case of comparing FV(µ) and VLAD+PN, where both approaches captured
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FIGURE 4.1: Comparison of recognition performances with re-
spect to the statistics. “FV(g + µ + s)” is the fully encoded FV
signature; “FV(µ)” denotes the FV signatures with only mean
component; “VLAD” is the original VLAD signature with-
out the power-normalization; “VLAD+PN” denotes the VLAD

signature with the power-normalization.

the same statistics and were applied the power normalization, VLAD+PN

significantly outperformed FV(µ).

We next focus on their model parameters. Figure 4.2 shows the distri-

bution of the prior probabilities. Each prior probability value indicates the

probability that a given sample is assigned to the corresponding cluster. The

k-means does not have the prior probability, they were estimated as:

wk =
1
T

T

Â
t=1

qt,k, (4.1)

which is the same way as (2.4).

The average w of prior probabilities is constant regarding the codebook

size K. So that, the standard deviation of prior probabilities possibly be used

to measure how much the codebook overfits to training samples. Table 4.1

shows the standard deviation of prior probabilities regarding the codebook

size.
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FIGURE 4.2: Comparison of prior probabitlity distribution of
the k-means and the GMM with K = 16. The dashed line de-
notes the mean of prior probabilities w = 1/16 = 0.0625, where
the mean is always equal to 1/K because of the probabilistic

constraint ÂK
k=1 wk = 1.

TABLE 4.1: Comparison of the standard deviation of the prior
probabilities regarding the codebook size. The term of “Rela-
tive ratio” indicates the relative spread of the GMM to the k-

means.

Codebook size K
Method 16 32 64 128 256

GMM 0.03830 0.02257 0.01665 0.00940 0.00779
k-means 0.02921 0.01511 0.00800 0.00391 0.00188
Relative ratio 1.31119 1.49371 2.08125 2.40409 4.14362
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4.3 Statistical Analysis of Relationship of Model

Parameters and Recognition Performances

The two scaling parameters, g and n, are added to the probability density

function, which is to control the standard deviation of prior probabilities, in

the same manner as in [4] as:

p⇤(xt; µk, Sk) =
1p

(2p)d|Sk|1/g
exp


�1

n
(xt � µk)

>S�1
k (xt � µk)

�
, (4.2)

and the posterior probabilities are difined as:

q⇤
t,k =

wk p⇤(xt; µk, Sk)

ÂK
j=1 wj p⇤(xt; µj, Sj)

. (4.3)

To construct a codebook, these are used with the GMM miximization step.

The range of the scaling parameters was defined as {2i : i = �5, �3, 1, 1, 3, 5},

where the case of g = 2 and n = 2 is the same as the original probability den-

sity funciton. So that, we used the previous experiment results as the case of

g = 2 and n = 2. The other parameters were set to the same as the previous

experiment.

Fig. 4.3 shows the relationship with the scaling parameters. The relation-

ships were measured by the Pearson’s correlation analysis and the blue line

indicates the line of best fit by a least square method. Fig. 4.3(A) shows the

relationship between the standard deviation of prior probabilities and recog-

nition performance, the correlation coefficient was strong negative �0.62. Ta-

ble 4.2 shows the correlation coefficient with respect to the number of training

images. Each correlation coefficient was evaluated with 36 samples, which

are 6 times 6 variations for the two scaling parameter combinations. Each

sample is the average recognition accuracy over 5 trials using different train-

ing and testing images. According to the correlation coefficient table, we
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TABLE 4.2: Relationship between the prior probability distribu-
tion and recognition performance.

The number of training images per category
5 10 15 20 30

Correlation coeficient -0.58 -0.60 -0.61 -0.62 -0.62

observed | � 0.58| > 0.42 for significance level p < 0.01 at least, where the

number of training images is 5 which is the smallest correlation in Table 4.2.

Therefore, the relationship between the standard deviation of prior probabili-

ties and recognition accuracies has a significant correlation. Fig. 4.4(B) shows

the relationship between the standard deviation of prior probabilities and the

sparseness of parameterized FV signatures. The correlation coefficient was

especially strong negative �0.88.

