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Abstract

Shear failure of beam column connections have attracted many researchers since it can lessen
significantly the seismic resisting capability of a reinforced concrete (RC) frame building. For
many years, with strong attention to this object, researchers have conducted numerous
exprimental works, introduced theories to explain failure mechanisms, proposed analytical
models, and developed design criteria with the aim of enhancing joint stiffness.

Recently, a new theory named joint hinging with considering joint shear deformation caused
by rotation of four rigid bodies respect to hinging points has been proposed to explain joint
shear failure mechanism. The theory exhibits some advantages in comparison to previous works
with respect to characterizing new aspects revealed from experimental investigations. As a part
of the theory, a mechanical model has been introduced to predict joint moment capacity. In this
study, the major interest is to develop a two dimensional (2D) macro element based on that
mechanical model to simulate behaviors of RC beam column connections under lateral loading.
Bar springs and bond-slip springs are employed to represent in turn reinforcements and bond
between bars and surrounding concrete, whereas struts are utilized to charecterize compressive
zone in concrete which distinguish the joint element from previous multi-spring models.
Deformations of these components resemble the rotation of rigid bodies in Shiohara
mechanism. A configuration of joint independent deformations is also defined to form joint
compatibility relationship, then the joint stiffness is established using the constitutive laws of

material.

From the first main focus on modelling interior joints under cyclic loadings, applicability of the
new joint element on simulating performances of exterior joints and knee joints is also
presented. Additionally, application on investigating responses of a RC frame subjected to

cyclic loading is then mentioned with the verification from the experimental data.
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Chapter 1 Introduction

1.1 Motivation for the study

Many experimental investigations have revealed that the degradation of beam-column joint
stiffness considerably induces the collapse of frame buildings. In practice, concrete design
codes such as AlJ, ACI, NZS, EC8 have already included in their seismic provisions guidelines
for preventing shear failure in beam-column joint [1-4]. Recently, Shiohara has developed an
innovative theory which named Joint hinging mechanism to explain the joint shear failure
action which was first introduced [5], then analytically predicted [6], and finally verified by
experiments [7]. A method to determine the joint hinging strength derived from the mechanism

is also included in preparation for the new AlJ code [8].

Several analytical models based on the mechanism have been proposed to simulate joint seismic
performances including an elasto-plastic joint model for frame analysis [9], a 2D multi-spring
joint model [10], and a 3D multi-spring joint model [11]. They tried to use springs to perform
behaviors of materials including reinforcements and concrete. However, a model developed
directly from its mechanism and keeping all of its original aspects is not available because in
estimating the joint strength, only equilibrium of forces is adopted and compatibility is

neglected [5].

1.2 Research Objective
1.2.1  Originality

Different from other multi-spring models, the present joint model was fabricated directly from
Shiohara’s joint hinging mechanical model. In the mechanical model, the joint deformation was
attributed to the rotation of rigid segments respect to hinging points and an equilibrium of forces
which consisted of the external forces and internal forces in concrete and reinforcements was
established to predict the joint moment capacity. The research here defined the joint
components such as bar springs, concrete struts and bond-slip springs so that their deformations
resembled the rotation of rigid segments in Shiohara mechanical model. Moreover, the axial
force of these struts and springs resembled the respective internal forces of material in the
mechanical equilibrium. As a result, the equilibrium was reserved and a corresponding

compatibility was proposed to establish the joint stiffness.



1.2.2  Procedure

— Define a new 2D configuration of the joint deformations and define the joint
components developed from Shiohara theory

— Establish the joint compatibility and the joint 2D stiffness, then verify the joint model
in sequence: the monotonic response of the interior joints with an identical depth and
with a different depth of beams and columns, with and without perfect bond condition,
and the cyclic response of the interior joints with normal properties.

— Apply on investigating the response of the exterior joints, knee joints and a RC frame

under lateral loading

1.2.3  Contribution

— Include compatibility into Shiohara’s joint hinging mechanism successfully
— Propose a new 2D RC beam-column joint element which keeps essential original aspects
of Shiohara’s joint hinging mechanism and show applicability in simulating cyclic

response and developing a structural design tool for 2D RC frame structures.

1.3 Review of the previous studies on the seismic response of RC beam-column joints

As one of the most sensitive regions of a RC frame building under earthquake, beam-column
connection has been interested by many researchers. During last several decades, a plenty of
experiments regarding cyclic loadings have been conducted to study the degradation of joint
stiffness and bar anchorage loss, whereby revealed the inelasticity of joint performances. Durani
et al. [12] tested six specimens of full-scale interior beam-column joints under cyclic loadings
and found that behaviors of beam-column connections were considerably influenced by the
magnitude of joint shear stress in case of lacking transverse beam and slab. Joint hoops
contributed significantly to confinement of a joint, enhanced joint performances and a perfect
improvement could be made with an odd number of steel hoops no less than three layers.
Walker et al. [13, 14] conducted an experimental and an analytical research on eleven
specimens of beam-column joints to investigate the shear resisting performance of joints in
former RC frames before the 1970s. The study showed deterioration of the joint stiffness caused
by damage and concluded that achieved story drifts by simulating joints joint like rigid nodes
might be significantly less than real story drifts. Park et al. [15] tested a group of interior and
exterior joints following NZS 3101. It was then said that joint shear strength could be improved

by shifting locations of plastic hinge away from column faces.



With considerable interests of simulating joint nonlinear behaviors, various joint models have
been proposed using different techniques to enhance computer efficiency and compatibility
with other frame members [16]. EI-Metwally and Chen [17] introduced a model adopting an
inelastic rotational spring located between beams and columns to perform nonlinear
characteristics as shown in Figure 1.1. The rotational spring carried the moment-rotation
relationship and was generated by the thermodynamics of irreversible processes. Three
parameters used to define this spring included: the initial linear rotational stiffness, the ultimate
moment capacity, and the internal variable referring to the dissipated energy. Deterioration of
bond strength and the hysteretic behavior of cracks at joint faces and frame members were
considered to cause energy dissipated, and bond-slip curve by Morita and Kaku [18] was
employed. The degradation of stiffness and joint strength related to shear loading were

nonetheless not mentioned.

zero-length inelastic
roational spring

column

beam

beam N
@

column

Figure 1.1 Nonlinear rotational spring model proposed by EI-Metwally and Chen

Youssef and Ghobarah [19] suggested a model enclosing joint region by four rigid plates
connecting to each other by pin constraint as denoted in Figure 1.2. The connection between
frame members and rigid plates including three steel springs and three concrete springs
represented concrete crushing and bond slip. These springs characterized groups of
reinforcements and compressive concrete correspondingly, whereas shear response was
modeled by shear springs. Concrete hysteresis rule proposed by Kent and Park [20] with a
suggested transition from tension path to compression path was adopted for concrete springs

[21]. Bond slip rule was derived from the model introduced by Giuriani et al. [22].

Lowes and Altoontash [23] proposed a multi-sping joint element as idealized in Figure 1.3. The
model consisted of a shear panel, four zero length interface shear springs, and eight zero-length

bar-slip springs. Stiffness and strength loss caused by shear failure were represented by shear



panel while the loss by anchorage degradation was modelled by bar-slip springs, degradation
due to shear transfer related to cracks at joint faces was simulated by interface-shear springs.

Constitutive rule for shear panel was derived from modified compressive field

=
g
=
[=]
L&)
2
Concrete and steel springs § Pin joint
Elastic beam element Elastic beam element
Shear springs
g
=| Rigid members
]
2
2
@w
i
m

Figure 1.2 Joint model proposed by Youssef and Ghobarah

external node

internal node

zero-length

bar-slip spring rigid internal

interface plane

zero-length shear panel

interface-shear spring rigid internal

exterface plane

zero-width region shown with finite
width to fascilitate discussion

Figure 1.3 Joint model proposed by Lowes and Altoontash

theory proposed by Vecchio and Collins [24]. As for hysteresis rule of bond-slip behavior, a
new bar-slip model was developed from experimental results based on previous models such

as Eligehausen et al. [25], Viwathanatepa et al. [26], Shima et al. [27].



In fabricating beam-column joint models, theory with respect to joint shear damage is
indispensable, and for many previous works, the strut and truss mechanism defined by Paulay
et al. [28-30] have been preferable [31, 32] to explain the transferring action of shear force in a
shear or moment resisting mechanism. This mechanism included a diagonal strut representing
compressive concrete and horizontal and vertical ties representing reinforcements in the joint
region. An equilibrium of forces was formed between the strut and ties, then when ties were
tensioned to resist shear force, the strut was compressed and confinement in joint core occured.
The failure of a joint was attributed to strut crushing or poor anchorage of ties, yielding of
reinforcements. This mechanism exhibited advantages of consisting some material parameters
for estimating the joint capacity such as concrete strength, amount of reinforcing bars, size of
anchorage reinforcements in joint regions but fails to integrate the flexural strength of adjacent
frame members. Shiohara pointed out an essential deficiency of this mechanism which was the
lack of a parameter with respect to discriminating different joint types like interior, exterior and
corner joints to determine the empirical allowable joint stress [33]. Moreover, by examining the
result data of series of tests on the seismic behaviors of interior beam-column joints, it was
found that joint shear and story shear were not proportional since story shear degraded but joint
shear continued to develop till the end of tests [5]. The shear resisting capacity of joints was,
therefore, considered to be reserved. The strut and truss model of Paulay could not explain well
the foregoing aspects. Shiohara then proposed joint shear hinging failure mechanism with
aspects of a moment resisting component which exhibited advantages in explaining the above
behaviors successfully. Futhermore, a method derived from the mechanism to predict the joint

moment capacity mathematically was also established.

Based on Shiohara mechanism, several beam-column joint models subjected to cyclic loading
have been introduced. Tajiri et al. [9] proposed a 2D macro joint element used for elasto-plastic
frames as denoted in Figure 1.4. The model was a four-node element with twelve degrees of
freedom. Axial springs which connected to rigid plates at the joint perimeter were utilized to
represent reinforcements, concrete, and bond-slip behavior. Modified model of Park et al. [34]
was used to model concrete springs in plastic hinge regions of frame members and in the joint
region. Hysteresis rule for steel springs was derived from the modified model suggested by
Ramberg and Osgood [35]. Bond-slip behavior was simulated by rule introduced by Morita and
Kaku [18].



Based on this element, Kusuhara et al. [10] introduced a joint model to apply for 2D interior
and exterior joints with some changes in arranging springs as shown in Figure 1.5. Springs in
the plastic hinge of beams and columns were not mentioned. Instead of those, three types of
concrete springs were employed including vertical-, horizontal-, and diagonal orientation
concrete springs. To model their behaviors, a constitutive rule on the basis of model proposed
by Kent and Park [34] in which the tension path used the fracture energy theory of Nakamura
[36]. Steel springs represented reinforcements and a bilinear rule was suggested for their
performance, while bond-slip springs were located between two adjacent steel springs to
simulate anchorage loss along longitudinal bars with bond-slip rule deriving from the model of
Eligchausen [25] using skeleton suggested by CEB-FIP code [37].
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| column concrete spring |

(O] external node
(3 degrees of freedom)

(© internal node
(3 degrees of freedom)
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(1 degree of freedom)
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[ -

| beam bond slip spring |

beam shear sprin

Figure 1.4 Model suggested by Tajiri, Shiohara, and Kusuhara
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Figure 1.5 Model proposed by Kusuhara and Shiohara

Kim et al. [11] developed Kusuhara model into a three dimensional (3D) form to simulate the

cyclic response of slab-beam-column subassemblages under bi-lateral as described in
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Figure 1.6 Model proposed by Kim, Kusuhara and Shiohara



Figure 1.6. The 3D joint model comprised six rigid plates connecting to each other by steel,
bond-slip, and concrete springs. Verification was conducted by applying the joint element to
simulate a slab-beam-column subassemblages under bidirectional loading [38].

Although three aforementioned joint models were based on Shiohara theory, they were
developed from the basis of a multi-spring model. The joint model in this study tended to
develop directly from Shiohara’s mechanical model to reserve its aspects. For example,
concrete was simulated by concrete struts to resemble compressive zone explained by the
theory. Details of the new model and other explanations are described in the next Chapter.

1.4 Outline of dissertation

The main parts of this dissertation include three chapters which focus on proposing the new

joint model, verification, and application. The next parts are organized as belows:

e Chapter 2 defines the new joint model for interior joints and verifies the joint analytical
response with test data.

e Chapter 3 applies the model into cases of exterior joints with modifications, knee joints,
and RC frame analysis.

e Chapter 4 suggests recommendations and future research.



Chapter 2 Suggestion of A New Beam-Column Joint
Model and Application on Investigating Response of

Interior Joints Under Lateral Loading

2.1 Abstract

A general model for simulating the response of the interior beam-column joints under lateral
loading was presented in this chapter. The model is a two-dimensional macro-element
developed from the theory of joint shear failure mechanism of Shiohara, which consists of four
nodes with twelve degrees of freedom, and considers joint deformations as a combination of
nine independent component deformations. The joint core was simulated by concrete struts
while reinforcements were modeled by bar springs, and anchorage loss along longitudinal bars
crossing joint body was represented by bond-slip springs. The study utilized constitutive models
of concrete, steel, and bond-slip to characterize the performance of materials. A simple element
for the interior joints in which the beams and columns have the same depth and width was
introduced first. The monotonic response was established to capture the monotonic backbone
of the cyclic response. Then, the calibration of the simple joint element was added so that it
could be applied for general interior joints with the normal geometric properties subjected to
cyclic loadings. Data from tests of interior joint sub-assemblages under cyclic loadings were
employed to verify the analytical model. The result indicated its reliability in performing

behaviors of interior beam-column connections developed from the shear failure theory.

2.2 Elastic stiffness of the beam-column joint element

Figure 2.1 shows the geometric properties of the joint element. A beam-to-column connection
has four surfaces connecting to beams and columns. These are often modeled as line element,
through the centers of those surfaces. The joint element is defined as a rectangular element with
four nodes located at the center of the four rigid plates that represent the rigid bodies in SMM.
dx and d; are the height and width of the joint. t is the joint thickness determined from the
recommendation of AlJ 1999 [1]:

t=t, +t, +t,, (2.1)

10



where t, is beam width, tc; and te; refer the smaller of % column depth and Y2 the distance

between beam and column face on either side of beam.

Each node had three DOFs including one rotation and two translations. In the XZ plane
coordinate, four nodes are named A, B, C, and D with 12 DOFs (ua, Va, 64, Ug, Vg, &g, Uc, Vc,
c, Up, Vb, and dp) and 12 corresponding nodal forces (Fxa, Fza, Ma, Fxg, Fz8, Mg, Fxc, Fzc, Mc,
Fxo, Fzp, Mp). With this definition, the deformation of a joint model could be expressed as a
combination of nine independent components; namely the four axial deformations (Axt, Ax2, Az,
and Az), four bending deformations (¢xi, ¢xe, @21, and ¢z), and shear deformation go.
Complementary to this set of deformations were the nine independent internal forces, namely
the four axial forces (Nxi, Nx2, Nz1, and Nz2), four bending moments (Mx1, My, Mz1, and Mz),
and anti-symmetric bending moment (Mo).

Because of contragredience, there existed compatible relationships between the nine
independent deformations of a joint and the 12 nodal displacements, and relationships between

the 12 nodal forces and the nine internal forces. These relationships are expressed as follows:
3=B,e (2.2)
p=B,f (2.3)
o is the vector of the nine independent deformations of a joint element:

6 = {Axl ’sz ’Azl ’Azz ’¢x1 ’¢x2 ’q)zl ’¢22 ’¢O} (24)

e is the vector of the 12 nodal displacements:
€= {UA ,VA ,qA,UB 1VB ;qB 1uc aVc 1qc ,UD ;VD an} (25)
p is the vector of the 12 joint nodal forces:

p:{FxA’ FZA’MA’ FxB’ I:zB1|\/|B’ FXC’FZC’MC’ I:xD’ I:ZD’I\/ID} (26)

f is the vector of the nine joint internal forces:

f:{le’Nx2’Nzl’N227Mxl’Mx2’le1M22'MO} (2.7)

11
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Figure 2.1. Geometric properties of the interior joint model

Bo is the compatibility matrix between ¢ and d:

05 0 0 -1 0 0 05 000 0 O
05 0 0 0 0 0 05001 0 0
0 -1 0 0 05 0 0 000 05 0
0 0 0 0 050 0 100 -050
L 900 0 4-2000 0 o0
dZ dZ
1 1
B,<|-—- 0 0 0 0 0 -~ 000 0 1 (2.8)
0 0 10 -— 0 0 000 — 0
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0 000 — 0 0 010 -+ 0
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The joint stiffness matrix K can be expressed by the relationship between the vector of the

nodal forces p and the vector of the nodal displacements d as follows:

p=Ke (2.9)

where

K =B!k, B, (2.10)
ko is the matrix consisting of the component stiffness corresponding to the nine independent
deformations mentioned above.

