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Abstract 

Shear failure of beam column connections have attracted many researchers since it can lessen 

significantly the seismic resisting capability of a reinforced concrete (RC) frame building. For 

many years, with strong attention to this object, researchers have conducted numerous 

exprimental works, introduced theories to explain failure mechanisms, proposed analytical 

models, and developed design criteria with the aim of enhancing joint stiffness.  

Recently, a new theory named joint hinging with considering joint shear deformation caused 

by rotation of four rigid bodies respect to hinging points has been proposed to explain joint 

shear failure mechanism. The theory exhibits some advantages in comparison to previous works 

with respect to characterizing new aspects revealed from experimental investigations. As a part 

of the theory, a mechanical model has been introduced to predict joint moment capacity. In this 

study, the major interest is to develop a two dimensional (2D) macro element based on that 

mechanical model to simulate behaviors of RC beam column connections under lateral loading. 

Bar springs and bond-slip springs are employed to represent in turn reinforcements and bond 

between bars and surrounding concrete, whereas struts are utilized to charecterize compressive 

zone in concrete which distinguish the joint element from previous multi-spring models. 

Deformations of these components resemble the rotation of rigid bodies in Shiohara 

mechanism. A configuration of joint independent deformations is also defined to form joint 

compatibility relationship, then the joint stiffness is established using the constitutive laws of 

material. 

From the first main focus on modelling interior joints under cyclic loadings, applicability of the 

new joint element on simulating performances of exterior joints and knee joints is also 

presented. Additionally, application on investigating responses of a RC frame subjected to 

cyclic loading is then mentioned with the verification from the experimental data.  
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Chapter 1 Introduction 

1.1 Motivation for the study 

Many experimental investigations have revealed that the degradation of beam-column joint 

stiffness considerably induces the collapse of frame buildings. In practice, concrete design 

codes such as AIJ, ACI, NZS, EC8 have already included in their seismic provisions guidelines 

for preventing shear failure in beam-column joint [1-4]. Recently, Shiohara has developed an 

innovative theory which named Joint hinging mechanism to explain the joint shear failure 

action which was first introduced [5], then analytically predicted [6], and finally verified by 

experiments [7]. A method to determine the joint hinging strength derived from the mechanism 

is also included in preparation for the new AIJ code [8].  

Several analytical models based on the mechanism have been proposed to simulate joint seismic 

performances including an elasto-plastic joint model for frame analysis [9], a 2D multi-spring 

joint model [10], and a 3D multi-spring joint model [11]. They tried to use springs to perform 

behaviors of materials including reinforcements and concrete. However, a model developed 

directly from its mechanism and keeping all of its original aspects is not available because in 

estimating the joint strength, only equilibrium of forces is adopted and compatibility is 

neglected [5]. 

1.2 Research Objective 

1.2.1 Originality 

Different from other multi-spring models, the present joint model was fabricated directly from 

Shiohara’s joint hinging mechanical model. In the mechanical model, the joint deformation was 

attributed to the rotation of rigid segments respect to hinging points and an equilibrium of forces 

which consisted of the external forces and internal forces in concrete and reinforcements was 

established to predict the joint moment capacity. The research here defined the joint 

components such as bar springs, concrete struts and bond-slip springs so that their deformations 

resembled the rotation of rigid segments in Shiohara mechanical model. Moreover, the axial 

force of these struts and springs resembled the respective internal forces of material in the 

mechanical equilibrium. As a result, the equilibrium was reserved and a corresponding 

compatibility was proposed to establish the joint stiffness. 
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1.2.2 Procedure 

 Define a new 2D configuration of the joint deformations and define the joint 

components developed from Shiohara theory 

 Establish the joint compatibility and the joint 2D stiffness, then verify the joint model 

in sequence: the monotonic response of the interior joints with an identical depth and 

with a different depth of beams and columns, with and without perfect bond condition, 

and the cyclic response of the interior joints with normal properties. 

 Apply on investigating the response of the exterior joints, knee joints and a RC frame 

under lateral loading 

1.2.3 Contribution 

 Include compatibility into Shiohara’s joint hinging mechanism successfully 

 Propose a new 2D RC beam-column joint element which keeps essential original aspects 

of Shiohara’s joint hinging mechanism and show applicability in simulating cyclic 

response and developing a structural design tool for 2D RC frame structures. 

1.3 Review of the previous studies on the seismic response of RC beam-column joints 

As one of the most sensitive regions of a RC frame building under earthquake, beam-column 

connection has been interested by many researchers. During last several decades, a plenty of 

experiments regarding cyclic loadings have been conducted to study the degradation of joint 

stiffness and bar anchorage loss, whereby revealed the inelasticity of joint performances. Durani 

et al. [12] tested six specimens of full-scale interior beam-column joints under cyclic loadings 

and found that behaviors of beam-column connections were considerably influenced by the 

magnitude of joint shear stress in case of lacking transverse beam and slab. Joint hoops 

contributed significantly to confinement of a joint, enhanced joint performances and a perfect 

improvement could be made with an odd number of steel hoops no less than three layers. 

Walker et al. [13, 14] conducted an experimental and an analytical research on eleven 

specimens of beam-column joints to investigate the shear resisting performance of joints in 

former RC frames before the 1970s. The study showed deterioration of the joint stiffness caused 

by damage and concluded that achieved story drifts by simulating joints joint like rigid nodes 

might be significantly less than real story drifts. Park et al. [15] tested a group of interior and 

exterior joints following NZS 3101. It was then said that joint shear strength could be improved 

by shifting locations of plastic hinge away from column faces.  
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With considerable interests of simulating joint nonlinear behaviors, various joint models have 

been proposed using different techniques to enhance computer efficiency and compatibility 

with other frame members [16]. El-Metwally and Chen [17] introduced a model adopting an 

inelastic rotational spring located between beams and columns to perform nonlinear 

characteristics as shown in Figure 1.1. The rotational spring carried the moment-rotation 

relationship and was generated by the thermodynamics of irreversible processes. Three 

parameters used to define this spring included: the initial linear rotational stiffness, the ultimate 

moment capacity, and the internal variable referring to the dissipated energy. Deterioration of 

bond strength and the hysteretic behavior of cracks at joint faces and frame members were 

considered to cause energy dissipated, and bond-slip curve by Morita and Kaku [18] was 

employed. The degradation of stiffness and joint strength related to shear loading were 

nonetheless not mentioned. 

 

Figure 1.1 Nonlinear rotational spring model proposed by El-Metwally and Chen 

Youssef and Ghobarah [19] suggested a model enclosing joint region by four rigid plates 

connecting to each other by pin constraint as denoted in Figure 1.2. The connection between 

frame members and rigid plates including three steel springs and three concrete springs 

represented concrete crushing and bond slip. These springs characterized groups of 

reinforcements and compressive concrete correspondingly, whereas shear response was 

modeled by shear springs. Concrete hysteresis rule proposed by Kent and Park [20] with a 

suggested transition from tension path to compression path was adopted for concrete springs 

[21]. Bond slip rule was derived from the model introduced by Giuriani et al. [22].  

Lowes and Altoontash [23] proposed a multi-sping joint element as idealized in Figure 1.3. The 

model consisted of a shear panel, four zero length interface shear springs, and eight zero-length 

bar-slip springs. Stiffness and strength loss caused by shear failure were represented by shear 
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panel while the loss by anchorage degradation was modelled by bar-slip springs, degradation 

due to shear transfer related to cracks at joint faces was simulated by interface-shear springs. 

Constitutive rule for shear panel was derived from modified compressive field 

 

Figure 1.2 Joint model proposed by Youssef and Ghobarah 

 

Figure 1.3 Joint model proposed by Lowes and Altoontash 

theory proposed by Vecchio and Collins [24]. As for hysteresis rule of bond-slip behavior, a 

new bar-slip model was developed from experimental results based on previous models such 

as Eligehausen et al. [25], Viwathanatepa et al. [26], Shima et al. [27]. 
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In fabricating beam-column joint models, theory with respect to joint shear damage is 

indispensable, and for many previous works, the strut and truss mechanism defined by Paulay 

et al. [28-30] have been preferable [31, 32] to explain the transferring action of shear force in a 

shear or moment resisting mechanism. This mechanism included a diagonal strut representing 

compressive concrete and horizontal and vertical ties representing reinforcements in the joint 

region. An equilibrium of forces was formed between the strut and ties, then when ties were 

tensioned to resist shear force, the strut was compressed and confinement in joint core occured. 

The failure of a joint was attributed to strut crushing or poor anchorage of ties, yielding of 

reinforcements. This mechanism exhibited advantages of consisting some material parameters 

for estimating the joint capacity such as concrete strength, amount of reinforcing bars, size of 

anchorage reinforcements in joint regions but fails to integrate the flexural strength of adjacent 

frame members. Shiohara pointed out an essential deficiency of this mechanism which was the 

lack of a parameter with respect to discriminating different joint types like interior, exterior and 

corner joints to determine the empirical allowable joint stress [33]. Moreover, by examining the 

result data of series of tests on the seismic behaviors of interior beam-column joints, it was 

found that joint shear and story shear were not proportional since story shear degraded but joint 

shear continued to develop till the end of tests [5]. The shear resisting capacity of joints was, 

therefore, considered to be reserved. The strut and truss model of Paulay could not explain well 

the foregoing aspects. Shiohara then proposed joint shear hinging failure mechanism with 

aspects of a moment resisting component which exhibited advantages in explaining the above 

behaviors successfully. Futhermore, a method derived from the mechanism to predict the joint 

moment capacity mathematically was also established.  

Based on Shiohara mechanism, several beam-column joint models subjected to cyclic loading 

have been introduced. Tajiri et al. [9] proposed a 2D macro joint element used for elasto-plastic 

frames as denoted in Figure 1.4. The model was a four-node element with twelve degrees of 

freedom. Axial springs which connected to rigid plates at the joint perimeter were utilized to 

represent reinforcements, concrete, and bond-slip behavior. Modified model of Park et al. [34] 

was used to model concrete springs in plastic hinge regions of frame members and in the joint 

region. Hysteresis rule for steel springs was derived from the modified model suggested by 

Ramberg and Osgood [35]. Bond-slip behavior was simulated by rule introduced by Morita and 

Kaku [18].  
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Based on this element, Kusuhara et al. [10] introduced a joint model to apply for 2D interior 

and exterior joints with some changes in arranging springs as shown in Figure 1.5. Springs in 

the plastic hinge of beams and columns were not mentioned. Instead of those, three types of 

concrete springs were employed including vertical-, horizontal-, and diagonal orientation 

concrete springs. To model their behaviors, a constitutive rule on the basis of model proposed 

by Kent and Park [34] in which the tension path used the fracture energy theory of Nakamura 

[36]. Steel springs represented reinforcements and a bilinear rule was suggested for their 

performance, while bond-slip springs were located between two adjacent steel springs to 

simulate anchorage loss along longitudinal bars with bond-slip rule deriving from the model of 

Eligchausen [25] using skeleton suggested by CEB-FIP code [37].  

 

Figure 1.4 Model suggested by Tajiri, Shiohara, and Kusuhara 
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(a) Interior joint model 

 

(b) Exterior joint model 

Figure 1.5 Model proposed by Kusuhara and Shiohara 

Kim et al. [11] developed Kusuhara model into a three dimensional (3D) form to simulate the 

cyclic response of slab-beam-column subassemblages under bi-lateral as described in  
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(a) 3D joint 

 

(b) Concrete springs 

 

(c) Bond-slip springs 

Figure 1.6 Model proposed by Kim, Kusuhara and Shiohara 
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Figure 1.6. The 3D joint model comprised six rigid plates connecting to each other by steel, 

bond-slip, and concrete springs. Verification was conducted by applying the joint element to 

simulate a slab-beam-column subassemblages under bidirectional loading [38]. 

Although three aforementioned joint models were based on Shiohara theory, they were 

developed from the basis of a multi-spring model. The joint model in this study tended to 

develop directly from Shiohara’s mechanical model to reserve its aspects. For example, 

concrete was simulated by concrete struts to resemble compressive zone explained by the 

theory. Details of the new model and other explanations are described in the next Chapter.  

1.4 Outline of dissertation 

The main parts of this dissertation include three chapters which focus on proposing the new 

joint model, verification, and application. The next parts are organized as belows: 

 Chapter 2 defines the new joint model for interior joints and verifies the joint analytical 

response with test data. 

 Chapter 3 applies the model into cases of exterior joints with modifications, knee joints, 

and RC frame analysis. 

 Chapter 4 suggests recommendations and future research. 
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Chapter 2 Suggestion of A New Beam-Column Joint 

Model and Application on Investigating Response of 

Interior Joints Under Lateral Loading 

2.1 Abstract 

A general model for simulating the response of the interior beam-column joints under lateral 

loading was presented in this chapter. The model is a two-dimensional macro-element 

developed from the theory of joint shear failure mechanism of Shiohara, which consists of four 

nodes with twelve degrees of freedom, and considers joint deformations as a combination of 

nine independent component deformations. The joint core was simulated by concrete struts 

while reinforcements were modeled by bar springs, and anchorage loss along longitudinal bars 

crossing joint body was represented by bond-slip springs. The study utilized constitutive models 

of concrete, steel, and bond-slip to characterize the performance of materials. A simple element 

for the interior joints in which the beams and columns have the same depth and width was 

introduced first. The monotonic response was established to capture the monotonic backbone 

of the cyclic response. Then, the calibration of the simple joint element was added so that it 

could be applied for general interior joints with the normal geometric properties subjected to 

cyclic loadings. Data from tests of interior joint sub-assemblages under cyclic loadings were 

employed to verify the analytical model. The result indicated its reliability in performing 

behaviors of interior beam-column connections developed from the shear failure theory. 