When using GMM, it is hard to increase image recognition rate because

it does not have a regularization term. However, the results described above

suggest that the parmeterized FV has a potential to improve image recogni-

tion accuracy.
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FIGURE 4.3: Effect of the scaling parameters.
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FIGURE 4.4: Relationship regarding the standard deviation of
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As an additional analysis, we used Birds dataset published by Ponce

Group, other than Caltech101. This dataset consists of 6,000 images from

6 bird species. To analyze the recognition performances on this dataset, we

used some different conditions for local descriptors and codebook sizes as

follows:

• SIFT descriptors were extracted from four scale levels {16, 20, 24 and 28

pixels}.

• Four kinds of Color-SIFTs [5]: Gray, RGB, L*a*b, and Opponent.

• The codebook sizes: K 2 {16, 32, 64, 128}.

The scale levels are set up other parameters than Caltech101 by those con-

cepts. While Caltech101 consists of generic object images, which each image

probably be a set of primitive parts. The images of Ponce Group Birds are

visually similar because all categories are bird species. For those target im-

ages, we empirically used relatively smaller scale levels than the setup in

Caltech101 to focus more local patterns of the bird images. Additionally, for

the same reason, we used variants of color SIFT. The other parameters except

above were the same as the previous experiment.

Fig. 4.5 shows the parameter space contours of the recognition perfor-

mances and their maximum relatively improved accuracies compared with

the baselines are shown in Table 4.3.

Each contour has an individual scale. For example, the recognition accu-

racies increase from the left to the right column because the image signatures

have precise information as the codebook size increases. Adding color in-

formation also has a potential to improve recognition accuracies, showed in

the second and subsequent rows, compared with the Gray-SIFT in the first

row. To find optimal values of the two scaling parameters for setup and in a
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TABLE 4.3: The relative improvements of the best accuracies
compared with the corresponding baselines (g = 2, l = 2).

Codebook size K
Color 16 32 64 128
Gray +0.14 +3.53 +2.06 +1.60
L*a*b +3.47 +0.60 +3.26 +0.53
RGB +4.00 +1.06 +0.47 +1.40
Opponent +1.87 +2.33 +1.60 +1.00

specific application, such as codebook size, local feature type and character-

istics of target domains, an optimization algorithm is needed to explore the

corresponding parameter space.

All of the matrices in Fig. 4.5 have a similar trend to the result on Cal-

tech101 dataset as in Fig. 4.3(B). The parameter spaces are not simple concave

or convex. The diagonal part with smaller values than the baseline (g < 2

and l < 2) shows high recognition accuracies. Most interesting point is that

these trends are not depended on the kinds of colors for SIFT descriptors

and target domains (generic objects and bird species). These trends may be a

constraint for restricting a searching space of optimization algorithms.

Table 4.4 shows the relationships between the standard deviation of prior

probability and recognition accuracy for colors, codebook sizes and the num-

bers of training images {30, 40 and 50 images per category}. The relationships

still showed strong negative correlations.
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FIGURE 4.5: Parameter space of the recognition accuracies (%)
on the Ponce Group Birds dataset for colors (in each row) and
codebook sizes (from the top to the bottom column) with the 50
training images per category, in the same manner as Fig. 4.3(B).
Here, horizontal and vertical axes are the scaling parameters (g

and n) respectively.
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TABLE 4.4: The correlation coeficients for colors, codebook
sizes and training images per category.

The number of training images
Color K 30 40 50

16 -0.66 -0.62 -0.60
Gray 32 -0.70 -0.66 -0.65

64 -0.61 -0.58 -0.57
16 -0.61 -0.61 -0.61

RGB 32 -0.67 -0.66 -0.69
64 -0.60 -0.60 -0.61
16 -0.64 -0.63 -0.63

Lab 32 -0.61 -0.62 -0.58
64 -0.52 -0.53 -0.52
16 -0.73 -0.73 -0.76

Opponent 32 -0.61 -0.64 -0.67
64 -0.52 -0.56 -0.59
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Chapter 5

Optimization Framework for

Codebook Construction with the

Quantitative Measurement

5.1 Introduction

Chapter 4 showed the quantitative measurement from the perspective of

prior probabilities for codebook quality and conducted the analysis with the

PDF function parameterized by the two scaling factors. To validate the scal-

ing parameters, the grid searching algorithm was used. Despite the fact that

the scaling parameters are continuous, the grid searching algorithm exhaus-

tively explores a discrete parameter space to construct an appropriate code-

book.