If the joint response is considered to be elastic and the Poisson effect is neglected, ko can be

determined as follows:

[ 2td E,

: o 0o 0 0 0 0 0 0
o ME 5 o o 0 o0 o 0
d,
0 0 Zt‘;XE° o 0 0 0 0 0
o o o ME 5 o o o 0
d,
3
o o o o W& 0 0 0
k.= 60, 2.11)
3
o o o o o Y& o5 0
60,
3
o o o o o o WE 0
60,
3
o o o o o o o U4YE 0
6,
o o 0 0 0 0 0 0 L
d, d, K
+ +
I 4d’E,  4td,’E, td’G |

where Ec is the concrete modulus; G is the concrete shear modulus; k = 1.2

Equation (2.10) mentions the elastic stiffness matrix of a joint element when deformation is
small. When cracks occur, the joint nonlinear behavior is characterized by springs and struts,

which represent materials, based on the basis of SMM.
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2.3 Suggestion of a new model to investigate the monotonic response of the interior
beam-column joints with an identical depth of beams and columns and perfect bond
condition

2.3.1  Derivation from Shiohara’s theory

At the beginning, Shiohara introduced joint hinging mechanism into RC beam-column interior
connections [5, 33]. Based on joint behavior at the shear failure mode, the mechanism assumed
that joint deformations were caused by rotation of four triangular rigid bodies respect to hinging
points, as shown in Figure 2.2. These bodies attached to each other by reinforcing bars. On each
bodies, there were equilibriums of forces regarding resultant compressive forces of concrete
through hinging points, resultant forces in reinforcements and external forces. As shown in
Figure 2.3, Vb, Nb, My, V¢, N¢,, and M refer external forces, T1 to Ty refer resultant forces in
reinforcements, C1 to Cy refer resultant compressive forces in concrete, gxdx and g.d refer bar

distances of columns and beams.

diagonal crack

g\m% } flexural crack rigid body
C U Y ) ¢

[L’\r\ hinging point

(a) Behavior of failure model (b) Mechanical model including two failure modes
Figure 2.2 Shiohara mechanism

SMM was mentioned as a momment resisting mechanism. The relationship between the
rotation of rigid free bodies, which represented for joint deformations, and the resultant forces
in concrete and reinforcement is described in Figure 2.4. For concrete, the rotation of free bodies
caused a linear distribution of deformation along the joint diagonal. A linear distribution of
concrete strain on the diagonal was assumed corresponding to this deformation in which strain
and deformation were considered to be those of two adjacent concrete struts with the same
length. From the strain distribution, the stress distribution along the joint diagonal was also
achiewed based on concrete constitutive rules. As a result, the resultant forces in concrete were
determined. Similarly, the resultant forces in reinforcements were also computed from the

rotation of free bodies in SMM.

14
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)

'9{ -
£
%

tension

B : ~ R
12

A NA
Figure 2.4 Relationship between rigid bodies’ rotation and resultant forces in material

In this section, a 2D joint element developed directly from Shiohara’s mechanical model [5]
(SMM) in Figure 2.2 was proposed. Because SMM computed the strength of the joint moment
resistance but did not consider the joint compatibility, this study defined the compatibility
relationships of the joint to investigate the joint behaviors from the beginning of the loading to
the failure stage. Bar springs and concrete struts were used to simulate the resultant forces in
reinforcements and concrete applied to the four free bodies that was represented as rigid plates.
The deformation of bar springs and concrete struts, on the other hand, were computed from the

rotation of the four free bodies of SMM. This was the first time struts were employed to simulate
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concrete in the joint core in SMM which was totally different from the previous multi-spring
joint models [9-11]. The strain on the cross section of the struts was assumed to distributed
linearly and determined from the rotation of the free bodies in SMM. The corresponding stress

distribution was computed from the strain distribution through the constitutive concrete model.

In this section, the new joint model was introduced to investigate the joints in which the beams
and columns have the same depth and width joints. This is also the scope discussed in SMM.
Moreover, to reduce the complexity of explaining the computational procedure, the monotonic
analysis was considered to capture the backbone curve of the joint cyclic behaviors. The
comparison to the test data was carried out to verify the joint monotonic response.

2.3.2 Concrete struts

To analyze the expansion of the crack forming hinging mechanism, Shiohara [6] investigated
the strain and stress state in the joint core from before cracking to after cracking and up to the
ultimate state. Shiohara reported that the bi-axial stress state before cracking existed in both the
tensile areas and compressive areas. After cracking, the stress state in the compressive areas

became uniaxial. Moreover, stress did not exist in the tensile areas.

There were four compressive zones and four tensile zones at a loading stage due to the rotation
of the free bodies, as shown in Figure 2.5(a). The four compressive zones represented the flow
of the forces that transferred through concrete. In SMM, the inclination of these forces are 45°
which is the same as the inclination of the diagonals. To determine the width of the compressive
zones, the displacements of the joint center and the joint corners in the diagonal direction, which
could be computed from the nine independent deformations mentioned in Equation (2.4), were

interested.

In Figure 2.5(b), dcom_1, dcom_2, dcom 3, Ocom_4, Oten_5, Oten_6, Oten_7, aNd deen_g are the displacements

of the joint center and the joint corners in the diagonal direction which are computed as follows:

5 = — x1 +—Zl__X1+_Zl+
2 ( d d 2 2 %j (2.12)

2A ., +2A - d - d
5com = x1 22 x1 72 213
- 22 (2.13)

d (A A o )

5 - - X2 +_22+_X2_ 22 + 2.14
com_3 \/E( d d 2 2 q)Oj ( )
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— 2Ax2 + 2Azl + ¢x2d + ¢zld

Ocom 4 o l2 (2.15)
S s = 2A,, +2A,, + (203%+ ®,,d —2¢,d (2.16)
é‘ten_G =%(%+%+%—%) (2.17)
S = 2A,, +2A,, — Zi;g -,d -2¢,d (2.18)
oGS @19

The displacements in the inclination of 45° of the points on the diagonals changed linearly from
the joint center to the joint corners. The points with zero displacement separated each half of
the joint diagonals into the compressive zone and tensile zone in the concrete. In the present
study, the concrete strain was also assumed to distribute linearly on the joint diagonals in which
the point with zero strain was the same with the point with zero displacement, as shown in
Figure 2.5(c). The joint concrete core was considered to consist eight concrete struts, namely
C: to Cg as shown in Figure 2.5(d), so that the above distribution of strain was also that of the
strut sections. The strut width was the same with the distributed width on the diagonals of the
corresponding tensile strain or compressive strain, namely wci to wcs. The four concrete struts
corresponding to the tensile strain zone might not carry force. The name “strut” was still used
to define to them because they might carry the compressive forces in other stages. For example,
in the beginning of the loading the struts were compressed due to the axial force in the columns
but the compressive force in these struts disappeared when the free bodies rotated. Before
cracking, the joint was considered to be an elastic solid element. After cracking, springs and
struts were used to characterize the joint behaviors. The orientation of the struts was assumed

to be 45° at any stage after cracking.

In Figure 2.5(a), the concrete compressive forces distributed along the joint diagonals. Thus,
the length of the concrete struts near the joint diagonals was assigned to be the same with the
length of the joint diagonals. Because the strain of a point on the joint diagonal was considered
to be the ratio of its displacement to the length of the strut where it was located, the length of
two adjacent struts must be identical to satisfy that the point with zero displacement did not

have strain. Therefore, the length of the struts near the corners was also equal to the diagonal
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length. To this end, the eight struts had the same length (Ic). Note that the length of the struts
near the corners was not necessarily as short as the length of the compressive zones in Figure
2.5(a) but needed to satisfy the distribution of the displacement and strain discussed above.
Moreover, if the strut near the corners was short, a small rotation of the free bodies might result
in the great strain in the strut which was irrational because in practical, the amount of the

concrete length extended to beams and columns must be considered.

Figure 2.5(e) shows a typical strain distribution in the half-length of a diagonal with strut i in
compression and strut j in tension. The strain at the compression end (ecom_i) and the strain at

the tension end (en_j) were calculated as follows:

§c0m i
£, =< (2.20)
_ IC
Oun
gten_j = =] (221)

In Figure 2.5(e)., coefficient & and & used to determine the width of strut i (wci) and strut j (wc;)

were computed respectively as follows:

gcom i‘
o B (2.22)
gcom_i + gten_j‘
& =1-¢ (2.23)
Then:
W =62 (2.24)
I
Wg; =& % (2.25)

These widths were employed to calculate the struts’ cross-sectional areas (Aci and Acj) as

follows:

A =Wt (2.26)

Acj = Wt (2.27)
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aci and acj which are in turn the average stresses of strut i in compression and strut j in tension

respectively, can be expressed as follows:

J‘_ o,de
o (2.28)
&

com_i

gtenJ
o,de
0

(2.29)

Og =

Eten_j

where o, is the strain’s envelope stress function.

Location of strut axial forces is computed by distances between them and corner points for
struts near corners or the joint center for others near the center and are governed by coefficient

[1 10 s, as shown in Figure 2.5(f). These coefficients were calculated as follows:

j_ g0, de
p=E&1- 0 — withi=11t08 (2.30)
gcom_i O-(g)dg
0
J; £o,de
B, =¢|1- 0 Py withj=11t0 8 (2.31)
Een_ | G(g)dé‘

0

Note that in Equation. (2.28) to Equation.(2.31), aci, acj, fi, and pj are considered to be zero if

Ecom_i OF &ten_j reaches zero.

The arrangement of the struts attached to the rigid plates are also shown in Figure 2.5(f).
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Figure 2.5. Definition of concrete struts in the new interior joint element
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2.3.3  Bar springs

The rotation of the four rigid plates simulated the rotation of the four free bodies of SMM.
When the rigid plates rotated, there were following displacements (AT1, At2, A3, At4, ATs, ATs,

A7, ATs, AT9, AT10) at the location of the reinforcements, as shown in Figure 2.6.

d/2 d/2 gxd/2 gd/2
\ | \ | I |
¥ N y N
C C
O
| Bra i A3 d E Aqg Ar;
gzd/' 2 A ! A'I'I(]
| T5 |
B f D BO———d—— e Ll ___ 4D
gd/2 C | J ( J
f Ay | Ay d/2 Arg Ave
5 |
A A
N_A WA

Figure 2.6. Deformation at the location of reinforcements in the new interior joint model

These displacements could be computed by nine independent components of the joint

deformations as follows:

A=A, + 2920 (120.)d0n  (120.)dg, (232)
2 2 2

A, =a, 49000 (1-0.)des (1-0.)dgy (2.33)
2 2 2

AT3 =AX2 _ gzd¢x2 _ (1_ gZ)d(DZZ + (1_gz)d¢0 (234)
2 2 2

A=A, - g,do,, N (1— gz)d¢z2 B (1_ gz)d% (2.35)
2 2 2

Ars =0, +A,, (2'36)

ATe :A21+ gxd(pzl _(1_gx)d¢x2 _(1_g><)d¢0 (237)
2 2 2

A=A, + gxd;”zz +(1_gf2)d¢’xz N g;)d% (2.38)
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T8 — P22 2 2 2 (2'39)
1- d 1- d
A, =a, - 8de (1-0.)dg  (1-0.)dey (2.40)
2 2 2
ATlo =A,+A,, (2-41)

In this section, bar springs were defined based on these displacements to represent
reinforcements in joint core. Notation Ty to T1o were also utilized for their names, and their axial
forces refer resultant forces of reinforcing bars in SMM, as shown in Figure 2.7 and Figure 2.8

while their deformations were assigned by At to Ario respectively with the assumption of
perfect bond condition.

Lengths of bar springs were defined as follows:

d
b=k, =hs=h,=hs=k; =ks=l, :E (2.42)
l,; =0,d (2.43)
I, =d (2.44)

where Ir1, Ir2, lvs, s, Its, Ive, l17, lts, Ite, and lrio are length of bar spring Ti, Tz, Ts, Ts, Ts, T,
Tz, Te, To, and T1o respectively.

d/2 d/2 bar spring gd/2 gd/2
I cl 1 | | |
n T N o C
- d/2 | Ts <= T
= l,=d/2 &
g| Ww=diz T D ed2 P E T D
o
— d/2 Ty S Ts
1T1=d/2 1T2:d/2 L _a
A rigid plate A

Figure 2.7. Definition of bar springs in the new interior joint model
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Figure 2.8. Axial forces of bar springs in the new interior joint model
2.3.4  Joint compatibility and stiffness

2.3.4.1 Before cracking

The joint behavior before cracking was assumed to be elastic. The joint stiffness was computed
by Equation (2.10).

2.3.4.2 After cracking

Cracks were considered to occur when any tensile displacements in Equation (2.16) to Equation

(2.19) exceeded the crack width as follows:
Sen i >l Withi=5108 (2.45)

where & is the strain at tensile strength of concrete.

After cracking, properties of struts and springs were included in the joint stiffness. There was a
compatibility between vector A, which included the average deformations of the concrete struts
and the deformations of the bar springs with the vector of the nine independent joint

deformations & as follows:
A=B,d (2.46)

where

A={Ac Ac, B A A Ay Ay Ar A (2.47)

In Equation (2.47) Ac1to Acs are the average deformations of the corresponding concrete struts.
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Because of contragredience, the vector of the nine joint forces f could be determined from the

vector comprising the axial forces of the concrete struts and bar springs g, as follows:

where

q :{CyCz’Cs’C4’cheiC71Cs’Tsz’T3’T4’T5’T6’T7’T81T91T10}

f=Bq

and B is the compatibility matrix between A and é:

° &= &l

> 8- &l
o &~

SRS RS

o - 5l

o

o &le

o

o &l &l

o )3
oA

1 d
B |—= 0
(3-8)%
1 d 1 d
e Grla
0
1 d
0 | Z—pB |—=
[2 ﬂ"’j 2
1 d 1 d
(2lE 3)%
1 d
{z—p | 0
(3-5)%
0 (1-g,)d
2
gzd _(1_gz)d
2 2
_gd 0
2
0 0
0 0
_(l_gx)d gxd
2 2
(1_gx)d 0
2
0 0
0 -8d
2
0 0

The stiffness matrix ko in Equation (2.10) was expressed as follows:

k, =Bk, B,
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(2.48)
(2.49)
0o @A
1 d d
ol 2%
{3-8)5 0%
0 .5
(%_ﬂsj% _(1_/35)%
d
0 ﬁeﬁ
o s
1 d d
FalE A%
0 (1-g,)d
2 (2.50)
0 _(1— g,)d
2
(1-g,)d (1-g,)d
2 2
(1_gZ)d _(l_QZ)d
2 2
0 0
0 _(1_gx)d
2
g d (1-g,)d
2 2
_gxd _(1_g><)d
2 2
0 (1-g,)d
2
0 0
(2.51)



ki is the component stiffness matrix of concrete struts and bar springs:

ke O
K, :{ ) kj (2.52)

In the above equation, kc and kr is the diagonal stiffness matrix of concrete struts and springs

respectively. Components of kc was defined as follows:

Cin _ Cin—l

ci — n n-1
Aci _ACi

(i=1+8) (2.53)

where Ci", Aci", Ci", and Aci"* are the axial forces and average deformations of strut C; and

strut Cj at step n and step n-1 respectively. A" and A" are defined as follows:

n 5 B ﬂ
ACi = ;@mm i .
Z - (2.54)
Ay = S$h Sen (2.55)
<]

In the initial cracking, the width of the concrete struts is assigned as follows:

W, ='ﬁ (i = 1+8) (2.56)

The initial stiffness of the struts is computed as:

e = =P (i = 1+8) (2.57)

Ci
Ic

where E. is the modulus of concrete.

