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Abstract

On Improvement of Proportionate Adaptive Algorithms for

Sparse Impulse Response

Ligang LIU

Adaptive filtering algorithms can find applications in many real-world systems. Nowa-

days, with increase in the demand for higher quality communication, a kind of long adaptive

filter is frequently encountered in practical application, such as the network echo cancellation

and acoustic echo cancellation. Increase of adaptive filter length from decades to hundreds or

thousands causes the conventional adaptive algorithms encounter new challenges. First, the

convergence speed of adaptive algorithms is greatly degraded, because their convergence speed

is inversely proportional to the adaptive filter length. Second, the computational complexity of

adaptive algorithms is increased considerably because it is usually a function of the adaptive

filter length. Third, the convergence quality of the adaptive filter is degraded.

Much efforts have been made to find new adaptive algorithms to solve these problems.

Recently, a new adaptation paradigm, proportionate adaptation, was developed in a novel per-

spective. Its main philosophy comes from a fact that most of these long impulse responses are

sparse in nature, which is dominated by regions where magnitudes are zero or close to zero.

Many proportionate adaptive algorithms have been proposed in literature.

In this dissertation, I concentrate on the problems how to improve various proportionate

adaptive algorithms, in terms of convergence speed, steady-state misalignment and computa-

tional complexity. The main highlights of my research are listed bellow.
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• The proportionate adaptation is discussed as a whole framework and various existing pro-

portionate adaptive algorithms are reviewed in detail.

• A measurement of impulse response sparsity is incorporated into the proportionate adap-

tive algorithms in order to improve their convergence for various impulse responses with

different sparsity.

• A derivation for optimal proportionate adaptation step gain is provided in a straightforward

and simple way.

• Several approaches are proposed to improve the promising SPNLMS algorithm. A conver-

gence criterion is established and then a refined segment function is proposed to approx-

imate the original mu-law function as exact as possible. Some methods are proposed to

reduce the computational complexity of proportionate adaptive algorithms.

• In order to improve convergence quality of proportionate NLMS algorithms, a non-

parametric variable step-size approach is proposed. Taking into account negative effect

of the disturbance signals, an optimal global step size can be obtained by forcing the

a posteriori error not to be zero, but to be the disturbance signal. Based on this idea,

a variable step-size approach is proposed to cancel the pure a posteriori error at each

iteration. It has very fast convergence as proportionate adaptive algorithms, as well as very

low steady-state misalignment of variable step-size algorithms.

• The non-parametric variable step-size approach is extended into the proportionate affine

projection algorithms to improve the estimate accuracy of sparse impulse response for cor-

related input signals.

• A novel perspective of proportionate adaptation is proposed to determine the proportionate

step gain. All existing proportionate adaptive algorithms determine their proportionate step

gain according to the shape of the impulse response. Analysis reveals that the proportionate

step gain should be computed according to the difference of current estimate of adaptive

filter and its optimal value. Based on this result, a novel approach is proposed to determine
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proportionate step gain. The proposed algorithms demonstrate faster convergence speed

than the counterparts, for both sparse and non-sparse impulse responses.

key words Digital signal processing, adaptive filtering, least-mean-square, proportionate

adaptation, sparse impulse response, system identification, echo cancellation
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Chapter 1

Introduction

Adaptive algorithms of research in this dissertation are concerned on improvement of the

proportionate adaptive algorithms, particularly focusing on identification of sparse impulse re-

sponse.

1.1 Background of Research

The signal processing technology is widely applied in practical applications to obtain in-

formation of interest. Nowadays, adaptive filter is employed extensively in many fields such

as communications, radar, sonar, seismology and biomedical engineering [1–4]. An adaptive

filter can adjust its transfer function by itself. By contrast, a non-adaptive filter is a static filter

whose coefficients are invariant during the period of interest. An adaptive algorithm provides

a mechanism to change behavior of adaptive filter based on a certain performance criterion. It

plays an important role in an adaptive filter.

A lot of efforts have been made to pursuit better adaptive algorithms in terms of:

• faster convergence speed;

• lower misalignment, i.e. higher estimate accuracy;

• lower computation cost;

• and robustness against variation of environment.

There are many factors that influence the performance of adaptive algorithms, such as the
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Chapter 1 Introduction

structure of adaptive filter, definition of cost function, and optimization method. The adaptive

filter can be constructed as finite impulse response (FIR) filter, infinite impulse response (IIR)

filter, lattice or non-linear filter. The FIR filter is widely used due to its simplicity. Basically

there are two kinds of cost functions: the least-mean-square error that is widely used due to its

efficiency and simplicity, and the least-square error. From these two kinds of cost functions,

adaptive algorithms can fall into two main categories: stochastic algorithm and deterministic

algorithm. This dissertation works on the FIR filter with the least-mean-square error as its cost

function.

Various applications of adaptive filtering differ in the manner how the input signal and de-

sired signal are defined. According to the definition, the adaptive filtering applications can be

classified into four classes: identification, inverse modeling, prediction and interference cancel-

ing [2]. In the identification context, an adaptive filter aims to estimate an unknown impulse

response. For example, an echo canceler is designed to identify an unknown echo path impulse

response and generate a replica of the echo signal. The echo can be efficiently eliminated by

subtracting the echo replica from the near end signal.

1.2 Source of Long Adaptive Filters

With the development of communication technology, such as Voice over IP and hands-free

communication system, the demand of higher quality of service and better user experience are

increased considerably. A kind of long impulse response has frequently encountered in recent

years.

In a network echo cancellation system, the echo signal arises from imperfection of the

hybrid, as shown in Fig. 1.1. Traditionally, the impulse response of a hybrid spans at most 12

millisecond (ms) and it typically has approximately 100 coefficients. The impulse response of

hybrid 8 defined in ITU-T Recommendation G.168 [5] is illustrated in Fig. 1.2. However, in a
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1.2 Source of Long Adaptive Filters

Fig. 1.1 Network echo cancellation.

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (ms)

M
ag

ni
tu

de

Fig. 1.2 Impulse response of Hybrid 8 defined in ITU-T G.168

voice over IP (VoIP) system, where traditional telephony equipment is connected to the packet

switched network, a network echo canceler is forced to cover a large duration in order to model

the possible presence of an unknown and potentially large delay. The delay could be caused by

• signal processing, such as encoding and decoding;

• packet switching or network congestion;

• jitter buffer.

Depending on the network condition, the bulk delay can vary significantly in the range

between 32 and 128 ms. Two network echo paths including two different delays are illustrated

in Fig. 1.3. Consequently, the network echo path is typically of length 64-128 ms [5]. If the

sampling rate is 8 kHz, it means an echo canceler has to equip at least 512 tap weights.
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Fig. 1.3 Two network echo paths with different delay time (8k sampling rate).

Other situations include a conference system or a hands-free communication system,

where an acoustic echo canceler is required to estimate an acoustic impulse response and then

generate a replica of acoustic echo. A block diagram of acoustic echo cancellation is shown

in Fig. 1.4. The length of an acoustic impulse response is related to the reverberation time of

a enclosed space, while the reverberation time is proportional to the volume of the space and

inversely proportional to the absorption area [6]. In order to efficiently cancel the echo signal in

a acoustic echo cancellation system, it is required to handle as long as 64-128 ms reverberation

time. Another aspect of length of an acoustic echo canceler is the data rate. For an 8k sampling

rate system, the echo canceler must have as many as 512 tap weights. With increase of data

rate from 8k to 44.1k, the length of acoustic echo canceler increases greatly, even more than

2000 tap weights. Figure 1.5 illustrates an acoustic impulse response at 44.1k sampling rate.

The coefficients after 5000 still have noticeable magnitude.

1.3 New Challenges

Generally speaking, with increase of adaptive filter length from decades to hundreds or

thousands, the traditional adaptive algorithms encounter new challenges:
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1.3 New Challenges

Fig. 1.4 Block diagram of acoustic echo cancellation.
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Fig. 1.5 A long acoustic impulse response (44.1k sampling rate).

• Firstly, the convergence speed of adaptive algorithms are greatly degraded, because it is

inversely proportional to the adaptive filter length [2, 7, 8]. The convergence speed per

sample (in dB) is given by [8]

R =
10

ln 10
· 1

N
α(2 − α), (1.1)

where α is a step-size parameter and N is the length of adaptive filter.

• Secondly, the computational complexity of adaptive algorithms are increased considerably

because it is usually a function of the adaptive filter length. For example, the lest mean-

square (LMS) algorithm require 2N multiplications per sample, and the recursive least-
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squares (RLS) algorithm require O(N2) multiplications per sample.

• Thirdly, the accuracy of the adaptive filter is degraded in a noise environment.

Much efforts have been made to find new adaptive algorithms to solve these problems.

Recently, a new adaptation paradigm, proportionate adaptation, was developed to speed up the

convergence of adaptive algorithms exploiting the structure information of this kind of long

impulse response. Its main philosophy comes from a fact that most of these long impulse

responses are sparse in nature.

1.4 Sparse Impulse Response

A sparse impulse response is an impulse response that only a small percentage of its com-

ponents with a significant magnitude while the rest are zero or small. Another definition could

be the following: an impulse response is sparse if a large fraction of its energy is concentrated

in a small fraction of its duration [9]. For example, in a network impulse response, only about

4-12 ms in a 64 or 128 ms time duration are “active” and the others are zeros. Figure 1.3 illus-

trates two typical network echo paths. Other sparse impulse responses include marine seismic

signals and geophysical seismic impulse response.

Sparsity of these long impulse response arises from the fact that, although an adaptive

filter with a large number of coefficients has to be used to synthesize the echo path, only a

small fraction of the coefficients is significantly different from zero (active coefficients) and

modeling the actual dispersion part. All other coefficients are just zero or unnoticeably small

values (inactive coefficients) and needed for representation of the bulk delay. An echo path

with typical length of 64-128 ms exhibits an active region in the range of 8 − 12 ms duration

and consequently, the impulse response is dominated by regions where magnitudes are close to

zero, making the network echo path a sparse impulse response.

In a conference system or a hands-free communication system, an acoustic echo path usu-
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ally is not as sparse as a network echo path impulse response. However, with the increase of

user demand, it is necessary to equip an echo canceler of as many as 512 - 2048 tap weights

in order to deal with possible propagation delay of sound. It is well known that the reverbera-

tion time of an acoustic impulse response is proportional to the volume of the enclosed space

and inversely proportional to the absorption area. Hence the reverberation time is varying with

various acoustic environments.

1.5 Proportionate Adaptation

The traditional adaptive algorithms assign one same step size to all coefficients regardless

of the structure of the target impulse response. For these algorithms, the large coefficients need

more iterations to converge to the steady state than the small coefficients. In order to accelerate

convergence of the large coefficients, it seems that a large step size parameter should be assigned

for them. This results in proportionate adaptation.

Proportionate adaptation is a recently developed adaptation paradigm, which has attracted

much attention [9–11]. It speeds up the convergence for sparse impulse response by exploit-

ing the sparse structure of long impulse responses. The idea behind proportionate adaptive

algorithms is to update each coefficient individually by assigning a step size proportional to its

estimated magnitude. The PNLMS algorithm was firstly proposed in [8] introducing a diagonal

step-size control matrix G(t) in order to associate a step-size parameter for each coefficient. It

greatly speeds up the initial convergence of adaptive filter. However, its convergence begins

to slow dramatically thereafter. In addition, its convergence speed will degrade for non-sparse

impulse response. Many modifications have been proposed to improve the PNLMS algorithm,

focusing on a certain specific aspect, such as convergence speed, estimate accuracy, or compu-

tational complexity.
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1.6 Contributions

In this dissertation, I concentrate on the problems how to improve the proportionate adap-

tive algorithms, in terms of convergence speed, steady-state misalignment and computational

complexity reduction at the same time. The main contributions of this dissertation are listed as

following:

• The proportionate adaptation is discussed as a whole framework and various existing pro-

portionate adaptive algorithms are reviewed in detail.

• A measurement of impulse response sparsity is incorporated into the proportionate adap-

tive algorithms in order to improve their convergence for various impulse responses with

different sparsity. The related results have been published in [12, 13].

• A derivation for optimal proportionate adaptation step gain is provided in a straightforward

and simple way.

• Several approaches are proposed to improve the promising segment proportionate NLMS

(SPNLMS) algorithm. A convergence criterion is established through analyzing conver-

gence characteristics of proportionate adaptive algorithms. Some methods are proposed

to reduce the computational complexity of proportionate adaptive algorithms. The related

results have been published in [14] and submitted in [15].

• In order to improve convergence quality of the proportionate NLMS algorithm, a non-

parametric variable step-size approach is proposed. It has very fast convergence as pro-

portionate adaptive algorithms, as well as very low steady-state misalignment of variable

step-size algorithms. The related results have been published in [16].

• The non-parametric variable step-size approach is extended into the proportionate affine

projection algorithms to improve the estimate accuracy for correlated input signals. The

related results have been published in [17, 18].

• A novel perspective of proportionate adaptation is proposed to determine the proportionate
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1. Introduction to Sparse Impulse Response

2. Adaptive Algorithms for Sparse Impulse Responses

3. Incorprating Sparsity into
Proportionate Adaptive Algorithms

4. Better Approximation of Segment
Proportionate NLMS Algorithm

5. Variable Step−size
Proportionate NLMS Algorithms

6. Variable Step−size
Proportionate APA

7. A Novel Perspective of Proportionate Step Gain

8. Conclusions and Future Work

Improvement on Convergence Speed Improvement on Estimate Accuracy

Fig. 1.6 Outline of the dissertation.

step gain. All existing proportionate adaptive algorithms determine their proportionate

step gain according to the shape of the impulse response. The analysis reveals that the

proportionate step gain should be computed according to the difference of current estimate

of adaptive filter and its optimal value. Based on this result, a novel approach is proposed

to determine proportionate step gain. The related results have been submitted in [19].

1.7 Outline

The outline of the dissertation is depicted in Fig. 1.6.

Chapter 2 briefly reviews traditional adaptive algorithms in a wide range, and then state-

of-art of proportionate adaptive algorithms. The philosophy of the proportionate adaptation

paradigm is introduced and various proportionate adaptive algorithms are reviewed in detail.
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The advantages and disadvantages of various proportionate adaptive algorithms are discussed.

Although proportionate adaptive algorithms are initially developed in order to improve the con-

vergence of long sparse impulse responses, some techniques are introduced so that the compu-

tational complexity and estimate accuracy are improved.

In chapter 3 and chapter 4 focus on improvement of convergence speed of proportionate

adaptive algorithms. Chapter 3 proposes to incorporate sparsity measurement into the propor-

tionate NLMS algorithms in order to achieve fast convergence speed not only for sparse and

impulse response, but also for non-sparse one [12, 13]. In chapter 4, some approaches are

proposed to improve a promising segment proportionate NLMS (SPNLMS) algorithm [14, 15].

A straightforward and simple derivation of the optimal proportionate step-size control matrix

is provided at first in proportionate adaptation framework. Several methods are proposed to

improve its convergence speed. Two approaches are proposed to reduce computational com-

plexity.

Chapter 5 and 6 concentrate on how to improve the steady-state misalignment of propor-

tionate adaptive algorithms using variable step-size technique. In chapter 5 an non-parametric

variable step size approach is derived to improve the estimate accuracy of proportionate NLMS

algorithms [16]. Chapter 6 extends this variable step size approach to proportionate APA to

improve the performance for colored input signals [17, 18].

In chapter 7, a new perspective is proposed to improve performance of proportionate

adaptive algorithms [19]. The new approach computes its proportionate step gain according to

the difference of adaptive coefficients and its optimal value, in stead of the shape of adaptive

filter. The proposed algorithms demonstrate better convergence performance than the existing

counterparts. It behaves faster convergence after a fast initial period, and also for non-sparse

impulse response.

Chapter 8 concludes this dissertation and provides suggestions for further research.
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Chapter 2

Adaptive Algorithms for Sparse

Impulse Response

2.1 Introduction

An adaptive filter is a filter that self-adjusts its tap weights based on an optimizing prin-

ciple. Contrary, a non-adaptive filter has invariant filter coefficients. For some applications,

because some parameters of the required properties are not known in advance , an adaptive

filter is required to satisfy the requirement of application. For instance, when the properties of

input signal or disturbance signal are unknown, it usually employs an adaptive filter to refine

the values of the filter coefficients using feedback. This chapter provides a brief introduction

of adaptive algorithms and recent advances in adaptive algorithms for long sparse impulse re-

sponse.

A block diagram of adaptive algorithm is illustrated in Fig. 2.1. The adaptation process

Fig. 2.1 Block diagram of adaptive filter
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Chapter 2 Adaptive Algorithms for Sparse Impulse Response

Fig. 2.2 Block diagram of system identification.

generally involves two primary elements: a cost function and adaptation method. The cost func-

tion is a criterion for optimum performance of the filter and the adaptation method determines

how to modify the filter coefficients in order to minimize the cost function.

Consider a system to identify an unknown impulse response h, as shown in Fig. 2.2. Bold

lowercase letters indicate vectors and bold uppercase letters denote matrices. All vectors are

column vectors, (.)T indicates transpose, and t is the time index. E{·} denotes the mathematical

expectation operator. The input signals x(t) pass through h and the output is called desired

signal d(t). Define the input vector as

x(t) = [x(t) x(t − 1) · · · x(t − N + 1)]T , (2.1)

then the output of adaptive filter is

y(t) = wT (t)x(t). (2.2)

Usually, the desired signal, d(t), is contaminated by background noise v(t), i.e.,

d(t) = hT x(t) + v(t). (2.3)

An adaptive filter w is designed to estimate h iteratively. It is presumed that w and h have same
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number of coefficients, N, in this dissertation.

Although many cost functions have been proposed for adaptive filtering, the most fre-

quently used cost is the so-called least-mean-squared error, where the error signal e(t) and the

cost function J(t) are defined as

e(t) = d(t) − y(t) = d(t) − wT (t)x(t), (2.4)

J(t) = E
{
e2(t)

}
. (2.5)

An adaptive filter w is designed to minimize J(t). The optimal tap weights of an FIR filter can

be obtained by solving the Wiener-Hopf equation if the statistics of the underlying signals are

available. The solution of Wiener-Hopf equation is given as [2]:

wo = R−1p, (2.6)

where R is the auto-correlation matrix of input vector, R = E{x(t)xT (t)}, and p is the cross-

correlation vector of desired signal and input vector, p = E{d(t)x(t)}.

2.2 Conventional Adaptive Filtering Algorithms

2.2.1 Steepest Descent Method

An alternative method to find wo is to use an iterative search algorithm that starts at some

arbitrary initial point in the weight vector space and progressively moves towards the optimal

point. There are many iterative search algorithms derived to minimize the underlying cost func-

tion with the true statistics replaced by their estimates obtained in a certain manner. Gradient-

based iterative methods are commonly exploited as steepest descent method, i.e., to adjust tap

weights iteratively and move along the error surface towards the optimal value:

w(t + 1) = w(t) + α∇wJ(t), (2.7)
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where α is a step size parameter and ∇wJ(t) denotes gradient of J(w(t)) respect to adaptive

weight vector w(t),

∇wJ(t) =
∂J(t)
∂w(t)

. (2.8)

It is a vector pointing in the direction of the change in filter coefficients that will cause the

greatest increase in the error signal. Solving ∇wJ(w(t)) yields

∇wJ(t) = p − Rw(t). (2.9)

Replacing it into (2.7), the steepest descent algorithm is given by

w(t + 1) = w(t) + α
[
p − Rw(t)

]
, (2.10)

= w(t) + αR [h − w(t)] . (2.11)

2.2.2 LMS Algorithm

The steepest descent algorithm is not implementable in practical application, because of

lack of statistical information of R and p in priori. In addition, the unknown system h is subject

to time-varying. Not only the statistical property of input signals is subject to change, the

unknown system h is also subject to be time-varying.

The LMS algorithm is a stochastic implementation of the steepest descent algorithm. It

is obtained by substituting the instantaneous estimates into the steepest descent algorithm, i.e.,

replacing R and p in (2.10) by their instantaneous estimates. R ≈ x(t)xT (t) and p ≈ d(t)x(t). Its

coefficient updating equation is given by

w(t + 1) = w(t) + αx(t)e(t). (2.12)

Due to rough estimates of R and p, adaptation of the LMS algorithm is quite random. The

advantages of the LMS algorithm include its simplicity in implementation, stable and robust

performance against different signal conditions. Its main disadvantage is slow convergence for
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correlated input singnals due to eigenvalue spread.

2.2.3 Normalized LMS (NLMS) Algorithm

The convergence of LMS is affected by the magnitude of the input signals. In order to make

its convergence behavior independent of the input energy, the NLMS algorithm was proposed

that the filter vector update is normalized by the input energy. The algorithm is given by

w(t + 1) = w(t) + α
x(t)e(t)

xT (t)x(t) + δ
, (2.13)

where δ is a small constant called regularization parameter in order to avoid dividing by zero

when the input signal is zero in a long period.