This chapter presents a clustering framework, which directly optimizes

an objective based on the quantitative measurement. We first describe the

detail of the proposal frameworks, named Prior Probability-Oriented Cluster-

ing (PPOC), and the definitions of the objectives, which are alternatives to

the k-means and the GMM. Then, the characteristics of the proposal frame-

works are evaluated with synthetic clustering datasets. After that, the pro-

posal frameworks are applied to image recognition problems.
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5.2 The Prior Probability-Oriented Clustering

The general objective function of the proposal is defined as the following

equation containing the two terms:

JPPOC =
K

Â
k=1

|wk � w| + l
1
T

T

Â
t=1

d(xt; Q)2, (5.1)

where the first term is the main objective of our proposal, which measures the

approximate variance of prior probabilities. w denotes the average of prior

probabilities, where it equals to 1/K due to the probabilistic constraint. The

second term is a regularization term that gives unique solution for the main

objective (5.1). When clustering a small set of training samples, the solution

space might be discrete, in other words, small changes of candidates do not

effect to the objective value and give the same objective values. The second

term also serves to smooth a parameter space. l is a weighting factor to

decide the importance of the second term. In our concepts, the weighting

factor is set to a small value because the main objective must be emphasized.

To optimize the objective (5.1), a black-box optimization framework that

does not require any additional information, such as derivation, is used. The

general procedure is as follows:

Step 1: initialize mean vectors by k-means++

Step 2: repeat

• the other parameters except to the mean vectors are esti-

mated if needed

• evaluate the objective value of current model parameters

by Eq. (5.1)

• update mean vectors by a black-box optimizer

Step 3: until the maximum number of the evaluations reaches
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5.2.1 Hard Objbective

In this situation, our proposal aims to minimize the main objective while re-

ducing the quantization error between training samples and the cluster can-

didates. The k-means model does not have prior probabilities as described

in the section 4.2, these are calculated as in (4.1).

In the hard objective of our proposal, the regularization term measures

the quantization error between the clustering samples and the cluster can-

didates. The quantization error is defined in the same way to the k-means

objective. So that, d(xt; Q) of the regularization term is defined as:

d(xt; Q) =
K

Â
k=1

qt,kkxt � µkk. (5.2)

The overall procedure of the proposed clustering framework with hard ob-

jective is as follows:

Step 1: initialize mean vectors by k-means++

Step 2: repeat

(a) predict assignment probabilities qt,k by Eq. (2.2)

(b) compute prior probabilities by wk =
1
T ÂT

t=1 qt,k

(c) evaluate main objective term shown in Eq. (5.1)

(d) compute regularization term shown in Eq. (5.2)

(e) update mean vectors by a black-box optimizer

Step 3: until the maximum number of the evaluations reaches

5.2.2 Soft Objective

In order to estimate Gaussians from the mean vectors, the parameter estima-

tion procedure is approximated. The assignment probabilities for each sam-

ple are first estimated in the same way as the k-means prediction (2.2) with
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cluster candidates. Then, the other model parameters (the prior probabilities

wk and the covariance matrices Sk) are estimated from the mean candidates

and the clustering samples. This approximated procedure can be seen as the

EM iteration of only one step in the GMM with the k-means initialization.