Finally, Equation (2.10) becomes:

K=B!B'k,B, B, (2.58)

2.3.5  Orientation and length of concrete struts

Before cracking, the joint element was considered to be elastic and the elastic stiffness was used

to investigate joint behaviors. After cracking, struts and springs were used to define the joint
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nonlinear stiffness. At the ultimate stage, the orientation of struts was 45° according to SMM.
From the end of the elastic stage till the ultimate stage, it was necessary to define struts’ angle.
In this study, it was assumed that struts’ angle was also 45° from cracking till the failure point.
To verify this assumption, the below part introduces an analytical study on the influence of

struts’ angle to the joint performance in the vicinity of stages after cracking.
Several joint elements with following aspects were considered for analysis:

 Joints have the same width dx
» Foreach joint, a case of strut in diagonal direction and a case of strut in 45° were studied
« A normal compressive stress (c) and a shear stress (tr) were applied with

r =o/ r =const during loading. Four cases were included: r=0,1,2, and 10

The stress state of a typical joint element and struts’ angle are shown in Figure 2.9 and Figure
2.10.

The angle (0) regarding the orientation of diagonals had a relationship with the stress ratio (r)

as follows:
tan 260 = 2% (2.59)
O
or
@ = arctan & —arctan| -2 + (ijz +1 2.60
d, 27 27 (2.60)
T
cw (0,1 _ I
-1
- AN
- dx - 'S \w . t O -—
‘EL dz *T 02?_ G/220 __$‘5| o
\;:f":
-1 S~ (0,

Figure 2.9. Stress state of the joint element and Mohr circle
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(a) In diagonal direction; (b) In 45°

Figure 2.10. Orientation of concrete struts

(a) In diagonal direction; (b) In 45°

Figure 2.11. Two computational cases for struts’ orientation

Before analysis, it was needed to determine the length of concrete struts. The struts’ length was
chosen so that the stress state in the elastic state was reserved. A set of joint nodal displacements

in Figure 2.12 was used to form the plane stress state in Figure 2.9.

Ml
C Uy =vp,=0,=6-=0
VB Vo= -1
ug B D up C |uC|
< 4’¢ ¢—> ug =up = [ug| /2
Vb Vg=vVp=Vc/2
A O =0p = - luc| / -

Figure 2.12. Nodal displacements of the simple plane stress state
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The vector of joint deformations in Equation (2.2) was computed as belows:
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(2.61)

The stiffness matrix ko in Equation (2.10) was used to compute the vector of joint forces as

follows in which the pure shear stiffness was considered:

=

>
=S

=

>

1

= =

2

=== Z

[2td,E,
d

X

0

0

0 0 0 0
2E .,
dZ
3
wE o,
6d,
3
0 o WE
6d,
3
0 o o WE
60,
0 0 0

The nodal forces was computed from Equation (2.3) as follows:
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The Mohr circle in Figure 2.9 became that in Figure 2.13. From Equation (2.60) , the stress

ratio r = of  was represented by dy/d; as follows:

2
po_ 4. ) _ (2.64)
2K (1+ v) .S
dZ
where v is the Poisson coefficient.
T
| Gl
/TN N Kdz
a"/ i \ \
Ll N |
Omin 1“.‘. Ecrlugl /20 .;‘I Omax ©
“\:\ dz \\ 1/
N 7 Glul
I kdz

Figure 2.13. Mohr circles with stress represented by uc

The principal stresses which were in diagonal direction and perpendicular to diagonal direction

were also determined:
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(] (4]
|uc | d,) G GY d,) G
O hax —d—z 2dx ; + ; _Z—dxz (265)
dz dz
A A
_|uC|G dz dz
O min —d—Z; — Z—dx +1_2—dx (266)
\ dz dz

The average deformations on diagonals caused by the rotation of rigid bodies were computed

as belows:
aty
5com 1+§ten 6 §com 3+5ten 8 dd d |uC|
— -5 _ — -5 _ X"z _ z d _1Tcl .
2 2 JdZ+d? | 4dix(l+v) :|uel 2d, (2.67)
d 2
1—( j d, |
5c0m_2 +§ten_5 _ §c0m_4 +§ten_7 _ \’d +d |Uc| (268)

2 2 4 (1+v)\Jd? +d? d,

To reserve the stress state using concrete struts, the following equations were employed:

5com_1 + 5ten_6 Ec

O in = ) IC (269)
5com +59n E

e =—‘22 e T (2.70)

t
The length of concrete struts was computed as follows:

5 + é‘ten_e EC

IC — com_12 — (271)
5com +5en E
It — 22 ten_5 - c (272)

The set-up of specimens for analysis is shown in Figure 2.14.
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e

Figure 2.14. Specimen for analytical study

Withr =0:

d, =300mm; I, =1, =293mm; L, =L, =3.0m; r=Z=0; 9=45°
T

d,

The analytical result is shown in Figure 2.15.

15
Post_Elastic

12 Elastic

Story shear (k)

0 0.05 0.1 0.15 0.2 0.25
Story drift (%)

Figure 2.15. Analytical result of story shear versus story drift relationship (r = 0)

With r = 1:
d, =300mm; d, =485mm; |, =431mm; |. =345mm;L, =1.854m; L, =3.0m; r =2 -10=31L7°

T

The analytical result is shown in Figure 2.16 and Table 2.1.
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15
Post_Elastic

12 Elastic —

struts in 45 degree

° N

s N
/ struts in diagonal direction
0

0 0.05 0.1 0.15 0.2 0.25
Story drift (%)

Story shear (kN)

Figure 2.16. Analytical result of story shear versus story drift relationship (r = 1)

Table 2.1. Result of story shear ratio (r = 1)

Story drift (%) Story shear ratio Stage
0.079 1
0.083 1 Elastic
0.086 1
0.090 1.02
0.094 1.02
0.098 1.02
Post-elastic
0.101 1.02
0.105 1.02
0.109 1.02

With r = 2:
d, =300mm; d, =724mm; |, =636mm; |, =435mm; L, =1.243m; L, =3.0m; r =2 _2.0=225

T

The analytical result is shown in Figure 2.17 and Table 2.2.
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15

Post_Elastic

12 Elastic —
%‘ 9 struts in 45 degree
g
= 6
2\
o
@ \

3
/ struts in diagonal direction
0

0 0.05 0.1 0.15 0.2 0.25
Story drift (%)

Figure 2.17. Analytical result of story shear versus story drift relationship (r = 2)

With r = 10:

d, =300mm; d, =3030mm; |, =6142mm; |, =1534mm; L, =0.297m; L_=3.0m; r =2 =10; 6 =5.7°

Table 2.2. Result of story shear ratio (r = 2)

Story shear

Story drift ratio Stage
0.029 1
0.031 1
0.033 1 Elastic
0.034 1
0.036 1
0.038 1.14
0.040 1.14
0.041 1.14
0.043 1.14
Post-elastic
0.045 1.14
0.046 1.14
0.048 1.14
0.050 1.14

The analytical result is shown in Figure 2.18 and Table 2.3.
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é 9 degree Flasti

astic —_—

: WA
E\ 6 o
g struts in diagonal
& direction

3 /
0
0 0.05 0.1 0.15 0.2 0.25
Story drift (%)

Figure 2.18. Analytical result of story shear versus story drift relationship (r = 10)

Table 2.3. Result of story shear ratio (r = 10)

Story drift Stogtis(r;ear Stage
0.004 1
0.008 1
0.012 1
Elastic
0.016 1
0.020 1
0.024 1
0.028 1.14
0.033 1.14
0.037 1.14
0.041 1.14 Post-elastic
0.045 1.14
0.049 1.14
0.053 1.14

The results showed that there was a little difference between the story shear computed with

struts’ angle of 45 degrees and the story shear computed with struts in diagonal direction in four
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analytical cases. Corresponding to the stress ratio of 1, 2, and 10, the different ratio of story
shear was 1.02, 1.14, and 1.14. This indicated that the assumption of struts’ angle of 45 degrees

after cracking was acceptable for analysis.
2.3.6  Constitutive material model
2.3.6.1 Constitutive steel model

The elastic-perfectly plastic hysteretic model is adopted for expressing the stress-strain
relationship of bar springs which is assumed to follow the bilinear rule, as shown in Figure

2.19. Following formulas depicts skeleton curves of this model:

o, +0.01E (5 - sy) (gy < 5)
oc=1Ee¢ (—&, <e<¢,) (2.73)
-0, +O.01E5(5+5y) (gs—gy)

where g, ¢ and Es are stress, strain, and the initial stiffness respectively.

(&)

o, | OOIE

0.01Es

Figure 2.19. Monotonic constitutive steel rule
2.3.6.2 Constitutive concrete model

The concrete hysteresis rule used in this study is shown in Figure 2.20. The concrete stress was
expressed as a function of the concrete strain in such specific cases that Equation (2.28) to

Equation (2.31) could be achieved.

The envelope of the confined concrete proposed by Scott et al.[39] was used in the monotonic

loading of the compressive path. The skeleton curves are expressed as follows:
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where K. is a coefficient regarding the confinement of concrete:

K.=1+

¢ f
0.5

Ladid' (2.75)

Zm
3+0.291," 3
145f,'-1000 4

" K (2.76)
Sh

In the above equation, o, ¢, and f” are the stress, strain, and compressive strength respectively,

eco 1S the strain at the compressive strength (eco = -0.002); pn is the volume ratio of the

rectangular steel hoops to the volume of the concrete core measured at the exterior of the

peripheral hoop; ayn is the yield strength of the hoop; sh is the spacing of the hoops; and 4~ is

the width of the concrete core measured at the exterior of the peripheral hoop.

In this study, only the concrete in compression was considered. The concrete in tension was not

interested because its contribution was small. Stiffness of Ec and 0.001E. was assigned to the

tension path before and after cracking respectively. The strain at tensile strength was defined

as follows:
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Figure 2.20. Monotonic constitutive concrete rule

To determine the stress distribution from the strain distribution in the diagonal-oriented section
of the struts, an assumption of zero stress at zero strain was adopted. The loading paths were
calculated by Equation (2.28) and Equation (2.29) with the loading envelopes defined above.

When K g, <&, <0

& : 2
K Of 2
o= [ == [— id +( i ”dg (2.78)
0 gcom_i chco chco

Ecom_i 2 (2.79)
- 2& [ £ J
Eeom _i J‘ - + ¢
h 0 chco Kc‘c"cO

When —$+ Ke€o € Eom 1 < K&

com_i

K, f 2 Eeom_i
K 2¢ & KT
O-Ci B 'C'). & [_ chco +[ chcoJ ]dg ) J- & |:1+ Zm (8 - KCECO ):Idg (280)

K fo' “com_i
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2.3.7 Computational procedure

(2.81)

(2.82)

(2.83)

The detailed computational procedure of the joint is described in Figure 2.21 for stages before

cracking and in Figure 2.22 for stages after cracking in which a set of the joint nodal

displacements (e) returned in a set of the joint nodal forces (p). In the frame analysis, the chart

in Figure 2.23 shows the iterative computational technique at an analytical step with n times of

iteration in which the Newton-Raphson method was used. When the error of the nodal forces

decreased and met the desired tolerance, the errors of the axial forces in the springs and the
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struts of the joint were automatically eliminated. Due to the convergence criterial of Newton-
Raphson method, the degradation paths were not interested. Object-Based Structural Analysis
(OBASAN), which is an open-source object-oriented program developed by the authors’
laboratory is used to produce responses of the analysis.

To model the beams and the columns, the element “beam end” in OBASAN was used. This
element was developed on the basis of the one-component model [40, 41] in which the inelastic
flexural deformation of the element was assumed to be governed by the deformation of two
rotational springs located at the ends. The axial force versus the axial deformation was assumed
to be elastic and the shear deformation was included. The bond-slip within the beams and the
columns was not considered. The moment-rotation relationship was used to define the
characteristics of the two rotational springs. Takeda hysteresis rule [42] was used to establish
the hysteresis response.

The moment-rotation backbone consisting of three points (@c, M¢), 6y, My), and (6., M) was
determined from the backbone of the moment-curvature relationship consisting of three points
(ée, Mc), (¢y, My), and (¢u, My). In this study, Mc, My, and My were determined following ACI
318 [2]. The following equations show the computation of the rotations from the curvatures.

The rotation at cracking of tensile concrete:

I K
=M | —+—
¢ C(3E| +GA|) (2.84)

where El is the initial elastic flexural rigidity; | is the length of a simply supported member; k
is the shear coefficient; GA is the shear rigidity; M. is the moment at cracking of tensile

concrete. The rotation at the yielding of tensile reinforcement:

0 - |[(1—/13)§ﬁy +/12¢C] 2.55)
MC
A= v (2.86)

¢c is the curvature at cracking of tensile concrete; ¢y is the curvature at cracking of tensile

reinforcement; My is the moment at yielding of tensile reinforcement.

The rotation at the crushing of compressive concrete:
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where

M,-M, ¢,
b—9, M,

<

M. is the moment at crushing of compressive concrete.

[ Compute K in Eq.(2.10) ]

A 4

) :LH(Z%)@—@)(% +1—ﬂq)Mz(lMQ)_%a}%ﬂﬂf%}

[ Compute e and & = Bee in Eq.(2.2)

)

\ 4

Compute
Icand I in Eq. (2.71) and Eq.(2.72)

Jwen_jin EQ.(2.16) to Eq.(2.19) (j = 5,6,7,8)

v

Check criterion of crack opening
by Eq.(2.45)

No

\4

[ Compute p in Eq.(2.9) ]

Yes

____________

Analysis after
cracking

(2.87)

(2.88)

(2.89)

(2.90)

Figure 2.21. Computational procedure before cracking of the new interior joint element
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[ Compute K in (2.58) ]

A 4

Compute e in Eq.(2.5) and 6 = Boe in Eq.(2.2) ]

\ 4

[ Compute A = B16 in Eq.(2.46) ] /

\ 4

\ 4

[ Get Ar ]

Constitutive steel model

.

Compute
dcom i » Oten_jiN EQ.(2.12) to Eq.(2.19)
&com i, &ten_j IN EQ.(2.20) and Eq.(2.21)
Eeom iy Gen j IN EQ.(2.22) and Eq.(2.23)
Wei, Wej in EQ.(2.24) and Eq.(2.25)
Ad, Ag in Eq.(2.26) and Eq.(2.27)
(i=1,2,34), (j=56,7,8)

~

)

\4

Compute
Oci (l :],2,3,4), Ocj 025,6,7,8)
in Eq.(2.28) and Eq.(2.29)

Ti, Tj

Compute B, f; Compute
in Eq.(2.30) and Eq.(2.31) Ci = Adod;
and update B; in Eq. (2.50) Ci = Ao

\ 4

Compute fin Eq.(2.48) and p in Eq.(2.3) ]

A 4

Compute kr in Eq.(2.52) and Kg;

in Eq.(2.53),

then compute K in Eq.(2.58) for the next step

Figure 2.22. Chart of the computational procedure after cracking of the new joint element
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Figure 2.23. Chart of the Newton-Raphson iterative algorithm of the frame analysis at a step
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2.3.8  Verification of experimental study

2.3.8.1 Specimens

A series of test of the reinforced concrete joint subassemblages with regard to specimen AO1,
BO1, B02, B05, and CO1 conducted by Shiohara and Kusuhara [43, 44] was adopted in this
study for verification. The detailed properties of the materials of specimens are listed in Table
2.4 and illustrated geometrically in Figure 2.24. Specimen AO1 had the section of 300x300 mm
and was suffered from a constant axial compressive load of 216kN and a lateral load where the
cyclic loading was applied in sequence at different story drifts as followings: a cycle at
0.0625%, 0.125%, and 0.25%, two cycles at 0.5% and 1.0%, a cycle at 0.5%, two cycles at
2.0%, a cycle at 0.5%, and two cycles at 3.0% and 4.0%. Specimen from BO1 to CO1 had the
same cross-section of 240 x 240 mm for both beams and columns and suffered only a lateral
load. At each story drift of 0.25%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%, two cyclic loadings were
applied horizontally.