2.2 Elastic stiffness of the beam-column joint element 

Figure 2.1 shows the geometric properties of the joint element. A beam-to-column connection 

has four surfaces connecting to beams and columns. These are often modeled as line element, 

through the centers of those surfaces. The joint element is defined as a rectangular element with 

four nodes located at the center of the four rigid plates that represent the rigid bodies in SMM. 

dx and dz are the height and width of the joint. t is the joint thickness determined from the 

recommendation of AIJ 1999 [1]: 

 1 2b c ct t t t     (2.1) 
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where tb is beam width, tc1 and tc2 refer the smaller of ¼ column depth and ½ the distance 

between beam and column face on either side of beam. 

Each node had three DOFs including one rotation and two translations. In the XZ plane 

coordinate, four nodes are named A, B, C, and D with 12 DOFs (uA, vA, θA, uB, vB, θB, uC, vC, 

θC, uD, vD, and θD) and 12 corresponding nodal forces (FxA, FzA, MA, FxB, FzB, MB, FxC, FzC, MC, 

FxD, FzD, MD). With this definition, the deformation of a joint model could be expressed as a 

combination of nine independent components; namely the four axial deformations (∆x1, ∆x2, ∆z1, 

and ∆z2), four bending deformations (φx1, φx2, φz1, and φz2), and shear deformation φ0. 

Complementary to this set of deformations were the nine independent internal forces, namely 

the four axial forces (Nx1, Nx2, Nz1, and Nz2), four bending moments (Mx1, Mx2, Mz1, and Mz2), 

and anti-symmetric bending moment (M0). 

Because of contragredience, there existed compatible relationships between the nine 

independent deformations of a joint and the 12 nodal displacements, and relationships between 

the 12 nodal forces and the nine internal forces. These relationships are expressed as follows: 

δ is the vector of the nine independent deformations of a joint element: 

e is the vector of the 12 nodal displacements:  

p is the vector of the 12 joint nodal forces: 

f is the vector of the nine joint internal forces: 

 0δ = B e   (2.2) 

 
T

0p = B f   (2.3) 

  1 2 1 2 1 2 1 2x x z z x x z z O, , , , , , , ,        δ   (2.4) 

  A A A B B B C C C D D Du ,v ,q ,u ,v ,q ,u ,v ,q ,u ,v ,qe   (2.5) 

  , , , , , , , , , , ,xA zA A xB zB B xC zC C xD zD DF F M F F M F F M F F Mp   (2.6) 

  x1 x2 z1 z2 x1 x2 z1 z2 ON ,N ,N ,N ,M ,M ,M ,M ,Mf   (2.7) 
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(a) Joint dimension; (b) Joint deformations; (c) Joint internal forces 

Figure 2.1. Geometric properties of the interior joint model 

B0 is the compatibility matrix between δ and d: 
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The joint stiffness matrix K can be expressed by the relationship between the vector of the 

nodal forces p and the vector of the nodal displacements d as follows: 

where 

k0 is the matrix consisting of the component stiffness corresponding to the nine independent 

deformations mentioned above.  

If the joint response is considered to be elastic and the Poisson effect is neglected, k0 can be 

determined as follows: 

where Ec is the concrete modulus; G is the concrete shear modulus; κ = 1.2 

Equation (2.10) mentions the elastic stiffness matrix of a joint element when deformation is 

small. When cracks occur, the joint nonlinear behavior is characterized by springs and struts, 

which represent materials, based on the basis of SMM. 

 p = K e   (2.9) 

 0
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0 0K = B k B   (2.10) 
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2.3 Suggestion of a new model to investigate the monotonic response of the interior 

beam-column joints with an identical depth of beams and columns and perfect bond 

condition 

2.3.1 Derivation from Shiohara’s theory 

At the beginning, Shiohara introduced joint hinging mechanism into RC beam-column interior 

connections [5, 33]. Based on joint behavior at the shear failure mode, the mechanism assumed 

that joint deformations were caused by rotation of four triangular rigid bodies respect to hinging 

points, as shown in Figure 2.2. These bodies attached to each other by reinforcing bars. On each 

bodies, there were equilibriums of forces regarding resultant compressive forces of concrete 

through hinging points, resultant forces in reinforcements and external forces. As shown in 

Figure 2.3, Vb, Nb, Mb, Vc, Nc,, and Mc refer external forces, T1 to T10 refer resultant forces in 

reinforcements, C1 to C4 refer resultant compressive forces in concrete, gxdx and gzdz refer bar 

distances of columns and beams. 

 

 (a) Behavior of failure model  (b) Mechanical model including two failure modes 

Figure 2.2 Shiohara mechanism 

SMM was mentioned as a momment resisting mechanism. The relationship between the 

rotation of rigid free bodies, which represented for joint deformations, and the resultant forces 

in concrete and reinforcement is described in Figure 2.4. For concrete, the rotation of free bodies 

caused a linear distribution of deformation along the joint diagonal. A linear distribution of 

concrete strain on the diagonal was assumed corresponding to this deformation in which strain 

and deformation were considered to be those of two adjacent concrete struts with the same 

length. From the strain distribution, the stress distribution along the joint diagonal was also 

achiewed based on concrete constitutive rules. As a result, the resultant forces in concrete were 

determined. Similarly, the resultant forces in reinforcements were also computed from the 

rotation of free bodies in SMM. 
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Figure 2.3 Forces applied on rigid bodies in Shiohara’s mechanical model 

 

Figure 2.4 Relationship between rigid bodies’ rotation and resultant forces in material 

In this section, a 2D joint element developed directly from Shiohara’s mechanical model [5] 

(SMM) in Figure 2.2 was proposed. Because SMM computed the strength of the joint moment 

resistance but did not consider the joint compatibility, this study defined the compatibility 

relationships of the joint to investigate the joint behaviors from the beginning of the loading to 

the failure stage. Bar springs and concrete struts were used to simulate the resultant forces in 

reinforcements and concrete applied to the four free bodies that was represented as rigid plates. 

The deformation of bar springs and concrete struts, on the other hand, were computed from the 

rotation of the four free bodies of SMM. This was the first time struts were employed to simulate 



16 

concrete in the joint core in SMM which was totally different from the previous multi-spring 

joint models [9-11]. The strain on the cross section of the struts was assumed to distributed 

linearly and determined from the rotation of the free bodies in SMM. The corresponding stress 

distribution was computed from the strain distribution through the constitutive concrete model.  

In this section, the new joint model was introduced to investigate the joints in which the beams 

and columns have the same depth and width joints. This is also the scope discussed in SMM. 

Moreover, to reduce the complexity of explaining the computational procedure, the monotonic 

analysis was considered to capture the backbone curve of the joint cyclic behaviors. The 

comparison to the test data was carried out to verify the joint monotonic response.   

2.3.2 Concrete struts 

To analyze the expansion of the crack forming hinging mechanism, Shiohara [6] investigated 

the strain and stress state in the joint core from before cracking to after cracking and up to the 

ultimate state. Shiohara reported that the bi-axial stress state before cracking existed in both the 

tensile areas and compressive areas. After cracking, the stress state in the compressive areas 

became uniaxial. Moreover, stress did not exist in the tensile areas.  

There were four compressive zones and four tensile zones at a loading stage due to the rotation 

of the free bodies, as shown in Figure 2.5(a). The four compressive zones represented the flow 

of the forces that transferred through concrete. In SMM, the inclination of these forces are 45o 

which is the same as the inclination of the diagonals. To determine the width of the compressive 

zones, the displacements of the joint center and the joint corners in the diagonal direction, which 

could be computed from the nine independent deformations mentioned in Equation (2.4), were 

interested.   

In Figure 2.5(b), δcom_1, δcom_2, δcom_3, δcom_4, δten_5, δten_6, δten_7, and δten_8 are the displacements 

of the joint center and the joint corners in the diagonal direction which are computed as follows: 
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The displacements in the inclination of 45o of the points on the diagonals changed linearly from 

the joint center to the joint corners. The points with zero displacement separated each half of 

the joint diagonals into the compressive zone and tensile zone in the concrete. In the present 

study, the concrete strain was also assumed to distribute linearly on the joint diagonals in which 

the point with zero strain was the same with the point with zero displacement, as shown in 

Figure 2.5(c). The joint concrete core was considered to consist eight concrete struts, namely 

C1 to C8 as shown in Figure 2.5(d), so that the above distribution of strain was also that of the 

strut sections. The strut width was the same with the distributed width on the diagonals of the 

corresponding tensile strain or compressive strain, namely wC1 to wC8. The four concrete struts 

corresponding to the tensile strain zone might not carry force. The name “strut” was still used 

to define to them because they might carry the compressive forces in other stages. For example, 

in the beginning of the loading the struts were compressed due to the axial force in the columns 

but the compressive force in these struts disappeared when the free bodies rotated. Before 

cracking, the joint was considered to be an elastic solid element. After cracking, springs and 

struts were used to characterize the joint behaviors. The orientation of the struts was assumed 

to be 45o at any stage after cracking. 

In Figure 2.5(a), the concrete compressive forces distributed along the joint diagonals. Thus, 

the length of the concrete struts near the joint diagonals was assigned to be the same with the 

length of the joint diagonals. Because the strain of a point on the joint diagonal was considered 

to be the ratio of its displacement to the length of the strut where it was located, the length of 

two adjacent struts must be identical to satisfy that the point with zero displacement did not 

have strain. Therefore, the length of the struts near the corners was also equal to the diagonal 
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length. To this end, the eight struts had the same length (lC). Note that the length of the struts 

near the corners was not necessarily as short as the length of the compressive zones in Figure 

2.5(a) but needed to satisfy the distribution of the displacement and strain discussed above. 

Moreover, if the strut near the corners was short, a small rotation of the free bodies might result 

in the great strain in the strut which was irrational because in practical, the amount of the 

concrete length extended to beams and columns must be considered. 

Figure 2.5(e) shows a typical strain distribution in the half-length of a diagonal with strut i in 

compression and strut j in tension. The strain at the compression end (εcom_i) and the strain at 

the tension end (εten_j) were calculated as follows: 

In Figure 2.5(e)., coefficient ξi and ξj used to determine the width of strut i (wCi) and strut j (wCj) 

were computed respectively as follows: 

Then: 

These widths were employed to calculate the struts’ cross-sectional areas (ACi and ACj) as 

follows: 
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σCi and σCj which are in turn the average stresses of strut i in compression and strut j in tension 

respectively, can be expressed as follows: 

where σ(ε) is the strain’s envelope stress function. 

Location of strut axial forces is computed by distances between them and corner points for 

struts near corners or the joint center for others near the center and are governed by coefficient 

β1 to β8, as shown in Figure 2.5(f). These coefficients were calculated as follows: 

Note that in Equation. (2.28) to Equation.(2.31), σCi, σCj, βi, and βj are considered to be zero if 

εcom_i or εten_j reaches zero. 

The arrangement of the struts attached to the rigid plates are also shown in Figure 2.5(f). 
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(a) Tensile zone and compressive zone in concrete; (b) Displacement of the center point and 

corner points in the inclination of 45o; (c) Displacement and strain distribution on the joint 

diagonals in the inclination of 45o; (d) Illustration of concrete strain distribution and the width 

of the struts; (e) Typical stress distribution on a half of joint diagonals; (f) Connection of 

concrete struts to rigid plates; 

Figure 2.5. Definition of concrete struts in the new interior joint element 
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2.3.3 Bar springs  

The rotation of the four rigid plates simulated the rotation of the four free bodies of SMM. 

When the rigid plates rotated, there were following displacements (∆T1, ∆T2, ∆T3, ∆T4, ∆T5, ∆T6, 

∆T7, ∆T8, ∆T9, ∆T10) at the location of the reinforcements, as shown in Figure 2.6. 

 

Figure 2.6. Deformation at the location of reinforcements in the new interior joint model 

These displacements could be computed by nine independent components of the joint 

deformations as follows: 

 
   1 01

1 1

1 1

2 2 2

z z zz x
T x

g d g dg d    
        (2.32) 

 
   1 02

2 2

1 1

2 2 2

z z zz x
T x

g d g dg d    
        (2.33) 

 
   2 02

3 2

1 1

2 2 2

z z zz x
T x

g d g dg d    
        (2.34) 

 
   2 01

4 1

1 1

2 2 2

z z zz x
T x

g d g dg d    
        (2.35) 

 5 1 2T x x      (2.36) 

 
   2 01

6 1

1 1

2 2 2

x x xx z
T z

g d g dg d    
        (2.37) 

 
   2 02

7 2

1 1

2 2 2

x x xx z
T z

g d g dg d    
        (2.38) 



22 

In this section, bar springs were defined based on these displacements to represent 

reinforcements in joint core. Notation T1 to T10 were also utilized for their names, and their axial 

forces refer resultant forces of reinforcing bars in SMM, as shown in Figure 2.7 and Figure 2.8 

while their deformations were assigned by ∆T1 to ∆T10 respectively with the assumption of 

perfect bond condition.  