The regularization term is defined as:

d(xt; Q) =
K

Â
k=1

qt,k(xt � µk)
>S�1

k (xt � µk), (5.3)

where Sk is the k-th estimated covariance matrix. The overall procedure of

the proposed clustering framework with soft objective is as follows:

Step 1: initialize mean vectors by k-means++

Step 2: repeat

(a) predict hard assignment probabilities qt,k by Eq. (2.2)

(b) estimate the other parameters, wk and Sk in the same

manner as Eq. (2.6) and Eq. (2.8)

(c) evaluate main objective term shown in Eq. (5.1)

(d) compute regularization term by Eq. (5.3)

(e) update mean vectors by a black-box optimizer

Step 3: until the maximum number of the evaluations reaches

5.3 Numerical Analysis on Synthetic Datasets

To evaluate quantitative and qualitative characteristics of our proposal against

to the popular clustering approaches, the synthetic clustering datasets [1], the

A-sets [2] and the S-sets [2, 3], are used. Both datasets have three sub-sets of

clustering samples, named A1, A2, and A3 for the A-sets, and S1, S2, and S3

for the S-sets. Table 5.1 shows the statistics of these sub-sets.
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TABLE 5.1: Statistics of the A-sets and the S-sets.

Dataset The number of total samples The number of clusters

A-sets (A1) 3,000 20
A-sets (A2) 5,250 35
A-sets (A3) 7,500 50
S-sets (S1) 5,000 15
S-sets (S2) 5,000 15
S-sets (S3) 5,000 15

TABLE 5.2: Comparison of the optimized objective values re-
garding the optimization algorithms on the A-sets.

Dataset k-means NM SBPLX COBYLA NEWUOA AUGLAG

A-sets (A1) 0.0167 0.0020 0.0007 0.0040 0.0060 0.0040
A-sets (A2) 0.0114 0.0038 0.0015 0.0038 0.0038 0.0042
A-sets (A3) 0.0396 0.0045 0.0019 0.0029 0.0053 0.0037

5.3.1 Comparison of Optimization Algorithms

We first explore which optimization framework is better to our objective (5.1)

with the A-sets and the S-sets. As black-box optimization frameworks, the

following algorithms are evaluated: the Nelder-Mead (NM) [4], the Subplex

(SBPLX) [5], the COnstrained BY Linear Approximation (COBYLA) [6], the

NEWUOA [7], and the AUGmented LAGrangian algorithm (AUGLAG) [8,

9], which have been implemented in the NLOPT library [10].

For all the optimization algorithms with our proposal, the optimized ob-

jective values were significantly better than the baseline results. The SBPLX

TABLE 5.3: Comparison of the optimized objective values re-
garding the optimization algorithms on the S-sets.

Dataset GMM NM SBPLX COBYLA NEWUOA AUGLAG

S-sets (S1) 0.5424 0.0220 0.0107 0.0105 0.0276 0.0131
S-sets (S2) 0.5636 0.0185 0.0089 0.0104 0.0217 0.0107
S-sets (S3) 0.4632 0.0088 0.0016 0.0104 0.0031 0.0092



50
Chapter 5. Optimization Framework for Codebook Construction with the

Quantitative Measurement

showed the minimum values in most cases. For the soft clustering on the S1,

the COBYLA gave the best value (0.0105), but it is close to the SBPLX result

(0.0107).

If the optimization frameworks ideally optimize, a large number of clus-

ters is considered to lead to decreasing our objective value (5.1) because the

mean of prior probabilities is constant with respect to the number K of clus-

ters.

In the results of the hard clustering on the A-sets shown in Table 5.2, the

COBYLA and the AUGLAG show this trend, but the others construct more

deviating clusters as the number of clusters increases. These suggest that

our proposal with the hard objective might not effective for a large set of

clustering samples or large cluster sizes.

In the S-sets, the results suggest that our proposal with the soft objec-

tive has effectively constructed Gaussians for samples spatially complicat-

edly distributed. For the S2 and the S3, the SBPLX showed totally better

objective value compared to the other optimization algorithms.

5.3.2 Qualitative Comparison of Constructed Clusters

Figure 5.1 shows the mean vectors optimized by the SBPLX on the A-sets.

The red cross and the yellow cross respectively indicate the mean positions

constructed by our proposal and the k-means. The black circles show the

sample distribution. Despite that our proposal mainly aims to equalize the

prior probability distribution, many positions of our proposal were close to

the k-means clusters. One of that reasons is that the number of samples in

each cluster is 150 in all the sub-sets of the A-sets; minimizing the distribution

of prior probabilities is similar to minimizing the quantization error. Our

proposal with hard objective constructs the clusters that are similar to the k-

means, while finely tuning their positions based on the main objective term
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of (5.1).