Loading point

——
—= 4 [ {|16D13
Hoops D6@50 (SD2954) | = “ ;
VA Wi== VA 30
4 column AO1
A A A = A A
L e e e = R T D13
A == A | —
£= .
1 o =e
Hoops D6@50 (SD2954A) | = ~ 2|2
Three sets $ o
N % < a] 3
beam AO1
1350 | 1350 Unit: mm
M 1 4D13 5D13 5DI13 5DI13
= - ps 3 3 iy
Loading point =1 -
. = 1 L[ e 5[]
. )5 ol I =
Hoops D6@50 (SD295A) % = T 240 3 240 = 240 B 240
A 4 V“ | \Vi column CO1
! at | column BOI column B02 column B03
S L o o oL 13
— A a & & &
2 0 o e
Hoops D@50 (SD295A)
Two sets % Al | 240 3l | 240 Al | 240 3 120
™ E < ‘ beam BO1 beam B02 beam B0S beam CO1
|

-
=]
S

700 | Unit: mm

Figure 2.24. Test specimen of interior joints specimens with identical depth of beams and

columns

43



Table 2.4. Properties of interior joint specimens with identical depth of beams and columns

Specimen A01 BO1 B02 BO5 Co1
Concrete compressive
28.3 29 29.0 29.0 31.0
strength (MPa)
] 300 x 240 x 240 x 240 x 240 x
Beam width x depth (mm)
300 240 240 240 240
o 8-D13 3-D13
Longitudinal beam bars 4-D13  5-D13 5-D13
8-D13 2-D13
Bar yielding strength
456 378 378 378 378
(Mpa)
) ) 0.77 0.8
Bar distant ratio 0.8 0.8 0.8
0.53 0.5
Column width x depth 300 x 240 x 240 x 240 X 240 X
(mm) 300 240 240 240 240
5-D13
o 5-D13
Longitudinal column bars 2-D13 4-D13  5-D13 5-D13
2-D13
2-D13
Column bar yielding
357 378 378 378 378
strength (MPa)
0.77
. : 0.8
Column bar distant ratio 0.57 0.8 0.8 05 0.8
0 :
Joint hoops D6 (three sets) D6 (two sets)
Yielding strength of hoops
: : P 326 399

(MPa)
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2.3.9 Discussion of results

2.3.9.1 Load deflection relationship

The relationship of the story shear versus the story drift of all specimens is shown in Figure
2.25. Beside the test data and the analysis, the response of specimen B02 and BO5 carried out
by Kusuhara joint model [10] was also used for comparison. Because the specific results of the
response given by Kusuhara joint model was not available, the comparison with regard to the
difference of the backbone shape was considered. Table 2.5 compares the maximum story shear
predicted by the new joint model (Vu_anaiysis) to that of the experimental results, at the flexural
strength of beam (Vu_aci) by ACI 318 — 08 [2], and computed at the nominal joint shear strength
(Vu_an) by AlJ 1999 [1].

The monotonic response in this study was expected to capture the backbone of the cyclic
response of each specimen with refer to the story shear versus the story drift relationship. The
degradations of the backbones were computed at the story drift of 2.6%, 3.3%, 2.7%, 2.6%, and
2.55% for specimen AO1, BO1, B02, BO5, and CO1 respectively. The results from Figure 2.25
and Table 2.5 showed a good agreement between the test and the analysis. The computed
maximum story shears were close to the observed maximum story shears with the different ratio
1.00 in A0, 1.02 in BO1 and B02, 1.01 in BO5, and 0.95 in CO1. The maximum story shears
from the analysis were also close to those determined at the flexural strength of beam derived
from ACI 318-08 and at the nomial joint shear strength recommended by AlJ 1999 except in

specimen BO1 where the different ratio between Vy_analysis and Vu_ai; was 0.84.

In Kusuhara’s model, the diagonal-, vertical-, and horizontal springs were used to represent
concrete. Kusuhara model showed a good prediction of the cyclic behaviors of specimen B02
and BO5 in Figure 2.25, which were also captured well by the monotonic backbone of the new
joint model. However, the present model aimed to model the original aspect of SMM. That was
the use of concrete strut to represent the flow compressive forces transferred through concrete.
Beside the load-deflection relationship, the present model provided various properties which
could not be given by the multi-spring models. They included the changes of the strain
distribution and stress distribution of concrete on the joint diagonals in consistent with the
rotations of the four free bodies. These changes, as discussed in an overlook mechanism by
Shiohara [6], were useful to explain the consistent relationship of the opening of diagonal

cracks, the stress redistribution, and the loss of tensile resistance.
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2.3.9.2 Comparison to Shiohara’s numerical method

A comparison between the computation by the new model and Shiohara’s numerical method
[5] at the ultimate stage is shown in Figure 2.26. All of the forces were normalized by 0.85¢f".
There was a good agreement between the results of the new model and those of the Shiohara’s
numerical method in which the story shear and forces in reinforcements and concrete were
mostly the same in the two cases. The slight difference in the concrete resultant forces was
attributed to the location of the concrete resultant forces and the stress at yielding of reinforcing
bars. In Shiohara’s numerical method, concrete resultant forces were placed at the middle of
the stress distribution on the diagonals while the location of the resultant forces in concrete was
determined by coefficient Bi in Equation (2.30) and Bj in Equation (2.31). The stress at yielding
of reinforcement in Shiohara’s numerical method was the corresponding yielding strength. In
the computation by the new model, the stress at reinforcement yielding was greater than the
corresponding yielding strength due to the additional strength caused by the strain hardening
illustrated by the stiffness of 0.01Es in Figure 2.19.

Table 2.5. Analytical results of the maximum story shear of the five specimens

Results A01 BO1 B02 BO5 CO1

At the flexural strength of beam
by ACI 318 - 08[2] (Vbu)

1355 66.1 792 810 815

Computed at the nominal joint
137.1 805 805 805 805
Maximum story  shear strength by AlJ 1999 (Vju)

shear (kN) Test (Vemax_Test) 126.6 652 767 79.3 753
Analysis (Vu_analysis) 1358 67.6 81.0 816 77.6
Vemax _analysis | Vbu 1.00 1.02 1.02 1.01 0.95
Vemax _Analysis | Vju 099 084 101 101 0.96
Vemax _Analysis /| Vemax _Test 1.07 104 1.06 103 1.03
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Figure 2.25. Comparison between experiment and monotonic response of the five specimens

with perfect bond condition
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Figure 2.26. Predicted story shear in of the five specimens by the new joint model with
perfect bond condition

(number in parentheses is determined by Shiohara’s numerical method)

2.4 Modification of the new model to investigate the monotonic response of the interior
beam-column joints with an identical depth of beams and columns and normal bond

condition
Bond-slip springs were included to consider the normal bond-condition. There were changes of

bar springs and suggestions of bond-slip springs as below.
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2.4.1  Bar springs and bond-slip springs

To simulate the anchorage loss along the longitudinal bar, four bond-slip springs (Sa, Sg, Sc,
and Sp) were placed between two adjacent bar springs, as shown in Figure 2.27. The
deformations of the bar springs and bond-slip springs related to the axial force of the

corresponding springs through their tangent stiffness as follows:
T, =k;A,; withi=1t010 (2.91)
S, =ks, A, withr=A,B,C,D (2.92)
where kri and ks are the stiffness values of bar spring i and bond-slip spring r, and At and Asr
are the deformations of these springs, respectively. ks, is defined as follows:
kSr :pSrISrkrr Wlth r= A’ B’ C’ D (293)
where psr is the total section perimeter of the bars including in bond-spring Sr, lsr is the

anchorage bond length, and kzsr is the tangent stiffness regarding the relationship of the bond

stress versus the slip of bond-spring Sr. Bond stress zsr is computed by bond force Sy as follows:

Tg = S withr=A,B,C,D (2.94)
I
pSr Sr

In this study, Sa, Sg, Sc, and Sp were assumed to be positive (+) when the bars slipped toward

the bar springs T2, T4, Tg and Te, respectively.

A relationship between the forces in the bar springs and the deformations of the bar and bond-

slip springs was established in a combined form, as follows:

T =KqsArs (2.95)

where:

T is the vector of forces in the bar springs, as follows:

T:{Tl’Tz’Ts’T4vT5’T61T71T81T91T10} (2.96)

Avs is the vector of the combined spring deformation and is defined as follows:
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Arg ={Arg Mg Ars, Ars, Ar Arg  Arg  Arg A LA (2.97)

TS, 1 2T, 1 TS, 1 B TS, TSe ? TS, 1 TS, 1 TSy

Vector Ats was used because of its compatibility with joint deformations.

ks is the matrix of the combined tangent stiffness of the bar springs and bond-slip springs:

.k, 0 0 0 0 0 0 0 0
ke k.. 0 0o 0 0 0 0 0
0 0 k_ k., 0 0 0 0 0 0
0 0 k_k. 0 0 0 0 0 0
0o 0 0 0 k., 0 0O 0 0 0
““=lo 0 0 0 0 k. k. 0 0 0 (2.98)
0 0 0 0 0 k_k 0 0 0
0 0 0 0 0 0 0 k. k, 0
0 0 0 0 0 0 0 k. k. 0
o 0 0 0 0 0 0 0 0 k
_ ke (k; +Kg, )
with k. :m (2.99)
ke ke
and k. :m (2.100)

(1,j=1,2,3,4,6,7,8,9;r=A,B,C, D)
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Figure 2.27. Definition of bar springs and bond-slip springs of the interior joint element
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2.4.2  Joint compatibility and stiffness

The computation of the joint compatibility and the joint stiffness in Section 2.3.4 had some
modification regarding vector A in Equation (2.47) and matrix k1 in (2.52) as follows:

A={Aq g, B A Arg Arg oy Ay oy Arg A | (2.101)
ke O

k,=| ¢ } (2.102)
' { 0 Ky

where krs is defined in Equation (2.98).

2.4.3  Constitutive material model

Constitutive bond-slip model

The bond slip model of CEB-FIP Model Code 1990 [37] was adopted along with the rules of
the unloading and reloading path defined by Eligehausen et al.[25], as shown in Figure 2.28.
Here, 7 is the bond stress, s is the slip, s1 = 0.1s3, S2 = 0.5S3, S3 = 1mm, s4 = s3 + 2 (mm), S5 =
s3 + 10.5 (mm), ©3= 2.5 (MPa), s =71 = 0. 398 13, 72 = 0. 75813, 74 = 13.

T
T 3 4
T |2 O
W ' \ 5
R T
[ I
I |
I |
T T T |I — : ) -
| : : | |‘IS| Sy $3 Sq 85 S
| | b :.‘I
L =11
R
~_ | s

Figure 2.28. Monotonic constitutive bond-slip model

2.4.4  Computational procedure

Chart of the computation procedure for a joint element after cracking was modified as shown
in Figure 2.29.
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[ Compute K in (2.58) ]

A 4

[ Compute e in Eqg.(2.5) and 6 = Boe in Eq.(2.2) ]
v . v
[ Compute A = B3 in Eq.(2.101) 4 Compute N\
’ Scom i+ Oren iN EQ.(2.12) to Eq.(2.19)
A4 N Ecom_i» &ten j IN EQ.(2.20) and Eq.(2.21)
[ Get Ats Eeom_iy Gen j in EQ.(2.22) and Eq.(2.23)
. Wei, Wej in Eq.(2.24) and Eq.(2.25)
‘; — Ad, Aq in Eq.(2.26) and Eq.(2.27)
Assume Ti=Atsi+ Asr . :
(i=1234),(=5,67,8)
Asr A1j=ATsj- Asr ) \ /
Constitutive slip Constitutive
model steel model y

Compute
Oci (l :],2,3,4), Ogj 025,6,7,8)
in Eq.(2.28) and Eq.(2.29)

!

Not in equilibrium

Check Compute , i Compute
ISy — (Ti =Tyl in Eq.(2.30) and Eq.(2.31) Ci = Ados;
< |Sr|*to|erance and Update Bl in Eq (250) C] = chO'cj

\ 4

[ Compute fin Eq.(2.48) and p in Eq.(2.3) ]

A 4

Compute kr in Eq.(2.52) and kci in Eq.(2.53),
then compute K in Eq.(2.58) for the next step

Figure 2.29. Chart of the computational procedure after cracking for a joint element with

normal bond condition

2.4.5  Verification of experimental study

2.4.5.1 Specimens

The analysis was carried out on the five specimens described in section 2.3.8.
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2.4.5.2 Load deflection relationship

Table 2.6 compares the maximum story shear predicted by the new joint model (Vy_analysis) t0
that of the experimental results, at the flexural strength of beam (Vu_aci) by ACI 318 — 08 [2],
and computed at the nominal joint shear strength (Vu_au) by AlJ 1999 [1]. The relationship of
the story shear versus the story drift of all specimens is shown in Figure 2.30.

The analytical result captured well the backbone of the cyclic response of each specimen with
refer to the story shear versus the story drift relationship. The degradations of the backbones
were computed at the story drift of 2.6%, 3.3%, 3.0%, 2.6%, and 2.5% for specimen A01, BO1,
B02, B0O5, and CO1 respectively. In BO2 and BO5, the predicted curves by the new model were
also in a good correlation with the backbone of the cyclic response computed by Kusuhara’s
model. There was not considerable difference of the analytical results between the case with
perfect bond condition and the case without perfect bond condition. This agreed well with a
conclusion of Shiohara [33] that the bond capacity does not affect significantly joint strength
with J-mode. However, it makes sense in explaining the case of 3D joint in which transverse

beam exists and reinforces bond capacity, as a result, there is observed increase of joint strength.
2.45.3 Comparison to Shiohara’s numerical method

A comparison between the computation by the new model and Shiohara’s numerical method at
the ultimate stage is shown in Figure 2.31. All of the forces were normalized by 0.85tf”c. Similar
to the case with perfect bond condition, there was also a good agreement between the results of
the new model and those of the Shiohara’s numerical method in which the story shear and forces

in reinforcements and concrete were mostly the same in the two cases.
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Table 2.6. Analytical results of the maximum story shear of the five specimens with normal

bond condition

Results A0l BO1 B02 BO05 CoO1

At the flexural strength of beam
by ACI 318 - 08[2] (Vbu)

1355 66.1 79.2 81.0 815

Computed at the nominal joint
shear strength by AlJ 1999 (Vju)

137.1 805 805 805 805
Maximum story

shear (kN)  Test (Vemax, Tes) 1266 652 767 793 753
Analysis (Vu_analysis) 131.3 673 785 812 759
Vemax_analysis / Vo 097 1.02 099 1.00 0.93
Vemax_analysis / Viu 0.96 084 098 101 0.94
Vemax Analysis | Vemax_Test 1.04 103 102 102 101
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56



Col

A0l BO1

0.038 (0.036)
0.042 (0.042)

—
=
fa)
<
=]
=
o0
o
=
=)

\\-0%‘ 0.033 (0.033) I
\\ 0 B E———

I
I
|
-,
a5 0057 (0.055)
%
(
\\-0

~ ——
\\fa_g
o)

N
N ‘)
~

0.009 (0.009) 0.009 (0.009)

;

(0.008)

N

N
N,

N
N,
0.008

____(/ d ~

=
&

—-—-r5

|

I
4
N

b)
I &
: 0.026 (0.026) h@, o 0.010 (0.010) Lb@, = : : 0.015 (0.015) b@. =
& = ¥ =) %) )
S N S
= = =)
3 S 3
(=] (=1 =
Story shear = 0.018 (0.017) Story shear = 0.011 (0.011) Story shear = 0.012 (0.011)
o o
< =+
< 2
= =
B02 o BO5 =
<+ Iral
| < | < |
| s | S
g g
0.042 (0.041) G, 0.045(0.041)
~ // —
\\"%3&
N,
0.009 (0.009) 0.009 (0.009) >«
Y
//
//
4
//
e "
rd y
// >
--- B - N2
| 0.010 (0.010) o — | | 0.013(0.010) N — :
S =+ S =~
[ & 2 i ) =
= =
2 <
=S =3
Story shear = 0.013 (0.013) Story shear = 0.014 (0.013)

Figure 2.31. Predicted story shear of the five specimens with normal bond condition

(number in parentheses is determined by Shiohara’s numerical method)

2.5 Modification of the new model to investigate the monotonic response of the interior
beam-column joints with different depth and width of beams and columns and normal

bond condition

The procedure in this section is similar to that of section 2.2 except the following modifications:

2.5.1 Concrete struts

Displacements in Figure 2.32 named as dcom_1, dcom_3, Jten_6, Jten_s are used for determining strain

distribution in diagonal orientation, can be calculated as below:
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dd A, A, @, @
O, =—==t| 2y _Txl 72
o 1 = T [ Tt o %} (2.103)

dd A, A, o, @
5 — X"z x2 + z2 + x2 _ 1z2 +
com_3 —df 0 (—dz i "2 2 %J (2.104)
dd A, A, @, @
o — X"z x1 + z1 + x1 _ 7l
ten_6 df +d22 ( d ' d 5 > ) (2.105)
dd A A, ¢, @
5 — X"z x2 + 22 1T'x2 + 22
ten_8 ,_df +d22 ( d, d _2 _2 J (2.106)