Lengths of bar springs were defined as follows: 

where lT1, lT2, lT3, lT4, lT5, lT6, lT7, lT8, lT9, and lT10 are length of bar spring T1, T2, T3, T4, T5, T6, 

T7, T8, T9, and T10 respectively.  

  

Figure 2.7. Definition of bar springs in the new interior joint model 
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Figure 2.8. Axial forces of bar springs in the new interior joint model 

2.3.4 Joint compatibility and stiffness 

2.3.4.1 Before cracking 

The joint behavior before cracking was assumed to be elastic. The joint stiffness was computed 

by Equation (2.10).  

2.3.4.2 After cracking 

Cracks were considered to occur when any tensile displacements in Equation (2.16) to Equation 

(2.19) exceeded the crack width as follows: 

where εt is the strain at tensile strength of concrete. 

After cracking, properties of struts and springs were included in the joint stiffness. There was a 

compatibility between vector ∆, which included the average deformations of the concrete struts 

and the deformations of the bar springs with the vector of the nine independent joint 

deformations δ as follows: 

where 

In Equation (2.47) ∆C1 to ∆C8 are the average deformations of the corresponding concrete struts. 

 _iten t cl   with i = 5 to 8  (2.45) 

 1Δ=B δ   (2.46) 
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Because of contragredience, the vector of the nine joint forces f could be determined from the 

vector comprising the axial forces of the concrete struts and bar springs q, as follows: 

where 

and B1 is the compatibility matrix between ∆ and δ: 

The stiffness matrix k0 in Equation (2.10) was expressed as follows: 
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k1 is the component stiffness matrix of concrete struts and bar springs: 

In the above equation, kC and kT is the diagonal stiffness matrix of concrete struts and springs 

respectively. Components of kC was defined as follows: 

where Ci
n, ∆Ci

n, Ci
n-1, and ∆Ci

n-1 are the axial forces and average deformations of strut Ci and 

strut Cj at step n and step n-1 respectively. ∆i
n and ∆i

n-1 are defined as follows:  

In the initial cracking, the width of the concrete struts is assigned as follows: 

The initial stiffness of the struts is computed as: 

where Ec is the modulus of concrete. 

Finally, Equation (2.10) becomes: 

2.3.5 Orientation and length of concrete struts 

Before cracking, the joint element was considered to be elastic and the elastic stiffness was used 

to investigate joint behaviors. After cracking, struts and springs were used to define the joint 
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nonlinear stiffness. At the ultimate stage, the orientation of struts was 45o according to SMM. 

From the end of the elastic stage till the ultimate stage, it was necessary to define struts’ angle. 

In this study, it was assumed that struts’ angle was also 45o from cracking till the failure point. 

To verify this assumption, the below part introduces an analytical study on the influence of 

struts’ angle to the joint performance in the vicinity of stages after cracking.  

Several joint elements with following aspects were considered for analysis: 

• Joints have the same width dx 

• For each joint, a case of strut in diagonal direction and a case of strut in 45o were studied 

• A normal compressive stress () and a shear stress () were applied with 

/r const   during loading. Four cases were included: 0,1,2, and 10r   

The stress state of a typical joint element and struts’ angle are shown in Figure 2.9 and Figure 

2.10.  

The angle () regarding the orientation of diagonals had a relationship with the stress ratio (r) 

as follows: 

or 

    

Figure 2.9. Stress state of the joint element and Mohr circle 
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(a) In diagonal direction; (b) In 45o 

Figure 2.10. Orientation of concrete struts 

 

(a) In diagonal direction; (b) In 45o 

Figure 2.11. Two computational cases for struts’ orientation 

Before analysis, it was needed to determine the length of concrete struts. The struts’ length was 

chosen so that the stress state in the elastic state was reserved. A set of joint nodal displacements 

in Figure 2.12 was used to form the plane stress state in Figure 2.9.  

  

Figure 2.12. Nodal displacements of the simple plane stress state 
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The vector of joint deformations in Equation (2.2) was computed as belows: 

The stiffness matrix k0 in Equation (2.10) was used to compute the vector of joint forces as 

follows in which the pure shear stiffness was considered: 

The nodal forces was computed from Equation (2.3) as follows: 
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The Mohr circle in Figure 2.9 became that in Figure 2.13. From Equation (2.60) , the stress 

ratio r = / was represented by dx/dz as follows: 

where ν is the Poisson coefficient.  

 

Figure 2.13. Mohr circles with stress represented by uc 

The principal stresses which were in diagonal direction and perpendicular to diagonal direction 

were also determined: 
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The average deformations on diagonals caused by the rotation of rigid bodies were computed 

as belows: 

To reserve the stress state using concrete struts, the following equations were employed: 

The length of concrete struts was computed as follows: 

The set-up of specimens for analysis is shown in Figure 2.14. 
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Figure 2.14. Specimen for analytical study 

With r = 0: 

300 ; 293 ; 3.0 ; 0; 45o

x z t c b cd d mm l l mm L L m r





          

The analytical result is shown in Figure 2.15. 

 

  

Figure 2.15. Analytical result of story shear versus story drift relationship (r = 0)  

 

With r = 1: 

300 ; 485 ; 431 ; 345 ; 1.854 ; 3.0 ; 1; 31.7o

x z t c b cd mm d mm l mm l mm L m L m r





          

The analytical result is shown in Figure 2.16 and Table 2.1. 
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Figure 2.16. Analytical result of story shear versus story drift relationship (r = 1) 

 

Table 2.1. Result of story shear ratio (r = 1) 

Story drift (%) Story shear ratio Stage 

0.079 1 

Elastic 0.083 1 

0.086 1 

0.090 1.02 

Post-elastic 

0.094 1.02 

0.098 1.02 

0.101 1.02 

0.105 1.02 

0.109 1.02 

 

With r = 2: 

300 ; 724 ; 636 ; 435 ; 1.243 ; 3.0 ; 2; 22.5o

x z t c b cd mm d mm l mm l mm L m L m r





          

The analytical result is shown in Figure 2.17 and Table 2.2. 
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Figure 2.17. Analytical result of story shear versus story drift relationship (r = 2) 

Table 2.2. Result of story shear ratio (r = 2) 

Story drift 
Story shear 

ratio 
Stage 

0.029 1 

Elastic 

0.031 1 

0.033 1 

0.034 1 

0.036 1 

0.038 1.14 

Post-elastic 

0.040 1.14 

0.041 1.14 

0.043 1.14 

0.045 1.14 

0.046 1.14 

0.048 1.14 

0.050 1.14 

 

With r = 10: 

300 ; 3030 ; 6142 ; 1534 ; 0.297 ; 3.0 ; 10; 5.7o

x z t c b cd mm d mm l mm l mm L m L m r





          

The analytical result is shown in Figure 2.18 and Table 2.3. 
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Figure 2.18. Analytical result of story shear versus story drift relationship (r = 10) 

Table 2.3. Result of story shear ratio (r = 10) 

Story drift 
Story shear 

ratio 
Stage 

0.004 1 

Elastic 

0.008 1 

0.012 1 

0.016 1 

0.020 1 

0.024 1 

0.028 1.14 

Post-elastic 

0.033 1.14 

0.037 1.14 

0.041 1.14 

0.045 1.14 

0.049 1.14 

0.053 1.14 

 

The results showed that there was a little difference between the story shear computed with 

struts’ angle of 45 degrees and the story shear computed with struts in diagonal direction in four 
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analytical cases. Corresponding to the stress ratio of 1, 2, and 10, the different ratio of story 

shear was 1.02, 1.14, and 1.14. This indicated that the assumption of struts’ angle of 45 degrees 

after cracking was acceptable for analysis. 

2.3.6 Constitutive material model 

2.3.6.1 Constitutive steel model 

The elastic-perfectly plastic hysteretic model is adopted for expressing the stress-strain 

relationship of bar springs which is assumed to follow the bilinear rule, as shown in Figure 

2.19. Following formulas depicts skeleton curves of this model: 

where σ, ε and Es are stress, strain, and the initial stiffness respectively. 

 

Figure 2.19. Monotonic constitutive steel rule 

2.3.6.2 Constitutive concrete model 

The concrete hysteresis rule used in this study is shown in Figure 2.20. The concrete stress was 

expressed as a function of the concrete strain in such specific cases that Equation (2.28) to 

Equation (2.31) could be achieved. 

The envelope of the confined concrete proposed by Scott et al.[39] was used in the monotonic 

loading of the compressive path. The skeleton curves are expressed as follows: 
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where Kc is a coefficient regarding the confinement of concrete: 

In the above equation, σ, ε, and fc’ are the stress, strain, and compressive strength respectively, 

εc0 is the strain at the compressive strength (εc0 = -0.002); h is the volume ratio of the 

rectangular steel hoops to the volume of the concrete core measured at the exterior of the 

peripheral hoop; σyh is the yield strength of the hoop; sh is the spacing of the hoops; and h” is 

the width of the concrete core measured at the exterior of the peripheral hoop.   

In this study, only the concrete in compression was considered. The concrete in tension was not 

interested because its contribution was small. Stiffness of Ec and 0.001Ec was assigned to the 

tension path before and after cracking respectively. The strain at tensile strength was defined 

as follows: 
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Figure 2.20. Monotonic constitutive concrete rule 

To determine the stress distribution from the strain distribution in the diagonal-oriented section 

of the struts, an assumption of zero stress at zero strain was adopted. The loading paths were 

calculated by Equation (2.28) and Equation (2.29) with the loading envelopes defined above. 
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2.3.7 Computational procedure 

The detailed computational procedure of the joint is described in Figure 2.21 for stages before 

cracking and in Figure 2.22 for stages after cracking in which a set of the joint nodal 

displacements (e) returned in a set of the joint nodal forces (p). In the frame analysis, the chart 

in Figure 2.23 shows the iterative computational technique at an analytical step with n times of 

iteration in which the Newton-Raphson method was used. When the error of the nodal forces 

decreased and met the desired tolerance, the errors of the axial forces in the springs and the 
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struts of the joint were automatically eliminated. Due to the convergence criterial of Newton-

Raphson method, the degradation paths were not interested. Object-Based Structural Analysis 

(OBASAN), which is an open-source object-oriented program developed by the authors’ 

laboratory is used to produce responses of the analysis. 

To model the beams and the columns, the element “beam end” in OBASAN was used. This 

element was developed on the basis of the one-component model [40, 41] in which the inelastic 

flexural deformation of the element was assumed to be governed by the deformation of two 

rotational springs located at the ends. The axial force versus the axial deformation was assumed 

to be elastic and the shear deformation was included. The bond-slip within the beams and the 

columns was not considered. The moment-rotation relationship was used to define the 

characteristics of the two rotational springs. Takeda hysteresis rule [42] was used to establish 

the hysteresis response. 

The moment-rotation backbone consisting of three points (θc, Mc), (θy, My), and (θu, Mu) was 

determined from the backbone of the moment-curvature relationship consisting of three points 

(ϕc, Mc), (ϕy, My), and (ϕu, Mu). In this study, Mc, My, and Mu were determined following ACI 

318 [2]. The following equations show the computation of the rotations from the curvatures. 

The rotation at cracking of tensile concrete: 

where EI is the initial elastic flexural rigidity; l is the length of a simply supported member; κ 

is the shear coefficient; GA is the shear rigidity; Mc is the moment at cracking of tensile 

concrete. The rotation at the yielding of tensile reinforcement: 

ϕc is the curvature at cracking of tensile concrete; ϕy is the curvature at cracking of tensile 

reinforcement; My is the moment at yielding of tensile reinforcement. 

The rotation at the crushing of compressive concrete: 
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where 

Mu is the moment at crushing of compressive concrete. 

 

Figure 2.21. Computational procedure before cracking of the new interior joint element  
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Figure 2.22. Chart of the computational procedure after cracking of the new joint element  
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Figure 2.23. Chart of the Newton-Raphson iterative algorithm of the frame analysis at a step 
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2.3.8 Verification of experimental study 

2.3.8.1 Specimens  

A series of test of the reinforced concrete joint subassemblages with regard to specimen A01, 

B01, B02, B05, and C01 conducted by Shiohara and Kusuhara [43, 44] was adopted in this 

study for verification. The detailed properties of the materials of specimens are listed in Table 

2.4 and illustrated geometrically in Figure 2.24. Specimen A01 had the section of 300x300 mm 

and was suffered from a constant axial compressive load of 216kN and a lateral load where the 

cyclic loading was applied in sequence at different story drifts as followings: a cycle at 

0.0625%, 0.125%, and 0.25%, two cycles at 0.5% and 1.0%, a cycle at 0.5%, two cycles at 

2.0%, a cycle at 0.5%, and two cycles at 3.0% and 4.0%. Specimen from B01 to C01 had the 

same cross-section of 240 x 240 mm for both beams and columns and suffered only a lateral 

load. At each story drift of 0.25%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%, two cyclic loadings were 

applied horizontally. 