The NLMS algorithm can be also derived from many methods [2, 7]. It can be viewed as a

variable step-size LMS algorithm where an optimal step size parameter is achieved by solving

a constrained optimization problem using least perturbation principle. The least perturbation

principle says, minimizing the coefficient vector update, subject to a constraint:

w(t + 1) = min
w(t+1)

||w(t + 1) − w(t)||22,

subject to xT(t)w(t + 1) = d(t). (2.14)

This problem can be solved by using the method of Lagrange multipliers [2] and the resulting

algorithm is NLMS. The NLMS algorithm applied a minimum norm update to the solution

vector such that the a posteriori error of the most recently added equation is exactly zero.

The NLMS algorithm is widely used in practical application because its simplicity and

stability. A step-size parameter in the range of 0 < α < 2 can assure the NLMS algorithm

convergence. The main disadvantage of NLMS is that it suffers from slow convergence for

correlated input signals.
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2.2.4 Affine Projection Algorithm (APA)

For correlated input signals, especially the speech, the convergence speed of the LMS-

type algorithms will depend on the eigenvalues of the input signal’s auto-correlation matrix.

The APA improves convergence of the adaptive filter by pre-whitening the input signal. APA

is an intermediate algorithm between the NLMS algorithm and the RLS algorithm, since it has

both a performance and a complexity in between those of NLMS and RLS.

Define the input matrix X(t) as the P successive past input vectors and the desired vector

d(t) as the P successive past value of d(t), where P is the projection order, as [2]

X(t) = [x(t) x(t − 1) · · · x(t − P + 1)], (2.15)

d(t) = [d(t) d(t − 1) · · · d(t − P + 1)]T . (2.16)

APA solves the P most recent equations exactly, based on a minimum norm weight vector

update:

w(t + 1) = min
w(t+1)

||w(t + 1) − w(t)||22, (2.17)

subject to XT(t)w(t + 1) = d(t). (2.18)

The cost function is minimized by taking the partial derivatives for all entries of the coefficient

vector and setting the results to zero. The resulting APA can be briefly summarized as [2]:

e(t) = d(t) − XT(t)w(t), (2.19)

w(t + 1) = w(t) + αX(t)
[
XT(t)X(t) + δI

]−1
e(t), (2.20)

where α is an global constant step-size parameter, and δ is the regularization parameter and I is

a P × P identity matrix.

The NLMS algorithm is a special case of the APA with P = 1. The APA exploits more

information of input signal. Consequently, it obtains a more accurate estimate of gradient. It

achieves a faster convergence speed for the correlated input signals than NLMS only with a
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modest increase of computational complexity.

2.2.5 Recursive Least-Square (RLS) Algorithm

The RLS algorithm is not a stochastic algorithm, but a deterministic one. It is the solution

of least-square problem, whose cost function is deterministic. An exponentially weighted cost

function is defined as:

J(t) =

t∑

i=0

λi|e(t − i)|2, (2.21)

where λ is an exponential weighting factor which effectively limits the number of input samples

based on which the cost function is minimized. Generally, λ is close but less than 1. The optimal

value for the tap-weight vector is defined by the following normal equations

Φ(t) =

t∑

i=1

λt−ix(i)xT (i) = λΦ(t − 1) + x(t)xT(t), (2.22)

z(t) =

t∑

i=1

λt−id(i)x(i) = λz(t − 1) + d(t)x(t), (2.23)

Φ(t)w(t) = z(t). (2.24)

Solving w(t) yields

w(t) = Φ−1(t)z(t). (2.25)

Then, using the matrix inversion lemma to the recursive model of correlation matrix Φ(t) to

make it possible to invert it recursively [Refer to Appendix A.1]. For exponentially weighted

RLS algorithm, its coefficient vector updating equations are depicted by:

S(n) =
1
λ

[
S(n − 1) +

Ψ(n)ΨT (n)
λ + ΨT(n)Ψ(n)

]
, (2.26)

w(n + 1) = w(n) + S(n)e(n), (2.27)

Ψ(n) = S(n − 1)X(n). (2.28)

The RLS algorithm utilizes all the information contained in the input signals from the start
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of the adaptation up to the present. It converges at a much higher speed than the LMS algorithm

and the APA.

2.2.6 Comparison of Computational Complexity

The complexity of an adaptive algorithm is determined by the number of multiplications

(with divisions counted as multiplications) per iteration.

The LMS algorithm require 2N multiplications per iteration: N is for calculation of

xT(t)w(t), and N is for coefficient vector updating. The computational complexity of NLMS is

approximately same to LMS. For shift-structure input data, calculation of normalization item

xT(t)x(t) could be computed in a recursive way:

σ2
x(t) = σ2

x(t − 1) + x2(t) − x2(t − N + 1), (2.29)

which only needs 3 multiplications. Or, it can be calculated in a way of power estimate:

σ2
x(t) = λσ2

x(t − 1) + (1 − λ)x2(t), (2.30)

which needs 3 multiplications too.

The APA requires approximate (P2 + 2P)N + O(P3) multiplications per iteration. There

exists a fast implementation whose computational complexity is about 2N + 20P, see [20–23]

for detail.

The superior performance of the RLS algorithm is attained at the expense of a large in-

crease in computational complexity. The RLS algorithm requires a total of N2 + 5N + 2 multi-

plications, which increases as the square of N. For example, when N = 512, the RLS algorithm

requires 263170 multiplications, whereas the NLMS algorithm requires only 1027 multiplica-

tions.

Table 2.1 compares the computational complexity of the related conventional adaptive

filtering algorithms.

– 18 –



2.3 Proportionate Adaptive Algorithms for Sparse Impulse Response

Table 2.1 Comparison of Computational Complexity of Conventional Algorithms

×/÷ +/−
LMS 2N + 1 2N

NLMS 2N + 4 2N + 2

APA (P2 + 2P)N + P3 + P (P2 + 2P)N + P3 + P2

FAPA 2N + 20P

RLS N2 + 5N + 2 N2 + 3N

2.3 Proportionate Adaptive Algorithms for Sparse Impulse

Response

The conventional adaptive filtering algorithms suffer slow convergence for long adaptive

filter with hundreds or thousands tap weights. Fortunately, long impulse responses are sparse

in nature, which is dominated by regions where magnitudes are zero or close to zero. There are

several methods in literature to improve convergence of the adaptive algorithms for long sparse

impulse responses. One method is to estimate the bulk delay [24–26], and one is to detect the

active coefficients [27, 28].

The proportionate adaptation is a recently proposed method. It does not explicitly locate

the active coefficients a priori, but try to assign every coefficient different step-size parameter.

The conventional adaptive algorithms assign one same step size to all coefficients regardless

of the structure information. For these algorithms, the large coefficients need more iterations

to converge than the small ones. In order to accelerate convergence of the large coefficients,

a large step size should be assigned to them. This results in the proportionate adaptation by

exploiting the sparse structure [9–11]. Proportionate adaptive algorithms update each coefficient

individually by assigning a step size proportional to its estimated magnitude.

In this section, various proportionate adaptive algorithms are reviewed and their main ad-

vantages and disadvantages are discussed.
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2.3.1 Framework of Proportionate NLMS Algorithm

Applying a diagonal step-size control matrix,

G(t) = diag{g0(t), g1(t), · · · , gN−1(t)}, (2.31)

into the LMS coefficient vector updating equation in order to associate one step size with each

coefficient, it gives a proportionate adaptation ( called proportionate LMS):

w(t + 1) = w(t) + αG(t)x(t)e(t). (2.32)

A normalized version can be obtained by normalizing the updating equation with the Euclidean

norm of the input vector in order to eliminate the influence of input signal power. The resulting

algorithm has a form described in [8] as:

w(t + 1) = w(t) +
α

||x(t)||22 + δ
G(t)x(t)e(t), (2.33)

where δ is a regularization parameter. However, this dominator may cause the algorithm unsta-

ble for impulsive excitation signals [29].

The proportionate NLMS algorithm has another form in literature, where the dominator is

the weighted Euclidean norm of the input vector, [xT(t)G(t)x(t)], in stead of [xT(t)x(t)]. It can

be described by [30–36, 64]:

w(t + 1) = w(t) + α
G(t)x(t)e(t)

xT(t)G(t)x(t) + δ
, (2.34)

This form is a nature extension of (2.32). Table 2.2 summaries the proportionate NLMS algo-

rithm.

In [37], a different derivation of PNLMS algorithm is provided. The PNLMS algorithm

can also be derived by finding an optimal variable step-size parameter in the minimum mean

squared error sense as in [35]. The convergence property of proportionate adaptive algorithms
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Table 2.2 Proportionate NLMS Algorithms

Initialization:

w(1) = 0
Global step-size parameter α

Regularization parameter δ

For all t:

e(t) = d(t) − xT(t)w(t)

Formation of gn(t), n = 0, 1, · · · ,N − 1

G(t) = diag{g0(t), g1(t), · · · , gN−1(t)}
w(t + 1) = w(t) + α

G(t)x(t)e(t)
xT(t)G(t)x(t) + δ

has been extensively studied in [8, 11, 38].

Various proportionate NLMS algorithms have been proposed in different way. They mainly

differ in the definition of G(t).

2.3.2 PNLMS Algorithm

The original definition of the diagonal element of matrix G(t) in the PNLMS algorithm is

described as [8]:

γn(t) = max{|wn(t)|, ρmax{δρ, |w0(t)|, · · · , |wN−1(t)|}}, (2.35)

gn(t) =
γn(t)

1
N

∑N−1
i=0 |γi(t)|

. (2.36)

Here, δρ is used to prevent w(t) from stalling during initialization stage. Its typical value is

0.01. The parameter ρ is used to prevent coefficients from stalling when they are much smaller

than the largest one. Its typically value is from 1/N to 5/N. It can be seen that if the current

magnitude of a coefficient is large, a large step size parameter will be assigned, for a small

coefficient the proportionate step size is small. It emphasizes the large coefficients to speed up

their convergence, so it demonstrates very fast initial convergence for sparse impulse response.

However, its convergence will slow down dramatically after its fast initial convergence, and its
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convergence speed degrades greatly if the target impulse response is not sparse enough.

2.3.3 PNLMS++ Algorithm and CPNLMS Algorithm

The PNLMS++ algorithm is proposed in [29] to improve the convergence of PNLMS after

its fast initial period. It alternates the PNLMS algorithm and the NLMS algorithm during the

adaptation. For odd-numbered time index t, the matrix G(t) is calculated as (2.35) and (2.36).

For even-numbered time index t, G(t) = I. It converges at least as fast as the NLMS algorithm.

However, it could cause degradation of the convergence in the initial period.

The composite PNLMS (CPNLMS) was proposed in [31] to switch the PNLMS adaptation

to the ordinary NLMS when slow convergence is detected. The learning curve of PNLMS is

the sum of each tap weight, which is so-called composite learning curve. At the beginning

of the adaptation, coefficients with greater estimated magnitude control the composite learning

curve. Because they have a greater weight in their learning curves, the adaptive algorithm has

a fast adaptation in the initial period. As the sum of the large taps learning curves reaches the

small taps, the adaptation will slows down because small taps have a smaller value, resulting in

a slow composite learning curve. Thus by comparing the error signal to a proper ratio of the

out error, the beginning of slow region can be detected and switch to the NLMS algorithm. The

CPNLMS algorithm improves convergence of PNLMS after fast initial period. Its main problem

is the difficulty to decide a reasonable error threshold when the slow convergence begins just

according to the error signal.

2.3.4 Improved PNLMS (IPNLMS) Algorithm

The proportionate adaptive algorithms were originally designed for sparse impulse re-

sponse. For a non-sparse impulse response, the convergence speed of the PNLMS algorithm

degrades greatly, even worse than the NLMS algorithm. The improved PNLMS (IPNLMS)
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algorithm is proposed in [30] to avoid degradation in the case when the underlying impulse

response is non-sparse.

The reason why the PNLMS algorithm converges slower than the NLMS algorithm for

dispersive impulse response is because of the brutal choice, the maximum operator. Instead

of this brutal choice, the average of the current coefficients is adopted to partly remove the

negative effect of inaccurate estimate of w(t). Hence the IPNLMS algorithm converges as fast

as the PNLMS algorithm for sparse impulse response and its performance is not much worse

than the NLMS algorithm for dispersive one. The diagonal element of G(t) in the IPNLMS

algorithm can be described as

gn(t) =
1 − β
2N

+
(1 + β)|wn(t)|

2
∑N−1

i=0 |wi(t)| + ε
. (−1 ≤ β < 1) (2.37)

Here ε is a very small positive number to avoid dividing by zero. The adjustable parameter,

β ∈ [−1, 1), can change the behavior of IPNLMS between NLMS and PNLMS. It can be seen

that IPNLMS is equivalent to NLMS when β = −1 and for β close to 1 it behaves like PNLMS.

2.3.5 Mu-law Proportionate NLMS Algorithm

The MPNLMS algorithm was proposed to achieve optimal proportionate step size control

matrix G(t) in the proportionate adaptation framework [33, 34].

It seems that PNLMS assigns too much adaptation step gain to the large coefficients but too

little to the small ones. This is the reason why convergence speed degrades greatly after the fast

initial period. Analysis shows that the coefficient of adaptive algorithm exponentially converges

to its optimal value. It is reasonable to know that optimal convergence could be achieved when

all coefficients reach a small vicinity of their optimal value after same iterations. To achieve this

objective, a non-linear relationship is required. The MPNLMS algorithm therefore proposes

to exploit the logarithm of the coefficient magnitude as its proportionate step size, instead of

directly using the absolute value. Consequently, both the large and small coefficients converge
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at the same fast speed, so the overall convergence speed of the adaptive algorithm is greatly

accelerated. For the MPNLMS algorithm, it has:

F(wn(t)) = ln (1 + µ|wn(t)|) , (2.38)

γn(t) = max{F(wn(t)), ρmax{δρ, F(wn(t)), · · · , F(wn(t))}}, (2.39)

gn(t) =
γn(t)

1
N

∑N−1
i=0 |γi(t)|

. (2.40)

Here µ is an objective convergence criterion, typically µ = 1000. Much of the simulation results,

see [39], have proved that the MPNLMS algorithm is one of the fastest proportionate adaptive

algorithms.

The main advantage of the MPNLMS algorithm is its very fast convergence speed for

sparse impulse response. It is also tested that its fast convergence speed will not degrades much

for non-sparse impulse response. The main disadvantage is its computation load is too heavy to

be implementable in a real-time application because of the presence of N logarithmic operations

in every iteration.

2.3.6 Segment Proportionate NLMS Algorithm

In order to reduce the expensive computational complexity of the MPNLMS algorithm,

a segment line is proposed to approximate the mu-law function in (2.38). The whole func-

tion range can be divided into two sections: one for very small values and one for the other

value. Therefore, two straight lines are used to replace the mu-law function. This results in a

computation efficient algorithm, SPNLMS [34], where

F(wn(t)) =


400|wn(t)|, |wn(t)| < 0.005

2, otherwise.
(2.41)

The sharpness of the initial slope is critical because it emphasizes the small coefficients.
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2.3.7 Proportionate Affine Projection Algorithm (PAPA)

For correlated input signals, especially speech, convergence of the PNLMS algorithm will

depend on the eigenvalue spread of the input signal’s autocorrelation matrix R. The proportion-

ate affine projection algorithm (PAPA) is a natural extension of proportionate NLMS algorithms.

It is expected to present faster convergence for highly correlated input signals at cost of a modest

increase in computational complexity.

The coefficient updating equation of PAPA can be described by:

w(t + 1) = w(t) + αG(t)X(t)
[
XT(t)G(t)X(t) + δI

]−1
e(t). (2.42)

When P = 1, the PAPA degenerates into the PNLMS algorithm, and when all of the elements

of G(t) are identical, i.e., g0(t) = · · · = gN−1(t) = 1, the PAPA reduces to the standard APA.

Another way to improve convergence for correlated input signals is transform domain pro-

portionate adaptive algorithms. In [40] and [41], the authors combine the ideas of the PNLMS

algorithm and of the transform domain adaptive algorithm in order to improve the convergence

speed for sparse impulse responses and to accelerate the convergence for colored input signals.

The proposed method employs a wavelet transform to decorrelate the input signal and sparse

adaptive filters.

A novel adaptive filtering scheme, the Krylov proportionate NLMS algorithm [42], was

recently proposed to exploit the benefits of the proportionate NLMS algorithm, but it is also

effective for non-sparse impulse response. It has fast convergence with only linear complexity,

and no use of any a priori information.

2.4 Reduction of Computational Complexity

LMS-type FIR adaptive algorithms require at least 2N multiplication operations per itera-

tion. Its computational complexity increases with increasing the filter length and therefore such
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a filter can become prohibitive for certain applications, especially for real-time implementa-

tion and high data-rate applications. Updating the entire coefficient vector is costly in terms of

power, memory, and computation and is sometimes impractical for resource-limited devices. In

this section, some popular computation reduction approaches are reviewed.

2.4.1 Partial-Updating Adaptive Algorithms

The partial-updating adaptive algorithms only update a portion of the coefficients per iter-

ation [43–46]. By this way, the overall computational complexity of adaptive algorithms is less

than that of a full-updating adaptive algorithm.

Two types of partial update algorithms are prevalent in the literature and have been de-

scribed in [43]. The periodic NLMS algorithm updates all the filter coefficients every P itera-

tions instead of every iteration:

w((k + 1)P) = w(kP) + α
x(kP)e(kP)

xT(kP)x(kP) + δ
. (2.43)

The coefficient updates for this algorithm are regular, as only N/P coefficients are updated at

each iteration.

The sequential NLMS algorithm sequentially updates filter coefficients per iteration:

wi(t + 1) =


wi(t) + αx(t − i + 1)e(t), if (t + 1 − i) mod P = 0

wi(t), otherwise.
(2.44)

The reduction in the complexity of the algorithm is approximately proportional to the reduction

in the number of filter coefficients updated per iteration.

2.4.2 Selective Partial-Updating Adaptive Algorithms

The main disadvantage of partial-updating algorithms is the reduction in convergence

speed. The convergence speed of adaptive algorithm is inevitably reduced when only a sub-
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set of the filter coefficients are updated per iteration. The reduction in the convergence speed is

proportional to the reduction in the number of filter coefficients updated.

The selective partial-updating adaptive algorithms were developed to alleviate this problem

[47–50]. The common goal of these algorithms is to update selected blocks of filter coefficients

at every iteration using a selection criterion. Partitioning the input vector x(t) and the coefficient

vector w(t) into M blocks and every block has K = N/M elements (P is an integer):

x(t) = [xT
1 (t) xT

2 (t) · · · xT
M(t)]T , (2.45)

w(t) = [wT
1 (t) wT

2 (t) · · ·wT
M(t)]T (2.46)

It is assumed that B blocks will be updated at every iteration. The selection of blocks can be

carried out by considering the following constrained minimization problem:

min
I∈S

min
wI (t+1)

||wI(t + 1) − wI(t)||22,

subject to d(k) = xT(t)w(t + 1), (2.47)

where I is B-subset of the set {1, 2 · · ·M} and S is the collection of all B-subsets. The resulting

selective partial-updating NLMS (SPU-NLMS) algorithm is given by:

wI(t) = wI(t) + α
xI(t)e(t)

xT
I (t)xI(t) + δ

, (2.48)

I = {i : ||xi(t)||22 is one of the B largest among ||x1(t)||22, · · · , ||xK(t)||22}.

This selection criterion ranks the regressors vector blocks according to their squared Euclidean

norms and selects those blocks with the B largest norms for updating.

If B = M, the SPU-NLMS algorithm becomes identical to the NLMS algorithm. If P = 1,

i.e. M = N, the SPU-NLMS algorithm becomes M-Max PU-NLMS algorithm, where only the

M coefficients whose input vector is the M largest ones. The M-Max PU-NSLMS algorithm is

shown to have a convergence rate that is closest to the full updating algorithm.

This approach can be naturally extended to APA, where only a fraction of coefficients are
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updated. The SPU-APA was summarized in [51].

2.4.3 Set-Membership Adaptive Algorithm

Another efficient approach to reduce computational complexity is to employ a set-

membership filtering (SMF) approach [52–55]. SMF adaptive algorithms feature reduced

computational complexity primarily due to data-selective updating. In set-membership filtering,

the adaptive filter w(t) is designed to achieve a specified bound on the magnitude of the output

error.

A constraint set H(t) contains all vectors w that result in an output error e(t) bounded by

γ.

H(t) = {w ∈ CN : |d(t) − wT x(t)| ≤ γ}. (2.49)

SMF adaptive algorithms seek solutions that belong to the exact membership set ψ(t) con-

structed by input signal and desired signal pairs,

ψ(t) =

t⋂

i=1

H(t). (2.50)

The idea of set-membership adaptive recursion techniques is to adapt the coefficient vector such

that it will always remain within the constraint set. The framework of set-membership filtering

is similar to the LMS adaptation process:

w(t + 1) =


w(t) +

(
1 − γ

|e(t)|
)

x(t)e(t)
xT (t)x(t) + δ

, if |e(t)| > γ
w(t), otherwise.