Figure 5.2 shows the estimated Gaussians on the S-sets. The GMM con-

structed the fewer Gaussians than the designated cluster size; three Gaus-

sians on the S1 and the S2, and seven Gaussians on the S3 were converged

to the same positions of other Gaussians or were lost. It is due to the over-

fitting and is cause to increase the deviation of the prior probabilities. As the

distribution of clustering samples becomes more complicated, this tendency

is considered to be noticeable. On the other hand, the results of our proposal

show the fully distributed 15 Gaussians for the S-sets. For the S1 and the

S2, some Gaussians were not appropriate to the sparsely distributed sam-

ples. For the complicatedly distributed samples such as the S3 in the figure,

the Gaussians seem to appropriately express the sample distributions. These

characteristics are consistent with the discussion in the optimization frame-

work comparison shown in Table 5.3; our proposal possibly construct the

better Gaussians compared to the GMM as the sample distribution becomes

more complicated.

In the codebook-based image representation, a codebook is constructed

by clustering a lot of spatially complicatedly distributed samples, usually

hundreds of thousands or more. In addition, the codebook size is an im-

portant factor to decide the trade-off between computational complexity and

recognition performance. Our proposal with the soft objective is expected

to avoid over-fitting of the GMM and to effectively use all the constructed

Gaussians.
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5.3.3 Effect of Weighting Factor

Figure 5.3 shows the trends of objective values with respect to the weighting

factor l on the A-sets and the S-sets. For the results on the A-sets in figure

5.3 (A–C), the values of the regularization term decrease as the number of

clusters increase because the dispersion of samples in each cluster is small in

order to A1, A2, and A3 in figure 5.2. For the S-sets in figure 5.3 (D–F), the

values of the regularization term increase in order to S1, S2, and S3 because

of the increase of the spatial complexity.

On the whole trends in figure 5.3 (A–F), there was no clear trend of the

main objective regarding the weighting factor. The tendency to the regu-

larization term is relatively intuitive, in particular for the soft objective, the

quantization error decreases as the weighting coefficient increases.
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5.4 Appliation to Image Recognition

This section evaluates our proposal on image recognition tasks with the fol-

lowing image datasets: Birds [11] and Butterflies [12] provided by Ponce Group.

The Birds dataset consists of 600 images categorized into six bird species,

where each category has 100 images. The Butterflies dataset has 619 images

of seven different butterflies. Each category has about 40 to 130 images. The

above two datasets are composed of visually similar images.

In the experiments with the above datasets, we used the same parameter

setup except for numbers of training images to construct a codebook and a

discriminant model.

We used SURF [13] as the local feature framework. To extract SURF fea-

tures, we followed the dense sampling strategy [14], which SURF features

were described from the intersection points of the lattice of six pixels inter-

vals, with multiple scale regions, 16, 20, 24, and 28 pixels for each point,

where each image was resized so that the long side was 300 pixels. Each

SURF feature was projected to 8-dimensional space by the Principle Compo-

nent Analysis before constructing a codebook and encoding an image feature

[15].

To construct a codebook, clustering samples were the SURF features ex-

tracted from 10 images from each category for the Birds and 5 images from

each category for the Butterflies, where we decided about 10% of the smallest

number of images of their categories. The codebook sizes of the five different

patterns K = {16, 32, 64, 128, 256} were used. The termination criterion for

the k-means and the GMM was set to 30 iterations because they do not con-

verge sometimes. For our proposal, the termination criterion was set to 2,000

evaluations of the objective function. Gaussians of the GMM and our pro-

posal with soft objective were assumed to diagonal covariance. The weight-

ing factor of our objective was set to l = 10�9. The k-means and ours with
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hard objective were used for the VLAD encoding, and the GMM and ours

with soft objective were used for the FV encoding.