 

Figure 2.24. Test specimen of interior joints specimens with identical depth of beams and 

columns 
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Table 2.4. Properties of interior joint specimens with identical depth of beams and columns  

Specimen A01 B01 B02 B05 C01 

Concrete compressive 

strength (MPa) 
28.3 29 29.0 29.0 31.0 

Beam width x depth (mm) 
300 x 

 300 

240 x 

240 

240 x 

240 

240 x 

240 

240 x 

240 

Longitudinal beam bars 
8-D13  

8-D13 
4-D13 5-D13 5-D13 

3-D13 

2-D13 

Bar yielding strength 

(Mpa) 
456 378 378 378 378 

Bar distant ratio 
0.77 

0.53 
0.8 0.8 0.8 

0.8  

0.5 

Column width x depth 

(mm) 

300 x 

300 

240 x 

240 

240 x 

240 

240 x 

240 

240 x 

240 

Longitudinal column bars 

5-D13 

2-D13 

2-D13 

4-D13 5-D13 
5-D13 

 2-D13 
5-D13 

Column bar yielding 

strength (MPa) 
357 378 378 378 378 

Column bar distant ratio 

0.77 

0.57 

0 

0.8 0.8 
0.8  

0.5 
0.8 

Joint hoops D6 (three sets) D6 (two sets) 

Yielding strength of hoops 

(MPa) 
326  399 
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2.3.9 Discussion of results 

2.3.9.1 Load deflection relationship 

The relationship of the story shear versus the story drift of all specimens is shown in Figure 

2.25. Beside the test data and the analysis, the response of specimen B02 and B05 carried out 

by Kusuhara joint model [10] was also used for comparison. Because the specific results of the 

response given by Kusuhara joint model was not available, the comparison with regard to the 

difference of the backbone shape was considered. Table 2.5 compares the maximum story shear 

predicted by the new joint model (Vu_Analysis) to that of the experimental results, at the flexural 

strength of beam (Vu_ACI) by ACI 318 – 08 [2], and computed at the nominal joint shear strength 

(Vu_AIJ) by AIJ 1999 [1].  

The monotonic response in this study was expected to capture the backbone of the cyclic 

response of each specimen with refer to the story shear versus the story drift relationship. The 

degradations of the backbones were computed at the story drift of 2.6%, 3.3%, 2.7%, 2.6%, and 

2.55% for specimen A01, B01, B02, B05, and C01 respectively. The results from Figure 2.25 

and Table 2.5 showed a good agreement between the test and the analysis. The computed 

maximum story shears were close to the observed maximum story shears with the different ratio 

1.00 in A01, 1.02 in B01 and B02, 1.01 in B05, and 0.95 in C01. The maximum story shears 

from the analysis were also close to those determined at the flexural strength of beam derived 

from ACI 318-08 and at the nomial joint shear strength recommended by AIJ 1999 except in 

specimen B01 where the different ratio between Vu_Analysis and Vu_AIJ was 0.84.  

In Kusuhara’s model, the diagonal-, vertical-, and horizontal springs were used to represent 

concrete. Kusuhara model showed a good prediction of the cyclic behaviors of specimen B02 

and B05 in Figure 2.25, which were also captured well by the monotonic backbone of the new 

joint model. However, the present model aimed to model the original aspect of SMM. That was 

the use of concrete strut to represent the flow compressive forces transferred through concrete. 

Beside the load-deflection relationship, the present model provided various properties which 

could not be given by the multi-spring models. They included the changes of the strain 

distribution and stress distribution of concrete on the joint diagonals in consistent with the 

rotations of the four free bodies. These changes, as discussed in an overlook mechanism by 

Shiohara [6], were useful to explain the consistent relationship of the opening of diagonal 

cracks, the stress redistribution, and the loss of tensile resistance. 
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2.3.9.2 Comparison to Shiohara’s numerical method 

A comparison between the computation by the new model and Shiohara’s numerical method 

[5] at the ultimate stage is shown in Figure 2.26. All of the forces were normalized by 0.85tf’c. 

There was a good agreement between the results of the new model and those of the Shiohara’s 

numerical method in which the story shear and forces in reinforcements and concrete were 

mostly the same in the two cases. The slight difference in the concrete resultant forces was 

attributed to the location of the concrete resultant forces and the stress at yielding of reinforcing 

bars. In Shiohara’s numerical method, concrete resultant forces were placed at the middle of 

the stress distribution on the diagonals while the location of the resultant forces in concrete was 

determined by coefficient βi in Equation (2.30) and βj in Equation (2.31). The stress at yielding 

of reinforcement in Shiohara’s numerical method was the corresponding yielding strength. In 

the computation by the new model, the stress at reinforcement yielding was greater than the 

corresponding yielding strength due to the additional strength caused by the strain hardening 

illustrated by the stiffness of 0.01Es in Figure 2.19. 

Table 2.5. Analytical results of the maximum story shear of the five specimens 

Results A01 B01 B02 B05 C01 

Maximum story 

shear (kN) 

At the flexural strength of beam 

by ACI 318 - 08[2] (Vbu) 
135.5 66.1 79.2 81.0 81.5 

Computed at the nominal joint 

shear strength by AIJ 1999 (Vju)  
137.1 80.5 80.5 80.5 80.5 

Test (Vcmax_Test) 126.6 65.2 76.7 79.3 75.3 

Analysis (Vu_Analysis) 135.8 67.6 81.0 81.6 77.6 

Vcmax _Analysis / Vbu 1.00 1.02 1.02 1.01 0.95 

 Vcmax _Analysis / Vju 0.99 0.84 1.01 1.01 0.96 

 Vcmax _Analysis / Vcmax _Test 1.07 1.04 1.06 1.03 1.03 
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Figure 2.25. Comparison between experiment and monotonic response of the five specimens 

with perfect bond condition 
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Figure 2.26. Predicted story shear in of the five specimens by the new joint model with 

perfect bond condition  

(number in parentheses is determined by Shiohara’s numerical method) 

2.4 Modification of the new model to investigate the monotonic response of the interior 

beam-column joints with an identical depth of beams and columns and normal bond 

condition 

Bond-slip springs were included to consider the normal bond-condition. There were changes of 

bar springs and suggestions of bond-slip springs as below. 
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2.4.1 Bar springs and bond-slip springs  

To simulate the anchorage loss along the longitudinal bar, four bond-slip springs (SA, SB, SC, 

and SD) were placed between two adjacent bar springs, as shown in Figure 2.27. The 

deformations of the bar springs and bond-slip springs related to the axial force of the 

corresponding springs through their tangent stiffness as follows: 

where kTi and kSr are the stiffness values of bar spring i and bond-slip spring r, and ∆Ti and ∆Sr 

are the deformations of these springs, respectively. kSr is defined as follows: 

where ρSr is the total section perimeter of the bars including in bond-spring Sr, lSr is the 

anchorage bond length, and kτSr is the tangent stiffness regarding the relationship of the bond 

stress versus the slip of bond-spring Sr. Bond stress τSr is computed by bond force Sr as follows: 

In this study, SA, SB, SC, and SD were assumed to be positive (+) when the bars slipped toward 

the bar springs T2, T4, T8 and T6, respectively. 

A relationship between the forces in the bar springs and the deformations of the bar and bond-

slip springs was established in a combined form, as follows: 

where:  

T is the vector of forces in the bar springs, as follows: 

∆TS is the vector of the combined spring deformation and is defined as follows: 

 i Ti TiT k   with i = 1 to 10  (2.91) 

 r Sr SrS k   with r = A, B, C, D  (2.92) 

 
rSr Sr Srk l k  with r = A, B, C, D  (2.93) 

 
r

Sr

Sr Sr

S

l



  with r = A, B, C, D (2.94) 

 TS TST = k Δ   (2.95) 

  1 2 3 4 5 6 7 8 9 10, , , , , , , , ,T T T T T T T T T TT   (2.96) 
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Vector ∆TS was used because of its compatibility with joint deformations.  

kTS is the matrix of the combined tangent stiffness of the bar springs and bond-slip springs: 

  

 (i, j = 1, 2, 3, 4, 6, 7, 8, 9; r = A, B, C, D) 

  
1 2 3 4 5 6 7 8 9 10
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1 1 1 2

2 1 2 2

3 3 3 4

4 3 4 4

5

6 6 6 7

7 6 7 7

8 8 8 9

9 8 9 9

10

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

T T

T T

T T

T T

T

T T

T T

T T

T T

T

k k

k k

k k

k k

k

k k

k k

k k

k k

k

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 







 

TS
k 










  (2.98) 
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( )

i j r

i i
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 
  (2.100) 
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(a) Location of springs; (b) Axial forces of springs; (c) Deformations of springs 

Figure 2.27. Definition of bar springs and bond-slip springs of the interior joint element 
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2.4.2 Joint compatibility and stiffness 

The computation of the joint compatibility and the joint stiffness in Section 2.3.4 had some 

modification regarding vector ∆ in Equation (2.47) and matrix k1 in (2.52) as follows: 

where kTS is defined in Equation (2.98). 

2.4.3 Constitutive material model 

Constitutive bond-slip model 

The bond slip model of CEB-FIP Model Code 1990 [37] was adopted along with the rules of 

the unloading and reloading path defined by Eligehausen et al.[25], as shown in Figure 2.28. 

Here, τ is the bond stress, s is the slip, s1 = 0.1s3, s2 = 0.5s3, s3 = 1mm, s4 = s3 + 2 (mm), s5 = 

s3 + 10.5 (mm), τ3 = 2.5f’c (MPa), τ5 = τ1 = 0. 398 τ3, τ2 = 0. 758τ3, τ4 = τ3. 

 

Figure 2.28. Monotonic constitutive bond-slip model 

2.4.4 Computational procedure 

Chart of the computation procedure for a joint element after cracking was modified as shown 

in Figure 2.29. 

 

  
1 2 7 8 1 2 5 9 10
, ,..., , , , ,.., ,..., ,C C C C TS TS T TS T            (2.101) 
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Figure 2.29. Chart of the computational procedure after cracking for a joint element with 

normal bond condition 

2.4.5 Verification of experimental study 

2.4.5.1 Specimens  

The analysis was carried out on the five specimens described in section 2.3.8.  

Compute K in (2.58) 

Compute e in Eq.(2.5) and δ = B0e in Eq.(2.2) 

Compute ∆ = B1δ in Eq.(2.101) 

Assume 

∆Sr 

Check 

|Sr – (Ti – Tj)|  

< |Sr|*tolerance  

Get ∆TS 

N
o
t 

in
 e

q
u
il

ib
ri
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m

 

Constitutive slip 

model 

Constitutive 

steel model 

Compute f in Eq.(2.48) and p in Eq.(2.3) 

∆Ti =∆TSi + ∆Sr 

∆Tj =∆TSj - ∆Sr 

Ti, Tj Sr 

Compute  

δcom_i , δten_j in Eq.(2.12) to Eq.(2.19) 

εcom_i, εten_j in Eq.(2.20) and Eq.(2.21) 

ξcom_i, ξten_j in Eq.(2.22) and Eq.(2.23) 

wci, wcj in Eq.(2.24) and Eq.(2.25) 

Aci, Acj in Eq.(2.26) and Eq.(2.27) 

(i = 1,2,3,4), (j = 5,6,7,8) 

Compute  

σci (i =1,2,3,4), σcj (j=5,6,7,8) 

 in Eq.(2.28) and Eq.(2.29) 

Compute βi, βj 

 in Eq.(2.30) and Eq.(2.31) 

and update B1 in Eq. (2.50) 

Compute  

Ci = Aciσci;  

Cj = Acjσcj 

Compute kT in Eq.(2.52) and kCi in Eq.(2.53), 

then compute K in Eq.(2.58) for the next step 
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2.4.5.2 Load deflection relationship 

Table 2.6 compares the maximum story shear predicted by the new joint model (Vu_Analysis) to 

that of the experimental results, at the flexural strength of beam (Vu_ACI) by ACI 318 – 08 [2], 

and computed at the nominal joint shear strength (Vu_AIJ) by AIJ 1999 [1]. The relationship of 

the story shear versus the story drift of all specimens is shown in Figure 2.30.  

The analytical result captured well the backbone of the cyclic response of each specimen with 

refer to the story shear versus the story drift relationship. The degradations of the backbones 

were computed at the story drift of 2.6%, 3.3%, 3.0%, 2.6%, and 2.5% for specimen A01, B01, 

B02, B05, and C01 respectively. In B02 and B05, the predicted curves by the new model were 

also in a good correlation with the backbone of the cyclic response computed by Kusuhara’s 

model. There was not considerable difference of the analytical results between the case with 

perfect bond condition and the case without perfect bond condition. This agreed well with a 

conclusion of Shiohara [33] that the bond capacity does not affect significantly joint strength 

with J-mode. However, it makes sense in explaining the case of 3D joint in which transverse 

beam exists and reinforces bond capacity, as a result, there is observed increase of joint strength. 