(2.51)

Here, γ is a predetermined parameter as a bound on the noise and generally γ =
√

2σv can get

good performance. This adaptation process states that if the previous estimate already belongs

to the constraint set, w(t) ∈ H(t), it is a feasible solution and no updating is needed. However,

if w(t) < H(t), coefficients updating is required.

The set-membership filtering approach was smoothly extended to APA in [56, 57].
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2.4.4 Reduced-Complexity Proportionate Adaptive Algorithms

In order to reduce the computational complexity of proportionate adaptive algorithms, the

aforementioned complexity-reduced algorithms are applied into the proportionate adaptation.

The selective-partial updating proportionate NLMS algorithm was proposed in [58]. It is

assumed that B blocks will be updated at every iteration. The selection of blocks can be carried

out by considering the following constrained minimization problem:

min
I∈S

min
wI (t+1)

{
[wI(t + 1) − wI(t)]T G−1(t) [wI(t + 1) − wI(t)]

}
,

subject to d(k) = xT(t)w(t + 1), (2.52)

where I is B-subset of the set {1, 2 · · ·M} having B elements and S is the collection of all B-

subsets.

The resulting selective partial-updating PNLMS algorithm is given by

wI(t) = wI(t) + α
GI(t)xI(t)e(t)

xT
I (t)GI(t)xI(t) + δ

, (2.53)

I =
{
i : ||xi(t)||2G is one of the B largest among ||x1(t)||2G, · · · , ||xM(t)||2G

}
.

This selection criterion ranks the regressors vector blocks according to their weighted Euclidean

norm and selects those blocks with the M largest norms for updating. A method is proposed

to reduce the computational complexity further in [59, 60]. There also existing some other

methods to reduce the computational complexity using partial updating, such as [41, 61].

The set-membership filtering adaptive algorithms can be also applied into proportionate

adaptation process to reduce the computational complexity of proportionate adaptive algo-

rithms, and decrease misalignment at the same time. The set-membership proportionate NLMS

algorithms can be depicted by:

w(t + 1) =


w(t) +

(
1 − γ

|e(t)|
)

G(t)x(t)e(t)
xT (t)G(t)x(t) + δ

, if |e(t)| > γ
w(t), otherwise.

(2.54)
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The set-membership filtering can be extended to PAPA, whose coefficient updating is de-

scribed as [62]:

w(t + 1) = w(t) + G(t)X(t)
[
XT(t)G(t)X(t) + δI

]−1
α(t)e(t), (2.55)

where α(t) = diag{α0(t) · · · αP−1(t)} is a time-varying diagonal step-size matrix and

αp(t) =


1 − γ

|ep(t)| if |ep(t)| > γ
0, otherwise.

(2.56)

Here ep(t) is the p-th element of error vector e(t).

2.5 Summary

This chapter introduces adaptive filtering algorithms, including the conventional adaptive

algorithms, proportionate adaptive algorithms and their recent advances. The basic principles

of adaptive filtering algorithms are introduced at first. Then, conventional adaptive filtering al-

gorithms are briefly reviewed. Proportionate adaption and various proportionate adaptive algo-

rithms are discussed in detail. At last, various adaptive algorithms to reduce the computational

complexity of adaptive algorithms are introduced, where combination of these algorithms and

proportionate adaptation is included also.
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Chapter 3

Incorporating Sparsity into

Proportionate Adaptative

Algorithms

3.1 Introduction

The PNLMS algorithm greatly speeds up the convergence for sparse impulse response.

However, its convergence begins to slow dramatically after a fast initial period. Furthermore, it

is effective only when the target impulse response is very sparse. Its performance for non-sparse

systems can be relatively poor, even slower than the NLMS algorithm.

In a time-varying environment, the underlying impulse response may vary over a relatively

large range that its sparsity could change from sparse to non-sparse. For example, in an acous-

tic echo cancellation system, sparsity of room transfer function could vary greatly. Two factors

influence the sparsity of the underlying room transfer function: distance between the speaking

person and the microphone, the characteristics of the acoustic environment [6, 63]. Usually, the

room transfer function changes significantly with distance between the person speaking and the

microphone picking up speech. If the person is near the microphone, the acoustic echo path

will be sparse enough to be applicable for PNLMS algorithm, and vice versa. The acoustic

characteristics of environment can be evaluated by the reverberation time, which is proportional

to the volume of the enclosed space and inversely proportional to the absorption area. For an
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outdoor environment, the reverberation time is reduced significantly due to the lack of reflec-

tions from the walls. As a consequence, acoustic impulse response of an outdoor environment

can be considered to be more sparse than that of an enclosed space. The sparsity variation of

acoustic impulse response also arises due to changes in temperature, pressure, acoustic source

movements and changes of the acoustic environment.

Therefore, a proportionate adaptive algorithm is required to perform well for both sparse

and non-sparse impulse responses. Several approaches have been proposed to solve these prob-

lems, such as the PNLMS++ algorithm [29], the IPNLMS algorithm [30], and the IIPNLMS

algorithm [32]. Many other variants have been proposed in various applications, see [12, 13, 34,

40, 64].

In this chapter, a new approach is proposed to improve convergence of proportionate adap-

tive algorithms for non-sparse impulse response. The proposed approach first estimate how

sparse is the target impulse response, then automatically adjust the related parameters to assure

their convergence.

3.2 Measure of Sparsity

The first problem encountered is how to measure the sparsity of a given impulse response?

Many definitions of sparsity have been proposed and used in the literature to quantify how much

energy of a vector is packed into only a few components [4] [65]. The sparsity ζ(w) of a vector

w can be defined using the difference between its L-1 norm and L-2 norm, as

ξ(w) =
N

N − √N
(1 − ||w||1√

N||w||2
), (3.1)
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where N is the length of w, ||w||1 and ||w||2 are the L-1 norm and L-2 norm of w, respectively:

||w||1 =

N−1∑

n=0

|wn|, (3.2)

||w||2 =

√√√N−1∑

n=0

|wn|2. (3.3)

This definition possesses the following properties:

1. 0 ≤ ξ(w) ≤ 1;

2. ξ(cw) = ξ(w), where c is non-zero constant;

3. ξ(w̌) = ξ(w), where w̌ is a permutation of w (up to signs);

4. ξ(w) = 1, if and only if w contains only one single non-zero component;

5. ξ(w) = 0, if and only if all components are equal (up to signs).

3.3 Sparsity-Guided IPNLMS

For the IPNLMS algorithm, gn(t) is approximately proportionate to the absolute magnitude

of the target impulse response. Furthermore, by adjusting the parameter β, its convergence

behavior is adjusted. For a sparse impulse response, IPNLMS converges faster if β close to 1.

And for a dispersive one, a β close to -1 should be assigned to assure that it does not converge

slower than NLMS.

For impulse responses with different sparsity, different β should be used to achieve a fast

convergence speed. Unfortunately, this parameter is predetermined and constant during the

adaptation process. If this parameter is smart enough to know the sparsity of target impulse

response, then it can adjust itself to an optimal value, the IPNLMS algorithm will converge at

fast as possible.

It is necessary to rewrite the definition of diagonal elements of the IPNLMS algorithm in
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(2.37) into another form by simple replacement

gn(t) = (1 − β) +
β |wn(t)|

1
N

∑N−1
i=0 |wi(t)| + ε

, 0 ≤ β < 1. (3.4)

Here the range of β is regulated from [−1, 1) to [0, 1). This new equation not only solves the

range mismatch of β(∈ [−1, 1)) and ξ(w)(∈ [0, 1]), but also directly reveals the relationship how

the adjustable parameter β influences the structure of the step-size control matrix.

Then a new gn(t) with a time-varying β(t) is proposed in the IPNLMS algorithm,

gn(t) = (1 − β(t)) +
β(t)|wn(t)|

1
N

∑N−1
i=0 |wi(t)| + ε

, 0 ≤ β(t) < 1. (3.5)

Because the target impulse response is unknown, the sparsity of current adaptive filter is

calculated as

ξ(t) =
N

N − √N

(
1 − ||w(t)||1√

N||w(t)||2

)
. (3.6)

The estimation of sparsity is then transformed into the parameter domain of β(t) using afore-

mentioned function

β(t) = f (ξ(t)). (3.7)

The estimation of sparsity is then transformed into the parameter domain of β using afore-

mentioned function f (x). The initial value of ξ(0) should be a large value that accelerates the

convergence of large coefficients. The rest work is same to the IPNLMS algorithm.

3.4 Relation between ξ and β

The next problem is how to determine β(t) according to the sparsity of impulse response ξ.

Although it is known that there exists a real relationship between convergence speed of IPNLMS

and the sparsity of the target impulse response, it seems hopeless to derive a straightforward

expression between them. Fortunately, large amount of computer simulations can reveal their

relationship.
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In order to obtain various impulse responses with different sparsity, two methods are used.

In the first method, the active coefficients of impulse response have same value 1, and the

inactive coefficients are 0. In the second method, the impulse responses of different sparsity are

synthetically generated using an N × 1 exponentially decaying window that is defined as [66]

ewin =
[

q︷          ︸︸          ︷
1/p, · · · , 1/p, e−1/ψ, · · · , e−(N−q)/ψ]T

. (3.8)

Here q models the bulk delay, p is a positive number and ψ(> 0) is a decay constant. The

impulse response is obtained by

h = ewin ? ẇ, (3.9)

where ẇ is an N × 1 vector of Gaussian sequence and ? denotes element-wise multiplication

of vectors. By adjusting ψ from 0 to 1, different impulse responses are obtained with different

sparsity. Figure 3.1 illustrates 3 impulse responses used in computer simulations. It can be seen

that this kind of impulse response can approximately represent most of real world transmission

channel, such as the room transfer function.

In order to discover relationship between β and ξ, various impulse responses with different

sparsity, which were generated using two kinds of impulse responses introduced above, were

tested. For each impulse response, various β was tested from 0.0 to 0.95 with incrementation of

0.05. Then by comparing their convergence time, β that make the IPNLMS algorithm converge

at the fastest speed is determined with respect to the sparsity ξ of the given impulse response.

The results of a large number of simulations are illustrated in Fig. 3.2. + is for the first

kind of impulse responses. ◦ is for the second kind of impulse responses. The dashed line is

result of cubic cure fitting. It is shown that, even with different kinds of impulse responses, the

following consistent conclusions can be drawn:

1. For a sparse impulse response w whose ξ(w) > 0.6, more sparse it is, larger a β is necessary;

2. For a non-sparse impulse response whose 0.2 < ξ(w) < 0.6, β is not sensitive to the
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Fig. 3.1 Three impulse responses with different sparsity.

sparsity: for any β ∈ [0.1, 0.2], the IPNLMS algorithm converges at almost same speed;

3. For a dispersive impulse response whose ξ(w) < 0.2, β should be smaller.

Using curve fitting of a cubic function, a simple real function f (ξ) is obtained, as

f (ξ) = 3ξ3 − 3ξ2 + ξ. (3.10)

3.5 Simulation Results of Proposed Approach

To evaluate the performance of the proposed algorithm, many computer simulations were

conducted to identify various impulse responses with an adaptive filter. The common conditions

for the simulations are described as follows. Both the unknown system h and the adaptive filter

w have 300 coefficients, N = 300. The input signal x(t) and the disturbance v(t) are uncorrelated

zero-mean Gaussian signal with variance of 1.0 and 10−4, respectively. The constant step size

α = 0.25.

– 36 –



3.5 Simulation Results of Proposed Approach

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Sparsity of Impulse Reponse ( ξ)

β 
of

 IP
N

LM
S

 

 

β = 3* ξ3
 - 3.1* ξ2

 + ξ+0.031

Fig. 3.2 Relationship between sparsity of impulse response ξ and β of IPNLMS.

Then using three impulse responses in Fig. 3.1, the convergence of the related algorithms

is compared with the proposed approach. The simulation results are illustrated in Fig. 3.3 -

3.5. The results verify the effectiveness of the proposed algorithm. It can be seen from Fig.

3.3(a) that for a sparse impulse response as in Fig. 3.1(a), the proposed algorithm achieved

as fast convergence speed as IPNLMS. For a quasi-sparse impulse response as in Fig. 3.1(b),

the proposed algorithm over-performs IPNLMS and NLMS, as shown in Fig. 3.3(b). It can be

observed from Fig. 3.3(c) that for a dispersive impulse response as in Fig. 3.1(c), the proposed

algorithm retains the fast convergence of NLMS while IPNLMS fails.

The tracking ability of proposed algorithm is shown in Fig. 3.4. The first impulse response

to be identified is in Fig. 3.1(a) and then abruptly changes to Fig. 3.1(c) at iteration 104. It

can be seen from Fig. 3.4 that the proposed algorithm behaves better than IPNLMS in a time-

varying environment. The change of β(t) and ξ(t) is shown in Fig. 3.5. In the simulations, the

calculations of sparsity of adaptive filter were executed once every 10 iterations, and the value

of β(t) converged soon.
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Fig. 3.3 Comparison of convergence speed of Sparsity-Guided IPNLMS. (a) is with the
impulse response in Fig. 3.1(a). (b) is with Fig. 3.1(b). (c) is with Fig. 3.1(c).

3.6 Sparsity-Guided MPNLMS Algorithm

The MPNLMS algorithm has a consistent convergence speed for a sparse impulse re-

sponse, compared to the PNLMS algorithm. In a time-varying environment, the impulse re-

sponse may vary over a relatively large range that would be non-sparse at times. The behavior

of the MPNLMS algorithm can be adjusted between proportionate adaptation and the conven-

tional NLMS algorithm by adjusting the parameters, δρ and ρ. These parameters are constant

during the MPNLMS. In the IPNLMS algorithm, for a sparse impulse response, a value of β
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Fig. 3.5 Trace of ξ(t) and β(t) in simulation of suddenly change of impulse response at
iteration 104 from (a) to (c).

close to 1 is used to achieve fast convergence, and for a dispersive channel an β close to −1 is

assigned to assure that it does not converge slower than NLMS.

A new algorithm is proposed to incorporate the sparsity into the MPNLMS algorithm so

that its performance for non-sparse impulse response is improved. The new algorithm is referred

to as the improved MPNLMS (IMPNLMS) algorithm throughout this section.

Now, the diagonal elements of the step-size control matrix G(t) for the proposed
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IMPNLMS algorithm is

gn(t) = (1 − β(t)) +
β(t) F(|wn(t)|)

1
N ||F(|w(t)|)||1 + ε

. (3.11)

The estimation of channel sparsity is then transformed into the parameter domain of β in

the IPNLMS algorithm with

β(t) = ξ(t). (3.12)

This relation was obtained through numerous simulations using the same approach in Section

3.4. The simulation results are illustrated in Fig. 3.6. It can seen that the good β(t) is a linear

function of the impulse response sparsity ξ(t).

3.7 Simulation Results of the IMPNLMS Algorithm

To evaluate the performance of the proposed algorithm, many simulations were conducted

with four algorithms: NLMS, IPNLMS, MPNLMS, and the proposed IMPNLMS algorithm.
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Fig. 3.7 Simulation 1: convergence speed with white input.

The common conditions for the simulations are as follows. It is assumed that the unknown

impulse response h is modeled by a FIR filter with N = 300 coefficients and that the adaptive

filter w has the same number of coefficients. The disturbance v(t) is a zero-mean Gaussian

signal with a variance of 0.01. A constant step size α = 0.25 was used for all algorithms. For

IPNLMS, β = 0.25. The initial value of ξ is a large number, such as 0.96. The results illustrated

in the following figures are average of 100 simulations. The performance of the echo path

identification is quantified using the mean square deviation defined as 10 log10 ||h−w(t)||22/||h||22.

In Simulation 1, white Gaussian noise with zero-mean and unit variance was used as the

input of the simulated system. The convergence speed of the related algorithms with three

impulse responses shown in Fig. 3.1 respectively are compared in Fig.3.7. It can be observed
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Fig. 3.8 Simulation 2: convergence speed with correlated input.

from the figure that the proposed IMPNLMS algorithm converges as fast as MPNLMS for a

sparse channel, as shown in Fig. 3.7(a), and that for a dispersive channel in Fig. 3.1(c), the

proposed IMPNLMS algorithm does not convergence slower than the NLMS algorithm while

the MPNLMS algorithm relatively converges slow, as shown in Fig. 3.7(c).

In Simulation 2, the performance of the aforementioned algorithms was evaluated with the

highly correlated signal as input. The input signals are obtained with the model x(k) = u(k)/(1−

0.9z−1), where u(k) is a discrete white Gaussian signal with zero-mean and unit variance. Their

convergence speed is compared in Fig. 3.8. It can be observed that for the colored signals

the proposed IMPNLMS algorithm also converges faster than MPNLMS when the impulse

response is dispersive. The tracking ability is very important for the real-world application

especially in time-varying environment.
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In Simulation 3, the reconvergence performance of the proposed algorithm was evaluated.

The first channel to be identified is that in Fig. 3.1(a) and then abruptly changes to a dispersive

impulse response in Fig. 3.1(c) at iteration 5000. It can be observed from Fig. 3.9 that the

proposed IMPNLMS algorithm behaves better than the MPNLMS algorithm in a time-varying

environment.

3.8 Computational Complexity

The additional computational complexity of the proposed sparsity detection method is

light. The IPNLMS algorithm need 4N + 1 multiplication/division in each iteration. The ad-

ditional computation of the proposed approach is to estimate the sparsity, in (3.1), (3.6), that

consumes N + 5 multipliers/division, 2N + 4 additions and 1 square root. It is unnecessary

to compute it at each iteration, because it changes relatively slowly. It can be calculated in a

large interval varying from 10 to N, thus its computational cost is greatly reduced without loss

of performance. So the proposed approach does not significantly increase its computational

complexity.
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3.9 Conclusions

There exists a deterministic relationship between the given sparsity of target impulse re-

sponse and the optimal step gain matrix that can guarantee fastest convergence speed. Computer

simulations reveal their relationship. Then a new algorithm is proposed to incorporate sparsity

of target impulse response into the IPNLMS algorithm and MPNLMS algorithm. The proposed

approach exploits the sparsity information of the target system. It adaptively detects the sparsity

of the adaptive filter, therefore a suitable β is adjusted accordingly. Simulation results show that

the proposed algorithm achieves fastest convergence speed than the original algorithms, whose

parameter is predetermined according to rough estimate. The proposed approach is especially

suitable to a time-varying impulse response that its sparsity changes.
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Chapter 4

Better Approximation of Segment

Proportionate NLMS Algorithm

4.1 Introduction

Among various different proportionate adaptive filtering algorithms, the MPNLMS algo-

rithm achieves optimal step-size control matrix G(t) in the framework of proportionate adap-

tation [33, 34]. Instead of directly using the current estimated magnitude of a coefficient, it

uses the logarithm of the magnitude as the proportionate step gain of each coefficient. The

main disadvantage of the MPNLMS algorithm is its heavy computational complexity because

it needs N logarithmic operations at each iteration, which is cost in a DSP implementation. A

segment function is proposed to replace these logarithmic operations, which is called the seg-

ment PNLMS (SPNLMS) algorithm [34]. The computation cost of the SPNLMS algorithm is

almost same to that of PNLMS and IPNLMS but its convergence is almost as fast as MPNLMS.

Hence the SPNLMS algorithm is favorable for practical application involving a sparse impulse

response.

However, there are several problems in MPNLMS and SPNLMS. In this chapter, several

approaches are proposed to improve them. The unique contributions in the chapter are as fol-

lows. At first, a straightforward derivation is provided to choose the step-size control matrix

G so that the fastest convergence speed is achieved. Then, an approach is proposed to im-

prove their performance by adaptively determining the important parameter µ, which is related
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to an objective convergence criterion. Thirdly, a refined segment function is proposed for the

SPNLMS algorithm to approximate mu-law function as exact as possible, hence fast conver-

gence of MPNLMS is retained in various environments. At last, the computational complexity

of proportionate adaptive algorithms is discussed and some methods are proposed to reduce the

computational complexity of the proposed adaptive algorithm.

4.2 Segment Proportionate NLMS Algorithm

Applying a diagonal step-size control matrix, G(t) = diag{g0(t), g1(t), · · · , gN−1(t)}, in the

LMS coefficient update equation in order to associate one step size with each coefficient, results

in the proportionate LMS algorithm, which is given by

w(t + 1) = w(t) + αG(t)x(t)e(t). (4.1)

A normalized version can be obtained by dividing the coefficient updating term in (4.1) with

the Euclidean norm of the input vector, i.e., ||x(t)||22 , in order to eliminate influence of the input

signal power. The resulting PNLMS algorithm has a form as in [8]:

w(t + 1) = w(t) + α
G(t)x(t)e(t)
||x(t)||22 + δ

, (4.2)

where ||x(t)||22 = xT(t)x(t) is the Euclidean norm of x(t). The main problem of this formula is,

this dominator may cause algorithm unstable for impulsive excitation signals [29].