Similarly, displacements in Figure 2.33 named as dcom 2, Jcom 4, Oten 5, Oten 7 are used for

determining strain in directions perpendicular to diagonals, can be calculated as below:

_2d,A +2d,A —df(pxl—df(pzz

5com - 2 L2 2107
2 2Jd?1d? (2.107)

5 _ ZdzAXZ + 2dxAzl + d12¢x2 + df¢21

com_4 — ZW (2108)

2d, A, +2d, A, +d7p, +dlp, —(df +d7)p,

é‘ten_s =—+-x 2 ZW (2.109)
S _ 2dzAx2+2dxAzl_df¢x2_dzz¢zl_(dx2+dz2)¢0

ten_7 T ZW (2110)




0 12

Figure 2.32. Displacement of the center point and corner points in diagonal direction

0y /2

N
P f?A\

Figure 2.33. Displacement of the center point and corner points in orientation

perpendicular-to-diagonal direction

Length of concrete struts (lcand k) were determined in (2.71 and (2.72).
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compression

strain distribution

strain distribution

Figure 2.34. Illustration of concrete strut length

These coefficients are utilized to compute strut widths wci and wcj depicted in Figure 2.35 as

below if the struts are perpendicular to diagonals:

W =& d% (2.111)
d.
W = ¢ % (2.112)
If the struts are parallel to diagonals, then:
dd,
We; =& 5 (2.113)
dia
dd,
W =¢; i (2.114)
dia
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Figure 2.35. Width of concrete struts

2.5.2 Bar springs

Lengths of bar springs were defined as follows:

dX
=l =hy =l == (2.115)
d,
e =l7 =lg =k = ? (2.116)
IT5 = gxdx (2117)
by =d, (2.118)

where It1, I12, 13, I1a, s, I76, I77, l18, 19, @and lr10 are length of bar spring Ti1, T2, Ts, Ta, Ts, T,
T7, Ts, To, and T1o respectively, as shown in Figure 2.36.

dx J"2 dx 3{2 bar Spring gxdx J'; 2 gxdx J'Ir 2
| C| | 0
T, Sc T, r T fi'“_ C
L de/2 | ST
gzdf2 B ]T4=dxa'f2 TS ]13=dxf{2 D B B ,_i—c
} § o Tio D

gzc[f 2 T, hs=gdc T, ~
/2| T,87
l-“=(i|ca'r2 SAI-D:dx}"z L '_['i

A A

bond-slip spring rigid plate

Figure 2.36. Definition of bar springs of the joint element with normal geometric properties
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2.5.3  Joint compatibility and stiffness

The definition of the joint compatibility and stiffness is the same with that defined in section
2.3.4 except the following changes in matrix Bi.

[cose 0 sing 0 M 0 T 0 T |
sina 0 0 cosa s 0 0 M Py
0 cose 0 sina 0 s 0 Mg T
0 sinag coseg O 0 un My 0 uns
sina 0 0 cosa s 0 0 Mg Mo
cose 0 sina 0 Mes 0 Ner 0 ko
0 sina cosa 0 0 The . 0 T
0 cose 0 sina 0 Thes 0 Tes Tls
1-g )d 1-g,)d
1 0 0 0 gZdZ 0 ( gl) z 0 ( gl) z
2 2 2
1-g,)d 1-g,)d
0 1 0 0 0 gZdZ _( gZ) z 0 _( gZ) z
2 2 2
B=lo 1 0o o0 0 44, o U-e)d (-0
2 2 2 (2.119)
1-g,)d 1-g,)d
1 0 0 0 _gZdZ 0 0 ( gz) z ( gZ) z
2 2
1 1 0 0 0 0 0 0 0
1-g,)d 1-g,)d
0 0 1 0 0 _( gx) X gxdx 0 _( gX) X
2 2 2
1-g,)d 1-g,)d
0 0 0 1 0 ( gx) X 0 gxdx ( gX) X
2 2 2
1-g,)d 1-g,)d
o o o 1 19 0 0 98, _(-e)d
2 2 2
1-g,)d 1-g,)d
0 0 1 0 _( gx) X 0 _gxdx 0 ( gX) X
2 2 2
0 0 1 1 0 0 0 0 0

where « is the are the angle with respect to the orientation of the joint diagonals:

X

o = arctan [%) (2.120)
and:

_ ﬂl dz
Ths 5

COSa—(l—ﬂl)d?Xsina (2.121)
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M, :(1—51)%%050: ’812 Xsina

o =(1-5) d'asm205

CoOSa

=—(1-5,)=% Slna+’322 :

ﬂZZ

d
s =" sina — (1—,82)?%0505

d.
N =P ga +(1_770)dx Cosa

My = — fid Zc0505+(1 ﬂ3)d?sma
M =—(1- ﬂg)?c05a+ﬂ32 *sina

o =(1- ﬂ3) %a iy 20

N =(1—,B4)d?Zsina ﬂ“z X cosa

My =— '842 “Zsina +(1- ﬂ4)d?c05a

__p Y4

s = =P 5

Mo = — ﬁf’z S—Lsing +(1- ﬂs)d?cow
s =(1- ﬁs) sina — ’Bszxcow

d

=—(1- d

( ﬁ5) 2
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Mes :(1—/36)%%050: ﬂf’z Xsina (2.136)
Mo = ﬂﬁz Lcosa — (1—,6’6)d—2Xsina (2.137)
= [ %sin 20 (2.138)

N = ’372 Lsing — (1—/5’7)%%0505 (2.139)
M, =—(1- ﬂ7)?sma+’872 X cosa (2.140)
=—(1- ,87) Oy (2.141)

Mg =—(1— ﬁ8)3c05a+ﬂ82 Xsina (2.142)
Tag = ’88 = —cosa+(1- ,Bs)d?sma (2.143)
Mo = s d; sin 2a (2.144)

2.5.4  Verification of experimental study

2.5.4.1 Specimens

Two specimens with regard to C03 and D05 from a series of test of the reinforced concrete joint
subassemblages conducted by Shiohara and Kusuhara [43] was adopted in this study for
verification. The detailed properties of the materials of specimens are listed in Table 2.7 and
illustrated geometrically in Figure 2.37. In specimen CO03, the width of the beams was different
from that of the columns. In specimen D05, there was a difference between the depth of beams
and that of the columns. At each story drift of 0.25%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%, two

cyclic loadings were applied horizontally.
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Table 2.7. Properties of interior joint specimens

Specimen C03 D05
concrete compressive strength (MPa) 31.0 32.4
beam width x depth (mm) 120 x 240 240 x 170
longitudinal beam bars 32'_[[))11% 7-D13
bar yielding strength (Mpa) 378 378
bar distant ratio 82 0.72
column width x depth (mm) 240 x 240 240 x 340
longitudinal column bars 5-D13 3-D13
column bar yielding strength (Mpa) 378 378
column bar distant ratio 0.8 0.86

Joint hoops D6 (two sets)
Yielding strength of hoops (MPa) 399
o = K =19
Loading point i Loading point i
L AN = (— v v = v
T T ST T T T EEEEEE RS S R
) =2 A A . A
Hoops D6@>50 (SD295A) % ®|  Hoops D6@30 (SD295A) | =
Two sets % Two sets i
Unit: mm D‘ % 4 I> | <
{ 700 I 200 { [ 700 | 700 |
3D13
- D13 D13 & - 7D13
5Bl =N G ENE 3| & SEN N
— — =t
&) | 240 & 120 &) | 240 ol
column C03 beam C03 column D05 beam D05
Figure 2.37. Geometric properties of specimen C03 and D05
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2.5.5 Discussion of results

2.5.5.1 Load deflection relationship

Table 2.8 compares the maximum story shear predicted by the new joint model (Vu_analysis) tO
that of the experimental results, at the flexural strength of beam (Vu_aci) by ACI 318 — 08 [2],
and computed at the nominal joint shear strength (Vu_au) by AlJ 1999 [1]. The relationship of
the story shear versus the story drift of all specimens is shown in Figure 2.38.

The analytical result captured well the backbone of the cyclic response of specimen C03 with
refer to the story shear versus the story drift relationship. In specimen C03, the maximum story
shear from prediction was closer to that from test data than others computed at the flexural
strength of beam or at the nominal joint strength. In computation of specimen D05, two cases
were analyzed: concrete struts with the orientation followed diagonal direction and concrete
struts with the orientation of 45°. The analysis with 45-degree orientation of concrete struts
returned in a better correlation with the observed backbone of the cyclic response of specimen
D05 than that with diagonal orientation of concrete struts.

2.5.5.2 Comparison to Shiohara’s numerical method

A comparison between the computation by the new model and Shiohara’s numerical method at
the ultimate stage is shown in Figure 2.39. All of the forces were normalized by 0.85¢ . In
specimen C03, there was a good agreement between the results of the new model and those of
Shiohara’s numerical method in which the story shear and forces in reinforcements and concrete
were mostly the same in the two cases. In specimen D05, in comparison to Shiohara’s numerical
method, the analysis with diagonal orientation of concrete struts showed a better correlation
than that with 45-degree orientation. Difference from Shiohara’s numerical method was
attributed to the predicted stress in the joint hoop at the ultimate stage which was a half of the
joint hoop’s yielding strength. In Shiohara’s numerical method, the joint hoop was always

assumed to yield at the ultimate stage.
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Table 2.8. Analytical results of the maximum story shear

*

*%

Results C03 D05 D05

At the flexural strength of beam

69.4 752 752
(column) by ACI 318 - 08[2] (Vbu)
Computed at the nominal joint shear

80.4 556 55.6

Maximum story Strength by AlJ 1999 (Vju)
shear (kN) Test (chax_Test) 67.4 59.3 59.3

AnaIyS|S (Vu_AnaIysis) 660 692 588
Vemax _Analysis / Vhu 0.95 0.92 0.78
Vemax _Analysis / Vju 0.82 1.24 1.06
chax _Analysis / chax _Test 0.98 1.17 0.99

*: orientation of concrete struts follows diagonal direction

**: orientation of concrete struts is 45°
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D05
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2.6 Modification of the new model to investigate the cyclic response of the interior beam-
column joints with different depth of beam and column and normal bond condition

There were changes of definition of deformation of concrete struts and constitutive rules of

materials under cyclic loadings as below.
2.6.1  Concrete struts

In Shiohara’s mechanical model, the rotation of four triangular bodies causes compression and
tension zone in concrete as well as generate joint deformations. Strain distribution on diagonal-
orientation section of concrete struts in the study is, therefore, determined from displacements
of corner points and the joint center. It is noticed that when longitudinal reinforcements in beam
and column vyield during loading stages, plastic deformation in tensile bars prevent tensile
concrete struts near joint corners from returning compression in the next unloading stage. In
other word, triangular bodies in the mechanical model cannot close after unloading and even
during reverse loading, thus fails to resemble Shiohara failure mode. To solve this problem, it
is assumed that during loading stages, four triangular segments expand towards yielding
reinforcements as described in Figure 2.40. The expanding lengths are defined from

deformation of respective tensile reinforcement as followings:

Aeizgi(Aﬂ—A;) (20) withi=1,2,34 (2.145)
1 L
Aej:g—(An—A;) (=0) with j=6,7,8,9 (2.146)

where Aciand Agj are expanding lengths towards yielding bar Ti and Tj, and APriand AP+ are

deformation at yielding strength of those bars respectively.

Figure 2.40. Expansion of triangular segments after bar yielding
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Displacements in Figure 2.32 named as dcom_1, dcom_3, Jten_6, Jten_s are used for determining strain

distribution in diagonal orientation, can be calculated as below:

5 dd, (Axl LAa _&+ﬁ+%] (2.147)

COm71: ’d3+d22 dZ d 2 2

5 d,d, (ﬂ+ﬁ+&_&+%] (2.148)

T fPedild, d, 2 2

X

S — dxdz A><1 — Ael + Azl — Ae9 + D P (2 149)
ten_6 df N dzz dz dx 2 2 .
dd A,—-A, A,—-A., @, @
5 — X"z x2 e3 + z2 e7 _ 1'x2 + z2
en_8 ,—df a2 ( d d S J (2.150)

Similarly, displacements in Figure 2.33 named as dcom 2, Jcom 4, Oten 5, Oten 7 are used for

determining strain in directions perpendicular to diagonals, can be calculated as below:

s 2d, (A, —A,)+2d, (A, —Ag)—dip, —die,,

com_2 = 2.151
P Sl (2.151)

S 2dz (AXZ_Ae2)+2dx (Azl_AeG)_'_dzZ(DxZ_‘_df(Dzl

com_4 = 2.152
P yrove (2.152)

_2d,A,+2d A +dngoxl+df¢22—(dxz+df)(po

5 z—x1 x—z2

en_s = NaTH (2.153)

S _ 2dzAx2+2dxAzl_df¢x2_dzz¢zl_(dx2+dz2)¢0

ten_7 — ZW (2154)

2.6.2 Constitutive material model

2.6.2.1 Constitutive steel model

At the unloading point (g, &), the skeleton path employs the initial stiffness Esagain, as shown
in Figure 2.41.
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Figure 2.41. Steel hysteresis rule
2.6.2.2 Constitutive bond-slip model

The rules of the unloading and reloading path defined by Eligehausen et al.[25], as shown in
Figure 2.42. Here, 7 is the bond stress, s is the slip, and o and =+ are the frictional bond

resistance at the first cycle and later cycles respectively.

Figure 2.42. Bond-slip hysteresis rule

2.6.2.3 Constitutive concrete model

Unloading paths

The unloading paths were assumed to comprise of two linear lines with the Young modulus of
concrete (Ec) used in the slope of the first line, while the second line used a slope equal to
0.071E, as suggested by Palermo and Vecchio [45]. The plastic offset strain &% at the end of

the unloading paths in compression is defined as follows:
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&
maxa

£8 =gy | 1-€ (2.155)

max

where emax IS the previously obtained maximum compressive strain in the material, and o is a
parameter related to the plastic strain amount, which was set to be 0.32 in the analysis carried
out in this study.

Coordinates of the deflection point (2i, o2i) were calculated as follows:

g, -007L%, o,
PR pi 1i
2 0.929 0.929E,

(2.156)

05 = (52i — & ) E. +oy (2.157)

Similarly, at an arbitrary point in the strut’s section with strain & between ecom_i and zero (ecom_i
<& <0), the unloading path went from the unloading point (e1, o1), point (g2, ¢2), and point (&%,

0) correspondingly.

Strain g1 was determined from strain ¢1; as follows:

81 = Eli (2158)

o1 was computed from e1 by the loading skeleton.