2.4.5.3 Comparison to Shiohara’s numerical method 

A comparison between the computation by the new model and Shiohara’s numerical method at 

the ultimate stage is shown in Figure 2.31. All of the forces were normalized by 0.85tf’c. Similar 

to the case with perfect bond condition, there was also a good agreement between the results of 

the new model and those of the Shiohara’s numerical method in which the story shear and forces 

in reinforcements and concrete were mostly the same in the two cases.  
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Table 2.6. Analytical results of the maximum story shear of the five specimens with normal 

bond condition 

Results A01 B01 B02 B05 C01 

Maximum story 

shear (kN) 

At the flexural strength of beam 

by ACI 318 - 08[2] (Vbu) 
135.5 66.1 79.2 81.0 81.5 

Computed at the nominal joint 

shear strength by AIJ 1999 (Vju)  
137.1 80.5 80.5 80.5 80.5 

Test (Vcmax_Test) 126.6 65.2 76.7 79.3 75.3 

Analysis (Vu_Analysis) 131.3 67.3 78.5 81.2 75.9 

Vcmax _Analysis / Vbu 0.97 1.02 0.99 1.00 0.93 

 Vcmax _Analysis / Vju 0.96 0.84 0.98 1.01 0.94 

 Vcmax _Analysis / Vcmax _Test 1.04 1.03 1.02 1.02 1.01 
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Figure 2.30. Comparison between experiment and monotonic response of the five specimens 

with normal bond condition 
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Figure 2.31. Predicted story shear of the five specimens with normal bond condition  

(number in parentheses is determined by Shiohara’s numerical method) 

2.5 Modification of the new model to investigate the monotonic response of the interior 

beam-column joints with different depth and width of beams and columns and normal 

bond condition 

The procedure in this section is similar to that of section 2.2 except the following modifications: 

2.5.1 Concrete struts 

Displacements in Figure 2.32 named as δcom_1, δcom_3, δten_6, δten_8 are used for determining strain 

distribution in diagonal orientation, can be calculated as below: 
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Similarly, displacements in Figure 2.33 named as δcom_2, δcom_4, δten_5, δten_7 are used for 

determining strain in directions perpendicular to diagonals, can be calculated as below: 
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Figure 2.32. Displacement of the center point and corner points in diagonal direction 

 

Figure 2.33. Displacement of the center point and corner points in orientation 

perpendicular-to-diagonal direction 

Length of concrete struts (lc and lt) were determined in (2.71 and (2.72). 
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Figure 2.34. Illustration of concrete strut length 

These coefficients are utilized to compute strut widths wCi and wCj depicted in Figure 2.35 as 

below if the struts are perpendicular to diagonals: 

If the struts are parallel to diagonals, then: 
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Figure 2.35. Width of concrete struts  

2.5.2 Bar springs  

Lengths of bar springs were defined as follows: 

where lT1, lT2, lT3, lT4, lT5, lT6, lT7, lT8, lT9, and lT10 are length of bar spring T1, T2, T3, T4, T5, T6, 

T7, T8, T9, and T10 respectively, as shown in Figure 2.36.  

  

Figure 2.36. Definition of bar springs of the joint element with normal geometric properties 
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2.5.3 Joint compatibility and stiffness 

The definition of the joint compatibility and stiffness is the same with that defined in section 

2.3.4 except the following changes in matrix B1. 

where α is the are the angle with respect to the orientation of the joint diagonals: 

and: 
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2.5.4 Verification of experimental study 

2.5.4.1 Specimens  

Two specimens with regard to C03 and D05 from a series of test of the reinforced concrete joint 

subassemblages conducted by Shiohara and Kusuhara [43] was adopted in this study for 

verification. The detailed properties of the materials of specimens are listed in Table 2.7 and 

illustrated geometrically in Figure 2.37. In specimen C03, the width of the beams was different 

from that of the columns. In specimen D05, there was a difference between the depth of beams 

and that of the columns. At each story drift of 0.25%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%, two 

cyclic loadings were applied horizontally. 
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Table 2.7. Properties of interior joint specimens 

Specimen C03 D05 

concrete compressive strength (MPa) 31.0 32.4 

beam width x depth (mm) 120 x 240 240 x 170 

longitudinal beam bars 
3-D13 

 2-D13 
7-D13 

bar yielding strength (Mpa) 378 378 

bar distant ratio 
0.8  

0.5 
0.72 

column width x depth (mm) 240 x 240 240 x 340 

longitudinal column bars 5-D13 3-D13 

column bar yielding strength (Mpa) 378 378 

column bar distant ratio 0.8 0.86 

Joint hoops D6 (two sets) 

Yielding strength of hoops (MPa) 399 

 

Figure 2.37. Geometric properties of specimen C03 and D05 
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2.5.5 Discussion of results 

2.5.5.1 Load deflection relationship 

Table 2.8 compares the maximum story shear predicted by the new joint model (Vu_Analysis) to 

that of the experimental results, at the flexural strength of beam (Vu_ACI) by ACI 318 – 08 [2], 

and computed at the nominal joint shear strength (Vu_AIJ) by AIJ 1999 [1]. The relationship of 

the story shear versus the story drift of all specimens is shown in Figure 2.38.  

The analytical result captured well the backbone of the cyclic response of specimen C03 with 

refer to the story shear versus the story drift relationship. In specimen C03, the maximum story 

shear from prediction was closer to that from test data than others computed at the flexural 

strength of beam or at the nominal joint strength. In computation of specimen D05, two cases 

were analyzed: concrete struts with the orientation followed diagonal direction and concrete 

struts with the orientation of 45o. The analysis with 45-degree orientation of concrete struts 

returned in a better correlation with the observed backbone of the cyclic response of specimen 

D05 than that with diagonal orientation of concrete struts. 

2.5.5.2 Comparison to Shiohara’s numerical method 

A comparison between the computation by the new model and Shiohara’s numerical method at 

the ultimate stage is shown in Figure 2.39. All of the forces were normalized by 0.85tf’c. In 

specimen C03, there was a good agreement between the results of the new model and those of 

Shiohara’s numerical method in which the story shear and forces in reinforcements and concrete 

were mostly the same in the two cases. In specimen D05, in comparison to Shiohara’s numerical 

method, the analysis with diagonal orientation of concrete struts showed a better correlation 

than that with 45-degree orientation. Difference from Shiohara’s numerical method was 

attributed to the predicted stress in the joint hoop at the ultimate stage which was a half of the 

joint hoop’s yielding strength. In Shiohara’s numerical method, the joint hoop was always 

assumed to yield at the ultimate stage. 

  



67 

Table 2.8. Analytical results of the maximum story shear 

Results C03 D05* D05** 

Maximum story 

shear (kN) 

At the flexural strength of beam 

(column) by ACI 318 - 08[2] (Vbu) 
69.4 75.2 75.2 

Computed at the nominal joint shear 

strength by AIJ 1999 (Vju)  
80.4 55.6 55.6 

Test (Vcmax_Test) 67.4 59.3 59.3 

Analysis (Vu_Analysis) 66.0 69.2 58.8 

Vcmax _Analysis / Vbu 0.95 0.92 0.78 

 Vcmax _Analysis / Vju 0.82 1.24 1.06 

 Vcmax _Analysis / Vcmax _Test 0.98 1.17 0.99 

*: orientation of concrete struts follows diagonal direction 

**: orientation of concrete struts is 45o 
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(a) Specimen C03; (b) Specimen D05 with the orientation of concrete struts followed 

diagonal direction; (c) Specimen D05 with the orientation of concrete struts followed 45o 

Figure 2.38. Comparison between experiment and monotonic response of specimen C03 and 

D05 
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(a) Specimen C03; (b) Specimen D05 with the orientation of concrete struts followed 

diagonal direction; (c) Specimen D05 with the orientation of concrete struts followed 45o 

Figure 2.39. Predicted story shear by new model with perfect bond condition (number in 

parentheses is determined by Shiohara’s numerical method) 
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2.6 Modification of the new model to investigate the cyclic response of the interior beam-

column joints with different depth of beam and column and normal bond condition 

There were changes of definition of deformation of concrete struts and constitutive rules of 

materials under cyclic loadings as below. 

2.6.1 Concrete struts 

In Shiohara’s mechanical model, the rotation of four triangular bodies causes compression and 

tension zone in concrete as well as generate joint deformations. Strain distribution on diagonal-

orientation section of concrete struts in the study is, therefore, determined from displacements 

of corner points and the joint center. It is noticed that when longitudinal reinforcements in beam 

and column yield during loading stages, plastic deformation in tensile bars prevent tensile 

concrete struts near joint corners from returning compression in the next unloading stage. In 

other word, triangular bodies in the mechanical model cannot close after unloading and even 

during reverse loading, thus fails to resemble Shiohara failure mode. To solve this problem, it 

is assumed that during loading stages, four triangular segments expand towards yielding 

reinforcements as described in Figure 2.40. The expanding lengths are defined from 

deformation of respective tensile reinforcement as followings: 

where ∆ei and ∆ej are expanding lengths towards yielding bar Ti and Tj, and ∆p
Ti and ∆p

Tj are 

deformation at yielding strength of those bars respectively.  

 

Figure 2.40. Expansion of triangular segments after bar yielding 
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Displacements in Figure 2.32 named as δcom_1, δcom_3, δten_6, δten_8 are used for determining strain 

distribution in diagonal orientation, can be calculated as below: 

Similarly, displacements in Figure 2.33 named as δcom_2, δcom_4, δten_5, δten_7 are used for 

determining strain in directions perpendicular to diagonals, can be calculated as below: 

2.6.2 Constitutive material model 

2.6.2.1 Constitutive steel model 

At the unloading point (σi, εi), the skeleton path employs the initial stiffness Es again, as shown 

in Figure 2.41. 
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Figure 2.41. Steel hysteresis rule 

2.6.2.2 Constitutive bond-slip model 

The rules of the unloading and reloading path defined by Eligehausen et al.[25], as shown in 

Figure 2.42. Here, τ is the bond stress, s is the slip, and τf0 and τf  are the frictional bond 

resistance at the first cycle and later cycles respectively. 

 

Figure 2.42. Bond-slip hysteresis rule 

2.6.2.3 Constitutive concrete model 

Unloading paths 

The unloading paths were assumed to comprise of two linear lines with the Young modulus of 

concrete (Ec) used in the slope of the first line, while the second line used a slope equal to 

0.071Ec, as suggested by Palermo and Vecchio [45]. The plastic offset strain εc
p at the end of 

the unloading paths in compression is defined as follows: 
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where εmax is the previously obtained maximum compressive strain in the material, and αc is a 

parameter related to the plastic strain amount, which was set to be 0.32 in the analysis carried 

out in this study. 

Coordinates of the deflection point (ε2i, σ2i) were calculated as follows: 

Similarly, at an arbitrary point in the strut’s section with strain ε between εcom_i and zero (εcom_i 

≤ ε ≤ 0), the unloading path went from the unloading point (ε1, σ1), point (ε2, σ2), and point (εc
p, 

0) correspondingly. 

Strain ε1 was determined from strain ε1i as follows: 

σ1 was computed from ε1 by the loading skeleton.  

It was assumed that when strain ε reached εcom_i, ε2 and εc
p also reached ε2i and εc

pi respectively. 

When ε decreased to zero, ε2 and εc
p also decreased to zero. ε2 and εc

p were determined from 

these assumptions as follows: 
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σ2 was also assumed to be proportional to σ2i as follows: 

In the unloading path with slope Ec, as shown in Figure 2.43(a): 

σcom_i was determined from εcom_i as follows: 

Stress σ corresponding to strain ε (εcom_i ≤ ε ≤ 0) of an arbitrary point in the strut’s compression 

section was interpolated so that when σcom_i reached σ1i or σ2i, σ also reached σ1 or σ2 

respectively, as described in the following equation: 

If 0 1 0c c iK     
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Unloading path with slope 0.071Ec, as shown in Figure 2.43(b): 

σcom_i was determined from εcom_i as follows: 

Stress σ corresponding to strain ε (εcom_i ≤ ε ≤ 0) of an arbitrary point in the strut’s compression 

section was computed as follows: 
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Reloading from tension path 

A shown in Figure 2.44, σcom_i was determined from εcom_i as follows: 

Stress σ corresponding to strain ε (εcom_i ≤ ε ≤ 0) of an arbitrary point in the strut’s compression 

section was computed as follows: 
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Figure 2.43. Constitutive rule of concrete under unloading in compression 

 

Figure 2.44. Constitutive rule of concrete under reloading from tension to compression  
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2.7 Verification of experimental study 

2.7.1.1 Specimens  

Five specimens (A01, B01, B02, B05, and C01) in section 2.3.8.1 and two specimens in section 

2.5.4.1 (C03 and D05) were chosen for verification. In specimen D05, the orientation of the 

concrete struts followed the direction of the joint diagonals. 

2.7.1.2 Load deflection relationship 

Relationships of story shear versus story drift of five specimens are described in Figure 2.45 to 

Figure 2.47. Results indicated good correlations between maximum story shear predicted by 

the new model with observation. The differences of maximum story shear between observation 

and computation based on the new joint model were under 7% in all specimens. In specimen 

B02 and B05, the computed maximum story shear had a good agreement with the story shear 

established at the shear strength determined from AIJ 1999 and the observed maximum story 

shear. Degradation of story shear at 2% of A01, B02, B05, C01, C03 and D05 was predicted 

well although there was disagreement in B01 with the ultimate point at 3% of positive path 

instead of 2% like prediction.  

2.7.1.3 Failure mode 

Based on the observation, the failure of specimen B01 and B02 was the joint shear failure 

following beam yielding, and the failure of other specimens was the joint shear failure. The 

analysis captured well these aspects. To understand more specifically joint performance, failure 

modes of specimens are evaluated with considering failure of crushing concrete struts, yielding 

failure of reinforcements, and bond failure of reinforcing bars. The crushing of concrete struts 

was predicted when the computed concrete average stress degraded. The bond failure of 

reinforcement was captured when the bond stress exceeded 2.5f’c. The results of the joint failure 

modes were described in Table 2.9. In all specimen, there was no bond failure. The yielding of 

reinforcements in specimen A01 and C01 showed a good agreement with test data. The 

reinforcement yielding in specimen B01 was also predicted well although there was an 

overestimation of the story drift at the hoop yielding. For specimen B02, the failure of the 

system is due to yielding of longitudinal bars in beams, columns, and joint hoops. In specimen 

B05 with the same dimensions of B02, because of reinforcing two bars D13 in column, yielding 

of bars of columns at the failure mode disappears. Although the observation shows no yielding 
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in longitudinal bars in columns of specimen B02 but B05 which is different from calculation, 

prediction of yielding in longitudinal bars in beam and joint hoops is confirmed well. The 

analysis predicted only the yielding of the column bar in specimen D05 which was also 

confirmed by experiment. 