The SVM with the linear kernel, implemented in [16], was used as a dis-

criminant model. The number of training images for each category was

{30, 40, 50} for the Birds and {20, 30, 40} for the Butterflies. The training im-

ages were randomly selected, and the rest images were used for the test. The

recognition accuracy was the ratio of the number of correctly recognized im-

ages for the number of test images. We measured by the average over five

different training and test images.

Fig. 5.4 and Fig. 5.5 respectively show the average recognition accura-

cies of the VLAD and the FV on the Birds dataset. For the results of Fig.

5.4, the baseline, the VLAD with the k-means codebook, and the VLAD with

our hard objective showed similar performances regardless of the parame-

ters such as the number of training images and the codebook sizes. As dis-

cussed in the numerical analysis section, the hard objective mainly performs

to finely tune mean positions, the k-means and our hard objective clustering

potentially construct similar codebooks. Table 5.4 shows the objective values

of the codebooks used in Fig. 5.4. When the codebook size is not greater than

64, the hard objective showed significantly better objectives compared with

the k-means objectives. However, when the codebook size is greater than or

equal to 64, they showed almost the same objectives. The k-means is possi-

ble to construct suitable clusters from the perspective of the variance of prior

probabilities, regardless of the size of the clustering sample set or the code-

book size, as shown in Fig. 5.4. The hard objective might difficult to effec-

tively optimize codebook for large clustering sample set or large codebook

sizes, as discussed in the qualitative comparison in the numerical section.

On the other hand, the FV with our soft objective often showed better per-

formances compared with the FV with the GMM codebook, especially when

the codebook size is 128. When the codebook size was small, K = 16 and
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K = 32, there is no significant difference of the recognition performances

of the baseline and the FV with the soft objective. For the larger codebook

size, the FV with the soft objective performed better accuracies. Moreover,

our soft objective with a relatively larger codebook size was more effective

for the case that training image set is smaller compared with the test image

set. The highest mean recognition accuracy was achieved when the codebook

size was 64, 128, and 128 respectively for 30, 40, and 50 training images per

category. So that, an increase in the codebook size does not necessarily lead

to improving recognition performance, the codebook size K = 64 or K = 128

might be enough for the Birds dataset. Table 5.5 shows the objective values

of the codebooks used in Fig. 5.5. In contrast to the trend of the objective

values of the hard objective, the soft objective could maintain the better val-

ues, shown in Table 5.9, even when the codebook size is increased. As with

the discussions in numerical analysis, the soft objective is able to construct

a suitable codebook, from the perspective of the variance of prior probabil-

ity, even in image recognition tasks. When comprehensively comparing the

results of the VLADs in Table 5.6 and the FVs in Table 5.7, the FV with our

soft objective (K = 64) showed the best accuracy of 68.71 when the training

images were 30 for each category. The FV with ours (K = 128) also showed

the best accuracy as follows: 71.56 for 40 training images and 74.13 for 50

training images.
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TABLE 5.4: The objective values of the k-means and ours with
the hard objective with respect to the codebook size on the

Birds.

Codebook size
Method 16 32 64 128 256
k-means 0.2210 0.1940 0.1923 0.1995 0.2082
ours (hard) 0.0071 0.0205 0.0895 0.1759 0.2126

TABLE 5.5: The objective values of the GMM and ours with the
soft objective with respect to the codebook size on the Birds.

Codebook size
Method 16 32 64 128 256
GMM 0.4139 0.3248 0.2773 0.3240 0.3171
ours (soft) 0.0014 0.0297 0.0580 0.1268 0.1508
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TABLE 5.6: Recognition performance (mean accuracy ± stan-
dard deviation) of the VLADs with the k-means and ours (hard
objective) codebooks on the Birds, corresponding to the Fig. 5.4.