The normalized version of the proportionate LMS algorithm presents another form in the

literature, where the dominator is the G weighted Euclidean norm of x(t), which is denoted by

||x(t)||2G,

||x(t)||2G = xT(t)G(t)x(t). (4.3)

There, the normalized version is depicted as [30, 33–35, 58]:

w(t + 1) = w(t) + α
G(t)x(t)e(t)

xT(t)G(t)x(t) + δ
, (4.4)
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where δ is an regularization parameter. This formula is a natural extension of (4.1).

This result is a solution of a constrained optimization problem in a way similar to that

of NLMS, i.e., to find a variable step-size so that the Euclidean norm of the coefficient vector

updating in successive time index is minimized, subject to a constrain that the a posteriori error

is zero [2]:

w(t + 1) = min
w(t+1)

{
[w(t + 1) − w(t)]T G−1(t)[w(t + 1) − w(t)]

}
, (4.5)

subject to xT(t)w(t + 1) = d(t). (4.6)

This problem can be solved by using the method of Lagrange multipliers [2], whose cost func-

tion to minimize is

J(t) = [w(t + 1) − w(t)]T G−1(t) [w(t + 1) − w(t)] + 2λ
[
d(t) − xT(t)w(t + 1)

]
, (4.7)

where λ is a Lagrange multiplier.

Setting
∂J(t)

∂w(t + 1)
= 0 and

∂J(t)
∂λ

= 0, yields [Refer to Appendix A.2]

G−1(t)[w(t + 1) − w(t)] − λx(t) = 0. (4.8)

d(t) − xT(t)w(t + 1) = 0. (4.9)

Pre-multiplying both sides of (4.8) by G(t), and then rearranging it,

w(t + 1) − w(t) = λG(t)x(t), (4.10)

and then pre-multiplying both sides of (4.10) by xT(t), combining with (4.9), remembering

e(t) = d(t) − xT(t)w(t) , yields

e(t) = λxT(t)G(t)x(t), (4.11)

λ =
e(t)

xT(t)G(t)x(t)
. (4.12)

Then substituting λ into (4.10), introducing a global constant step-size parameter α to balance
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between the convergence and the steady-state misalignment, a popular formula of proportionate

NLMS algorithms is obtained as in (4.4).

Different definitions of G(t) have been proposed, which can be summarized uniformly as:

g̃n(t) = max{F(wn(t)), ρmax{δρ, F(w0(t)), · · · , F(wN−1(t))}}, (4.13)

gn(t) =
g̃n(t)

1
N

∑N−1
i=0 g̃i(t)

, (4.14)

G(t) = diag {g0(t), g1(t), · · · , gN−1(t)} . (4.15)

Here, F(wn(t)) is a real-valued function to map the current estimate value of coefficient wn(t) to

step-size gain.

The PNLMS algorithm is the first proportionate adaptive algorithm, where F(wn(t)) =

|wn(t)|. For MPNLMS, it has

F(wn(t)) = ln (1 + µ|wn(t)|) , (4.16)

where µ is an objective convergence criterion and typically µ = 1000. The SPNLMS was

proposed to remove the N logarithmic operations of MPNLMS at each iteration, where

F(wn(t)) =


400|wn(t)|, |wn(t)| < 0.005

2, otherwise.
(4.17)

The convergence of related adaptive algorithms to identify a sparse impulse response is

illustrated in Fig. 4.1. It can seen that the proportionate NLMS algorithms have very fast

convergence speed than NLMS, especially MPNLMS and SPNLMS.

In practical application, the SPNLMS algorithm is favorable because of its fast conver-

gence and reasonable computational complexity. However, two problems can be found in the

SPNLMS adaptation process. First, the determination of the important parameter µ in (4.16) is

objective specifically in network echo cancellation. It is not suitable to a general environment.

Second, the segment function in (4.17) is a very coarse approximation of mu-law function in

(4.16). It is believed that it can not retain the fast convergence of MPNLMS. As shown in Fig.
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4.1, SPNLMS shows slow convergence than MPNLMS.

4.3 Fastest Step Size Control Matrix G

The PNLMS algorithm was conceived intuitively and it did not provide a quantitative anal-

ysis to prove that the proposed G is optimal. For a sparse impulse response h, many approaches

have been proposed to determine G. Among these definitions, there should be one that can

provide the fastest convergence speed. In this subsection, a straightforward derivation of G is

provided to achieve the fastest convergence speed. The derivation will follow the similar proce-

dure with that in [34], but this derivation is more straightforward to be understood easily. It is

presumed that sequences x(t) and v(t) are zero mean, stationary, jointly normal, and with finite

moments, in the following derivation.

Given a sparse impulse response h, among the various definitions of proportionate step

size control matrix G, there exists one that can achieve the fastest convergence speed. The

following derivation pursuit an optimal G that achieves the fastest convergence. Starting from

steepest descent algorithm with proportionate adaptation, yields [7, 34]

w(t + 1) = w(t) + αGR [h − w(t)] (4.18)
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where R is the auto-correlation matrix of the input vector. Defining the weight error vector as

w̃(t) = h − w(t). (4.19)

Following the similar procedure in [34], subtracting h at both sides of (4.18) and rearranging

the terms, results in

w̃(t + 1) = (I − αGR) w̃(t)

= (I − αGR)t w̃(0), (4.20)

where I is an N × N identity matrix. For Gaussian white input signal with variance σ2
x, it has

R = σ2
xI. Without loss of generality, it assumes here that the initial value of adaptive filter is

zeros, i.e., w(0) = 0, where 0 is an N × 1 vector with all elements are zeros. Then it gives

w̃(0) = h. So it can obtain that

w̃(t + 1) = (I − ασ2
xG)th, (4.21)

For the n-th coefficient, it gives

w̃n(t + 1) = (1 − ασ2
xgn)thn. (4.22)

When 0 < ασ2
xgn < 2, the adaptive coefficient wn(t) exponentially converge to hn. Equation

(4.22) implies that the coefficient error of the proportionate algorithms will exponentially con-

verge in the mean sense. In practical applications, which always includes various background

noise or/and measurement noise, a coefficient is regarded as convergent after it has reached an

ε-vicinity of hn, where ε is a objective convergence criterion of adaptive filter.

It is assumed that all coefficients are bigger than ε, otherwise it has converged already.

Therefore, the n-th coefficient is regarded as convergent when

|(1 − ασ2
xgn)thn| < ε. (4.23)
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Define the coefficient convergence time of the n-th coefficient t̃n as the number of iterations that

it is required to reach the ε-vicinity of hn. By solving this inequality for t, it obtains t̃n for the

n-th coefficient is

t̃n =


log2 (ε/|hn|)

log2

∣∣∣1 − ασ2
xgn

∣∣∣


, (4.24)

where d·e is the ceiling function. Assuming that the constant step size α is small enough and

0 < αgnσ
2
x � 1, the following approximation holds

log2

∣∣∣1 − ασ2
xgn

∣∣∣ ≈ −ασ
2
xgn

log2 e
, (4.25)

where e is the base of natural logarithms.

Finally, the iteration number of the n-th coefficient to converge is obtained as:

t̃n ≈
⌈
log2 e · log2 (|hn|/ε)

ασ2
xgn

⌉
. (4.26)

This result indicates that the convergence time of the n-th coefficient is proportional to the

magnitude of log2 (|hn|/ε) and inversely proportional to gn.

It seems that the convergence could be improved by increasing gn. However, the fastest

overall convergence speed can be achieved if and only if all coefficients reach the ε-vicinity

of their desired values at the same time, otherwise more adaptation has to be wasted for the

coefficients that have converged earlier [34].

For convenience sake, defining

µ =
1
ε
, (4.27)

then from (4.26), it is obvious that when

gn = log2 (µ|hn|) , (4.28)
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all these iteration numbers are identical, i.e.,

t̃0 = t̃1 = · · · = t̃N−1 =

⌈
log2 e
ασ2

x

⌉
. (4.29)

Consequently, the optimal step-size control matrix G should be designed according to

(4.28) in order to achieve the fastest overall convergence speed.

For the small coefficients that |hn| < ε, (4.28) is not applicable because it will lead to

negative gn. By adding 1 inside the logarithm it can guarantee the proportionate step size gn

positive. It results in

gn = log2 (1 + µ|hn|) . (4.30)

For a relatively large |hn|, this modification will not greatly affect the value of gn because µ|hn| is

large enough. For a small |hn| this will assign gn a reasonable value to assure these coefficients

to convergence and track changes of h.

Actually, h is unknown or time-varying in real world applications. But the above analysis

provides inspiration for design of new proportionate adaptive algorithm. Instead of the real

value of h, the magnitude estimate of the adaptive filter can be applied, which is a frequently

used method in the adaptive filtering area.

Equation (4.30) becomes a proportionate step size approach, which is similar to that in

(4.16):

gn(t) = log2 (1 + µ|wn(t)|) . (4.31)

The above analysis provides an explanation of an optimal step-size control matrix of the

proportionate adaptive algorithm. There are two different places with the derivation in [34],

which makes this derivation to be understood easily. First, this derivation does not assume
∑N−1

n=0 gn(t) = N, i.e., it is not necessary to normalize gn(t) by its average. This modification

not only simplifies the derivation, and it also results in a method to save N multiplies, which

will be discussed latter. Second, it uses log2 instead of the natural logarithm ln(x) in above

derivation. This modification will induce a new segment function to better approximate optimal
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proportionate step size, which will be discussed in Section 4.5.

4.4 Determination of Suitable Convergence Criterion ε

It is evident that the convergence of the MPNLMS algorithm partly depends on the choice

of convergence criterion ε. It is proposed that ε = 0.001 is good enough for the most NEC

applications [34]. This subsection tries to refine the choice of this parameter.

The mean square deviation (MSD) of the proportionate algorithms has been derived in [8].

The MSD is approximately equal to that of NLMS, as

MSD = lim
t→∞

E ||h − w(t)||22

=
σ2

v

σ2
x
· α

2 − α. (4.32)

This result is valid for all proportionate NLMS algorithms because it is independent from G(t).

In a noisy environment, the coefficients of the adaptive filter will randomly walk around

its optimal value after the adaptive filter has reached the steady-state. It is well known that

E{w̃n(t)} = 0, (t → ∞,∀n). Therefore, (4.32) implied that the variance of w̃n(t) is:

σ2
w̃n

=
σ2

v

σ2
x
· α

N(2 − α)
. (4.33)

This result means that wn(t) will fluctuate around hn in the range of

σw̃n =

√
σ2

v

σ2
x
· α

N(2 − α)
. (4.34)

Naturally, a suitable convergence criterion should be determined according to this value. Define

a real number µ̃

µ̃ =
1
σw̃n

=

√
σ2

x

σ2
v
· N(2 − α)

α
. (4.35)

This result indicates that µ should be adjusted according to α, N and the signal-noise-ratio
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(SNR) σ2
x/σ

2
v . For a similar condition in [34], where σ2

x/σ
2
v = 103, α = 0.3 and N= 512, µ

should be 1703 according to (4.35). So µ = 1000 is a relatively suitable choice for it. However,

for a long filter in high SNR environment, a much greater µ is necessary. For example, if

σ2
x/σ

2
v = 104, N = 1024 and α = 0.1, a suitable value for µ should be 31190, which is greatly

large than 1000. Many computer simulations in Section 4.7 illustrate how the choice of µ

influences the convergence performance in different noise level.

In order to estimate SNR, it is necessary to know σ2
x and σ2

v . The variance of the input

signal σ2
x can be easily obtained using a exponential window as

σ2
x(t) = λσ̂2

x(t − 1) + (1 − λ)x2(t), (4.36)

where λ is a forgetting factor in a range between 0.99 and 0.9999 [2]. The power estimation of

the disturbance signal, σ2
v , can be obtained during the silences in practical application, such as

in a network echo cancellation system.

4.5 Better Approximate of Segment Function

The MPNLMS algorithm is not applicable in a real-time implementation, since it addition-

ally requires N logarithmic operations at every iteration. The SPNLMS algorithm demonstrates

very fast convergence speed than PNLMS with moderate increase of computation cost. It is a

good choice for practical application. However, the segment line function in (4.17) is a very

course approximation of mu-law function. It only divides the whole function range into two

sections: one for very small value and one for the others. Furthermore, this approximate is

based on a specific µ, i.e., µ = 1000. It can not satisfy the requirement of different µ. As

discussed in the previous section, the suitable µ should be adjusted based on (4.35).

In this section, a new line function is proposed to approximate µ-law function in (4.31) as

exactly as possible. The new segment line function is required to satisfy two requirements: 1)
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it should adjust the value according to suitable µ determined in previous section; 2) it should

approximate (4.31) as exactly as possible. Furthermore, in order to reduce the computational

cost of the line function, µ is choose as an integer of power of 2.

The proposed approach consists two steps. Firstly, a suitable µ is obtained based on (4.35),

but as power of 2:

k =
⌊
log2 µ̃

⌋
, (4.37)

µ = 2k, (4.38)

where b·c is the floor function. In this case, multiplying µ by wn(t) can be implemented digi-

tally very efficiently by means of shift registers, therefore the cost of this multiplication can be

ignored.

Secondly, a new segment line function is proposed to approximate F(wn(t)) defined in

(4.31). The proposed segment line function can be summarized as

F̃(x) = 2k+1−ix + i − 2 + 21−i, (2i−1−1)ε≤ x< (2i−1)ε (4.39)

where i = 1, 2, · · · , k. This expression can be expended as:

F̃(x) =



2k x, 0 ≤ x < ε

2k−1x + 1/2, ε ≤ x < 3ε

2k−2x + 5/4, 3ε ≤ x < 7ε

· · ·
2x + k − 2 + 21−k, 1/2 − ε ≤ x < 1 − ε

(4.40)

The proposed segment line divides the range of coefficient magnitude into multiple seg-

ments, in stead of two segments as in (4.17), in order to approximate the corresponding loga-

rithm function in (4.31). It has two advantages to replace the natural logarithmic operation by

the logarithm of base 2. First, it is easy to find a unifying formula for a segment function for

various µ. In addition, because the proposed µ has the form of 2k, the calculation of 2k x can

– 55 –



Chapter 4 Better Approximation of Segment Proportionate NLMS Algorithm

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

1

2

3

4

5

6

7

8

9

10

f(
x)

 

 
 log

2
(1+µ|x|)

proposed by Deng

we proposed

µ=4096

µ=1024

µ=256

f(x) =400|x| f(x) =2

Fig. 4.2 Proposed line segment of different µ.

be simplified by shifting the index of x. This will reduce the computation cost of the SPNLMS

algorithm. Figure 4.2 illustrates the proposed function F̃(x) of different µ. It can be observed

that the proposed segment line function can fit log2(1+µ|x|) of various µ better than the original

definition in (4.17). It is believed that the new segment line function can retain fast convergence

speed of MPNLMS. For convenience sake, the refined SPNLMS algorithm with this definition

of F̃(x) is referred to as the SPNLMS+ algorithm.

4.6 Computational Complexity and Its Reduction

Usually, computational complexity of adaptive algorithms is measured by the number of

multiplications (or division). Because the regressors of LMS and NLMS have shift-structure,

||x(t)||2 can be calculated recursively by subtracting off the square of the outgoing sample and

adding in the square of the incoming sample, which consumes only 2 multiplications. Conse-

quently, NLMS requires approximate 2N multiplications at every iteration: N multiplications

for calculation of wT (t)x(t) and N multiplications for coefficient updating. Several methods are

proposed in [67] to reduce the computational complexity of the PNLMS algorithms, i.e., up-

dating only active coefficients, halting adaptation when small residual error is detected. Here,
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Table 4.1 Computational Complexity of Proportionate Algorithms

Step No. Operations Multiplications Additions

(1) e(t) = d(t) − wT(t)x(t) N N

(2) γn(t) = F(|wn(t)|) − −
(3) Lmax = max{δρ, γ0(t), · · · , γN−1(t)} 0 0

(4) g̃n(t) = max {γn(t), ρLmax} 0 0

(5)? gn(t) =
g̃n(t)

1
N

∑N−1
i=0 g̃i(t)

N N − 1

(6) G(t) = diag {g0(t), g1(t), · · · , gN−1(t)} 0 0

(7) xG(t) = G(t)x(t) N 0

(8) ||x(t)||2G = xT (t)xG(t) N N − 1

(9) w(t + 1) = w(t) +
αe(t)

||xG(t)||2G + δ
xG(t) N + 2 N + 1

Summation 5N + 3 4N + 1

additional proposals are discussed.

It is addressed that PNLMS algorithm increases the computational complexity about 50%

compared to NLMS [8, 29]. The extra per-tap multiply is needed for calculatoin of G(t)x(t),

which requires N multiplications. Furthermore, because the proportionate NLMS algorithms

generally use the form in (4.4), as a result, additional N multiplies are required to calculate the

denominator xT(t)G(t)x(t). In brief, for proportionate NLMS adaptation, 5N + 3 multiplications

are required per sample.

Table 4.1 lists the multiplications and additions of proportionate adaptive algorithms,

where step (2) is dependent on the specific proportionate algorithms. For PNLMS, this step

does not need any multiplication and addtion. For the SPNLMS algorithm, it requires at most

additional N multiplies at every iteration to compute F̃(|wn(t)|). The proposed new segment

line function based on logarithm to base 2 in (4.31) makes calculation of F̃(|wn(t)|) efficient by

bit-shifting operation because both µ and ε are power of 2. Hence, the computational cost of

F̃(|wn(t)|) could be ignored.
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4.6.1 Removal of Normalization

In [8], it is stated that the normalization of gn(t) by its average is critical, where the dom-

inator has a form of ||x(t)||22 in stead of ||x(t)||2G. The reason is that it is required to removes any

sensitivity of misalignment noise to the exact shape of gn(t).

Normalization of gn(t) by its average value, step (5) in Tab. 4.1, requires N + 1 divisions

and N − 1 additions. Here, however, it is proposed to eliminate this step when the denominator

is ||x(t)||2G because it is not necessary for the proposed SPNLMS+ algorithm anymore.

Note that, when the denominator is xT(t)G(t)x(t), any non-zero constant factor of gn(t) does

not greatly change the behavior of the proportionate adaptive algorithms. Defining a step-size

control matrix by dropping normalization, a new proportionate step-size matrix is obtained as:

G̃(t) = diag{g̃0(t), g̃1(t), · · · , g̃N−1(t)}. (4.41)

The relation between the new and the original proportionate step size matrix is,

ḡ(t) =
1
N

N−1∑

i=0

g̃i(t), (4.42)

G̃(t) = ḡ(t)G(t). (4.43)

Replacing the new definition into the coefficient updating equation results in

G(t)x(t)e(t)
xT(t)G(t)x(t) + δ

=
G̃(t)x(t)e(t)

xT(t)G̃(t)x(t) + ḡ(t)δ
. (4.44)

This implies that, by dropping the normalization of gn(t), the coefficient updating equation with

G̃(t) is equivalent to the original one, which can save N multiplies at every iteration. In stead,

the regularization term δ need multiply ḡ(t), which only needs 1 multiplication. For SPNLMS

with a sparse impulse response, ḡ(t) is in the range from 0.5 to 2.0 (see simulation results).

Because δ is a small number (in order to avoid divergence when the power of input signal is

small), consequently, replacing ḡ(t)δwith δwill not greatly affect the convergence performance.
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This makes the calculation of ḡ(t) unnecessary.

4.6.2 Partial Updating of G̃(t)

The computational complexity of SPNLMS can be further reduced by calculating g̃(t) in

every M iterations, instead of in every iteration, because wn(t) changes significantly only over

large numbers of iterations. Using this method, the average computation cost for calculation of

G̃(t) is reduced from 2N to 2N/M. Simulation results show that even when M is a relatively

large number, such as M = N, the proposed SPNLMS+ algorithm demonstrates approximately

similar convergence with full update of G̃(t).

4.6.3 Selective Partial-Updating of coefficient vector w(t)

Another technique to reduce the computational complexity is the selective partial updating,

where only L coefficients are updated at every iteration (L ≤ N). See [51] and [49] for the

details and [58] for its application to proportionate NLMS algorithms. Generally, it saves N − L

multiplies in each iteration. However, this technique needs to calculate G(t) at every iteration

and it requires to select the L largest coefficients to update, which costs additional sort operation

at every iteration.

The proposed approach is summarized in Table 4.2.

4.7 Simulation Results

To evaluate the performance of the proposed approaches, many computer simulations were

conducted with related algorithms. The common conditions for the simulations are as follows.

The unknown impulse response h is a sparse impulse response illustrated in Fig. 1.3. The

adaptive filter w has 512 coefficients (N = 512).