2.7.1.4 Comparison to Shiohara’s numerical method 

A comparison between the computation by the new model and Shiohara’s numerical method 

[5] at the ultimate stage is shown in Figure 2.48. All of the forces were normalized by 0.85tf’c. 

In most specimens except D05, there was a good agreement between the results of the new 

model and those of the Shiohara’s numerical method in which the story shear and forces in 

reinforcements and concrete were mostly the same in the two cases. The significant differences 

in specimen D05 were attributed to the assumption of reinforcement yielding in Shiohara’s 

numerical method which assumed yielding for bar spring T3 and hoop spring T5. However, the 

observation showed that there was only yielding of the column bars in specimen D05 which 

was similar to the prediction from the new model.  
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Figure 2.45. Story shear versus story drift relationship of specimen A01, B01, and B02 
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Figure 2.46. Story shear versus story drift relationship of specimen B05, C01, and C03 
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Figure 2.47. Story shear versus story drift relationship of specimen D05 

 

Table 2.9. Failure modes of interior joint specimens under cyclic loadings  

Specimen Failure mode 

A01 

Yielding of beam longitudinal bars   

Yielding of column longitudinal bars 

Yielding of joint hoops 

B01 

Yielding of beam longitudinal bars   

Yielding of column longitudinal bars 

Yielding of joint hoops 

B02 

Yielding of bars of beam 

Yielding of bars of column 

Yielding of joint hoops 

B05 

Yielding of bars of beam 

Yielding of joint hoops 
Concrete strut crushing 

C01 

Yielding of beam longitudinal bars 

Yielding of column longitudinal bars 

Yielding of joint hoops 

Concrete strut crushing 

C03 
Yielding of bars of beam 
Yielding of bars of column 

Yielding of joint hoops 

D05 Yielding of bars of column 
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Figure 2.48. Predicted story shear of the seven specimens 

(number in parentheses is determined by Shiohara’s numerical method) 
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2.8 Conclusion 

A new model has been proposed for simulating beam column connections under cyclic 

loadings. The model successfully develops SMM from predicting joint moment capacity into a 

practical joint element. Concrete struts and bar springs were defined from rotation of rigid 

bodies in Shiohara mechanism so that their deformation characterized this rotation while bond 

slip springs represented the anchorage loss along longitudinal bars within the joint region. The 

new joint element, thus, reserved the equilibrium relationships in SMM; furthermore, it 

established successfully a compatible relationship of joint deformations with deformations of 

joint components which was neglected in SMM. Employing concrete strut was an aspect which 

reserved the original idea of SMM and made the present model differ from other multi-spring 

joint elements. In the theory, stress in compressive concrete at the failure stage was assumed to 

attain 85% of concrete compressive strength (recommended by ACI 318); nonetheless, the 

proposed model developed this aspect generally since a linear distribution of strain on strut 

section was adopted and stress distribution was then determined based on a concrete 

constitutive law. A new set of joint deformations was also introduced for the new model with 

respect to nine independent components having a compatible relationship with deformation of 

bar springs and concrete struts. Bond-slip stiffness was considered and integrated into bar 

stiffness to establish the joint general stiffness.  

The new joint model was verified in case of interior joints by simulating response of several 

interior subassemblage specimens with different sizes and reinforcing details under cases: the 

monotonic response of the interior joints with identical beam-column depth and perfect bond 

condition, the monotonic response of the interior joints with identical beam-column depth and 

normal bond condition, the monotonic response of the interior joints without identical beam-

column depth, and the cyclic response of the interior joints with normal geometric properties 

and normal bond condition. In each case, failure mode of a joint was studied in details regarding 

failure caused by yielding of longitudinal bars in beams, columns, joint hoops, crushing of 

concrete, and bond failure of reinforcing bars. Comparison to Shiohara’s numerical method in 

computing internal forces in a joint at the ultimate stage was also carried out to confirm the 

reliability of the new joint element. 
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Chapter 3 Application on Investigation Cyclic Response of 

Exterior Joints, Knee Joints and RC Frame  

3.1 Abstract 

In this chapter, applications of the new joint model on investigating cyclic response of the 

exterior joints, knee joint, and a two dimensional reinforced concrete frame were implemented. 

Firstly, a new model for exterior joints was built based on some modifications on the interior 

joint element proposed in Chapter 2. The cyclic response of four exterior joint specimens 

analyzed by the new exterior joint model was verified by test data. Secondly, the interior joint 

model in Chapter 2 was used without modifications to investigate the cyclic response of three 

knee joint specimens. The computational results were then evaluated by experimental data 

which indicated some disagreements. Several recommendations on future researches to 

improve the reliability of the new joint model on studying performance of knee joint were also 

proposed. Finally, an application of the new interior joint and exterior joint model on 

investigating the performance of a 2D RC frame under reversed loading was conducted. Results 

showed a good prediction of the new joint models in predicting the overall response of the 

frame. 

3.2 Modification of the new model to investigate the cyclic response of exterior joints 

3.2.1 The hinging model for exterior joint 

Experiments on RC beam-column exterior joints by Shiohara and Kusuhara [46] indicated the 

existence of diagonal cracks on the joint surface for joint failure mode, as shown in Figure 3.1. 

The location of the diagonal cracks was governed by the anchorage length of the longitudinal 

reinforcing bars in the beams for both anchorage type U or type plate as shown in Figure 3.2(a). 

As illustrated in Figure 3.2(b), cracks developed from the top and bottom edge of the contacting 

face between the joint and the beam to the anchorage points which were located by the distance 

ηTdx from the beam face. The extension of crack on the contacting face between the columns 

and the joint was represented by the length ηCdx. 
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Figure 3.1. Observed crack after test of an exterior joint 

 

Figure 3.2. Crack pattern of exterior joint after failure 

   

Figure 3.3. Hinging model of exterior joints and resultant forces in concrete and 

reinforcements 

Shiohara’s hinging model for interior joint was extended to exterior joint in which four free 

bodies connected to each other by reinforcements and there were equilibriums of forces on each 
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body as shown in Figure 3.3. Similar to section 2.2, the joint was considered to be elastic before 

cracking. After cracking, bar springs and concrete struts were used to simulate the resultant 

forces in reinforcements and concrete applied to the four free bodies that was represented as 

rigid plates. The deformation of bar springs and concrete struts, on the other hand, were 

computed by the rotation of the four free bodies of the hinging model. 

3.2.2 Geometric properties of the joint element 

Figure 3.4 shows the geometric properties of an exterior joint element. The other definition 

regarding the compatibility and the joint elastic stiffness is similar to the definition in Section 

2.2. 

 

Figure 3.4. Geometric properties of the exterior joint model 

3.2.3 Concrete struts 

The four free bodies in the joint hinging model rotated and caused compressive zones and 

tensile zones in concrete under loading. Based on the observation of the cyclic tests and the 

idealized kinematic model at the ultimate stage of the exterior joints [46], these zones were 

illustrated in Figure 3.5(a). In this section, the “diagonal” referred to the diagonals of the 

rectangular with the length ηCdx and the height dz where the cracks developed. The concept of 

the diagonal cracks of Shiohara’s joint hinging mechanism [5, 6] for the interior joints was 

extended to the exterior joints in which there were flows of concrete compressive force in the 

diagonal direction. The flow of force near corners was assumed to be perpendicular to the 

diagonals. The width of the concrete tensile and compressive zones was determined by the 

displacement of the corners and the center of the rectangular (ηCdx) x dz in the direction of the 

abovementioned force flows. 



88 

In Figure 3.5(b), deformation δcom_1, δcom_3, δcom_6, and δcom_8 in the diagonal direction and δten_2, 

δten_4, δten_5, and δten_7 in the direction perpendicular to the diagonal were calculated as follows: 

The displacement in the same direction of points on the diagonals distributed linearly as shown 

in Figure 3.5(c). The concrete tensile zones and compressive zones were separated by the zero 

displacement points. It was assumed that the strain distribution on the diagonals was also linear 

in which the zero strain points coincided with the corresponding zero displacement points. Eight 

concrete struts (C1 to C8) were used to define the four compressive zones and the four tensile 

zone in concrete so that the strain distribution on the section of struts was the same with the 
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foregoing strain distribution on the diagonals, as shown in Figure 3.5(d). At a loading stage, 

there were four concrete struts in compression and four concrete struts which did not carry any 

force in the tensile zone. Based on the flows of the compressive force along the diagonal in 

Figure 3.5(a), the diagonal length (ddia) was assigned to the length of the concrete struts ( C1, 

C3) parallel and next to this diagonal as shown in Figure 3.5(d). To keep the linear strain 

distribution on the diagonals and the coincidence of the zero displacement point and the 

corresponding zero strain point, the length of strut C1 and C3 was also assigned to that of C6 

and C8. As a result, the concrete struts (C1, C3, C6, C8) in the diagonal direction had the same 

length (l1). Similarly, the concrete struts (C2, C4, C5, C7) in the direction perpendicular to the 

diagonal also had the same length (l2), as shown in Figure 3.5(d). 

On the half-length of the diagonal, the typical distribution of the concrete strain is shown in 

Figure 3.5(e) with compressive strut i and tensile strut j. The strain at the end of the strut section 

regarding strut i (εcom_i) and strut j (εten_j) were determined as follows: 

where li = lc or li = lt depends on the direction of the strut. 

The width of strut i (wCi) and strut j (wCj) were governed by coefficient ξi and ξj, which were 

determined as follows: 
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The joint thickness was assigned for the thickness of a strut, which was computed from the 

recommendation of AIJ [47]:  

where tb is beam width, tc1 and tc2 refer the smaller of ¼ column depth and ½ the distance 

between beam and column face on either side of the beam. 

The average stress in the compressive strut i and the tensile strut j was calculated as follows: 

where σ(ε) is the function regarding the envelope of stress against strain. 

The distance between the location of the strut axial force and the end of the strut section was 

computed by the coefficient β1 to β8 in Figure 3.5(f), which were determined as follows: 

 1 2b c ct t t t     (3.13) 
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In Equation (3.14) to Equation (3.17) if εcom_i or εten_j reaches zero, σCi, σCj, βi, and βj are also 

considered to be zero. Figure 3.5(f) shows the illustration of the eight concrete struts connected 

to the rigid plates. 

 

(a) Tensile zone and compressive zone in concrete; (b) Displacement of the center point 

and corner point; (c) Displacement and strain distribution on the joint diagonals; (d) 

Illustration of concrete strain distribution and the width of the struts; (e) Typical stress 

distribution on a half of the joint diagonals; (f) Definition of concrete struts connecting to 

rigid plates; 

Figure 3.5. Definition of concrete struts of the exterior joint element 
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3.2.4 Bar springs  

The rotation of the four rigid plates simulated the rotation of the four free bodies of the hinging 

model. When the rigid plates rotated, there were following displacements (∆T2, ∆T3, ∆T5, ∆T5T, 

∆T5B, ∆T6, ∆T7, ∆T8, ∆T9, ∆T10) at the location of the reinforcements, as shown in Figure 3.6. 

 

Figure 3.6. Deformation at the reinforcement location of the exterior joint element 

These displacements could be computed by nine independent components of the joint 

deformations as follows: 
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In this section, bar springs were defined based on these displacements to represent 

reinforcements in joint core. Notation T1 to T4, T6 to T10 were employed for the longitudinal 

beam bars and column bars respectively. T5 represented the center joint hoops while T5T and 

T5B indicated the joint hoops at the contacting face of the joint and the columns, as shown in 

Figure 3.7. When slip was considered, the displacements in Figure 3.6 were used to define the 

deformation of bar springs and bond slip springs as illustrated in Figure 3.8. The axial forces of 

bar springs and bond-slip springs were shown in Figure 3.9. 

The relationship between the force and the deformation of springs are expressed as follows: 

where:  

T is the force vector of the bar springs, as follows: 

∆TS is the combined deformation vector of the springs: 

kTS is the matrix of the combined tangent stiffness of all springs: 
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 (i, j,r) = (1, 2, A), (3, 4, C), (6, 7, D), (8, 9, B) 

In the above equations, T1 and T4 were not included. Because ∆T1 and ∆T4 had a relationship 

with the deformation of the adjacent bond-slip springs as shown in Figure 3.8, T1 and T4 were 

simultaneously determined with the bond forces by an iterative computational technique, which 

is mentioned later in the joint computational procedure. 
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Figure 3.7. Definition of bar springs and bond-slip springs of the exterior joint element 

 

Figure 3.8. Deformation of bar springs and bond-slip springs of the exterior joint element 

 

Figure 3.9. Axial forces of bar springs and bond-slip springs of the exterior joint element 
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3.2.5 Joint compatibility and stiffness 

3.2.5.1 Before cracking 

The joint elastic stiffness was used to analyze the joint response before cracking. The 

definition was similar to section 2.3.4.1. 