It was assumed that when strain ¢ reached ecom_i, €2 and &% also reached i and £°i respectively.
When ¢ decreased to zero, 2 and &% also decreased to zero. & and &% were determined from

these assumptions as follows:
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&y =&y (2.160)

o2 Was also assumed to be proportional to o2;i as follows:

£
o, = - Oy (2.161)

com_i
In the unloading path with slope Ec, as shown in Figure 2.43(a):

acom_i Was determined from &com_j as follows:

Gcom_i

= (gcom_i — &y ) Ec + 0y (2'162)

Stress o corresponding to strain & (ecom_i < & < 0) of an arbitrary point in the strut’s compression
section was interpolated so that when ocom i reached o1 or ozi, o also reached o1 or o2

respectively, as described in the following equation:

O, — Oy

oc="21 "% (5 —-0,)+0, (2.163)
O1i — Oy
If K.g,,<6¢,;<0
5comii o -0 K f 1 2 2
Oy = J‘ com_i 2i c'c l:_ £ +[ 2 J ]_ 0,¢ + 0y¢ de (2164)
0 O-li Gzi 8com_i chco chco 8com_i gcom_i

Eoom _i Com i — O, 2 2 3
J. Zom i TAIK f |- E |, o, |de
0 0y — 0y Ke€eo (chco)

& i 2
com _i o — I 25 c
Eoom i J —eomt CAOK | - +( j —0uEr+0,E |de
- L — O, K. e K.
O-ll O-2| c“c0 c“co

0

(2.165)
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. K.€.080m i K.€0€om i
If &, <K&, :consider Kg,<g or e>—""""landg <K g, Or &< 2Nt
& &
K1:5"c0‘f:com_i
&1 1 2
oo = Ocom_i ~O2i | K F'| K26‘ _{ Kg ] | 0y€ L
0 Oy — Oy gcom_i c€eo c€eo gcom_i gcom_i
(2.166)
Ecom _i o i —o : K f ' ) )
4 com_ 2 cle |:1+Zm (g— chco):l_ 0, & n 0, & de
Ke£cofoom i Oy — Oy, Ecom_i Eoom_i Eoom_i
[ chco‘gcomii i
& Y, 2 3
I ot ALK - 2 , ¢ s |—0ye’ to,e’ |de
0 0y — 0y Keéeo (chco)
Ecom_i o _—
+ J [ ol 2 {KC f. '[5+Zm (52 - chcog)J—GZigz}JrGZigzjde
Ketooteam i . Oti ~ O
Bei=6|1- SE PV
C! czlimmJ O_ _G 2 ) (2167)
I L - Y —0,&+0,¢ |de
0 01 =0y Kegoo | Kegig
gcom_i o
com_i o e
+ (wm_'z'{Kc f,[1+2Z,(e- chco)]—02i8}+0'2iejdg
Ketooteom 1\ i ~ O
Unloading path with slope 0.071Ec, as shown in Figure 2.43(b):
ocom_iWas determined from &com_i as follows:
Ocom i =(Eeom_i — €2 )0.0T1E, + 0, (2.168)

Stress o corresponding to strain & (ecom_i < & < 0) of an arbitrary point in the strut’s compression

section was computed as follows:

o=(¢-¢,)0.071E, +0,=——o0,,
- _

(2.169)

com_i
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Ecom_i

s = J ZLacom_idg (2.170)

0 gcom_i

Reloading from tension path

A shown in Figure 2.44, ocom_iwas determined from &com_i as follows:

Oy
= L (2.171)

1i

O-com_i

Stress o corresponding to strain & (ecom_i < & < 0) of an arbitrary point in the strut’s compression

section was computed as follows:

o=—"0lg (2.172)

If Kg,o<g;<0

c“c0

o S Keéeo

£ 2
K2
ou= [ e { d +( £ ”dg (2.173)

B =&|l-——— : (2.174)
com_i 28 [ e J
Eeom i — + de
B 0 { chco chco
H cgcogcom i chcogcom i
If &; <K g, :consider Kg,<eg or e>——=andg, <K, or < =
& &
chcogcomii
2 e
& K f 1 2 com_i K f 1
o= | e { ¢ j de+ [ —2[1+Z,(e-K.,)]de (2.175)
0 gli chco chco Keécoceom i i

&
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Figure 2.43. Constitutive rule of concrete under unloading in compression
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Figure 2.44. Constitutive rule of concrete under reloading from tension to compression
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2.7 Verification of experimental study

2.7.1.1 Specimens

Five specimens (A01, B01, B02, BO5, and C01) in section 2.3.8.1 and two specimens in section
2.5.4.1 (C03 and D05) were chosen for verification. In specimen D05, the orientation of the

concrete struts followed the direction of the joint diagonals.
2.7.1.2 Load deflection relationship

Relationships of story shear versus story drift of five specimens are described in Figure 2.45 to
Figure 2.47. Results indicated good correlations between maximum story shear predicted by
the new model with observation. The differences of maximum story shear between observation
and computation based on the new joint model were under 7% in all specimens. In specimen
B02 and BO5, the computed maximum story shear had a good agreement with the story shear
established at the shear strength determined from AlJ 1999 and the observed maximum story
shear. Degradation of story shear at 2% of A01, B02, B05, C01, C03 and D05 was predicted
well although there was disagreement in BO1 with the ultimate point at 3% of positive path

instead of 2% like prediction.
2.7.1.3 Failure mode

Based on the observation, the failure of specimen BO1 and B02 was the joint shear failure
following beam yielding, and the failure of other specimens was the joint shear failure. The
analysis captured well these aspects. To understand more specifically joint performance, failure
modes of specimens are evaluated with considering failure of crushing concrete struts, yielding
failure of reinforcements, and bond failure of reinforcing bars. The crushing of concrete struts
was predicted when the computed concrete average stress degraded. The bond failure of
reinforcement was captured when the bond stress exceeded 2.5f”c. The results of the joint failure
modes were described in Table 2.9. In all specimen, there was no bond failure. The yielding of
reinforcements in specimen A0l and CO1 showed a good agreement with test data. The
reinforcement yielding in specimen BO1 was also predicted well although there was an
overestimation of the story drift at the hoop yielding. For specimen B02, the failure of the
system is due to yielding of longitudinal bars in beams, columns, and joint hoops. In specimen
BO5 with the same dimensions of B02, because of reinforcing two bars D13 in column, yielding

of bars of columns at the failure mode disappears. Although the observation shows no yielding
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in longitudinal bars in columns of specimen B02 but BO5 which is different from calculation,
prediction of yielding in longitudinal bars in beam and joint hoops is confirmed well. The
analysis predicted only the yielding of the column bar in specimen DO5 which was also

confirmed by experiment.

2.7.1.4 Comparison to Shiohara’s numerical method

A comparison between the computation by the new model and Shiohara’s numerical method
[5] at the ultimate stage is shown in Figure 2.48. All of the forces were normalized by 0.85¢f".
In most specimens except D05, there was a good agreement between the results of the new
model and those of the Shiohara’s numerical method in which the story shear and forces in
reinforcements and concrete were mostly the same in the two cases. The significant differences
in specimen DO5 were attributed to the assumption of reinforcement yielding in Shiohara’s
numerical method which assumed yielding for bar spring T3 and hoop spring Ts. However, the
observation showed that there was only yielding of the column bars in specimen D05 which

was similar to the prediction from the new model.
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Figure 2.45. Story shear versus story drift relationship of specimen A01, BO1, and B02

80




—_
]
o]
—_
]
o]

Qbu=_81.0 KN i (1) 79.1KN
75 75 : ~ yoe
=805 "
g 50 g 50 Qju,=80.5
. 25 .
b b
= 0 e
2 2
g -2 g
w -50 w
-75
-100
-4 -3 -2 -1 0 1 2 3 4 4
| Experiment | Story drift (%) Story drift (%)
100 lgg Qbu=SIS KN 1
s 60 | Qju=80.5KkN
g s g 40
P g P
; 3
Z 0 Z 0
2 oo-
g £ o
v g w
50 60
-75 -80
-100 -100
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
Story drift (%) Story drift (%)
100 100 -
80 80 Qiu = 80.4 kN ! 67 3 KN
60 60 | - )
g 10 40 Qbu=069.4 kN
20 E 20
g 0 =2 0 e B g
= 20 2 -20
2 -40 £ 0
& 60 -60 g 1
-80 -80 Faeal
-100 -100 .
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
Story drift (%) Story drift (%)
(1) Yielding of joint hoop @ (@ Yielding of beam bar

(@ (9 Yielding of column bar ZCK Maximum story shear

Qpys Qeu:  flexural strength of beam, column qu: story shear at joint shear strength

Figure 2.46. Story shear versus story drift relationship of specimen B05, C01, and C03

81




100 100
80 so [ Qbu=7521N !
5 60 60
40 g 40 |- Qju=55.6 kN
= 20 8 20
Y] L)
% 0 2 0 fF--r--r-2
& -20 2 =20
= Z
£ -0 2 -0
-60 -60 -61.
-80 -80
-100 -100
- -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2
Story drift (%) Story drift (%)
(1) Yielding of joint hoop @ (@ Yielding of beam bar

(@ (9 Yielding of column bar ZCZ Maximum story shear

Qpys Qeu:  flexural strength of beam, column qu: story shear at joint shear strength

Figure 2.47. Story shear versus story drift relationship of specimen D05

Table 2.9. Failure modes of interior joint specimens under cyclic loadings

Specimen Failure mode

Yielding of beam longitudinal bars
A0l Yielding of column longitudinal bars
Yielding of joint hoops

Yielding of beam longitudinal bars
BO1 Yielding of column longitudinal bars
Yielding of joint hoops

Yielding of bars of beam
B02 Yielding of bars of column
Yielding of joint hoops

Yielding of bars of beam
BO5 Yielding of joint hoops
Concrete strut crushing

Yielding of beam longitudinal bars
Yielding of column longitudinal bars
Yielding of joint hoops

Concrete strut crushing

Co1

Yielding of bars of beam
co3 Yielding of bars of column
Yielding of joint hoops

D05 Yielding of bars of column
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(number in parentheses is determined by Shiohara’s numerical method)
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2.8 Conclusion

A new model has been proposed for simulating beam column connections under cyclic
loadings. The model successfully develops SMM from predicting joint moment capacity into a
practical joint element. Concrete struts and bar springs were defined from rotation of rigid
bodies in Shiohara mechanism so that their deformation characterized this rotation while bond
slip springs represented the anchorage loss along longitudinal bars within the joint region. The
new joint element, thus, reserved the equilibrium relationships in SMM; furthermore, it
established successfully a compatible relationship of joint deformations with deformations of
joint components which was neglected in SMM. Employing concrete strut was an aspect which
reserved the original idea of SMM and made the present model differ from other multi-spring
joint elements. In the theory, stress in compressive concrete at the failure stage was assumed to
attain 85% of concrete compressive strength (recommended by ACI 318); nonetheless, the
proposed model developed this aspect generally since a linear distribution of strain on strut
section was adopted and stress distribution was then determined based on a concrete
constitutive law. A new set of joint deformations was also introduced for the new model with
respect to nine independent components having a compatible relationship with deformation of
bar springs and concrete struts. Bond-slip stiffness was considered and integrated into bar

stiffness to establish the joint general stiffness.

The new joint model was verified in case of interior joints by simulating response of several
interior subassemblage specimens with different sizes and reinforcing details under cases: the
monotonic response of the interior joints with identical beam-column depth and perfect bond
condition, the monotonic response of the interior joints with identical beam-column depth and
normal bond condition, the monotonic response of the interior joints without identical beam-
column depth, and the cyclic response of the interior joints with normal geometric properties
and normal bond condition. In each case, failure mode of a joint was studied in details regarding
failure caused by yielding of longitudinal bars in beams, columns, joint hoops, crushing of
concrete, and bond failure of reinforcing bars. Comparison to Shiohara’s numerical method in
computing internal forces in a joint at the ultimate stage was also carried out to confirm the

reliability of the new joint element.
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Chapter 3 Application on Investigation Cyclic Response of

Exterior Joints, Knee Joints and RC Frame

3.1 Abstract

In this chapter, applications of the new joint model on investigating cyclic response of the
exterior joints, knee joint, and a two dimensional reinforced concrete frame were implemented.
Firstly, a new model for exterior joints was built based on some modifications on the interior
joint element proposed in Chapter 2. The cyclic response of four exterior joint specimens
analyzed by the new exterior joint model was verified by test data. Secondly, the interior joint
model in Chapter 2 was used without modifications to investigate the cyclic response of three
knee joint specimens. The computational results were then evaluated by experimental data
which indicated some disagreements. Several recommendations on future researches to
improve the reliability of the new joint model on studying performance of knee joint were also
proposed. Finally, an application of the new interior joint and exterior joint model on
investigating the performance of a 2D RC frame under reversed loading was conducted. Results
showed a good prediction of the new joint models in predicting the overall response of the

frame.

3.2 Modification of the new model to investigate the cyclic response of exterior joints
3.2.1  The hinging model for exterior joint

Experiments on RC beam-column exterior joints by Shiohara and Kusuhara [46] indicated the
existence of diagonal cracks on the joint surface for joint failure mode, as shown in Figure 3.1.
The location of the diagonal cracks was governed by the anchorage length of the longitudinal
reinforcing bars in the beams for both anchorage type U or type plate as shown in Figure 3.2(a).
As illustrated in Figure 3.2(b), cracks developed from the top and bottom edge of the contacting
face between the joint and the beam to the anchorage points which were located by the distance
ntdx from the beam face. The extension of crack on the contacting face between the columns

and the joint was represented by the length #cdx.
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Figure 3.2. Crack pattern of exterior joint after failure
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Figure 3.3. Hinging model of exterior joints and resultant forces in concrete and

reinforcements

Shiohara’s hinging model for interior joint was extended to exterior joint in which four free

bodies connected to each other by reinforcements and there were equilibriums of forces on each
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body as shown in Figure 3.3. Similar to section 2.2, the joint was considered to be elastic before
cracking. After cracking, bar springs and concrete struts were used to simulate the resultant
forces in reinforcements and concrete applied to the four free bodies that was represented as
rigid plates. The deformation of bar springs and concrete struts, on the other hand, were
computed by the rotation of the four free bodies of the hinging model.

3.2.2  Geometric properties of the joint element

Figure 3.4 shows the geometric properties of an exterior joint element. The other definition
regarding the compatibility and the joint elastic stiffness is similar to the definition in Section
2.2.
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Figure 3.4. Geometric properties of the exterior joint model
3.2.3 Concrete struts

The four free bodies in the joint hinging model rotated and caused compressive zones and
tensile zones in concrete under loading. Based on the observation of the cyclic tests and the
idealized kinematic model at the ultimate stage of the exterior joints [46], these zones were
illustrated in Figure 3.5(a). In this section, the “diagonal” referred to the diagonals of the
rectangular with the length ncdx and the height d; where the cracks developed. The concept of
the diagonal cracks of Shiohara’s joint hinging mechanism [5, 6] for the interior joints was
extended to the exterior joints in which there were flows of concrete compressive force in the
diagonal direction. The flow of force near corners was assumed to be perpendicular to the
diagonals. The width of the concrete tensile and compressive zones was determined by the
displacement of the corners and the center of the rectangular (ycdx) X d; in the direction of the

abovementioned force flows.
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In Figure 3.5(b), deformation dcom_1, dcom_3, dcom_s, and deom_s in the diagonal direction and dien_2,

Oten_4, Oten_s, and deen_7 IN the direction perpendicular to the diagonal were calculated as follows:

dd A, A n 1)
5com = — < Xl+_21_£l__cj¢x +_Zl+77(0 3.1
. ,/ngdjmf[ d, d, 2 )72 )
2\ 2
1 2d,A,, +2n.d,A,, _(277c —21¢ )dx¢o

S,

oz vz | -[d2 (20 - 202 ) o2 [~ (20 12 ) 0,0

(3.2)

5 dxdz UCAXZ + AZZ + Uc(sz _ _77_0

com 3 = 1 j(pz +r7(pj 3.3
o e o ) S I

_ 2d,A +2dx770Az1+dz2§0x2 +77(:dx2¢z1

27 x2
5com_4 - 2\/772d2 +d2 (34)
CHx z
S 1 2dzAxl + 277CdxA22 +(2770 _77C2:)d>§¢x1 (3 5)
ten 5= oo .
2ned? +d? |+ (nc —n2)d} +d? @, [ (20 —mE)d? +d? |,
dd A A 3 1
Oen_s =W[ dX1 M + le +(%—1j(0x1 _(77(: _Ej% +(1—770)(p0] (3.6)
CcYx z z X
s A + 2060, A, —ndlp, | d? = (ne =g ) A7 | — (2} +d)gr, a7
ot = 2yrid &7
C™x z
d.d A A, QN @
o — X"z x2 + 72 _ 7x2°IC +_22
ten_8 m( dz 77C dX 2 2 (3.8)

The displacement in the same direction of points on the diagonals distributed linearly as shown
in Figure 3.5(c). The concrete tensile zones and compressive zones were separated by the zero
displacement points. It was assumed that the strain distribution on the diagonals was also linear
in which the zero strain points coincided with the corresponding zero displacement points. Eight
concrete struts (C1 to Cg) were used to define the four compressive zones and the four tensile

zone in concrete so that the strain distribution on the section of struts was the same with the
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foregoing strain distribution on the diagonals, as shown in Figure 3.5(d). At a loading stage,
there were four concrete struts in compression and four concrete struts which did not carry any
force in the tensile zone. Based on the flows of the compressive force along the diagonal in
Figure 3.5(a), the diagonal length (ddiz) was assigned to the length of the concrete struts ( Ci,
Cz) parallel and next to this diagonal as shown in Figure 3.5(d). To keep the linear strain
distribution on the diagonals and the coincidence of the zero displacement point and the
corresponding zero strain point, the length of strut C1 and Csz was also assigned to that of Cs
and Cs. As a result, the concrete struts (Ci1, Cs, Ce, Cs) in the diagonal direction had the same
length (I1). Similarly, the concrete struts (Cz, Ca, Cs, C7) in the direction perpendicular to the

diagonal also had the same length (I2), as shown in Figure 3.5(d).

On the half-length of the diagonal, the typical distribution of the concrete strain is shown in
Figure 3.5(e) with compressive strut i and tensile strut j. The strain at the end of the strut section

regarding strut i (ecom i) and strut j (eten j) were determined as follows:

gcom_i = = (39)

gten_j - | (310)

where |; = Ic or |i = | depends on the direction of the strut.