The relevant algorithms, including NLMS, PNLMS, MPNLMS, SPNLMS, and the pro-
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Table 4.2 Summary of SPNLMS+ Algorithm

Initialization:

w(1) = 0,

δ is a small number,

µ̃ =

√
σ2

x

σ2
v

N(2 − α)
α

,

k =
⌊
log2 µ̃

⌋
,

u = 2k,

For all t:

e(t) = d(t) − wT(t)x(t)

if mod (t,M) == 0

gn(t) = F̃(|wn(t)|)
g̃n(t) = max

{
gn(t), ρmax{δρ, g0(t), · · · , gN−1(t)}

}

G(t) = diag {g̃0(t), g̃1(t), · · · , g̃N−1(t)}
w(t + 1) = w(t) + α

G(t)x(t)e(t)
xT (t)G(t)x(t) + δ

posed SPNLMS+, are tested in various level of noise. The disturbance signal v(t) are zero-

mean white Gaussian signal that is uncorrelated to the input signal. Its magnitude is adjusted

to get a certain SNR. The regularization parameter δ = 1.0. The parameters of the proportion-

ate algorithms use their typical value, δρ = 0.01, ρ = 0.01. For MPNLMS, µ = 1000. The

performance of the relevant algorithm is quantified using the normalized misalignment defined

as 10 log10{||h − w(t)||22/||h||22} (in dB). The results illustrated in the following figures are the

ensemble average of over 100 independent trials.

4.7.1 Influence of Different µ

Firstly, it examines the effectiveness of the proposed µ for MPNLMS. The input signal

{x(t)} and the disturbance {v(t)}, which is assumed to be independent from {x(t)}, are zero-mean

Gaussian sequence. The step-size α = 0.25.

Figure 4.3 compares the convergence of MPNLMS with different µ in three level of SNR,
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Fig. 4.3 Influence of µ on convergence speed of MPNLMS in various level of SNR. (a)
SNR = 103, (b) SNR = 104, (c) SNR = 105.

where subplot (a) is for SNR = 103, subplot (b) is for SNR = 104, subplot (c) is for SNR = 105,

respectively. The solid lines indicate the proposed µ in corresponding condition. When SNR

is in the similar condition to that in [34], the proposed µ is 210, which approximately equals

to that proposed in [34]. It can be seen from Fig. 4.3(a) that, although MPNLMS of different

µ demonstrate almost similar convergence performance in this condition, the proposed one is

best among these for candidates. Figure 4.3(b) and Fig. 4.3(c) illustrates the convergence with

– 61 –



Chapter 4 Better Approximation of Segment Proportionate NLMS Algorithm

different µ when SNR is relatively high. It can be seen that the convergence of µ ≤ 210 has

relatively faster initial convergence speed. However, their convergence begin slow after its

normalized misalignment is less than 30dB. A large µ can improve the convergence thereafter,

µ = 212 for SNR = 104 and µ = 214 for SNR = 105. In these condition, the proposed µ can

achieve better over-all convergence than the others. With the increase of SNR, a bigger µ is

necessary to drive the algorithm to reach its steady-state faster.

From these simulations, it can draw a conclusion that there is a trade-off in the choice of µ.

A small µ, in the range between 28 and 212, can achieve faster convergence at the initial stage.

However, a larger µ is preferred thereafter to quickly achieve its steady-state. It can also find

that there is critical point in the convergence of MPNLMS algorithm. Before that point, a small

µ can lead faster convergence but after that point a big µ can lead to faster convergence. The

proposed approach can provide an acceptable µ to balance the fast initial convergence and the

over-all convergence speed. In short, the proposed µ can achieve better performance than the

others in these three conditions.

4.7.2 Convergence of Proposed SPNLMS+ Algorithm

The performance of the proposed SPNLMS+ algorithm is compared with three others,

PNLMS, MPNLMS and original SPNLMS in three level of SNR, where subplot (a) is for

SNR = 103, subplot (b) is for SNR = 104, subplot (c) is for SNR = 105, respectively. Fig-

ure 4.4 illustrates simulation results. It can be seen from Fig. 4.4(a) that SPNLMS+ shows

similar convergence performance with the others when the noise level is relatively high. In this

condition, the proposed segment line is based on µ = 210, which is same to that of MPNLMS. In

the other two conditions, the SPNLMS+ algorithm shows faster convergence than MPNLMS.

In Fig. 4.4(b) and Fig. 4.4(c), the original SPNLMS demonstrates slow convergence speed than

MPNLMS because its segment line function only provides a course approximation of corre-

sponding mu-law function. The proposed SPNLMS+ algorithm, however, shows better conver-

– 62 –



4.7 Simulation Results

0.5  1    1.5  2    

−40

−30

−20

−10

0

M
is

al
ig

nm
en

g 
(d

B
)

0.5  1    1.5  2    2.5  3    
−50

−40

−30

−20

−10

0

M
is

al
ig

nm
en

g 
(d

B
)

0.5  1    1.5  2    2.5  3    3.5  4    
−60

−50

−40

−30

−20

−10

0  

Iterations(x104)

M
is

al
ig

nm
en

g 
(d

B
)

 PNLMS

MPNLMS

SPNLMS

SPNLMS+

 PNLMS

MPNLMS

SPNLMS

SPNLMS+

 PNLMS

MPNLMS

SPNLMS

SPNLMS+

(a)

(b)

(c)

Fig. 4.4 Convergence comparison of SPNLMS+ in various level of SNR. (a) SNR = 103,
(b) SNR = 104, (c) SNR = 105.

gence performance than SPNLMS. The reason is the two proposed approaches: a more suitable

convergence criterion and the more precise line segment function. Its convergence is improved

more in Fig. 4.4(c), where SPNLMS converges slowly after its fast initial convergence while

the proposed SPNLMS+ presents faster over-all convergence.
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Fig. 4.5 Evolution of ḡ(t) in Fig. 4.4(b).
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Fig. 4.6 Convergence of SPNLMS+ using computation reduction methods.

4.7.3 Effectiveness of Computation Reduction Methods

Two methods have been proposed to reduce the computational complexity of the

SPNLMS+ algorithm. By dropping normalization of gn(t) by its average ḡ(t), N multiplies

are saved in every iteration. It further is proposed to drop calculation of ḡ(t) because its value

is in a small range around 1.0. Figure 4.5 shows the evolution of ḡ(t) in the simulation of

Fig. 6(b). It can be seen that, although ḡ(t) of SPNLMS and SPNLMS+ is small in the first

several iterations, its value maintains in a limited range between 0.5 and 2.0. As a result,

the convergence of SPNLMS+ without normalization of gn(t) by ḡ(t) is same to that with
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normalization.

It also is proposed to calculate G̃(t) once at every M iterations instead of at every iteration.

The convergence of this method with that of full calculation method are compared in Fig. 4.6.

The solid lines indicates the SPNLMS+ algorithm with full calculation. M = 64 and M = 256

indicate the SPNLMS+ algorithm that calculates G̃(t) every 64 and 256 iterations respectively.

It can be seen that the proposed methods present as fast convergence as full calculation method,

hence the computational complexity of SPNLMS+ is greatly reduced.

4.8 Conclusions

Two strategies are presented to improve the performance of the SPNLMS algorithm. A

convergence criterion is established at first, then an approach is proposed to improve its con-

vergence in various noise level environments. A refined segment function is proposed to ap-

proximate the mu-law function as exact as possible. The computational complexity is analyzed

and two approaches are proposed to reduce the computational complexity. The performance

improvement of the proposed algorithms is verified by numerous simulations.
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Chapter 5

Variable Step-size Proportionate

NLMS Algorithms

5.1 Introduction

The steady-state performance is another important aspect of an adaptive filter. Low mis-

alignment is desired in practical application. Unfortunately, the design of the step-size control

matrix G(t) of proportionate adaptive algorithms cannot improve the steady-state misalignment.

Actually, the steady-state misalignment of the proportionate algorithms is controlled by global

step-size parameter. The steady-state misalignment of proportionate adaptive algorithms is ap-

proximately equal to that of their non-proportionate counterpart having the same global step-

size parameter [8]. When global step size is adjusted to obtain fast convergence, the steady-

state misalignment becomes large, and vice versa. The step-size parameter reflects a trade-off

between fast convergence and low steady-state misalignment. One solution to decrease the

steady-state misalignment is variable step-size technique. If we adaptively control the step size

parameter so that it remains large in the transient state of adaptive filter, fast convergence speed

is achieved. If we decrease the step-size parameter to be small as the convergence proceeds,

low steady-state misalignment can be obtained.

Different variable step-size approaches have been proposed in the literature. In [68], the

squared instantaneous error was used as criteria to change the step size. In [69], an optimal step

size was proposed for NLMS algorithm by adaptively minimizing the mean-square deviation
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at each iteration. In [70], a steepest descend method was proposed to update the step size to

minimize the squared error. A non-parametric variable step-size NLMS algorithm was proposed

in [71] by adjusting the step size to cancel the a posteriori error. Recently, this method was

applied in the under-modeling acoustic echo cancellation system [72]. In [73], it was extended

further to APA with a new perspective of signal enhancement. In [74], a criterion is proposed to

measure how close the adaptive filter is to optimal value by maximizing the decrease of mean-

square deviation at each iteration, and then it proposes an variable step-size approach based on

this criterion. However, these approaches are only applicable for non-proportionate adaptive

algorithms.

In this chapter, a variable step-size approach is proposed for proportionate NLMS algo-

rithms. Because of the presence of a diagonal proportionate step-size matrix, it is complex to

analyze the behavior of proportionate NLMS algorithms. It is well known that the principle

of least perturbation plays an important role in derivation of the NLMS algorithm. Inspired by

this, the principle is exploited into the proportionate LMS algorithm and obtain a derivation

of proportionate NLMS algorithm. Note that, by canceling the a posteriori error at each iter-

ation, theoretically, this principle can lead to perfect performance in a noise free context: fast

convergence speed and zero misalignment. However, with the presence of background noise

or disturbance signal, canceling the a posteriori error will introduce additional noise into the

coefficient update. Taking into account this negative effect of the disturbance signals, the opti-

mal global step size can be obtained by forcing the a posteriori error not to be zero, but to be

the disturbance signal. Based on this idea, a variable step-size parameter is derived to cancel

the pure a posteriori error at each iteration. The proposed approach is independent from the

proportionate step-size control matrix.
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5.2 Inspiration

The steady-state misalignments of proportionate adaptive algorithms are almost not af-

fected by G(t), but controlled by global step size α. The steady-state misalignment are approx-

imately equal to its non-proportionate version of same global step-size parameter [8]. When α

is adjusted to obtain fast convergence, the misalignment becomes large, and vice versa.

It is difficult to analyze the behavior of the proportionate NLMS algorithms because pres-

ence of G(t) introduces nonlinearity, particularly with term [xT(t)G(t)x(t) + ε]−1. Nevertheless,

it is proved in [8] that its steady-state misalignment is independent with G(t) and approximately

equal to NLMS of the same global step-size parameter. In order to decrease the steady-state

misalignment of proportionate adaptive algorithms, it is necessary to develop a global variable

step-size parameter.

A non-parametric variable step-size method was proposed in [71] for the NLMS algorithm

in a simple and elegant way. Recently, this method is applied into IPNLMS in [75] and results

in a VSS-IPNLMS algorithm. It first regards the proportionate step-size parameter of IPNLMS

as two parts: the first term is NLMS-type step size and the second term is the proportionate step

size. And then it combines the non-parametric variable step size α(t) into the NLMS-type step

size, so that

gn(t) = α(t)
1 − β
2N

+
(1 + β)|wn(t)|

2
∑N−1

i=0 |wi(t)| + δ
. (5.1)

However, as discussed above, this method cannot decrease the steady-state misalignment by

only designing a variable proportionate step-size parameter gn(t). In this section, based on

the result in [75], an efficient variable global step-size parameter is obtained to improve the

steady-state misalignment of proportionate adaptive algorithms. The resulting approach is a

natural extension of the non-parametric variable step-size method to the proportionate adaptive

algorithms rather than a simple combination.

The proportionate NLMS algorithms can be viewed as a normalized version of proportion-
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ate LMS algorithm, which means the LMS algorithm with proportionate adaptation. Inspired by

this fact, beginning with the proportionate LMS algorithm, a derivation of proportionate NLMS

algorithm is obtained. At last, a variable global step size can be achieved in the proportionate

adaptation framework. It is well known that the NLMS algorithm can be derived from the LMS

algorithm using the principle of least perturbation, that is to maintain the next coefficient vector

as close as possible to current estimate, while forcing the a posteriori error to be zeros [2, 3].

The a posteriori error ē(t) is defined as

ē(t) = d(t) − xT(t)w(t + 1)

= xT(t)w̃(t + 1) + v(t), (5.2)

where w̃(t) = h − w(t) is the coefficient error vector.

Apply this principle to proportionate LMS algorithm, a derivation of proportionate NLMS

algorithm can be achieved as bellow. Starting from the proportionate LMS algorithm, with a

global variable step size parameter α(t),

w(t + 1) = w(t) + α(t)G(t)x(t)e(t). (5.3)

Subtract h at both sides and rearrange the terms

w̃(t + 1) = w̃(t) − α(t)G(t)x(t)e(t). (5.4)

By premultiplying xT(t) at both sides, a relation between the a priori error and the a posterior

error is obtained as

ē(t) =
[
1 − α(t)xT(t)G(t)x(t)

]
e(t). (5.5)

In a noise free system, applying the principle of least perturbation to force ē(t) = 0, solving α(t)

in (5.5), yields

α(t) =
1

xT(t)G(t)x(t)
(5.6)

Then replacing α(t) into (5.3), the normalized proportionate LMS algorithm of α = 1 is ob-
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tained.

Both NLMS and proportionate NLMS can satisfy the principle of least perturbation in a

noise free system. It has the fastest convergence speed and zero misalignment by canceling ē(t)

at each iteration. The optimal step size is 1 in this case. However, in practical applications,

the disturbance signal v(t) is inevitable. Consequently, adaptive algorithm cannot achieve zero

misalignment. The reason could be explained by the fact that in the presence of v(t), forcing

the a posteriori error ē(t) to be zero will force the adaptive filter to adapt the disturbance signal,

which will introduce noise to the adaptation process. Actually, what is really wanted is to force

the pure a posteriori error to be zero, i.e.

xT(t)w̃(t + 1) = 0. (5.7)

By combining (5.7) with (5.2), it implies that in a noisy environment the coefficients should be

updated to make the a posteriori error not to be zero, but to be the disturbance signal:

ē(t) = v(t). (5.8)

In practical application, although the disturbance signal v(t) is not available, its power level

can be approximately estimated. For this reason the optimal step-size parameter can be found

in such a way that

E{ē2(t)} = E{v2(t)}. (5.9)

5.3 Proposed Variable Step-size

Based on this idea, a variable global step-size proportionate NLMS algorithm can be de-

rived as following. Ignoring the regularization term ε and rewriting proportionate coefficient
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updating equation with a time-varying global step size α(t),

w(t + 1) = w(t) + α(t)
G(t)x(t)e(t)
xT(t)G(t)x(t)

. (5.10)

Following the similar procedure as above, an expression between the a priori error and the a

posterior error for proportionate NLMS algorithm is obtained as,

ē(t) = [1 − α(t)] e(t). (5.11)

In a noise free system, v(t) = 0, forcing ē(t) = 0, yields α(t) = 1. This result coincides the

previous analysis.

When v(t) , 0, squaring and taking mathematical expectation at both sides of (5.11),

combining it with (5.9), solving α(t), the time-varying global step-size is obtained as

α(t) = 1 −
√

E{v2(t)}
E{e2(t)} . (5.12)

Note that this result has a similar formula with the VSS-IPNLMS algorithm. But it is applied

to a global step-size parameter in stead of the NLMS part of the proportionate step size gn(t)

of IPNLMS as in [75]. The simulation results in the next section show that this approach can

greatly improve the steady-state misalignment of proportionate adaptive algorithms.

It can be found that the resulting variable global step-size parameter is independent of G(t).

Although the proportionate algorithms have complicated behavior because of presence of G(t),

this expression provides a simple, straightforward approach to control its global step-size pa-

rameter. In the transient state of the adaptive filter, E{e2(t)}will be large, hence α(t) is also large.

As a consequence, fast convergence speed can be expected. After the adaptive filter reaches a

certain degree convergence, E{e2(t)} becomes small, hence α(t) decreases. Consequently, low

misalignment can be observed.
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5.4 Practical Considerations

There are several practical considerations related to this expression. First, E{e2(t)} and

E{v2(t)} must be estimated as σ̂2
e(t) and σ̂2

v(t), respectively. The quantity of σ̂2
e(t) can be esti-

mated using an exponential window as:

σ̂2
e(t) = λσ̂2

e(t − 1) + (1 − λ)e2(t), (5.13)

where λ = 1 − 1/(KN). A large K can obtain smooth estimate of σ2
e(t) but it will reduce the

tracking ability of the adaptive filter. In order to avoid being divided by zero, σ̂2
e(0) should be a

small positive number. The power estimation of the disturbance signal, σ̂2
v(t), can be obtained

during the silences in a practical application, such as in a network echo cancellation system.

Second, in order to assure the algorithm stable, α(t) has to be limited in a suitable range.

The estimate of σ̂2
e(t) and σ̂2

v(t) could slightly deviate from their theoretical values, which could

result in a negative step size or large one to drive the adaptive algorithm to diverge. It is

necessary to restrict α(t) in a range that the stability of the adaptive algorithm is guaranteed,

0 ≤ αmin ≤ α(t) ≤ αmax ≤ 2. Suitable choice of αmin and αmax can make the proposed algorithm

robust to an inaccurate estimate of σ̂2
v . When αmin = αmax = α, it degrades to the standard

constant step-size proportionate NLMS algorithm.

Third, G(t) should be determined by a specific approach. It can be calculated using the

MPNLMS algorithm described by MPNLMS. The related variable step-size algorithm is re-

ferred to as the VSS-MPNLMS algorithm. It is preferable to apply the segment proportionate

version described by SPNLMS because it has excellent performance and light computation load.

The resulting algorithm with this definition of G(t) will be referred to as the VSS-SPNLMS

algorithm for convenience sake. The VSS-SPNLMS algorithm demonstrates very high conver-

gence speed and low steady-state misalignment than the existing algorithms.

Another issue is related to the accuracy of σ2
v(t). The proposed algorithm can achieve
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optimal α(t) if an accurate estimate of σ2
v(t) is available. If it is inaccurate, convergence per-

formance of the proposed algorithm will deteriorate. In the case of σ̂2
v(t) � E{v2(t)}, α(t) will

be smaller than the value defined in (5.12). The convergence speed of the proposed algorithm

will be slowed down because α(t) reaches αmin soon. However the low misalignment can be

achieved after more iterations. In the case of σ̂2
v(t) � E{v2(t)}, α(t) will be greater than its

optimal value. The initial fast convergence speed will be observed but the misalignment will be

increased because α(t) is close to αmax. For a modest inaccurate estimate of σ̂2
v(t), it is believed

that the performance of the proposed algorithm behaves better than that of the NPVSS-NLMS

because it benefits from the fast proportionate adaptive algorithms. The simulation results in

Section 4 show that the proposed algorithm can tolerate a large range of estimate error of σ̂2
v(t).

The proposed variable step-size segment proportionate NLMS algorithm (VSS-SPNLMS)

is summaried in Table 5.1.

5.5 Computational Complexity

The additional computational amount of the proposed VSS-SPNLMS is composed of four

parts compared to the standard NLMS algorithm. First, the calculation of G(t) costs at most

(2N+2) multiplications, N additions and 2N + 1 comparisons. Second, xg(t) = G(t)x(t) costs N

multiplications and xT(t)xg(t) costs N multiplications. Third, the estimate of σ̂2
e(t) and calcula-

tion of α(t) will cost 4 multiplications, 1 square-root operation, and 4 additions. The remaining

operations are common with the NLMS algorithm, i.e. calculation of e(t) (N multiplications)

and coefficients update (N multiplications). In summary, compared to the NLMS algorithm,

the dominant additional computation cost of the proposed VSS-SPNLMS algorithm is (4N+4)

multiplications and 1 square-root operation. Compared to the SPNLMS algorithm, the addi-

tional computation cost is only 4 multiplications and 1 square-root operation. For practical

application, such as network echo cancellation, the computational complexity of the proposed

– 74 –



5.5 Computational Complexity

Table 5.1 The proposed VSS-SPNLMS algorithm

Initialization:

w(0) = 0; σ̂2
e(0) = 0.01;

ε = Mσ2
x, (M ∈ Z+,M ≥ 1)

λ = 1 − 1/(KN), (K ∈ Z+, K ≥ 1)

0 ≤ αmin < αmax ≤ 1

For all t:

ḡn(t) =


400|wn(t)|, |wn(t)| < 0.005

2, otherwise.

γn(t) = max{ḡn(t), ρmax{δρ, ḡ0(t), · · · , ḡN−1(t)}}
gn(t) =

γn(t)
1
N

∑N−1
i=0 γi(t)

G(t) = diag{g0(t), g1(t), · · · , gN−1(t)}
e(t) = d(t) − xT(t)w(t)

σ̂2
e(t) = (1 − λ)σ̂2

e(t − 1) + λe2(t)

α(t) = 1 − √
σ̂2

v(t)/σ̂2
e(t)

if α(t) < αmin, α(t) = αmin,

if α(t) > αmax, α(t) = αmax,

w(t + 1) = w(t) + α(t) G(t)x(t)e(t)
xT(t)G(t)x(t)+δ

Table 5.2 Comparison of Computational Complexity

×/÷ +/− √ Comparison

NLMS 2N+4 2N+1 0 0

PNLMS 5N+3 4N+1 0 N

SPNLMS 6N+4 4N+1 0 2N+1

NPVSS-NLMS 2N+8 2N+3 1 1

VSS-SPNLMS 6N+8 4N+3 1 2N+3

algorithm is moderate. The computational complexity of the related algorithms are compared

in Table 5.2.