3.2.5.2 After cracking 

Equation (2.45) was also used to check the point when cracks occurred. 

The joint deformation vector had a compatibility relationship with the vector including the 

average deformation of the struts (∆C1 to ∆C8) and the combined deformation of the springs as 

follows: 

where 

Due to contragredience, there was the following relationship of the joint force vector f and the 

force vector of all springs and struts q: 

where 
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where α is the are the angle with respect to the orientation of the joint diagonals and the 

horizontal direction: 

 

and: 
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The stiffness matrix k0 in Equation (2.10) could be computed as follows: 

where k1 is the stiffness matrix which includes the stiffness of all concrete struts and bar 

springs: 

kTS is derived from Equation (3.31); kC is the diagonal stiffness matrix of all concrete struts 

including: 
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where ∆Ci
n, Ci

n, ∆Ci
n-1, and Ci

n-1 are the average deformations and axial forces of strut Ci and 

strut Cj at step n and step n-1 respectively. ∆i
n and ∆i

n-1 were defined as follows:  

At the beginning of loading, coefficient ξi (i = 1÷8 ) was assigned to be 0.5. 

The strut initial stiffness was determined as follows: 

where Ec is the concrete modulus. 

The joint stiffness in Equation (2.10) was rewritten as follows: 

The constitutive model of materials is the same with the definition in section 2.6.2. 

3.2.6 Verification of experimental result 

3.2.6.1 Specimens 

Four specimens (L06, N02, O02, and P02) from a series of tests on exterior joint 

subassemblages [48] were chosen for verification. Details of specimens are described in Table 

3.1. Specimen L06 has a common section of 240 x 240 mm for beam and column using steel 

plate welded at ends of beam bars as anchorages. Specimen O02 has the same size like L06 but 

anchorages type U are employed. N02 and P02 also uses the same type of anchorage of L06 but 

different size of frame members with beam section of 240 x 170 mm and column section of 240 

x 340 mm for N02, and beam section of 240 x 340 mm and column section of 240 x 170 mm 

for P02. Bars D6 are utilized for hoops of all specimens with two sets for L06, N02, O02 and 

three sets for P02. Beams and columns of specimens are 700 mm length from one end to the 

joint center, and detailed geometric properties are shown in Figure 3.10, Figure 3.11, Figure 

3.12.  Load setup and loading history are described in Figure 3.13 and Figure 3.14. Force 
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applies at the top of columns so that the absolute magnitude of axial force in columns is equal 

to half of shear forces in beam Vb.  

 

 

Table 3.1. Properties of exterior joint specimens 

Specimen L06 N02 O02 P02 

concrete compressive strength (MPa) 27.7 29.0 29.8 26.2 

beam width x depth (mm) 
240 x 

240 

240 x 

 170 

240 x 

240 

240 x 

 340 

longitudinal beam bars 4-D13 6-D13 4-D13 3-D13 

bar yielding strength (Mpa) 380 

bar distant ratio 0.8 0.72 0.8 0.86 

column width x depth (mm) 
240 x 

240 

240 x 

 340 

240 x 

240 

240 x 

 170 

longitudinal column bars 4-D13 2-D13 2-D13 5-D13 

column bar yielding strength (Mpa) 380 

column bar distant ratio 0.8 0.86 0.8 0.72 

anchorage length (mm) 156 221 156 111 

anchorage length 0.65 

joint hoops D6 (2 sets) D6 (3 sets) 

hoops yielding strength (Mpa) 334 
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Figure 3.10. Test specimens: L06, O02 

 

Figure 3.11. Test specimens: N02 
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Figure 3.12. Test specimens: P02 

 

 

Figure 3.13. Load setup of exterior joint experiment 
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Figure 3.14. Load history of exterior joint specimens 

3.2.6.2 Computational procedure 

The computational procedure before cracking was similar to Figure 2.21. The Newton-Raphson 

iterative algorithm in Figure 2.23 was also used. The detailed computational procedure of the 

joint is described in Figure 3.15 for stages after cracking in which a set of the joint nodal 

displacements (d) returned in a set of the joint nodal forces (p). Computation was carried out 

by OBASAN with Newton-Raphson iterative method. Response after degradation was not 

interested in order to avoid non-converging. 
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Figure 3.15. Chart of the computational procedure after cracking for an exterior joint element  
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3.2.6.3 Load deflection relationship 

Relationships of story shear versus story drift of the four specimens are described in Figure 

3.16. Results showed good correlations between maximum story shear predicted by the new 

model with observation. The differences of maximum story shear between observation and 

computation based on the new joint model were 1.9%, 5.6%, 11.4%, and 2.4% in specimen 

L06, N02, O02, and P02 respectively. Degradation of story shear at 1.5% of L06, O02, and P02, 

and at 1% of N02 was predicted well although there was disagreement in O02 with the ultimate 

point at 2% of negative path instead of 1.5% by prediction.  

3.2.6.4 Failure mode 

The prediction of the joint failure mode was confirmed by observation in all specimens. To 

understand more specifically joint performance, failure modes of specimens are evaluated with 

considering failure of crushing concrete struts, yielding failure of reinforcements, and bond 

failure of reinforcing bars. The crushing of concrete struts was predicted when the computed 

concrete average stress degraded. The bond failure of reinforcement was captured when the 

bond stress exceeded 2.5f’c. The results of the joint failure modes were described in Table 3.2. 

Crushing of concrete was predicted only in specimen P02, but the maximum compressive forces 

in struts of other specimen almost attained limitation. Similar to analysis of interior joints, there 

was no estimated bond failure although in the most critical case in specimen N02, the bond 

stress attained 80% the bond strength. 

In comparison to test data, the computation in specimen L06 and P02 had a good prediction of 

yielding in the center joint hoop although there was a difference in predicting yielding of the 

longitudinal bars in the beams and columns. There was also a good correlation between the 

analytical results and test data in specimen N02 and O02 in which the longitudinal bars in the 

beams did not yield while the center joint hoops and the longitudinal bars in columns yielded 

within the story drift of 1%.  
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Figure 3.16. Story shear versus story drift relationship of exterior joint specimens 
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Table 3.2. Failure modes of exterior joint specimens  

Specimen Failure mode 

L06 
Yielding of bars of column 

Yielding of joint hoops 

N02 
Yielding of bars of column 

Yielding of joint hoops  

O02 
Yielding of bars of column 
Yielding of joint hoops 

P02 
Yielding of bars of column 
Yielding of joint hoops 

Concrete strut crushing 

 

3.2.6.5 Comparison to Shiohara’s numerical method 

Shiohara [49] introduced a numerical method to compute the story shear and the resultant force 

in concrete and reinforcing bars at the ultimate stage based on some assumptions of stress in 

material. That numerical method was used in this section to compare with the material resultant 

forces by the analysis. The result is shown in Figure 3.17 and Table 3.3 in which all of the 

forces were normalized by 0.85tf’c. In all specimens, there was a good agreement of the story 

shear at the ultimate point in the two cases. The resultant force in the longitudinal bars in the 

beams and columns was almost the same. The computation showed that there was no 

compressive force in strut C2 which agreed well with the same assumption in Shiohara 

numerical method. The difference in the concrete resultant forces was attributed to the stress in 

the center joint hoops. At the failure point, the center joint hoops in Shiohara numerical method 

were assumed to yield. In the present analysis, the yielding of the center joint hoops occurred 

before the failure stage. Due to the plastic deformation, the stress of the center joint hoops at 

the failure point was smaller than the hoop yielding strength. In general, there was a good 

correlation between two cases in predicting the story shear and the forces in material at the 

ultimate stage. 
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Figure 3.17. Joint failure mode and resultant forces in material of exterior joint specimens 

Table 3.3. Predicted story shear and resultant forces in material of exterior joint specimens 

Force 
Specimen 

L06 N02 O02 P02 

C1 0.011 (0.013) 0.007 (0.009) 0.009 (0.012) 0.007 (0.009) 

C2 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 

C3 0.043 (0.047) 0.032 (0.051) 0.018 (0.015) 0.032 (0.028) 

C4 0.025 (0.027) 0.023 (0.028) 0.020 (0.021) 0.023 (0.025) 

T2 0.008 (0.008) 0.002 (0.002) 0.006 (0.006) 0.002 (0.002) 

T3 0.031 (0.034) 0.031 (0.049) 0.014 (0.013) 0.031 (0.028) 

T5 0.006 (0.007) 0.005 (0.007) 0.005 (0.007) 0.005 (0.007) 

T5T 0.004 (0.004) 0.004 (0.004) 0.004 (0.004) 0.004 (0.004) 

T5B -0.004 (-0.004) -0.004 (-0.004) -0.004 (-0.004) -0.004 (-0.004) 

T6 0.004 (0.006) 0.012 (0.012) 0.008 (0.010) 0.012 (0.015) 

T7 0.036 (0.034) 0.019 (0.019) 0.018 (0.018) 0.019 (0.019) 

T8 0.004 (0.004) 0.002 (0.002) -0.001 (-0.002) 0.024 (0.014) 

T9 0.013 (0.014) 0.006 (0.006) 0.008 (0.008) 0.006 (0.006) 

Story shear 0.006 (0.006) 0.006 (0.006) 0.004 (0.004) 0.005 (0.005) 

*Number in parentheses was derived from Shiohara’s numerical method 
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3.3 Application of the new joint model to investigate the cyclic response of knee joints 

3.3.1 Knee joint model 

In this section, knee beam-column joints with a full anchorage length ratio (ηCx = ηCz ≈ 1) were 

modeled by the interior joint element in Chapter 2 to investigate the cyclic response. 

3.3.2 Specimens 

An experiment on response of RC knee joints under cyclic loadings of Mogili et al. [50] was 

employed for analysis. Specimen KJ1 and specimen KJ2 with the same length of 1800 mm and 

the same beam and column section of 300x300 mm, as shown in Figure 3.18, were chosen for 

analysis. The columns of two specimens had three bars T20 (diameter = 20 mm) at the top layer 

and the bottom layer symmetrically. While the beam of KJ1 had the same bar arrangement like 

columns, the beam of KJ2 had two bars T20 at the top layer. Stirrup T10 (diameter = 10 mm) 

was placed at the joint region with 3-closed stirrup for transverse and 3-U shaped stirrup for 

vertical direction respectively. Bar T20 and bar T10 had yield strength of 551.4 MPa and 500.6 

MPa, modulus of elasticity 200 GPa and 204.8 GPa respectively. KJ1 used concrete with 

strength of 38.34 MPa while KJ2 used concrete with strength of 39.43 MPa. Test setup and 

loading history for specimens are denoted in Figure 3.18 and Figure 3.19. Load was applied to 

beam end and column end through a diagonal hydraulic actuator which could generate opening 

mode and closing mode for a joint.  

3.3.3 Analytical results and discussion 

The relationships of story shear versus story drift of the two specimens are shown in Figure 

3.20 and the resultant forces in concrete and reinforcement at the ultimate stage are shown in 

Figure 3.21 in which all forces were normalized by 0.85tf’c.. There was significant difference 

between test data and the analysis. In both specimen KJ1 and KJ2, the beam yielding occurred 

although there was joint failure mode from observation. There was an absent of the top middle 

reinforcing bar in the beam section of KJ2 in comparison to that of KJ1 while the column 

reinforcing details of the two specimens were identical. These features induced the same 

opening response in both KJ1 and KJ2 and the dominant response in the closing mode of KJ1 

which could not be predicted by the computation. As shown in Figure 3.21, the resultant forces 

in materials were symmetric respect to the diagonals in KJ1 in which the location resultant 
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forces returned in a little difference of story shear between the opening mode and closing mode. 

Similarly, although there was a redistribution of resultant forces due to the difference of section 

properties of beam and column in KJ2, the computed story shear in the two modes attained that 

at the yielding strength of beam and column and resulted in the story shear ratio of 1.0 between 

the two modes which overestimated the observed response. In KJ1, the difference of the 

maximum actuator force between test data and the analysis was 6.8% and 34.3% in KJ1 and 

KJ2 respectively. The ratio of the maximum force between the opening mode and the closing 

mode in KJ1 from experiment was 0.61 which was quite different from that ratio of 0.92 from 

computation. In KJ2, the ratio was 0.78 and 1.00 for observation and prediction respectively. 

The above disagreements were attributed to the difference of the failure mode used for building 

the joint model and the real failure mode in knee joint specimens. In Figure 3.22, observed 

dominant crack of knee joints opened fanwise which differed the diagonal crack pattern from 

those of interior joints in Figure 2.2 and those of exterior joints in Figure 3.2. To have a more 

reliable response, some further modifications of the size and the location of rigid bodies in knee 

joints are necessary. 
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Figure 3.18. Test setup of specimen KJ1 and KJ2 

 

 

Figure 3.19. Loading chart of test KJ1 and KJ2 
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Figure 3.20. Relationship of force and displacement of the actuator of specimen KJ1 and KJ2 
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(a) Specimen KJ1 in closing mode; (b) Specimen KJ1 in opening mode 

(c) Specimen KJ2 in closing mode; (d) Specimen KJ2 in opening mode 

Figure 3.21. Resultant forces in material of knee joint specimens 
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Figure 3.22. Cracking patterns of some knee joint specimens by Zhang and Mogili 

3.4 Application on investigating the cyclic response of a RC frame 

3.4.1 Introduction 

Many RC frame buildings in the last century was designed from countries to countries without 

ductility, as a result, fail to fulfil modern standards for seismic resisting criteria. Recently, 

present codes have required stronger reinforcing details which are not considered fully in the 

past. Experience from collapse of existing buildings due to severe earthquakes also shows that 

demolition of those structures may be derived from causes such as inadequate reinforcing 

details and poor anchorage conditions, particularly in beam-column joint regions. In practical 

design, there are many cases in which stress in joint regions is pretty high due to using small 

columns reinforced by longitudinal bars with high strength or high ratio of reinforcement. 