The width of strut i (wci) and strut j (wcj) were governed by coefficient & and &, which were

determined as follows:

gcom_i ‘

G = (3.11)

&,

com_i

+ gten_j‘

‘fj =1-¢ (3.12)
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The joint thickness was assigned for the thickness of a strut, which was computed from the

recommendation of AlJ [47]:

t=t, +t,+1, (3.13)

where t, is beam width, tc; and te; refer the smaller of % column depth and Y2 the distance
between beam and column face on either side of the beam.

The average stress in the compressive strut i and the tensile strut j was calculated as follows:

Ecom _i

o, de
! ) (3.14)
Oci =
‘9com_i
‘gtenJ
o,de
0 (3.15)
Og=—"T-—""

Eten_j

where o, is the function regarding the envelope of stress against strain.

The distance between the location of the strut axial force and the end of the strut section was

computed by the coefficient 1 to Ss in Figure 3.5(f), which were determined as follows:

Ecom i

J. go,de
B =&|1-—2 withi=1to8 (3.16)

Ecom_i
‘c"com_i _[ O-(s)d &
0

Sten _ j

£o,de
By =& |1-—2 withj=1to8 (3.17)

Sten_j

gten ]

0

ode
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In Equation (3.14) to Equation (3.17) if ecom i OF &ten_j reaches zero, oci, ocj, fi, and pj are also
considered to be zero. Figure 3.5(f) shows the illustration of the eight concrete struts connected

to the rigid plates.

displacement distribution ¥ C

compression tension d

L, strain
distribution

displacement distribution

B :‘:\‘I ™~ ™ R ——
strain “ é D
djstribution .~
© :
c k
d \_A
dy;, /2

Edgy /2 G/ ]
Bidsa /2 ‘ B |2

= —

(e)
dy, =(d" + ndd) s

1y = dgia;

1, = dgia(dz / neds);

lea=les=les=ler =1y
lei=lea=les=les =k

Wer = Edgi,/2: Wor = Ginedade/dy;
wey = 8daiaf2; W = Ganedxda/dy,;
wes = Esdy/2: wes = Eenedxdaldys,;
wer = Endgf2s wes = Gencdsda/dy,;

(a) Tensile zone and compressive zone in concrete; (b) Displacement of the center point
and corner point; (c) Displacement and strain distribution on the joint diagonals; (d)
Illustration of concrete strain distribution and the width of the struts; (e) Typical stress
distribution on a half of the joint diagonals; (f) Definition of concrete struts connecting to
rigid plates;

Figure 3.5. Definition of concrete struts of the exterior joint element
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3.2.4  Bar springs

The rotation of the four rigid plates simulated the rotation of the four free bodies of the hinging
model. When the rigid plates rotated, there were following displacements (AT2, At3, Ats, ATsT,

ATsg, Ate, AT7, ATs, AT, AT10) at the location of the reinforcements, as shown in Figure 3.6.

d/2 d/2 exd/2 gud/2
( | [ 1 |
¥ Y
C C
Apsy i Arqa I_ A A
I — d/2 TS8 TS7
gzdf' 2 A | ATI(}
i 15 | U S A 1 __
o (P i D) (s D)
[ R d/2 Arso Arss
Arsp ! TS2 l_
A A
A A

Figure 3.6. Deformation at the reinforcement location of the exterior joint element

These displacements could be computed by nine independent components of the joint

deformations as follows:

+ gqu)xZ _ (1_ gl)d¢zl . (1_ gz)d¢0

A, =A 3.18
TS2 X2 2 2 2 ( )
1-g,)d 1-g,)d
ATS3 :sz _ gzd§0xz _( gz) (022 +( gz) (DO (319)
2 2 2
Ars =Ay+A, (3.20)
d d
ATST — Axl +AX2 _ gZ ¢Xl _ gZ ¢X2 (3.21)
2 2
d d
Argg =D+ A4, — 3500 _ 9:0% (3.22)
2 2
1-g.)d 1-9g.)d
ATS6 — Azl + gxd¢11 _( gx) ¢x2 _( gx) (DO (323)
2 2 2
1-g, )d 1-g, )d
A=A+ gxd;”zz N gxz) 2 g;) % (3.24)
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949, +(1—9x)d<0x1_(1—9x)d% (3.25)

Arsg = Ay, 2 2 2
1-g,)d 1-g,)d
N gde, (1-9,)de,  (1-9,)de, (3.26)
2 2 2
Ao =Au+A, (3.27)

In this section, bar springs were defined based on these displacements to represent
reinforcements in joint core. Notation Ty to Ta, Te to T10 Were employed for the longitudinal
beam bars and column bars respectively. Ts represented the center joint hoops while Tst and
Tsg indicated the joint hoops at the contacting face of the joint and the columns, as shown in
Figure 3.7. When slip was considered, the displacements in Figure 3.6 were used to define the
deformation of bar springs and bond slip springs as illustrated in Figure 3.8. The axial forces of

bar springs and bond-slip springs were shown in Figure 3.9.

The relationship between the force and the deformation of springs are expressed as follows:

T=KrsArs (3.28)

where:

T is the force vector of the bar springs, as follows:

T:{TZ’TB’TS’TST’TSB’T6’T7’T8’T9’T10} (3-29)

Ats is the combined deformation vector of the springs:

A = {ATS2 'AT53 ’ AT5 ’ AT5T ' ATSB ’ATSG J AT57 J ATs8 ’ Ang J ATm } (3.30)

krs is the matrix of the combined tangent stiffness of all springs:
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k., 0 0 0 0O 0 O 0 0 0
0 k. O o 0 0 0 0 0
0 0 k 0o 0 0 0 0 0
0 0 0k, O 0O 0 0 0 0
0 0 0 0 k, O 0 0 0 0

“v=lo 0 0 0 o k. 0 0 0 (331
0 0 0 0 0 k_k. 0O 0 0
0 0 0 0 0 0 0 k. k., 0
0 0 0 0 0 0 Lok O
0 0 0 0 0 0 0 0 0 k

| ke (ky +kg )
with K, :ﬁ (3.32)
k; k
and k;_ :ﬁ (3.33)

(,jn=(1,2,A),340C),(6,7,D), (8,9, B)

In the above equations, T1 and T4 were not included. Because At1 and A4 had a relationship
with the deformation of the adjacent bond-slip springs as shown in Figure 3.8, T1 and T4 were
simultaneously determined with the bond forces by an iterative computational technique, which

is mentioned later in the joint computational procedure.
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Figure 3.7. Definition of bar springs and bond-slip springs of the exterior joint element
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Figure 3.8. Deformation of bar springs and bond-slip springs of the exterior joint element
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Figure 3.9. Axial forces of bar springs and bond-slip springs of the exterior joint element
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3.2.5 Joint compatibility and stiffness
3.2.5.1 Before cracking

The joint elastic stiffness was used to analyze the joint response before cracking. The
definition was similar to section 2.3.4.1.

3.2.5.2 After cracking

Equation (2.45) was also used to check the point when cracks occurred.

The joint deformation vector had a compatibility relationship with the vector including the
average deformation of the struts (Ac1 to Acs) and the combined deformation of the springs as

follows:

A=B,d (3.34)
where

A= ‘{Acl ) Ac2 e Ac7 ' A(:8 | AT82 1 ATs3 ' AT5 ' AT5T ' ATSB 1 ATSG 1 ATs7 | AT58 1 Ang ) AT10 } (3.35)

Due to contragredience, there was the following relationship of the joint force vector f and the

force vector of all springs and struts q:

f=B]q (3.36)

where

q :{Cl’CZ’CS’C4’C5’CG’C7’C87T2’T3’T5’T5T7TSB’T6’T7’T8’T9’T10} (337)
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(3.38)

where o is the are the angle with respect to the orientation of the joint diagonals and the

horizontal direction:

and:

ﬂldz

M =22 CcoSar —
15 2

a= arctan( Z

)

1NcUy

d, .
(2_770 _Ucﬂ1)?xsma

d d .
UL :(1—ﬂ1)?ZCOS(Z—(77C -1+ ncﬂl)?"sm a
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. =(1-4) d'a3|n2cz+(1 1 )d, sina

d, . d
Mo = _(1_ﬁz)?zsma+(l_770 +77Cﬁ2)?xcosa

dX
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Mo = 'BG —=—zcosa—(2n, —1—77Cﬂ6)d?XSina (3.56)
ddia H H
:,8675|n2a+(1—nc)dxsma (3.57)
N = '37 “—sina-n. (1- ,87)%00505 (3.58)
d
=—(1-4,) ZS,|n05+(1 77C+77C,6’7)?C08a (3.59)
dg
(-5, (3.60)
d, d, .
Mee :—(1—ﬂ8)3005a+7ycﬁ8?sma (3.61)
Mg = — fed Zcosoz+(1 ncﬂg)%5|na (3.62)
ddia H
= ﬁg TSln 2a (363)

The stiffness matrix ko in Equation (2.10) could be computed as follows:
k, =Bk, B, (3.64)

where ki is the stiffness matrix which includes the stiffness of all concrete struts and bar

springs:

k —{kc 0 } (3.65)
' O kTS l

krs is derived from Equation (3.31); kc is the diagonal stiffness matrix of all concrete struts

including:

_C Cnl

0 =3 _ (i=1+9) (3.66)

Cl
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where Aci", Ci", Aci™?, and Ci"* are the average deformations and axial forces of strut Ci and

strut Cj at step n and step n-1 respectively. A" and Ai"* were defined as follows:

Agi = é _ﬂi 5c0m_i (367)
&
s =i (3.68)
S
At the beginning of loading, coefficient &; (i = 1+8) was assigned to be 0.5.
The strut initial stiffness was determined as follows:
EA. .
Kei = °|—A°' (i=1+8) (3.69)
where E¢ is the concrete modulus.
The joint stiffness in Equation (2.10) was rewritten as follows:
K =B{B!k,B, B, (3.70)

The constitutive model of materials is the same with the definition in section 2.6.2.
3.2.6  Verification of experimental result

3.2.6.1 Specimens

Four specimens (L06, NO2, 002, and P02) from a series of tests on exterior joint
subassemblages [48] were chosen for verification. Details of specimens are described in Table
3.1. Specimen L06 has a common section of 240 x 240 mm for beam and column using steel
plate welded at ends of beam bars as anchorages. Specimen 002 has the same size like L06 but
anchorages type U are employed. NO2 and P02 also uses the same type of anchorage of L06 but
different size of frame members with beam section of 240 x 170 mm and column section of 240
x 340 mm for NO2, and beam section of 240 x 340 mm and column section of 240 x 170 mm
for PO2. Bars D6 are utilized for hoops of all specimens with two sets for L06, N02, O02 and
three sets for P02. Beams and columns of specimens are 700 mm length from one end to the
joint center, and detailed geometric properties are shown in Figure 3.10, Figure 3.11, Figure

3.12. Load setup and loading history are described in Figure 3.13 and Figure 3.14. Force
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applies at the top of columns so that the absolute magnitude of axial force in columns is equal

to half of shear forces in beam Vb.

Table 3.1. Properties of exterior joint specimens

Specimen L06 NO02 002 P02
concrete compressive strength (MPa)  27.7 29.0 29.8 26.2
beam width x depth (mm) 240 x 240 x 240 x 240 x
240 170 240 340
longitudinal beam bars 4-D13  6-D13  4-D13 3-D13
bar yielding strength (Mpa) 380
bar distant ratio 0.8 0.72 0.8 0.86
column width x depth (mm) 240 240 240 240x
240 340 240 170
longitudinal column bars 4-D13  2-D13  2-D13 5-D13
column bar yielding strength (Mpa) 380
column bar distant ratio 0.8 0.86 0.8 0.72
anchorage length (mm) 156 221 156 111
anchorage length 0.65
joint hoops D6 (2 sets) D6 (3 sets)
hoops yielding strength (Mpa) 334
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Figure 3.14. Load history of exterior joint specimens

3.2.6.2 Computational procedure

The computational procedure before cracking was similar to Figure 2.21. The Newton-Raphson
iterative algorithm in Figure 2.23 was also used. The detailed computational procedure of the
joint is described in Figure 3.15 for stages after cracking in which a set of the joint nodal
displacements (d) returned in a set of the joint nodal forces (p). Computation was carried out
by OBASAN with Newton-Raphson iterative method. Response after degradation was not

interested in order to avoid non-converging.
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Figure 3.15. Chart of the computational procedure after cracking for an exterior joint element
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3.2.6.3 Load deflection relationship

Relationships of story shear versus story drift of the four specimens are described in Figure
3.16. Results showed good correlations between maximum story shear predicted by the new
model with observation. The differences of maximum story shear between observation and
computation based on the new joint model were 1.9%, 5.6%, 11.4%, and 2.4% in specimen
L06, NO2, 002, and P02 respectively. Degradation of story shear at 1.5% of L06, 002, and P02,
and at 1% of NO2 was predicted well although there was disagreement in O02 with the ultimate
point at 2% of negative path instead of 1.5% by prediction.

3.2.6.4 Failure mode

The prediction of the joint failure mode was confirmed by observation in all specimens. To
understand more specifically joint performance, failure modes of specimens are evaluated with
considering failure of crushing concrete struts, yielding failure of reinforcements, and bond
failure of reinforcing bars. The crushing of concrete struts was predicted when the computed
concrete average stress degraded. The bond failure of reinforcement was captured when the
bond stress exceeded 2.5f"c. The results of the joint failure modes were described in Table 3.2.
Crushing of concrete was predicted only in specimen P02, but the maximum compressive forces
in struts of other specimen almost attained limitation. Similar to analysis of interior joints, there
was no estimated bond failure although in the most critical case in specimen N02, the bond

stress attained 80% the bond strength.

In comparison to test data, the computation in specimen L06 and P02 had a good prediction of
yielding in the center joint hoop although there was a difference in predicting yielding of the
longitudinal bars in the beams and columns. There was also a good correlation between the
analytical results and test data in specimen NO2 and 002 in which the longitudinal bars in the
beams did not yield while the center joint hoops and the longitudinal bars in columns yielded
within the story drift of 1%.
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Figure 3.16. Story shear versus story drift relationship of exterior joint specimens
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Table 3.2. Failure modes of exterior joint specimens

Specimen Failure mode

Yielding of bars of column

L06 Yielding of joint hoops

Yielding of bars of column

NO2 Vielding of joint hoops

Yielding of bars of column

002 Vielding of joint hoops

Yielding of bars of column
P02 Yielding of joint hoops
Concrete strut crushing

3.2.6.5 Comparison to Shiohara’s numerical method

Shiohara [49] introduced a numerical method to compute the story shear and the resultant force
in concrete and reinforcing bars at the ultimate stage based on some assumptions of stress in
material. That numerical method was used in this section to compare with the material resultant
forces by the analysis. The result is shown in Figure 3.17 and Table 3.3 in which all of the
forces were normalized by 0.85tf”c. In all specimens, there was a good agreement of the story
shear at the ultimate point in the two cases. The resultant force in the longitudinal bars in the
beams and columns was almost the same. The computation showed that there was no
compressive force in strut C2 which agreed well with the same assumption in Shiohara
numerical method. The difference in the concrete resultant forces was attributed to the stress in
the center joint hoops. At the failure point, the center joint hoops in Shiohara numerical method
were assumed to yield. In the present analysis, the yielding of the center joint hoops occurred
before the failure stage. Due to the plastic deformation, the stress of the center joint hoops at
the failure point was smaller than the hoop yielding strength. In general, there was a good
correlation between two cases in predicting the story shear and the forces in material at the

ultimate stage.
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Figure 3.17. Joint failure mode and resultant forces in material of exterior joint specimens

Table 3.3. Predicted story shear and resultant forces in material of exterior joint specimens

Specimen
Force
LO6 NO2 002 P02
Cl 0.011 (0.013) 0.007 (0.009) 0.009 (0.012) 0.007 (0.009)
C2 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
C3 0.043 (0.047) 0.032 (0.051) 0.018 (0.015) 0.032 (0.028)
C4 0.025 (0.027) 0.023 (0.028) 0.020 (0.021) 0.023 (0.025)
T2 0.008 (0.008) 0.002 (0.002) 0.006 (0.006) 0.002 (0.002)
T3 0.031 (0.034) 0.031 (0.049) 0.014 (0.013) 0.031 (0.028)
T5 0.006 (0.007) 0.005 (0.007) 0.005 (0.007) 0.005 (0.007)
T5T 0.004 (0.004) 0.004 (0.004) 0.004 (0.004) 0.004 (0.004)
T5B -0.004 (-0.004)  -0.004 (-0.004)  -0.004 (-0.004)  -0.004 (-0.004)
T6 0.004 (0.006) 0.012 (0.012) 0.008 (0.010) 0.012 (0.015)
T7 0.036 (0.034) 0.019 (0.019) 0.018 (0.018) 0.019 (0.019)
T8 0.004 (0.004) 0.002 (0.002)  -0.001 (-0.002)  0.024 (0.014)
T9 0.013 (0.014) 0.006 (0.006) 0.008 (0.008) 0.006 (0.006)

Story shear 0.006 (0.006)  0.006 (0.006)  0.004 (0.004)  0.005 (0.005)

*Number in parentheses was derived from Shiohara’s numerical method
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3.3 Application of the new joint model to investigate the cyclic response of knee joints
3.3.1  Knee joint model

In this section, knee beam-column joints with a full anchorage length ratio (ncx=mncz~ 1) were
modeled by the interior joint element in Chapter 2 to investigate the cyclic response.