Note that the computational complexity can be further reduced using selective partial up-

dating algorithms [60], where only a part of coefficients are updated at every iteration. It can

save (N − M) multiplications, where M is the number of updated coefficients.
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Fig. 5.1 A typical sparse network echo path.

5.6 Simulation Results

To evaluate the performance of the proposed algorithm, many computer simulations were

conducted in the context of system identification. The unknown system h is from a sparse net-

work echo path illustrated in Fig. 5.1. The adaptive filter w have the same number of coefficients

with h, N = 512. The related algorithms are tested in numerous simulations, NLMS, MPNLMS,

SPNLMS, NPVSS-NLMS [71], and the proposed VSS-MPNLMS and VSS-SPNLMS. Three

kinds of performance are compared: convergence speed, steady-state misalignment and tracking

ability, using different input signals. The disturbance signal v(t) are zero-mean white Gaussian

signal that is uncorrelated to the input signal. Its magnitude is adjusted to get a certain signal-

to-noise ratio (SNR) in dB. The regularization parameter ε = 10σ2
x. For the proportionate

algorithms, δρ = 0.01, ρ = 2/N. Three kinds of signals are input into the adaptive algorithms:

(1) white Gaussian signal, (2) highly colored signals and (3) speech signals. The performance

is evaluated using the normalized misalignment (in dB) defined by 10 log10 ||w̃(t)||22/|| h ||22. Two

scenarios are assumed in the following simulations: (1) real value of σ̂2
v(t) is known, (2) σ̂2

v(t)

is inaccurate.
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Table 5.3 Parameters for different input signals

Parameters White input Colored input Speech input

αmin 0.008 0.008 0.05

αmax 1.0 1.0 1.0

K 1 2 4

ε σ2
x 5σ2

x 10σ2
x

5.6.1 Simulations using accurate estimate of σ2
v(t)

Firstly, performance of the proposed approach is compared with the others using real value

of σ2
v(t). In the 1st set of simulations, the input signal is zero-mean white Gaussian signal

with σ2
x = 1, and v(t) is adjusted to get 15dB SNR. Figure 5.2 shows the result: subplot (a)

compares convergence speed in the first 104 iterations of the related algorithms and subplot (b)

illustrates the steady-state misalignment of the related algorithms and their tracking abilities.

It can be observed that the SPNLMS algorithm converges faster than the conventional NLMS

algorithm with same step size. Also, they have almost the same steady-state misalignment.

The proposed VSS-MPNLMS and VSS-SPNLMS present almost same fast initial convergence

speed, compared with the SPNLMS (α = 1) algorithm. However, they can obtain lower steady-

state misalignment; about 18dB improvement can be observed in 3 × 104 iterations, as shown

in Fig. 5.2(b). To achieve this low level misalignment, the SPNLMS requires a very small

step size. In this case, α = 0.008, its convergence speed is greatly degraded. Although the

NPVSS-NLMS algorithm can achieve this low level misalignment, its convergence speed is

obviously slower than the proposed algorithms. It can be seen from Fig. 5.2(a) that the proposed

VSS-MPNLMS algorithm reaches −15dB misalignment in approximate 500 iterations but the

NPVSS-NLMS algorithm reaches this level in around 1200 iterations. It can be also observed

that the VSS-SPNLMS algorithm presents almost same performance with the VSS-MPNLMS

algorithm, even though it is only a simplified variant of the VSS-MPNLMS algorithm.

The tracking ability of adaptive algorithm is important in a non-stationary environment
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Fig. 5.2 Comparison of VSS-SPNLMS to the related algorithms using white Gaussian
signal. SNR=15dB. (a) Convergence speed of the first 104 iterations. (b) Comparison of
steady-state misalignment and tracking ability. (c) Evolution of α(t).

where the unknown impulse response may suddenly change. For a network echo canceler, for

example, the echo path is apt to shift backward or forward as a result of the delay jitter. The

tracking ability of relevant algorithms is also illustrated in Fig. 5.2(b). The unknown impulse

response was suddenly shifted to the right by 12 samples when t = 3 × 104. It can be seen

from this figure that the proposed two algorithms present good tracking performance when an

unpredicted change of unknown impulse response happens. Furthermore, they outperform the
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counterparts in low steady-state misalignment after reconvergence. Evolution of α(t) of three

variable step-size algorithms is shown in Fig. 5.2(c). It can be observed that the variable step

size α(t) of the three VSS algorithms present almost same trend: large enough for fast conver-

gence and small enough for low steady-state misalignment. Once the unknown system changes,

α(t) can quickly detect this change and increase to a large value in order to reconverge as fast

as possible. Although their α(t) present same trend, both VSS-MPNLMS and VSS-SPNLMS

show faster convergence speed than the non-proportionate algorithms. It can be explained by

the fact that the proportionate algorithms benefit from the information of sparse structure while

the conventional algorithms not.

In the 2nd set of simulations, the input signal is highly colored signals generated by fil-

tering a zero-mean, unit variance, white Gaussian signal through a first-order system G(z) =

1/(1 − 0.9z−1). The magnitude of disturbance signals is adjusted to get 30dB SNR. Figure 5.3

illustrates the result: subplot (a) compares convergence speed of the first 104 iterations and sub-

plot (b) compares their steady-state misalignments and tracking abilities. It can be observed

from Fig. 5.3(a) that the SPNLMS (α = 1.0) algorithm can achieve fast initial convergence

speed over the conventional NLMS algorithm, even in the case of this highly colored input sig-

nal. However, its convergence becomes slow thereafter. Furthermore, in this case, the steady-

sate misalignment of the SPNLMS algorithm is greater than that of the NLMS algorithm, ap-

proximately −22dB vs −32dB. The proposed VSS-MPNLMS algorithm and the VSS-SNLMS

algorithm achieve almost same fast initial convergence speed with SPNLMS (α = 1.0), but it

can reach lower steady-state misalignment. Comparing to the SPNLMS (α = 1.0) algorithm,

about 18dB improvement can be observed in 105 iterations. In order to decrease its steady-state,

a small step-size is necessary for the SPNLMS algorithm, α = 0.008 in this case, whose conver-

gence speed is greatly slowed down. In this case, the NPVSS-NLMS algorithm failed. Not only

its convergence speed is slower than the conventional NLMS (α = 1.0) algorithm, but also its

steady-state misalignment can not be improved. Figure 5.3(b) illustrates their tracking abilities.
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Fig. 5.3 Comparison of VSS-SPNLMS to the related algorithms using highly colored
signal. SNR=30dB. (a) Convergence speed of the first 104 iterations. (b) Comparison of
steady-state misalignment and tracking ability. (c) Evolution of α(t).

The unknown impulse response was suddenly shifted to the right by 12 samples when t = 105.

It can be seen that the proposed two algorithms present good tracking performance. Evolution

of α(t) of three variable step-size algorithms is illustrated in Fig. 5.2(c). It can be observed that

the variable step size α(t) of the three VSS algorithms present approximately same trend.

In the 3rd set of simulations, the input is from a speech of 8k sampling rate. The distur-

bance signal is added to get 30dB SNR. The unknown impulse response was suddenly shifted
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Fig. 5.4 Comparison of VSS-SPNLMS to the related algorithms using speech signal.
SNR=30dB. (a) Comparison of misalignment and tracking ability. (b) Evolution of α(t)

to the right by 12 samples after time is 45 second. Figure 5.4 illustrates the result: subplot (a)

compares their convergence speed, steady-state misalignment and tracking ability, and subplot

(b) shows α(t) of three VSS algorithms. It can be observed that the proposed VSS-MPNLMS

and VSS-SPNLMS present excellent performance in the concern performance criteria: fast con-

vergence speed, low steady-state misalignment, and tracking ability. In this case, the NPVSS-

NLMS algorithm is outperformed.

It should note that the convergence performance of the proposed VSS-MPNLMS and VSS-

SPNLMS algorithm present more smooth and consistent performance after the unknown im-

pulse response suddenly change, while their performance before this change are lack of this

kind of smoothness and consistency. This phenomenon can be observed in Fig. 5.2 - Fig.

5.4. It is because of the initialization method: w(0) is 0, σ̂2
e(0) is a small value that influ-

ences optimal α(t) of the first hundreds iterations. In practical application, once the algorithm is
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started, it works in tracking mode unless the algorithm is forcedly reset. So the excellent track-

ing performance of the proposed algorithms are preferable in practical application. Especially

the VSS-SPNLMS algorithm even behaves better than the VSS-MPNLMS algorithm for the

highly colored input signals and speech signals, while its computational complexity is modest

in real-time application.

5.6.2 Simulations with inaccurate estimate of σ2
v(t)

As discussed in the previous section, the estimate accuracy of σ̂2
v(t) influences the per-

formance of variable step-size algorithms. In this subsection, the performance of the pro-

posed VSS-SPNLMS algorithms is tested in three cases: (1) the estimate is exactly accurate

σ̂2
v(t) = E{v2(t)}; (2) the estimate is smaller than its real value, σ̂2

v(t) = 0.8E{v2(t)}; and (3) the

estimate is greater than its real value, σ̂2
v(t) = 1.5E{v2(t)}. The NPVSS-NLMS is also illustrated

for comparison, but it use an accurate σ̂2
v(t).

The simulation results using white Gaussian signals are illustrated in Fig. 5.5. It can be

seen that the convergence performance with an accurate σ2
v(t) is the best among these three

cases. In case (2), a small σ2
v(t) causes the steady-state misalignment larger than in case (1).

The reason is, when σ̂2
v(t) is excessively smaller than its real value, α(t) remains large in the

steady state - around 0.25 in Fig. 5.5(b). In case (3), a large σ̂2
v(t) will cause α(t) small and it

reaches αmin faster than in case (1), as shown in Fig. 5.5(b). In this case, αmin warrants VSS-

SPNLMS to converge at relatively high speed and to achieve a low level misalignment, although

it requires more iterations. In brief, in any case, VSS-SPNLMS can maintain fast convergence

speed and achieve low steady-state misalignment. It does not behave worse than SPNLMS even

with a large estimate error of σ̂2
v(t). In the simulations, it can tolerate +50% and -20% estimate

error of σ̂2
v(t). So the proposed VSS-SPNLMS is robust to a relatively inaccurate estimate of

σ̂2
v(t).

The simulation results with inaccurate estimate of σ̂2
v(t) using highly colored AR(1) signals
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Fig. 5.5 Comparison of VSS-SPNLMS to the related algorithms with inaccurate estimate
of σ̂2

v(t) using white Gaussian signal. SNR=15dB. (a) Comparison of misalignment and
tracking ability. (b) Evolution of α(t).

are illustrated in Fig. 5.6. In this condition, the VSS-SPNLMS algorithm with accurate estimate

of σ̂2
v(t) demonstrates best convergence performance. It can be seen from subplot (b) that with

the convergence of the algorithm, α(t) decreases so that the steady-state misalignment achieves

a low level. In case (2), a small σ2
v(t) causes α(t) remains large in the steady state - around 0.4 so

its misalignment is relatively large but its convergence is fast. In case (3), although α(t) becomes

αmin soon, the proposed VSS-SPNLMS even shows better performance than NPVSS-NLMS.

The simulation results with inaccurate estimate of σ̂2
v(t) using speech signals are illustrated

in Fig. 5.7. It can be seen that for speech signals, the proposed algorithm demonstrates very

fast initial convergence speed compared to NPVSS-NLMS. It can draw the same conclusion

that VSS-SPNLMS with an accurate σ2
v(t) presents best performance. If σ2

v(t) is smaller than

its real value, α(t) is larger than in case (1). If σ̂2
v(t) is larger than its real value, α(t) will be
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tracking ability. (b) Evolution of α(t).

small and it reaches αmin soon. A reasonable αmin warrants VSS-SPNLMS to demonstrate good

performance.

5.6.3 Comparison with other proportionate algorithms

In this subsection, the proposed VSS-SPNLMS algorithm is compared with three propor-

tionate algorithms in [59, 62, 75]. In [59], O. Hoshuyama et al. proposed an approach to deter-

mine G(t) based on the gradient approximated by the difference between the current coefficient

and an averaged filter coefficient with delay. In [62], S. Werner et al. combined proportionate

adaptation with the set-membership filtering, where α(t) is replaced by

αs(t) =


1 − γ/|e(t)|, if |e(t)| > γ
0, otherwise.

(5.14)
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Here, γ is a predetermined parameter as a bound on the noise and generally γ =
√

2σv can get

good performance [62].

Their convergence and tracking ability using white Gaussian signal when SNR=30dB are

shown in Fig. 5.8. The NPVSS-NLMS algorithm is also illustrated for comparison sake. It can

be seen that the proposed VSS-SPNLMS algorithm demonstrates the best performance, in the

convergence speed, steady-state misalignment and tracking. The VSS-IPNLMS algorithm in

[75] presents a relatively higher convergence speed and tracking than the NPVSS-NLMS algo-

rithm. However, its steady-state misalignment did not decrease much. Although the methods in

[59] and [62] demonstrate almost the same initial convergence speed with VSS-SPNLMS, their

steady-state misalignment cannot achieve the same low level as VSS-SPNLMS. The main dis-

advantage of the method in [59] is its computational complexity. It requires 4N multiplications
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Fig. 5.8 Comparison of VSS-SPNLMS to the other counterparts. SNR=30dB. For VSS-
IPNLMS, constant step-size parameter α = 1.0, β = −0.5. For Gordy, constant step-size
parameter α = 1.0. For SM-PNLMS, γ =

√
2σv.

to calculate G(t) in each iteration while VSS-SPNLMS only requires at most 2N multiplica-

tions. Furthermore, it has many parameters that is difficult to choose in practical application.

The main advantage of the method in [62] is its relatively low computational complexity be-

cause it halts the adaptation process when |e(t)| ≤ γ. However, as to the convergence speed

and steady-state misalignment, it cannot behave better than VSS-SPNLMS as shown in Fig.

5.8. Because it uses |e(t)|, instead of σe(t) as in the proposed approach, and |e(t)| demonstrates

stochastic property in steady state, so αs changes randomly and the steady-state misalignment

cannot be improved greatly.

5.7 Conclusions

A method is proposed to combine the variable step-size approach into the proportion-

ate NLMS algorithms. The proposed approach provides both fast convergence speed and low

steady-state misalignment. Simulation results have shown that the proposed VSS-SPNLMS al-

gorithm outperforms the classical adaptive algorithm for sparse impulse response. It has very
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fast convergence speed, tracking performance and low misalignment at the same time. Its addi-

tional computation load is very little. The main advantage of this algorithm is, it only requires

an power estimate of the disturbance signals, σ̂2
v(t), which can be easily obtained in practical

application. Furthermore, it can tolerate a relatively large estimate error of σ̂2
v(t). This makes it

very preferable in practical application.
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Chapter 6

Variable Step-size Proportionate

Affine Projection Algorithms

6.1 Introduction

The optimal step-size control matrix G(t) of the MPNLMS algorithm was derived on the

assumption that the input is white Gaussian signals. For highly correlated input signals, espe-

cially speech, convergence speed of proportionate NLMS algorithms will depend on the eigen-

values spread of the input signal’s autocorrelation matrix R. The proportionate affine projection

algorithm (PAPA) is the natural extension of the PNLMS algorithm. It is expected to present

faster convergence for highly correlated input signals at the cost of a modest increase in com-

putational complexity. In this chapter, the previous variable step-size approach is extended to

the PAPAs for sparse impulse response identification.

6.2 Proportionate Affine Projection Algorithm

The APA achieves a faster convergence speed for correlated input signals than the NLMS

algorithm with only a modest increase in computational complexity. It exploits more informa-

tion from the input signal, not only the current input vector but also the most recent P input

vectors. The proportionate APA (PAPA) is expected to converge faster than the proportionate

NLMS algorithms for colored input signals.
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The PAPA can be briefly summarized as follows:

w(t + 1) = w(t) + αG(t)X(t)
[
XT(t)G(t)X(t) + δI

]−1
e(t), (6.1)

where α is a global constant step size, δ is the regularization parameter and I is a P × P identity

matrix.

The PAPA is a solution of a constrained optimization problem in a way similar to that of

APA. That is to minimize the coefficient vector update in successive time index, subject to the

P constraints that the a posteriori error is zero [2]:

w(t + 1) = min
w(t+1)

{
[w(t + 1) − w(t)]T G−1(t)[w(t + 1) − w(t)]

}
, (6.2)

subject to XT(t)w(t + 1) = d(t). (6.3)

This problem can be solved by using the method of Lagrange multipliers [2], whose cost func-

tion to minimize is

J(t) = [w(t + 1) − w(t)]T G−1(t) [w(t + 1) − w(t)] + 2λT
[
d(t) − XT(t)w(t + 1)

]
, (6.4)

where λ = [λ0 λ1 · · · λP−1]T is a Lagrange multiplier vector. Setting
∂J(t)

∂w(t + 1)
= 0 and

∂J(t)
∂λp

= 0, (p = 0 · · · P − 1), it gives [Refer to Appendix 1.2]

G−1(t) [w(t + 1) − w(t)] = X(t)λ, (6.5)

XT(t)w(t + 1) = d(t). (6.6)

Pre-multiplying both sides of (6.5) by G(t), and then rearranging it,

w(t + 1) − w(t) = G(t)X(t)λ, (6.7)

and then pre-multiplying both sides of (6.7) by XT(t), combining with (6.6), remembering e(t) =
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d(t) − XT(t)w(t) , yields a relation between the a priori error and input matrix:

e(t) = XT(t)G(t)X(t)λ. (6.8)

Solving λ from this equation

λ =
[
XT(t)G(t)X(t)

]−1
e(t), (6.9)

and substituting into (6.7), introducing a global constant step-size parameter α and a regulariza-

tion parameter δ, yields the resulting proportionate APA as in (6.1).

The step-size control matrix defined by MPNLMS was derived on the assumption that the

input is white. The mu-law PAPA (MPAPA) is expected to achieve faster convergence speed

than MPNLMS for colored input signals. Its computation efficient version, SPAPA, is favorable

for real-world application because of its implementable low computational complexity.

6.3 Formulation of VSS Proportionate Affine Projection Al-

gorithms

The objective is to find a variable step-size approach that is applicable to PAPAs. Unfortu-

nately, because of the presence of G(t), it is very difficult to analyze the transient performance

of PAPAs. In this section, a variable step size parameter is proposed for PAPA.

The APA can be derived from the principle of least perturbation, that is to maintain the

next coefficient vector as close as possible to the current estimate, while forcing the a posteriori

output estimation error to be zeros [2, 3, 7]. The a posteriori output estimation error vector r(t)

is defined as [7]

r(t) = d(t) − XT(t)w(t + 1)

= XT(t)w̃(t + 1) + v(t), (6.10)

w̃(t) = h − w(t), (6.11)
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where w̃(t) is the coefficient error vector and v(t) = [v(t) v(t − 1) · · · v(t − P + 1)]T is the

disturbance signal vector. Compared to r(t), the error e(t) plays the role of the a priori output

estimation error vector.

The APA can satisfy the principle of least perturbation in a noise-free system. It has

the fastest convergence speed and zero misalignment by canceling r(t) at each iteration. The

optimal step size is one in this case. However, in practical application, a disturbance signal is

inevitable. Therefore the adaptive algorithm cannot achieve zero misalignment. This could be

explained by the fact that in the presence of v(t), attempts to force r(t) to be zero will introduce

noise to the adaptive filter update [71]. Actually, what we would like is to force the a posteriori

estimation error to be zero. That is

XT(t)w̃(t + 1) = 0, (6.12)

where 0 is a P × 1 column vector whose elements are all zeros. Combining (6.10) with (6.12)

implies that, in a noisy environment, we should update the coefficients to make the a posteriori

error not to be zero, but to be the disturbance signal: v(t),

r(t) = v(t). (6.13)

In practical application, although the disturbance signal v(t) is not available, its power level

can be estimated. For this reason the optimal step-size parameter can be found in such a way

that

E{r2
p(t)} = E{v2

p(t)}, p = 0 · · · P − 1 (6.14)

where rp(t) is the p-th element of r(t), and vp(t) is the p-th element of v(t). Note that vp(t) =

v(t − p).

Based on above notion, a VSS-PAPA can be derived as follows. Rewrite (6.1) with a P×P
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time-varying step-size diagonal matrix α(t), ignoring the regularization term δI,

w(t + 1) = w(t) + G(t)X(t)
[
XT(t)G(t)X(t)

]−1
α(t)e(t). (6.15)

Subtracting h at both sides and rearranging the terms, yields

w̃(t + 1) = w̃(t) −G(t)X(t)
[
XT(t)G(t)X(t)

]−1
α(t)e(t). (6.16)

Pre-multiplying XT(t) at both sides yields a relation between the a posteriori estimation error

and the a priori output estimation error

rp(t) =
[
1 − αp(t)

]
ep(t), (6.17)

where αp(t) is the p-th diagonal element of α(t), and ep(t) is the p-th element of e(t). This

result is very interesting in relation to PAPA. It can be observed that the a posteriori estimation

error r(t) is determined by the step size parameter α(t) and error vector e(t) and is independent

from G(t). Consequently, a simple variable step-size approach is expected for PAPA from this

relation, following a similar procedure to [73].