During loading, diagonal cracks open and compressed concrete crushes on each other which 

causing deterioration on joint stiffness. Since contribution of beam-column joints on the overall 

response of a RC frame is crucial, this deterioration must be prevented to fulfil the rigidity 

assumption in analysis [33]. Many models for simulating seismic behaviors of joints including 

effects of joint failure local response on the whole performance of RC multi-storey frame 

building have been also proposed. Ghobarah and Biddah [51] used their joint model which 
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consisted of a shear rotational springs and a bond-slip rotational springs to study seismic 

response of a three storey frame and a nine storey frame. Calvis et al. [52] simulated a three 

story frame structure with typical deficiencies in the 1950s and 1970s, and simple joint model 

was utilized. They key point was to emphasize seismic vulnerabilities of a RC frame due to 

using smooth bars and inadequate anchorage method. A recent study conducted by Shiohara 

and Kusuhara has employed Kusuhara joint model to examine seismic performance of a four 

story RC frame [7, 10] designed as a strong column-weak beam structure satisfying Japan 

building standard. The study focused on influence of joint hinging failure on joint damage and 

the overall deformation with P-delta effect included. 

With the main attention of the proposed beam column joint model, this part presents an 

application of the new element in simulating cyclic response of a 2D RC frame. Utilizing 

success of simulating cyclic response of interior joints and exterior joints previously, this part 

examines a further application of the new joint model into frame analysis. 

3.4.2 Test specimen 

As for application on RC frame simulation, a test of 2D RC frame with unequal span subjected 

to cyclic loading [53] was adopted for analysis. The frame is a ½ scale two-bay two-storey 

structure fabricated following the standard of Chinese code for seismic design of buildings [54]. 

Figure 3.23 denotes the front view of the frame with details of dimensions, reinforcements and 

concrete mentioned in Table 3.4. The frame is a 3.6-meter-high structure with the bottom beam 

attached to a rigid base while the top beam was loaded by cyclic loading through an actuator.   

The research aimed to verify simulated response of the frame utilized the new joint model and 

analyzed influence of joint models on analytical results. For verification, the load – deflection 

relationship in term of story shear versus story drift was considered. Beside experimental data, 

computational results of the frame modelling beam-column joints as fiber elements by Wang et 

al. [53] was also utilized for comparison. The fiber element was developed by Spacone et al. 

[55, 56] and the computation was conducted on OpenSees program. The present study 

employed OBASAN program for analysis which considered three cases: modeling the frame 

using the new joint model, using a joint element with shear stiffness derived from the joint shear 

strength recommended by AIJ 1999 [1], and using rigid joints.  
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3.4.3 Verification of the experimental results 

Figure 3.24 and Figure 3.25 show an idealized schematic for the frame with using the new joint 

model and notation of nodes and line elements respectively. Three interior joints (IJ1 to IJ3) 

and six exterior joints (EJ1 to EJ6) were simulated by the present joint element, whereas beams 

and columns were modelled simply by line elements with two nonlinear rotation springs at the 

ends and the flexural strength determined based on ACI 318 [2]. Points of contraflexure were 

assumed to be located at mid-span of beams and columns and trilinear hysteresis rule was 

applied for the moment – curvature skeleton. 

In case of using joint shear strength, eight deformations of a joint element consisting of four 

axial deformations (δx1, δx2, δz1, δz2), four bending deformations (φx1, φx2, φz1, φz2) were assumed 

to follow linear rule with stiffness established from theory of elasticity, whereas shear 

deformation φ0 was assumed to carry joint nonlinearity with anti-symmetric bending moment 

calculated based on the joint shear strength following AIJ 1999. For hysteresis rule, Takeda 

model [42] was employed for the anti-symmetric bending moment – shear deformation 

skeleton. Schematic of the third case with rigid joints was shown in Figure 3.26 with frame 

members simulated by line elements. Loading history applied on the frame is denoted in Figure 

3.27 with three initial cycles for determining yielding displacement (∆) and remaining cycles 

for displacement control. In this section, because the detailed experimental results regarding 

the failure mode of each joint in the frame and yielding of reinforcing bars were not available, 

the main interest was the overall load deflection relationship of the frame. 

The relationship of loading force versus displacement of the top floor is presented in Figure 

3.28. In Figure 3.28a, experimental result and analytical result by Wang [53] are shown in 

comparison to the response computed with the proposed joint model in Figure 3.28b. The result 

indicated that analysis with the new joint model returned in a good agreement with test data in 

which the difference of maximum load was 5.85% although the maximum force in negative 

path was pretty overestimated. Pinching effect in the analysis was quite similar to observation 

and was more apparent than that of Wang’s model.  

Figure 3.28c reveals the dominance of frame member strength in the case of using joint shear 

strength by AIJ 1999 as curves mostly are covered by the trilinear rule. Pinching effect does 

not occur and the shape looks like that of Wang’s model, whereas the maximum force is 

overestimated 21.5%. Without using joint model or in other word, using rigid nodes for 
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simulating connections of beams and columns, the maximum force is pretty much 

overestimated (68.0%) in comparison to previous cases. Like the case with joint shear strength, 

pinching effect also does not occur. 

Figure 3.29, Figure 3.30 and Figure 3.31 present in turn displacement of the first floor when 

simulating with the proposed joint model, with joint shear strength included and with rigid joint. 

There is little difference in results of the three cases and displacements are nearly a half of the 

second floor displacement. In frames with more stories, the different would be more apparent 

[57].  

 

Table 3.4. Properties of frame members 

Section 1-1 & 2-2 3-3 4-4 

concrete compressive strength (MPa) 19.04 

width x depth (mm) 150 x 250 200 x 250 350 x 400 

longitudinal bars 2-D16 
2-D16 
2-D16 

3-D22 
2-D22 

bar yielding strength (Mpa) 425 425 425 

bar distant ratio 0.8 
0.8  
0.5 

0.875 
0 

Joint hoops D8@50 

Hoops yielding strength (Mpa) 305 
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Figure 3.23. Front view of the frame  

 

 

 

Figure 3.24. Analytical idealization of the frame under cyclic loading using the new joint 

element 
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Figure 3.25. Numbering nodes and elements of the frame 

  

Figure 3.26. Analytical idealization of the frame under cyclic loading with using rigid joints 
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Figure 3.27. Loading history of the frame 

 

   

(a) Experiment      (b) Analysis with using the new joint model 

   

(c) Analysis using joint shear strength  (d) Analysis rigid joint 

Figure 3.28. Force versus displacement of the second floor relationship  
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Figure 3.29. Displacement of the first floor with using the new joint model 

 

Figure 3.30. Displacement of the first floor with using the joint strength (AIJ 1999) 

 

Figure 3.31. Displacement of the first floor with using the rigid joint 
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3.5 Conclusion 

Application of the new joint model on simulating cyclic response of exterior joints, knee joints, 

and a 2D RC frame was mentioned. 

First, some modifications were included to develop the interior joint element into the exterior 

joint element. The ratio of the anchorage length of longitudinal bars in beam to column depth 

was the key factor which governed the location of the diagonal cracks and the size of free 

bodies. Deformation of concrete struts and bar springs were also determined from the rotation 

of the four triangular free bodies. To verify the new exterior joint model, an experiment on four 

exterior joint subassemblages under cyclic loading was adopted. Results indicated a good 

agreement between simulation and test with respect to load versus deflection relationship. The 

failure mode of each specimen was studied in which the prediction of reinforcement yielding 

showed a good agreement with the observation in most specimens. A comparison between the 

resultant forces in concrete and bar springs at the ultimate stage determined from the 

computation with the new exterior joint model and from Shiohara’s numerical method was 

presented. The comparison results showed a good correlation between the two methods in 

predicting the resultant forces in most reinforcing bars and the very small compressive force in 

concrete zones near joint corner without beam bar anchoring.  

Second, an application of the new joint model in investigating the cyclic response of knee joints 

was included. A test of two knee joint subassemblages with difference in reinforcing details 

was employed for verification. Because the ratio of the anchorage length in beam and column 

depth was close to unit (ηCx = ηCz ≈ 1), the new interior joint model in Chapter 2 was used to 

model the two joint specimens. The results showed some disagreements between the 

computation and test data regarding the load-deflection relationship of specimens. The distinct 

difference in the response of the opening mode and the closing mode of specimen KJ1 which 

had the identical geometric properties of beam and column was not captured. Moreover, the 

same response of the opening mode in KJ1 and KJ2 was not predicted by the analysis. To 

improve the reliability of the analytical results, it was suggested that some further modifications 

in the crack pattern of the knee joint model were necessary based on the observed pattern from 

experiments.  
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Finally, an application of the proposed joint model on studying cyclic response of a 2D RC 

frame was mentioned. The frame had three interior joints and six exterior joints which were 

modelled by the joint elements in Chapter 2 and Chapter 3 respectively. Because the detailed 

observation of failure in each member of the frame was not available, only the overall load-

deflection relationship was considered. The results indicated a good agreement on predicting 

the load-displacement response of the top floor. The reliability of using the new joint model in 

comparison to computation with the joint shear strength and with rigid joints was also pointed 

out. 
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Chapter 4 Conclusion and Recommendation for Future 

Research 

4.1 Sumarry of research activities 

The main purpose of the study is to propose a new analytical model for simulating cyclic 

response of RC beam column connections derived from Shiohara’s theory of joint hinging. 

Firstly, a new model for interior joints was proposed. Different from other multi-spring models, 

the present joint model was fabricated directly from Shiohara’s mechanical model (SMM). 

Before cracks occurred, the joint element was considered to be elastic. After cracking, bar 

springs, bond-slip springs and concrete struts were used to characterize the joint nonlinear 

behaviors. In SMM, only equilibriums of external forces and resultant forces in concrete and 

reinforcements were mentioned to estimate the joint capacity. The present research used springs 

and struts with an aim to simulate those resultant forces. Moreover, the deformation of springs 

and concrete struts was determined from the rotation of the four free bodies in SMM. From the 

rotation of the free bodies, the displacement of the joint corner points and the joint center was 

computed by nine independent components of the joint deformations. Then, a linear distribution 

of concrete strain on joint diagonals was assumed to achieve the concrete stress through 

constitutive concrete model. Four concrete struts were defined to represent four concrete 

compressive zones and other four concrete struts were used to represent concrete tensile zones 

which were potentially carried compression in reversed loading. A definition of the length for 

these struts was suggested to assure the linear strain distribution assumption of concrete, while 

a detailed computational method to compute the average stress of struts from strain was also 

provided. In the same way, bar springs were introduced to represent reinforcing bars in joint 

core. The compatibility regarding relationship between deformations of springs and struts with 

joint deformations was established. As a result, the joint general stiffness was established to 

capture the joint response from the elastic stage till the ultimate stage. The interior joint model 

was developed gradually through several cases: monotonic response of interior joints with the 

identical depth and different depth of beam and column, with and without perfect bond 

condition, and cyclic response of interior joint with general properties. Verification by test data 

indicated the reliability of the interior joint model with respect to capturing the load-deflection 
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relationship and failure mode of joint specimens. The resultant forces in material at the ultimate 

stage were also confirmed by the numerical method of Shiohara. 

Secondly, applications of the new joint model in investigating cyclic response of exterior joint, 

knee joint and a RC frame was introduced. The model of the exterior joint was developed in 

the same way of the interior joint model in which the ratio of the anchorage length of 

longitudinal bars in beam to column depth was the key parameter in determining the location 

of diagonal cracks and free bodies. For verification, the cyclic response of four exterior joint 

specimens were predicted well by the exterior joint model. The application of the interior joint 

model to simulate the performance of two knee joint specimens was studied. There were some 

disagreements between test data and the analytical results which led to suggestions of adjusting 

the location of diagonal cracks on the knee joint element based on the observed crack pattern. 

The interior joint in Chapter 2 and the exterior joint in Chapter 3 were employed to investigate 

the cyclic response of a RC frame. Due to the limitations of experimental data, only overall 

load-deflection relationship was considered which showed a good correlation between test 

result and the computation.  

4.2 Conclusion 

Through discussion in Chapter 2 and Chapter 3, the following conclusions of the research were 

reached: 

 A new 2D analytical model to simulate cyclic response of beam column joints 

derived directly from Shiohara joint hinging theory was proposed. 

 Joint compatibility was successful introduced into Shiohara mechanism. 

 The new joint element showed reliability of predicting behaviors of 2D interior 

joints, 2D exterior joints and 2D frame. 

 Application of the model on analysis cyclic behaviors of knee joints returns in 

the unreliable outcome, and further modifications are necessary. 

4.3 Recommendation for further study 

Following recommendations are suggested for other studies in the future: 

 Adjusting several aspects regarding the diagonal cracks, reinforcing details and 

rigid bodies for applying on knee joints 

 Developing the author’s idea into a 3D joint model  
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 Developing the model into structural design tools in application for building 

analysis 
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