3.3.2  Specimens

An experiment on response of RC knee joints under cyclic loadings of Mogili et al. [50] was
employed for analysis. Specimen KJ1 and specimen KJ2 with the same length of 1800 mm and
the same beam and column section of 300x300 mm, as shown in Figure 3.18, were chosen for
analysis. The columns of two specimens had three bars T20 (diameter = 20 mm) at the top layer
and the bottom layer symmetrically. While the beam of KJ1 had the same bar arrangement like
columns, the beam of KJ2 had two bars T20 at the top layer. Stirrup T10 (diameter = 10 mm)
was placed at the joint region with 3-closed stirrup for transverse and 3-U shaped stirrup for
vertical direction respectively. Bar T20 and bar T10 had yield strength of 551.4 MPa and 500.6
MPa, modulus of elasticity 200 GPa and 204.8 GPa respectively. KJ1 used concrete with
strength of 38.34 MPa while KJ2 used concrete with strength of 39.43 MPa. Test setup and
loading history for specimens are denoted in Figure 3.18 and Figure 3.19. Load was applied to
beam end and column end through a diagonal hydraulic actuator which could generate opening

mode and closing mode for a joint.

3.3.3  Analytical results and discussion

The relationships of story shear versus story drift of the two specimens are shown in Figure
3.20 and the resultant forces in concrete and reinforcement at the ultimate stage are shown in
Figure 3.21 in which all forces were normalized by 0.85¢f"c.. There was significant difference
between test data and the analysis. In both specimen KJ1 and KJ2, the beam yielding occurred
although there was joint failure mode from observation. There was an absent of the top middle
reinforcing bar in the beam section of KJ2 in comparison to that of KJ1 while the column
reinforcing details of the two specimens were identical. These features induced the same
opening response in both KJ1 and KJ2 and the dominant response in the closing mode of KJ1
which could not be predicted by the computation. As shown in Figure 3.21, the resultant forces

in materials were symmetric respect to the diagonals in KJ1 in which the location resultant
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forces returned in a little difference of story shear between the opening mode and closing mode.
Similarly, although there was a redistribution of resultant forces due to the difference of section
properties of beam and column in KJ2, the computed story shear in the two modes attained that
at the yielding strength of beam and column and resulted in the story shear ratio of 1.0 between
the two modes which overestimated the observed response. In KJ1, the difference of the
maximum actuator force between test data and the analysis was 6.8% and 34.3% in KJ1 and
KJ2 respectively. The ratio of the maximum force between the opening mode and the closing
mode in KJ1 from experiment was 0.61 which was quite different from that ratio of 0.92 from
computation. In KJ2, the ratio was 0.78 and 1.00 for observation and prediction respectively.
The above disagreements were attributed to the difference of the failure mode used for building
the joint model and the real failure mode in knee joint specimens. In Figure 3.22, observed
dominant crack of knee joints opened fanwise which differed the diagonal crack pattern from
those of interior joints in Figure 2.2 and those of exterior joints in Figure 3.2. To have a more
reliable response, some further modifications of the size and the location of rigid bodies in knee

joints are necessary.
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Figure 3.22. Cracking patterns of some knee joint specimens by Zhang and Mogili

3.4 Application on investigating the cyclic response of a RC frame
3.4.1 Introduction

Many RC frame buildings in the last century was designed from countries to countries without
ductility, as a result, fail to fulfil modern standards for seismic resisting criteria. Recently,
present codes have required stronger reinforcing details which are not considered fully in the
past. Experience from collapse of existing buildings due to severe earthquakes also shows that
demolition of those structures may be derived from causes such as inadequate reinforcing
details and poor anchorage conditions, particularly in beam-column joint regions. In practical
design, there are many cases in which stress in joint regions is pretty high due to using small
columns reinforced by longitudinal bars with high strength or high ratio of reinforcement.
During loading, diagonal cracks open and compressed concrete crushes on each other which
causing deterioration on joint stiffness. Since contribution of beam-column joints on the overall
response of a RC frame is crucial, this deterioration must be prevented to fulfil the rigidity
assumption in analysis [33]. Many models for simulating seismic behaviors of joints including
effects of joint failure local response on the whole performance of RC multi-storey frame

building have been also proposed. Ghobarah and Biddah [51] used their joint model which
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consisted of a shear rotational springs and a bond-slip rotational springs to study seismic
response of a three storey frame and a nine storey frame. Calvis et al. [52] simulated a three
story frame structure with typical deficiencies in the 1950s and 1970s, and simple joint model
was utilized. They key point was to emphasize seismic vulnerabilities of a RC frame due to
using smooth bars and inadequate anchorage method. A recent study conducted by Shiohara
and Kusuhara has employed Kusuhara joint model to examine seismic performance of a four
story RC frame [7, 10] designed as a strong column-weak beam structure satisfying Japan
building standard. The study focused on influence of joint hinging failure on joint damage and
the overall deformation with P-delta effect included.

With the main attention of the proposed beam column joint model, this part presents an
application of the new element in simulating cyclic response of a 2D RC frame. Utilizing
success of simulating cyclic response of interior joints and exterior joints previously, this part

examines a further application of the new joint model into frame analysis.

3.4.2  Test specimen

As for application on RC frame simulation, a test of 2D RC frame with unequal span subjected
to cyclic loading [53] was adopted for analysis. The frame is a % scale two-bay two-storey
structure fabricated following the standard of Chinese code for seismic design of buildings [54].
Figure 3.23 denotes the front view of the frame with details of dimensions, reinforcements and
concrete mentioned in Table 3.4. The frame is a 3.6-meter-high structure with the bottom beam

attached to a rigid base while the top beam was loaded by cyclic loading through an actuator.

The research aimed to verify simulated response of the frame utilized the new joint model and
analyzed influence of joint models on analytical results. For verification, the load — deflection
relationship in term of story shear versus story drift was considered. Beside experimental data,
computational results of the frame modelling beam-column joints as fiber elements by Wang et
al. [53] was also utilized for comparison. The fiber element was developed by Spacone et al.
[55, 56] and the computation was conducted on OpenSees program. The present study
employed OBASAN program for analysis which considered three cases: modeling the frame
using the new joint model, using a joint element with shear stiffness derived from the joint shear

strength recommended by AlJ 1999 [1], and using rigid joints.
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3.4.3  Verification of the experimental results

Figure 3.24 and Figure 3.25 show an idealized schematic for the frame with using the new joint
model and notation of nodes and line elements respectively. Three interior joints (1J1 to 1J3)
and six exterior joints (EJ1 to EJ6) were simulated by the present joint element, whereas beams
and columns were modelled simply by line elements with two nonlinear rotation springs at the
ends and the flexural strength determined based on ACI 318 [2]. Points of contraflexure were
assumed to be located at mid-span of beams and columns and trilinear hysteresis rule was
applied for the moment — curvature skeleton.

In case of using joint shear strength, eight deformations of a joint element consisting of four
axial deformations (dx1, dx2, d21, 022), four bending deformations (px1, px2, @21, p22) were assumed
to follow linear rule with stiffness established from theory of elasticity, whereas shear
deformation ¢o was assumed to carry joint nonlinearity with anti-symmetric bending moment
calculated based on the joint shear strength following AlJ 1999. For hysteresis rule, Takeda
model [42] was employed for the anti-symmetric bending moment — shear deformation
skeleton. Schematic of the third case with rigid joints was shown in Figure 3.26 with frame
members simulated by line elements. Loading history applied on the frame is denoted in Figure
3.27 with three initial cycles for determining yielding displacement (A) and remaining cycles
for displacement control. In this section, because the detailed experimental results regarding
the failure mode of each joint in the frame and yielding of reinforcing bars were not available,

the main interest was the overall load deflection relationship of the frame.

The relationship of loading force versus displacement of the top floor is presented in Figure
3.28. In Figure 3.28a, experimental result and analytical result by Wang [53] are shown in
comparison to the response computed with the proposed joint model in Figure 3.28b. The result
indicated that analysis with the new joint model returned in a good agreement with test data in
which the difference of maximum load was 5.85% although the maximum force in negative
path was pretty overestimated. Pinching effect in the analysis was quite similar to observation

and was more apparent than that of Wang’s model.

Figure 3.28c reveals the dominance of frame member strength in the case of using joint shear
strength by AlJ 1999 as curves mostly are covered by the trilinear rule. Pinching effect does
not occur and the shape looks like that of Wang’s model, whereas the maximum force is

overestimated 21.5%. Without using joint model or in other word, using rigid nodes for
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simulating connections of beams and columns, the maximum force is pretty much
overestimated (68.0%) in comparison to previous cases. Like the case with joint shear strength,

pinching effect also does not occur.

Figure 3.29, Figure 3.30 and Figure 3.31 present in turn displacement of the first floor when
simulating with the proposed joint model, with joint shear strength included and with rigid joint.
There is little difference in results of the three cases and displacements are nearly a half of the
second floor displacement. In frames with more stories, the different would be more apparent
[57].

Table 3.4. Properties of frame members

Section 1-1 & 2-2 3-3 4-4

concrete compressive strength (MPa) 19.04
width x depth (mm) 150 x 250 200x250 350 x 400
longitudinal bars i 2-D16 3-D22

° 2-D16 2-D16 2-D22
bar yielding strength (Mpa) 425 425 425
bar distant ratio 0.8 0.8 0.875

' 0.5 0

Joint hoops D8@50
Hoops yielding strength (Mpa) 305
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3.5 Conclusion

Application of the new joint model on simulating cyclic response of exterior joints, knee joints,
and a 2D RC frame was mentioned.

First, some modifications were included to develop the interior joint element into the exterior
joint element. The ratio of the anchorage length of longitudinal bars in beam to column depth
was the key factor which governed the location of the diagonal cracks and the size of free
bodies. Deformation of concrete struts and bar springs were also determined from the rotation
of the four triangular free bodies. To verify the new exterior joint model, an experiment on four
exterior joint subassemblages under cyclic loading was adopted. Results indicated a good
agreement between simulation and test with respect to load versus deflection relationship. The
failure mode of each specimen was studied in which the prediction of reinforcement yielding
showed a good agreement with the observation in most specimens. A comparison between the
resultant forces in concrete and bar springs at the ultimate stage determined from the
computation with the new exterior joint model and from Shiohara’s numerical method was
presented. The comparison results showed a good correlation between the two methods in
predicting the resultant forces in most reinforcing bars and the very small compressive force in

concrete zones near joint corner without beam bar anchoring.

Second, an application of the new joint model in investigating the cyclic response of knee joints
was included. A test of two knee joint subassemblages with difference in reinforcing details
was employed for verification. Because the ratio of the anchorage length in beam and column
depth was close to unit (ncx= ncz= 1), the new interior joint model in Chapter 2 was used to
model the two joint specimens. The results showed some disagreements between the
computation and test data regarding the load-deflection relationship of specimens. The distinct
difference in the response of the opening mode and the closing mode of specimen KJ1 which
had the identical geometric properties of beam and column was not captured. Moreover, the
same response of the opening mode in KJ1 and KJ2 was not predicted by the analysis. To
improve the reliability of the analytical results, it was suggested that some further modifications
in the crack pattern of the knee joint model were necessary based on the observed pattern from

experiments.
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Finally, an application of the proposed joint model on studying cyclic response of a 2D RC
frame was mentioned. The frame had three interior joints and six exterior joints which were
modelled by the joint elements in Chapter 2 and Chapter 3 respectively. Because the detailed
observation of failure in each member of the frame was not available, only the overall load-
deflection relationship was considered. The results indicated a good agreement on predicting
the load-displacement response of the top floor. The reliability of using the new joint model in
comparison to computation with the joint shear strength and with rigid joints was also pointed

out.
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Chapter 4 Conclusion and Recommendation for Future

Research

4.1 Sumarry of research activities
The main purpose of the study is to propose a new analytical model for simulating cyclic
response of RC beam column connections derived from Shiohara’s theory of joint hinging.

Firstly, a new model for interior joints was proposed. Different from other multi-spring models,
the present joint model was fabricated directly from Shiohara’s mechanical model (SMM).
Before cracks occurred, the joint element was considered to be elastic. After cracking, bar
springs, bond-slip springs and concrete struts were used to characterize the joint nonlinear
behaviors. In SMM, only equilibriums of external forces and resultant forces in concrete and
reinforcements were mentioned to estimate the joint capacity. The present research used springs
and struts with an aim to simulate those resultant forces. Moreover, the deformation of springs
and concrete struts was determined from the rotation of the four free bodies in SMM. From the
rotation of the free bodies, the displacement of the joint corner points and the joint center was
computed by nine independent components of the joint deformations. Then, a linear distribution
of concrete strain on joint diagonals was assumed to achieve the concrete stress through
constitutive concrete model. Four concrete struts were defined to represent four concrete
compressive zones and other four concrete struts were used to represent concrete tensile zones
which were potentially carried compression in reversed loading. A definition of the length for
these struts was suggested to assure the linear strain distribution assumption of concrete, while
a detailed computational method to compute the average stress of struts from strain was also
provided. In the same way, bar springs were introduced to represent reinforcing bars in joint
core. The compatibility regarding relationship between deformations of springs and struts with
joint deformations was established. As a result, the joint general stiffness was established to
capture the joint response from the elastic stage till the ultimate stage. The interior joint model
was developed gradually through several cases: monotonic response of interior joints with the
identical depth and different depth of beam and column, with and without perfect bond
condition, and cyclic response of interior joint with general properties. Verification by test data

indicated the reliability of the interior joint model with respect to capturing the load-deflection
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relationship and failure mode of joint specimens. The resultant forces in material at the ultimate

stage were also confirmed by the numerical method of Shiohara.

Secondly, applications of the new joint model in investigating cyclic response of exterior joint,
knee joint and a RC frame was introduced. The model of the exterior joint was developed in
the same way of the interior joint model in which the ratio of the anchorage length of
longitudinal bars in beam to column depth was the key parameter in determining the location
of diagonal cracks and free bodies. For verification, the cyclic response of four exterior joint
specimens were predicted well by the exterior joint model. The application of the interior joint
model to simulate the performance of two knee joint specimens was studied. There were some
disagreements between test data and the analytical results which led to suggestions of adjusting
the location of diagonal cracks on the knee joint element based on the observed crack pattern.
The interior joint in Chapter 2 and the exterior joint in Chapter 3 were employed to investigate
the cyclic response of a RC frame. Due to the limitations of experimental data, only overall
load-deflection relationship was considered which showed a good correlation between test

result and the computation.

4.2 Conclusion

Through discussion in Chapter 2 and Chapter 3, the following conclusions of the research were
reached:
e A new 2D analytical model to simulate cyclic response of beam column joints
derived directly from Shiohara joint hinging theory was proposed.
e Joint compatibility was successful introduced into Shiohara mechanism.
e The new joint element showed reliability of predicting behaviors of 2D interior
joints, 2D exterior joints and 2D frame.
e Application of the model on analysis cyclic behaviors of knee joints returns in

the unreliable outcome, and further modifications are necessary.

4.3 Recommendation for further study

Following recommendations are suggested for other studies in the future:
e Adjusting several aspects regarding the diagonal cracks, reinforcing details and
rigid bodies for applying on knee joints

e Developing the author’s idea into a 3D joint model
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e Developing the model into structural design tools in application for building

analysis
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