Squaring and taking mathematical expectation at both sides of (6.17), and combining it

with (6.14), gives

E{r2
p(t)} =

[
1 − αp(t)

]2
E{e2

p(t)} = E{v2(t − p)}. (6.18)

Solving the equation, the p-th time-varying step-size αp(t) is obtained with a simple expression

as

αp(t) = 1 −
√
σ2

v(t − p)
σ2

ep
(t)

, (6.19)

where σ2
v(t − p) = E{v2(t − p)} is the variance of v(t − p) and σ2

ep
(t) = E{e2

p(t)} is the variance

of ep(t).

In the transient state of the adaptive filter, σ2
ep

(t) will be large, hence αp(t) is also large.

Consequently, fast convergence speed can be expected. After the adaptive filter reaches to
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within the immediate vicinity of its optimal value, σ2
ep

(t) becomes small, hence αp(t) decreases.

As a result, low misalignment can be observed.

There are some practical considerations related to this expression, which is similar with

those described in the previous chapter. The first is the estimations of σ2
ep

(t) and σ2
v(t). The

quantity of σ2
ep

can be estimated using an exponential window as:

σ̂2
ep

(t) = λ1σ̂
2
ep

(t − 1) + (1 − λ1)e2
p(t), (6.20)

where

λ1 = 1 − 1/(K1N), (K1 ∈ Z+,K1 ≥ 1) (6.21)

A large K1 can obtain a smooth estimate of σ2
ep

(t) but it will reduce the tracking ability of

the adaptive filter. In practical application, power estimation of the disturbance signal, σ̂2
v(t),

can be obtained during the silences in a network echo cancellation system. An estimate of the

disturbance signal, v̂(t), can even be obtained using an additional adaptive filter, as proposed in

[76]. Therefore, by using the same method with σ̂2
ep

(t), σ̂2
v(t) can be obtained by

σ̂2
v(t) = λ1σ̂

2
v(t − 1) + (1 − λ1)v̂2(t). (6.22)

The second issue is stability. These estimates could lead to minor deviations from their

theoretical values, which may result in a negative step size or a large one and force the adaptive

algorithm to diverge. It is necessary to restrict αp(t) in range so that the stability of the adaptive

algorithm is guaranteed, 0 ≤ αmin ≤ αp(t) ≤ αmax ≤ 2. Suitable choice of αmin and αmax can

make the proposed algorithm robust to an inaccurate estimate of σ̂2
v . More detailed discussions

on this issue will be presented in the next subsection.

The third issue is the determination of G(t). Although it can be determined by any propor-

tionate adaptive algorithm, it is preferable to adopt the segment proportionate version described

by SPNLMS because it has excellent performance and light computation load. This definition

is used throughout this chapter. The proposed algorithm with this definition of G(t) will be
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referred as VSS-SPAPA for convenience sake. Note that when G(t) is an identity matrix the

proposed VSS-SPAPA degrades into the VSS-APA in [73].

It seems that the proposed variable step-size PAPA is similar to the set-membership PAPA

(SM-PAPA) proposed in [62], where αp(t) is replaced by

αsm,p(t) =


1 − γ/|ep(t)|, if |ep(t)| > γ
0, otherwise.

(6.23)

Here, γ is a predetermined parameter as a bound on the noise. Since there is no averaging on,

it is obvious that a lower misalignment cannot be expected. The proposed variable step size

described in (6.19) provides an optimal criteria of γ for the SM-PAPA, i.e. γ should choose

according to σv.

6.4 Adaptive Estimate of σ2
v(t) and Its Influence

The proposed VSS-SPAPA can obtain optimal αp(t) if an accurate estimate of σ2
v(t) is

available. As explained in the previous subsection, a relatively accurate estimate can be easily

obtained during silence in a network echo cancellation system, since there are many pauses in

natural speech. However, if the power of the disturbance signals changes between two consecu-

tive estimations, its new estimate will not be available immediately. A method was proposed to

adaptively estimate σ2
v(t) only using the signals available in the system, which can be described

by [73]

σ̂2
v(t) = max{0, σ̂2

d(t) − σ̂2
ŷ(t)}, (6.24)

σ̂2
d(t) = λ2σ̂

2
d(t − 1) + (1 − λ2)d2(t), (6.25)

σ̂2
ŷ(t) = λ2σ̂

2
ŷ(t − 1) + (1 − λ2)ŷ2(t), (6.26)

where ŷ(t) = xT(t)w(t) is the output of the adaptive filter, and

λ2 = 1 − 1/(K2N), (K2 ∈ Z+,K2 ≥ K1). (6.27)

– 95 –



Chapter 6 Variable Step-size Proportionate Affine Projection Algorithms

This estimate is approximately accurate after the adaptive filter has reached its steady state,

because

E{v2(t)} ≈ E{d2(t)} − E{ŷ2(t)}. (6.28)

The method provides a sub-optimal solution of σ2
v(t) if it is unavailable in the given practical

application. However, after the adaptive filter has converged to within the immediate vicinity of

its optimal value, it can also be found that [72]

E{e2(t)} ≈ E{d2(t)} − E{ŷ2(t)}. (6.29)

Therefore, the difference between σ̂2
ep

(t) and σ̂2
v(t) will be insignificant in the steady state of

the adaptive filter. As a result αp(t) will be very small, and low steady-state misalignment

observed. However, this approach will lead to a slow convergence speed if this approach is

applied during the transient period of the adaptive filter. For example, if the unknown impulse

response changes suddenly, this approach is believed to present poor tracking ability because

αp(t) remains relatively small. To improve the adaptive filter’s tracking ability in this scenario,

the value of αmin should not be too small, and the steady-state misalignment will be increased

as a consequence. An alternative is to introduce a impulse response variation detector in the

algorithm, see [73] and reference therein.

Let us discuss the influence of an inaccurate estimate of σ̂2
v̂(t) on the convergence per-

formance of the adaptive algorithm. In the case of σ̂2
v(t) � σ2

v(t), αp(t) will be smaller than

its optimal value defined in (6.19). The convergence speed of the proposed algorithm will be

slowed because αp(t) reaches αmin soon. However low misalignment will be achieved using

more iterations. In the case of σ̂2
v(t) � σ2

v(t), αp(t) will be greater than its optimal value. Fast

initial convergence speed will be observed but the misalignment will increase because αp(t) is

close to αmax. For a modest inaccurate estimate of σ̂2
v(t), the performance of the proposed algo-

rithm is better than that of the VSS-APA because it benefits from the fast proportionate adaptive
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Table 6.1 The proposed VSS-SPAPA

Initialization:

w(0) = 0; σ̂2
v(0) = 0; σ̂2

ŷ(0) = 0; σ̂2
d(0) = 0;

δ = PMσ2
x, (M ∈ Z+,M ≥ 1)

λ1 = 1 − 1/(K1N), (K1 ∈ Z+, K1 ≥ 1)

λ2 = 1 − 1/(K2N), (K2 ∈ Z+, K2 ≥ K1)

for p = 0, 1, · · · , P − 1

σ̂2
ep

(0) = 1;

For all t:

ḡn(t) =


400|wn(t)|, |wn(t)| < 0.005

2, otherwise.

Lmax = max{δρ, ḡ0(t), · · · , ḡN−1(t)}
γn(t) = max{ḡn(t), ρLmax}
gn(t) = γn(t)/

[
1
N

∑N−1
i=0 γi(t)

]

G(t) = diag{g0(t), g1(t), · · · , gN−1(t)}
ŷ(t) = XT(t)w(t)

e(t) = d(t) − ŷ(t)

if σ̂2
v(t) is not available,

σ̂2
d(t) = λ2σ̂

2
d(t − 1) + (1 − λ2)d2(t)

σ̂2
ŷ(t) = λ2σ̂

2
ŷ(t − 1) + (1 − λ2)ŷ2(t)

σ̂2
v(t) = max{0, σ̂2

d(t) − σ̂2
ŷ(t)}

for p = 0, 1, · · · , P − 1

σ̂2
ep

(t) = (1 − λ1)σ̂2
ep

(t − 1) + λ1ê2
p(t)

αp(t) = 1 −
√
σ̂2

v(t − p)/σ̂2
ep

(t)

if αp(t) < αmin, αp(t) = αmin,

if αp(t) > αmax, αp(t) = αmax,

α(t) = diag {α0(t), · · · , αP−1(t)}
w(t + 1) = w(t) + G(t)X(t)

[
XT(t)G(t)X(t) + δI

]−1
α(t)e(t)

algorithms. The simulation results in Section 4 show that the proposed algorithm can tolerate a

large σ̂2
v(t) estimate error.

The proposed variable step-size segment proportionate affine projection algorithm (VSS-

SPAPA) is summarized in Table 6.1.
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6.5 Computational Complexity

Compared to the standard APA, the additional computation load of the proposed VSS-

SPAPA is composed of four parts. First, the calculation of G(t) costs 2N + 2 multiplications

or divisions, N additions and 3N comparisons. Second, the calculation of G(t)X(t) costs PN

multiplications. Third, the estimate of σ̂2
ep

(t) and calculation of α(t) will cost 4P + 6 multipli-

cations or divisions, P square-root operations, and 2P + 2 additions or subtractions. Finally,

the calculation of α(t)e(t) costs P multiplication. The remaining operations are common with

APA. In summary, the dominant additional computation cost of the proposed VSS-SPAPA is

(P + 2)N + 5P + 8 multiplications or divisions operations and P square-root operations. For

practical applications, such as network echo cancellation, the value of projection order P is

usually in the range of 2 to 8. Therefore the computational complexity of the proposed VSS-

SPAPA is moderate. The additional computation load is worth the considerable performance

improvement in sparse impulse response, and illustrate this in the next section.

6.6 Simulation Results

To evaluate the performance of the proposed algorithm, many computer simulations were

conducted in the context of system identification. Four algorithms are compared in numerous

simulations, APA, SPAPA, VSS-APA [73] and the proposed VSS-SPAPA. The unknown sys-

tem h is taken from a network echo path illustrated in Fig. 6.1(a). Both h and the adaptive

filter w have same length, N = 512. For the proportionate algorithms, δρ = 0.01, ρ = 1/N.

For VSS-SPAPA, λ1 = 1 − 1/2N, λ2 = 1 − 1/4N, αmin = 0.005. αmax = 1.0 is assigned

because a large step size for SPAPA does not considerably improve its convergence speed but

results in higher misalignment. The regularization parameters are chosen by ε = 10Pσ2
x for

all the algorithms. The disturbance signal v(t) is an independent white Gaussian noise. The

convergence performance is evaluated using the normalized misalignment (in dB) defined by
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Fig. 6.1 (a) A typical sparse network echo path used in the simulations. (b) A segment
of speech signal with 8k sampling rate used in the simulations.
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6.6.1 Simulations with real value of σ2
v(t)

The performance of the proposed VSS-SPAPA is compared with the others using the real

value of σ2
v(t). The signal-to-noise rate (SNR) is adjusted to 20dB for the simulation results

illustrated. The misalignment of the four algorithms is compared with three kinds of input

signal: (a) white Gaussian noise signal, (b) highly colored signals generated by a AR(1) process,

and (c) speech signals illustrated in Fig. 6.1(b).

In the 1st set of simulations, the input sequence was zero-mean white Gaussian noise sig-

nal with σ2
x = 1. For APA and SPAPA, a constant step α = 1 is assigned. Convergence speed

in the first 15000 iterations of the related algorithms is compared in Fig. 6.2(a). The projection

order P = 1. Therefore the related algorithms degrade into their corresponding NLMS ver-

sions. It can be seen that the SPNLMS algorithm converges faster than the conventional NLMS

algorithm with same step size. It can also be found that they have almost the same steady-state
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Fig. 6.2 Comparison of VSS-SPAPA to the related algorithms with white Gaussian noise
input. (a) P=1. (b) Comparison of different projection order, P=1,2,4,8. SPNLMS and
NPVSS-NLMS [71] are also illustrated.

misalignment. The proposed VSS-SPNLMS algorithm achieves almost the same fast initial

convergence as the SPNLMS algorithm. However, it can obtain lower steady-state misalign-

ment; about 18dB improvement can be observed in 4 × 104 iterations, as shown in Fig. 6.2(b).

To achieve this low level misalignment, the SPNLMS requires a very small step size. α is

0.005 in this case, whose convergence speed is greatly degraded. Although the NPVSS-NLMS

algorithm in [71] can achieve almost the same low misalignment, its convergence speed is sig-

nificantly lower than the proposed algorithm. It can be seen from Fig. 6.2(a) that the proposed

VSS-SPNLMS algorithm reaches −20dB misalignment in approximately 900 iterations but the

NPVSS-NLMS algorithm reaches that level in about 2200 iterations. Figure 6.2(b) illustrates
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Fig. 6.3 Comparison of VSS-SPAPA to the related algorithms using highly colored in-
put signal generated by G(z). (a) P=2. (b) Comparison with different projection order,
P=1,2,4,8. SPAPA and VSS-APA are also illustrated.

the results of different projection order. It can be seen that in the case of white input signal,

the increase in the projection order from 2 to 8 does not considerably improve the convergence

speed of the proposed VSS-SPNLMS. This suggests that the control matrix G(t) determined by

SPNLMS is nearly optimal for white input signal. The proposed VSS-SPNLMS is preferred to

obtain optimal convergence speed and lower misalignment with least computation cost.

In the 2nd set of simulations, the input sequence {x(t)} is an AR(1) process generated by

filtering a zero-mean white Gaussian signal through a first-order system G(z) = 1/(1 − 0.9z−1).

The simulation results with projection order P = 2 are illustrated in Fig. 6.3(a). The

proposed VSS-SPAPA achieves almost the same initial convergence speed with SPAPA, but it
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can reach a much lower steady-state misalignment - approximately 20dB improvement can be

observed in 5 × 104 iterations. Although VSS-APA can almost achieve this level of misalign-

ment, its convergence speed is lower than the proposed VSS-SPAPA. Figure 6.3(b) shows the

misalignment of the proposed algorithm of different projection order. In this case, when P=1,

all of the related algorithms present very low convergence speed. Their performance can be

greatly improved by increasing P= 2. However, with the increase in the projection order from

4 to 8, the convergence speed of VSS-SPAPA does not increase further, while the convergence

speed of APA and VSS-APA will improve with increased projection order from 1 to 8. The

VSS-SPAPA with P= 2 is preferable in this case to obtain the best performance with a modest

increase in computational complexity.

In the 3rd set of simulations, the input is from a speech segment illustrated in Fig. 6.1(b).

The disturbance signal {v(t)} is uncorrelated zero-mean white Gaussian noise with SNR= 20dB.

Figure 6.4(a) illustrates the result with projection order P = 8. The proposed VSS-SPAPA

achieves almost the same fast initial convergence compared to the SPAPA, but it can achieve

lower steady-state misalignment - about 15dB improvement can be observed in 15 seconds. In

this case, VSS-APA cannot achieve this misalignment level (or it needs many more minutes to

achieve it). The VSS-SPAPA outperforms VSS-APA both on convergence speed (approximately

twice as fast) and on low misalignment (approximately 2dB lower). Figure 6.4(b) compares the

convergence of the proposed algorithm at different projection orders. In the case of speech

signal input, with an increase in projection order from 1 to 8, the convergence speed of all the

related algorithms was improved. Taking into account computational complexity, the perfor-

mance of P= 4 is good enough in the case of speech signal input with a modest increase in

computation load.

The tracking ability of the adaptive algorithms is important in a non-stationary environment

where the unknown impulse response may suddenly change. In a network echo cancellation

system, the echo path is subject to shift backward or forward as a result of delay jitter. Figure
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Fig. 6.4 Comparison of VSS-SPAPA to the related algorithms using speech signal. (a)
P=8. (b) Comparison with different projection order, P=1,2,4,8. SPAPA and VSS-APA
are also illustrated.

6.5 illustrates the result of the tracking ability of the relevant algorithms with speech signal

input and P=4. The unknown impulse response suddenly shifted to the right by 12 samples. It

can be seen from this figure that the proposed algorithm presents good tracking performance

after the unpredicted change in the unknown impulse response. Furthermore, it outperforms its

counterparts in low steady-state misalignment after reconvergence.

6.6.2 Simulations with inaccurate estimate of σ2
v(t)

As discussed in the previous section, the estimated accuracy of σ̂2
v(t) influences the conver-

gence of VSS-APA and VSS-SPAPA. Figure 6.6 illustrates the simulation results of the relevant
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Fig. 6.5 Comparison of tracking ability of VSS-SPAPA to the relevant algorithms using
speech signals, P=4. The unknown impulse response changes after 15 second.

algorithms with: AR(1) input signals in subplot (a), and speech input signals in subplot(b), re-

spectively. It can seen that VSS-SPAPA with an accuracy of σ2
v(t) is best among the three cases:

(1) the power estimate of the disturbance signal is greater than its real value, σ̂2
v(t) = 1.5σ2

v(t);

(2) σ̂2
v(t) = σ2

v(t) and (3) σ̂2
v(t) is smaller than its real value, σ̂2

v(t) = 0.8σ2
v(t). In any case

VSS-SPAPA can maintain fast convergence with both AR(1) signals and speech signals. In

case (1), a large estimate σ̂2
v(t) will cause αp(t) to be small and reach αmin faster than in case

(2). In any case, αmin warrants VSS-SPAPA to achieve low misalignment. It is obvious that this

requires more iterations but is still faster than VSS-APA, as shown in the figure. However, if

σ̂2
v(t) is excessively smaller than its real value, the steady-state misalignment of VSS-SPAPA is

relatively higher, as shown in the figure, because αp(t) remains large in the steady state - around

0.25 in case (3). The VSS-SPAPA does not behave worse than the SPAPA even with a large

estimate error of σ̂2
v(t). It can tolerate more than +50% estimate error and about -20% estimate

error of σ̂2
v(t). The proposed VSS-SPAPA is robust to a relatively inaccurate estimate of σ̂2

v(t).

If an estimate of σ2
v(t) is not available in practical application, it can be adaptively esti-

mated according to (6.28). Figure 6.7 illustrates the results of the proposed VSS-SPAPA with

this estimate method included. As discussed in the previous section, the problem with this
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Fig. 6.6 Comparison of VSS-SPAPA to the relevant algorithms with inaccurate estimate
of σ̂2

v(t). (a) With highly colored input signals generated by G(z). P= 2. (b) With speech
input signals, P=8. (1) σ̂2

v(t) = 1.5σ2
v(t), (2) σ̂2

v(t) = σ2
v(t), and (3) σ̂2

v(t) = 0.8σ2
v(t).

adaptive estimate method is that the estimate is only effective when the adaptive filter has con-

verged. Otherwise, the estimate will be very inaccurate and cause αp(t) to be very small. Hence

the tracking ability of the proposed algorithms will be considerably worsened. So the relevant

algorithms are tested on the assumption that the unknown impulse response suddenly changes

by shifting to the right 12 samples. The subplot (a) is with the highly colored AR(1) input (P=2)

and subplot (b) is with speech input signals (P=8). For SPAPA and APA, the constant step size

is α = 0.3, which is suitable for practical application.

It can be seen that VSS-SPAPA can also quickly track the change in unknown impulse

response and then achieve a lower misalignment after it has reconverged. It outperforms both
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Fig. 6.7 Comparison of VSS-SPAPA to the relevant algorithms with adaptive estimate of
σ2

v(t). The unknown impulse response changes at 5×104 iteration. (a) With highly colored
input generated by G(z). P=2. (b) With speech input signal, P=8.

the non-proportionate counterparts and the constant step-size algorithms. However, compared

to the result with real value of σ̂2
v(t), the steady-state misalignment of VSS-SPAPA with adaptive

estimate of σ2
v(t) is worse than that with real value of σ2

v(t). For example, the misalignment of

VSS-SPAPA in Fig. 6.3 reaches −34dB in 3 × 104 iterations, but in Fig. 6.7(a) it only reaches

about −30dB. Figure 6.7(b) shows the result when the input is speech signal. The proposed

VSS-SPAPA can achieve a lower steady-state misalignment than SPAPA, approximate 10dB

improvement was achieved. The steady-state misalignment of VSS-APA was the same as that

of VSS-SPAPA, but it needs more time to reach that level. Compared to the scenario where the

accurate estimate of σ2
v(t) is known, as shown in Fig. 6.5(b), the steady-state misalignment in
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this scenario reaches only approximately −25dB in 15 seconds. As expected, the reconvergence

performance of both VSS-APA and VSS-SPAPA are slower than their non-VSS counterparts

during the period from 15s to 20s. Nevertheless, the VSS-SPAPA outperforms VSS-APA in

convergence speed with almost the same steady-state misalignment.