Codebook size K
Method 16 32 64 128 256
30 images from each category, corresponding to Fig. 5.4 (A)
k-means 56.43 ± 2.52 60.52 ± 0.98 64.62 ± 1.76 65.76 ± 1.97 65.62 ± 2.11
ours 55.67 ± 1.69 60.86 ± 1.43 65.90 ± 1.47 65.62 ± 1.19 65.33 ± 2.26
40 images from each category, corresponding to Fig. 5.4 (B)
k-means 59.28 ± 2.08 62.06 1.44 66.17 ± 1.05 68.33 ± 1.30 68.33 ± 2.30
ours 60.78 ± 0.73 62.94 ± 1.55 67.72 ± 1.33 68.56 ± 2.49 69.00 ± 1.77
50 images from each category, corresponding to Fig. 5.4 (C)
k-means 61.40 ± 2.43 64.47 ± 1.64 68.07 ± 1.14 70.47 ± 1.65 72.53 ± 1.63
ours 60.87 ± 2.01 64.47 ± 1.50 68.40 ± 2.05 70.33 ± 1.41 70.53 ± 1.29

TABLE 5.7: Recognition performance (mean accuracy ± stan-
dard deviation) of the FVs with the GMM and ours (soft objec-

tive) codebooks on the Birds, corresponding to the Fig. 5.5.

Codebook size K
Method 16 32 64 128 256
30 images from each category, corresponding to Fig. 5.5 (A)
GMM 61.24 ± 1.99 64.24 ± 1.50 65.90 ± 1.39 63.90 ± 2.05 65.71 ± 1.03
ours 62.24 ± 1.92 63.14 ± 1.62 68.71 ± 2.63 67.00 ± 0.91 67.19 ± 1.85

40 images from each category, corresponding to Fig. 5.5 (B)
GMM 64.72 ± 1.77 66.83 ± 2.41 68.33 ± 1.64 68.89 ± 2.02 70.06 ± 1.51
ours 64.33 ± 0.80 67.06 ± 1.26 68.89 ± 1.98 71.56 ± 2.43 69.44 ± 1.50

50 images from each category, corresponding to Fig. 5.5 (C)
GMM 67.20 ± 2.50 70.47 ± 1.71 72.07 ± 1.68 71.00 ± 2.37 71.60 ± 2.44
ours 66.80 ± 2.60 70.40 ± 2.48 72.87 ± 2.14 74.13 ± 1.13 72.27 ± 1.94
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Fig. 5.6 and Fig. 5.7 respectively show the average recognition accura-

cies of the VLAD and the FV on the Butterflies dataset. From the results in

Fig. 5.6, the hard objective may deteriorate recognition performance when

codebook size is smaller than or equal to 64. In addition, the objective val-

ues of the hard objective, shown in Table 5.8, were not enough optimized

as with the case of the Birds dataset. For the results with the FV, the GMM

and the soft objective showed similar performances when the codebook size

is small. As with the numerical analysis, a smaller codebook size has less

influence on the convergence of the Gaussians, and the GMM makes it eas-

ier to converge Gaussians to the same positions when the clustering samples

is spatially complicatedly distributed and a codebook size is large. How-

ever, it improved recognition performances clearly when the codebook size

is larger than 32, in all of the training images per category and lead to im-

prove recognition performances when the codebook size was 256. In the case

of comparing the results of the VLADs in Table 5.10 and the FVs in Table

5.11, the VLAD with the k-means (K = 256) showed best accuracy: 87.93 for

20 training images and 90.27 for 30 training images. On the other hand, for

the 40 training images, the FV with ours (K = 256) showed the best accuracy

of 91.33.
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TABLE 5.8: The objective values of the k-means and ours with
the hard objective with respect to the codebook size on the But-

terflies.

Codebook size
Method 16 32 64 128 256
kmeans 0.1962 0.1580 0.1966 0.1828 0.2106
ours (hard) 0.0011 0.0201 0.1030 0.1915 0.1883

TABLE 5.9: The objective values of the GMM and ours with the
soft objective with respect to the codebook size on the Butter-

flies.

Codebook size
Method 16 32 64 128 256
GMM 0.3810 0.3322 0.3407 0.2981 0.2961
ours (soft) 0.0018 0.0191 0.0557 0.1017 0.1352
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TABLE 5.10: Recognition performance (mean accuracy ± stan-
dard deviation) of the VLADs with the k-means and ours (hard
objective) codebooks on the Butterflies, corresponding to the

Fig. 5.6.

Codebook size K
Method 16 32 64 128 256
20 images from each category corresponding to Fig. 5.6 (A)
k-means 79.12 ± 1.10 82.71 ± 1.13 85.39 ± 0.84 85.59 ± 1.60 87.93 ± 1.51

ours 77.16 ± 1.21 81.84 ± 1.91 83.38 ± 1.36 86.64 ± 1.45 87.31 ± 1.28
30 images from each category corresponding to Fig. 5.6 (B)
k-means 81.56 ± 1.02 85.67 ± 0.95 87.82 ± 0.73 88.07 ± 2.09 90.27 ± 1.59

ours 78.92 ± 1.76 83.23 ± 2.20 85.48 ± 0.83 89.24 ± 1.20 89.68 ± 0.87
40 images from each category, corresponding to Fig. 5.6 (C)
k-means 83.19 ± 1.48 86.67 ± 2.11 88.85 ± 0.60 90.09 ± 1.30 90.32 ± 1.47

ours 81.83 ± 0.93 86.31 ± 0.71 86.73 ± 0.99 89.91 ± 1.35 91.27 ± 1.43

TABLE 5.11: Recognition performance (mean accuracy ± stan-
dard deviation) of the FVs with the GMM and ours (soft ob-
jective) codebooks on the Butterflies, corresponding to the Fig.

5.7.

Codebook size K
Method 16 32 64 128 256
20 images from each category corresponding to Fig. 5.7 (A)
GMM 80.46 ± 2.59 83.30 ± 1.88 84.05 ± 1.23 85.01 ± 2.11 86.14 ± 1.30
ours 80.17 ± 1.46 83.51 ± 1.13 86.68 ± 1.38 86.89 ± 1.12 87.43 ± 1.16

30 images from each category corresponding to Fig. 5.7 (B)
GMM 83.57 ± 1.50 85.43 ± 1.06 87.58 ± 0.47 88.07 ± 1.18 88.31 ± 1.60
ours 83.37 ± 1.21 86.94 ± 2.45 89.58 ± 1.49 89.58 ± 0.99 90.12 ± 0.63

40 images from each category, corresponding to Fig. 5.7 (C)
GMM 85.84 ± 1.24 87.08 ± 1.60 88.79 ± 1.72 89.62 ± 0.63 88.50 ± 2.14
ours 84.48 ± 1.53 86.49 ± 1.24 89.85 ± 1.10 91.21 ± 0.78 91.33 ± 1.08
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Chapter 6

Conclusions

In this dissertation, I have described the three codebook-based approaches

and evaluations.

In chapter 2, some recent codebook-based approaches have been overviewed.

Chapter 3 described the fuzzy codebook and it has been applied to the

image recognition problems.

This paper has presented an approach of reducing computational com-

plexity in feature encoding based on the fuzzy codebook, and presented its

performance with the online classifier for image recognition. In experimental

results, our approach has a potential on the same level as recent approaches

on the Caltech-101 dataset.

Chapter 4 has reported the relationship between the prior probabilities

and recognition performance in codebook-based image representation, there

is a possible to improve the recognition accuracy and the sparseness of image

signatures by controling the standard deviation of the prior probabilities of

codebook.

Chapter 5 focussed on clustering from the perspective of the variance

prior probabilities and presented the clustering frameworks, namely hard

and soft objectives, that are respectively alternative to basic approaches such

as the k-means and the GMM. In the numerical analysis, four optimization

frameworks were evaluated with synthetic clustering datasets. The results

of all of the frameworks were better than the basic clusterings. Especially, it
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showed that the Subplex optimizer is able to give better objective values from

the perspective of the variance of prior probabilities and to construct intu-

itively appropriate clusters for complicatedly distributed clustering samples.

In the experiment with image datasets, the hard objective was probably not

effective for the VLAD encoding because the objective values became worse

compared with the k-means results as the number of clusters increase. On

the other hand, the FV encoding with the soft objective showed improve-

ments in recognition performance regardless of some parameters such as the

codebook size and the ratio of training and test images.
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