In brief, the proposed VSS-SPAPA achieves faster convergence and lower misalignment

than the conventional algorithms for the identification of sparse impulse response in the tested

cases of different input signals.

6.7 Conclusions

A method is proposed to introduce a variable step-size approach into the proportionate

affine projection algorithm for identification of the sparse impulse response. The proposed

algorithm can achieve not only very fast convergence but also relatively low misalignment. It is

particularly efficient for highly colored input signals, such as speech. It does not require many

parameter adjustment so it is easy to use in practical application. It only requires an estimate

of σ2
v(t), the power level of the disturbance signals. If this estimate is not available, an adaptive

estimate method is applicable with only a little performance loss. Simulations show that the

proposed VSS-SPAPA outperforms the conventional adaptive algorithms for the identification

of sparse impulse response.
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Chapter 7

A Novel Perspective of

Proportionate Step Size

7.1 Introduction

Generally speaking, information is distributed unevenly in practical application. Network

echo path, for instance, has hundreds or thousands coefficients but only a small fraction of co-

efficients have prominent value and the others are zeros or very small. Room impulse response,

although not as sparse as network echo path, has a small fraction of big coefficients distributed

in a narrow time period and the others are relatively small. Two impulse responses frequently

dealt with in practical application are illustrated in Fig. 7.1. By assigning large coefficients rel-

atively large step gain, the overall convergence of adaptive filter can be improved. The resulting

proportionate adaptive algorithms introduce a diagonal step-size control matrix G(t) in order to

individually assign each coefficient a step size parameter proportional to its magnitude estimate

at time t.

The disadvantages of the PNLMS algorithm are twofolds. On the one hand, the conver-

gence becomes slow after a fast initial period. On the other hand, they are generally inefficient

for a non-sparse impulse response. Some modifications have been proposed to solve these prob-

lems. As to the first problem, there are two algorithms. The PNLMS++ algorithm can improve

the convergence of PNLMS after its fast initial period [29]. It alternates PNLMS and NLMS

during the adaptation. It converges at least as fast as the NLMS algorithm. However, it also
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Fig. 7.1 Two impulse responses frequently encountered. (a) Network echo path (sparse);
(b) Room impulse response (non-sparse).

make the convergence in the initial period degrade. The CPNLMS algorithm was proposed to

switch PNLMS adaptation to NLMS when slow convergence is detected [31]. Its main prob-

lem is there are many parameters have to choose in priori. It is also difficult to decide when

it should switch to NLMS just according to the error signal. As to the second problem, the

IPNLMS algorithm is proposed in [30] to avoid degradation in the case when the underlying

impulse response is non-sparse.

The reason why PNLMS converges slower than NLMS for non-sparse impulse response

is because of the brutal choice of the maximum operator. Instead, the average of the current

coefficients is adopted to partly remove the negative effects of the inaccurate estimate. The

IPNLMS algorithm converges as fast as the PNLMS algorithm for sparse impulse responses

and its performance is not worse than the NLMS algorithm for non-sparse impulse responses.

It is interesting that IPNLMS shows better convergence performance than PNLMS after the fast

initial period. The reason is because it assigns the small coefficients reasonable step gain, which

is usually larger than that of the PNLMS algorithm.
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All existing proportionate adaptive algorithms exploit the shape of the target impulse re-

sponse to decide the proportionate step gain for every coefficient. This is not always suitable

and it is the reason why the existing proportionate adaptive algorithms exhibit slow convergence

after the fast initial period and for non-sparse impulse response.

In this chapter, a novel method is proposed to determine the proportionate step gain. Ac-

tually, the proportionate step-size parameter should be determined according to the distance

between the current estimate and its optimal value. Based on this idea, a novel approach for

proportionate step-size is proposed. This approach distribute the large adaptation gains not only

to taps that are currently large, but also to taps that tend to be large. Simulation results verify

the effectiveness of the proposed algorithm.

7.2 Optimal Proportionate Step Gain

Proportionate adaptive algorithms determine its step gain for each coefficient according

to the shape of impulse response so that large coefficients get large step gain. However, this

method is not alway suitable. Actually, convergence of proportionate adaptive algorithms can

be divided into two periods:

• fast initial period,

• the second period thereafter.

At the initial period, PNLMS assigns large step gain for large coefficients hence the adap-

tive filter converges at high speed. After large coefficients have reached a small vicinity of its

optimal value, PNLMS enters its second period. In the second period, convergence of adaptive

filter is dominated by the relatively small coefficients. Because PNLMS assigns small step gain

for these small coefficients, it converges at very low speed in this period. This is the reason why

PNLMS converges slowly during the second period.
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Fig. 7.2 (a) Convergence of PNLMS and IPNLMS. (b) Proportionate step gain of
PNLMS and IPNLMS when t = 2000 (only show the first 200 coefficients).

Figure 7.2(a) compares the convergence of PNLMS and IPNLMS using the sparse net-

work echo path illustrated in Fig 7.1(a). Figure 7.2(b) illustrates gn when t = 2000, where

generally the proportionate adaptive algorithms enter the second period. It can be seen that

after t = 2000, the convergence speed of both PNLMS and IPNLMS become slow than NLMS.

The proportionate step gain is mainly distributed among the large coefficients, hence the con-

vergence during the second period is slow. It can be seen that the proportionate step gain of

PNLMS and IPNLMS for the small coefficients are 0.32 and 0.51, respectively. This value is

smaller than that of NLMS, since most step gain is distributed to the large coefficients. Because

IPNLMS assign the small coefficients a relatively large proportionate step gain than PNLMS, it

shows faster convergence speed than PNLMS during the second period.

An ideal approach is to automatically distribute the proportionate step gain evenly to give

the small coefficients fair chance to converge as fast as possible during the second period. The
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CPNLMS algorithm can switch PNLMS to NLMS by explicitly detecting the second period.

However, it is difficult to exactly detect it by comparing the output error of adaptive filter with

a priori threshold.

The objective of this section is to find a new approach to adaptively determine propor-

tionate step gain. It seems that it is not enough to adjust the proportionate step size G(t) only

according to the shape of impulse response. G(t) should be automatically adjusted in the second

period so that it can distribute approximately the same step gain to all coefficients.

Given any impulse response h, let us investigate the convergence of proportionate adaptive

algorithms in order to find a suitable approach for G(t) in different period. It is assumed that the

proportionate step gain changes only in a relatively long period, such as M iterations, which is

valid in practical application. So it can be investigated in a way of block by block, where block

size is M. Defining the coefficient error vector as w̃(t) = h − w(t). Consider evolution of w̃(t)

during every M iterations separately. At the k-th block, adaptive filter begins with w(kM) as its

initial value and it finally reaches w((k + 1)M). The objective is to find a suitable proportion-

ate step gain Gk for k-th block. Starting from steepest descent algorithm, with proportionate

adaptation gain Gk, gives [7]

w(kM+i+1) = w(kM+i) + αGkR [h − w(kM+i)] ,

(k = 0, 1, · · · ; i = 0, · · · ,M − 1). (7.1)

where R is the auto-correlation matrix of input signal. For Gaussian white input signal, R =

σ2
xI, where σ2

x is the variance of {x(t)} and I is an N × N identity matrix. Subtracting h at both

sides of (7.1) and rearranging the terms, it gives

w̃(kM+i+1) = (I − αGkR) w̃(kM + i). (7.2)

Extending this serious, it obtains that

w̃((k+1)M) = (I − αGkR)M w̃(kM). (7.3)
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For the n-th coefficient, it gives

w̃n((k+1)M) = (1 − ασ2
xgk,n)M[hn − wn(kM)]. (7.4)

When 0 < ασ2
xgk,n < 2, w̃n(t) exponentially decreases to 0. Without loss of generality, assume

that the initial value of adaptive filter is zeros, wn(0) = 0. In the initial period, when k = 0, it

gives

w̃n(M) = (1 − ασ2
xg0,n)Mhn. (7.5)

For a large coefficient hn, it is obvious that a large g0,n will lead w̃n(M) decreases at higher speed

so that the adaptive filter w converges faster. It implies that in the initial period, it is reasonable

to determine step gain according to the shape of h so that the adaptive filter converges at high

speed.

After several blocks, large coefficients have converged. As a result, [hn−wn(kM)] becomes

small and [h − w(kM)] is not such a sparse impulse response as h. It implies that in the second

period, the step gain of each coefficient should not be determined according to the shape of h

anymore, but according to the difference of h and w(kM). Assigning large coefficients too large

step gain in the second period has two disadvantages. First, it makes large coefficients produce

large estimate error. Second, it causes that the small coefficients cannot obtain reasonable step

gain. The proportionate step gain should accordingly adjusted to assign every coefficient fair

chance to converge as fast as possible. It is obvious that if [hn − wn(kM)] is used to determine

the proportionate step gain, it is expected to improve the convergence of proportionate adaptive

algorithms in the second period.

Note that it seems that gn(t) could be determined based on |wn(t) − wn(t − M)|. This form

has an obvious explanation: the coefficients that have changed noticeably during the last M

iterations are likely to change in the future. However, it is difficult to implement in practical

application because it requires M × N memory unit to store last M coefficient vectors w(t).
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The proposed approach is a simple approach with similar behavior and it can be implemented

efficiently because it only stores additional 1 coefficient vector.

7.3 Proposed Approach of Proportionate Step Gain

In practical application, h is unknown so [h − w(kM)] is unavailable. But above analysis

implies that a suitable proportionate step gain can be achieved by using difference of adaptive

filter at different time. Inspired by this, in this paper, it is proposed to use the differential of w at

time (kM+i) and (kM) to determine the proportionate step gain, i.e., replacing |wn(t)| in PNLMS

and IPNLMS with |wn(kM+ i) − wn(kM)|. Applying this method to PNLMS, a novel PNLMS

algorithm can be obtained, which is referred to as DPNLMS in this article for convenience sake.

Its diagonal element can be obtained using:

Lmax = max{γ, |wn(kM + i) − wn(kM)|, · · · , |wn(kM + i) − wn(kM)|}, (7.6)

gn(kM+i) = max {|wn(kM+i) − wn(kM)|, ρLmax} . (7.7)

Applying this approach to IPNLMS, the diagonal element of the resulting algorithm (referred

to as DIPNLMS) is:

gn(kM+i) = β +
(1 − β)|wn(kM+i) − wn(kM)|

1
N
∑N−1

j=0 |w j(kM+i)−w j(kM)|+ε . (7.8)

In the initial period when k = 0, (i = 0 · · ·M − 1),

|wn(kM+i) − wn(kM)| = |wn(i)|, (7.9)

so the proposed algorithms behave like PNLMS and IPNLMS. The large coefficient can obtain

large step gain hence fast initial convergence can be observed. After several blocks, these large

coefficients have converged, therefore |wn(kM + i) − wn(kM)| becomes small. As a result, the

proposed algorithms will make gn(t) have almost similar values hence all coefficients get similar
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Fig. 7.3 Convergence of DPNLMS using sparse network echo path.

step gain in order to improve their convergence in the second period. Actually, they behave more

like NLMS in this period. It is interesting that the proposed approach show a good property that

it distributes the large adaptation gains to coefficients that tend to be large. At the beginning

of every block when i = 0, |wn(kM + i) − wn(kM)| = 0 so all gn(t) is equal. With i increases,

|wn(kM+i)−wn(kM)| indicates the direction of wn(t) growing up. So the proportionate step gain

is proportional to its increase in the past i iterations. The choice of M should as large as that to

let |wn(kM+i) − wn(kM)| has large value that embodies the increase of coefficient. Simulation

results show that M = N or M = 2N presents good performance.

The computational complexity of the proposed algorithms are almost same to their original

version: only additional N subtraction is required. Simulation results in the next section show

that the proposed algorithms have better convergence performance than the original ones.

7.4 Simulation Results

This section compares convergence speed of the proposed algorithms with NLMS, PNLMS

and IPNLMS. Two impulse responses used in simulations are illustrated in Fig. 7.1. The length
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Fig. 7.4 Convergence of DIPNLMS using sparse network echo path.

of adaptive filter w is N = 512. The input signal x(t) is zero-mean white Gaussian noise with

unit variance and the disturbance signal v(t) are zero-mean white Gaussian signal that is un-

correlated to x(t). Its magnitude is adjusted to get 30dB signal-noise-ratio (SNR). The global

step size parameter α = 0.25, and the regularization parameter ε = 10. For proportionate al-

gorithms, ρ and γ use their typical values: ρ = 0.01, γ = 0.01. For IPNLMS and DIPNLMS,

β = 0.5. The performance is quantified using the normalized misalignment (in dB) defined as

10 log10

(
||h − w(t)||22/||h||22

)
. The illustrated results are ensemble average of over 100 indepen-

dent trials.

Figure 7.3 compares the convergence speed of the proposed DPNLMS (M = N/2, M = N

and M = 2N, respectively) with NLMS and PNLMS using the sparse network echo path in Fig.

7.1(a). It can be seen that DPNLMS considerably improved the convergence speed of PNLMS.

When M = N or M = 2N, DPNLMS presents good convergence but when M = N/2, its perfor-

mance improvement is not as big as the other two. Figure 7.4 illustrates the convergence of the

proposed DIPNLMS comparing to NLMS and IPNLMS. The proposed DIPNLMS algorithm

demonstrates better convergence than the IPNLMS algorithm. It can be seen that M = N/2 can
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Fig. 7.5 Convergence of proposed approach using non-sparse room impulse response.

not obtain good performance while M = N or M = 2N is a good choice in these situations.

Figure 7.5 compares the convergence speed of the proposed algorithms using a non-sparse

room impulse response illustrated in Fig. 7.1(b). For the proposed DPNMS and DIPNLMS,

M = 2N. It can be seen that PNLMS shows lower convergence speed than NLMS in this

case. However, DPNLMS presents faster convergence than PNLMS. For non-sparse impulse

response, IPNLMS demonstrates faster convergence than NLMS and the proposed DIPNLMS

algorithm also further improves the convergence speed of IPNLMS. In summary, the proposed

approach demonstrates as fast initial convergence speed as the original approach, but it can

improve the overall convergence speed for both sparse impulse response and non-sparse impulse

response.

7.5 Conclusions

By assigning a large proportionate step gain for large coefficient, proportionate adaptive

algorithms greatly improve their convergence speed for sparse impulse response. However, this

method also causes low convergence speed of small coefficients. In this chapter, a novel method
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is proposed to determine proportionate step gain according to the difference of current estimate

of adaptive filter and its optimal value. This approach distributes large adaptation gain to these

coefficients that tend to be large. Furthermore, it automatically adjusts the proportionate step

gain of small coefficients after large coefficients have converged so that the convergence in the

second period is improved. Simulation results have verified the effectiveness of the proposed

approach.
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Chapter 8

Conclusions and Future Directions

8.1 Conclusions of This Dissertation

With increase in the demand for higher quality communication, a kind of long adaptive

filters are frequently encountered in practical applications, such as the network echo cancella-

tion and acoustical echo cancellation. Conventional adaptive algorithms severely suffer from

1) low convergence speed, 2) increase of computational complexity and 3) degrade of estimate

accuracy, with this kind of long adaptive filters, especially for correlated input signals. Much

efforts have been made to design new adaptive algorithms to improve the performance of the

adaptive filter with hundreds or thousands of coefficients.

Proportionate adaptive algorithms are recently received considerable attention in adaptive

filtering field. This new paradigm is based on the fact that most of these long impulse responses

are sparse in nature, i.e., only a small fraction of coefficients are active and most of the others

are zeros. Conventional adaptive algorithms assign same step-size parameter to all coefficients.

As a result, the large coefficients require more iterations to converge than the small ones. To ac-

celerate the convergence of large coefficients, larger step-size should be assigned to these large

coefficients, which results in proportionate adaptation. The idea behind the PNLMS algorithm

is to update each coefficient of the filter individually by assigning each coefficient a step-size

parameter proportional to its estimated magnitude. Various modifications have been proposed

to improve it.

In this dissertation, I concentrate on improvement of various proportionate algorithms,
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in order to accelerate their convergence speed, decrease the steady-state misalignment and to

reduce their computational complexity.

Chapter 1 introduces the background of this research and the objective of this dissertation.

In Chapter 2, the proportionate adaptation is discussed in a whole framework and various

existing proportionate adaptive algorithms are reviewed in detail.

Chapter 3 and chapter 4 concentrate on convergence speed improvement of proportionate

adaptive algorithms. In chapter 3, measurement of impulse response sparsity is incorporated

into proportionate algorithms, IPNLMS and MPNLMS, to improve their convergence for var-

ious impulse responses with different sparsity. The proposed approach adaptively detects the

sparsity of target impulse response, and then changes the performance of proportionate adap-

tive algorithms by adjusting the parameter β to achieve fast convergence with respect to the

sparsity of impulse response. In chapter 4, several approaches are proposed to improve the

favorable SPNLMS algorithm. At first, a derivation of optimal proportionate adaptation gain

is provided in a straightforward and simple way. In the original derivation, it is assumed that
∑N−1

i=0 gi(t) = N. This is unnecessary and the new derivation withdraws this assumption so

that the derivation becomes simple and easy to understand. Then, a convergence criterion is

established after the analysis of the convergence characteristics, then a method is proposed to

determine the important parameter µ. In order to retain the fast convergence speed, a refined

segment function is proposed to approximate the original mu-law function as exact as possible.

At last, some methods are proposed to reduce the computational complexity of proportionate

NLMS algorithms.

Chapter 5 and chapter 6 concentrate on improvement of convergence quality of propor-

tionate adaptive algorithms using variable step-size technique. In Chapter 5, a non-parametric

variable step-size approach is proposed to improve convergence quality of the proportionate

NLMS algorithms. Its basic idea comes from a fact that, an optimal global step size can be ob-

tained by forcing the a posteriori error not to be zero as in the conventional methods, but to be
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the disturbance signal, because canceling the a posteriori error will introduce additional noise

into the coefficient updating when the background noise, or disturbance signal, is presence. The

proposed approach provides both fast convergence speed and low steady-state misalignment.

This approach is extended into the proportionate APA in chapter 6 to improve the estimate

accuracy for correlated input signals. In order to apply the non-parametric variable step-size

approach for the PAPAs, a diagonal global step-size matrix α(t) is introduced into. Based on

the similar inspiration to VSS-SPNLMS in chapter 5: forcing the a posteriori error vector not

to be zero as but to be the disturbance signal vector, a non-parametric variable step-size ap-

proach is obtained, which is independent with the proportionate step-size control matrix G(t).

Simulation results have shown that the proposed VSS-SPNLMS algorithm and the VSS-SPAPA

outperform conventional adaptive algorithms for sparse impulse response. The main advantage

of this non-parametric variable step-size approach is, it only requires an power estimate of the

disturbance signals, which can be easily obtained in practical application. Furthermore, it can

tolerate a relatively large estimate error of power estimate of the disturbance signals. This makes

it very preferable in practical application.

Chapter 7 proposes a novel perspective for proportionate adaptive algorithms. All existing

proportionate adaptive algorithms exploit the shape of the target impulse response to decide the

proportionate step gain for every coefficient. This is not always suitable and it is the reason why

existing proportionate adaptive algorithms exhibit slow convergence after the fast initial period

and for non-sparse impulse response. Using a block-style analysis method, it reveals that, the

optimal proportionate step gain should be determined according to the difference between the

current estimate and its optimal value of each coefficient, |h − w(t)|. Inspired by this, it is

proposed to calculate the proportionate step gain according to the difference between the current

estimate of adaptive filter and its certain past estimate |w(t) − w(t−M)|, instead of according

to the shape of the target impulse response |h|. This approach shows a interesting property that

it assigns large proportionate step gain for the coefficients that tend to be large. It is obvious
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that in the initial period this method has similar behavior with the PNLMS algorithm or the

IPNLMS algorithm. After that, it behaves more like the NLMS algorithm. Consequently, it has

faster convergence than the original algorithms in the second period. Therefore, its convergence

speed is accelerated considerably. Furthermore, this method can improve the convergence of

proportionate NLMS algorithms after the fast initial period, since in the second period the small

coefficients obtain relatively fair step gain. The proposed approach is also effective for non-

sparse impulse response. Because for a non-sparse impulse response, the proposed approach

can automatically assign relatively same proportionate step gain for all coefficients.

8.2 Possible Directions for Future Research

Proportionate adaptive algorithms demonstrate favorable performance than conventional

adaptive algorithms for sparse impulse response. In the future, the following issues can be

proposed:

First, analysis of convergence characteristics. Although the behavior of proportionate

adaptive algorithms is complicated, a elegant analysis was provided in [8] for white Gaussian

input signals. In [8], it is stated that a global step-size parameter α less than 2/3 is necessary to

assure the PNLMS algorithm stable. However, many simulations for sparse impulse response

have shown that even with a relatively large global step-size parameter, α = 1.0 for example, the

PNLMS algorithm can converge. The analysis in [8] exploits the so-called “slow adaptation”

assumption, that is to assume a very small global step-size parameter, 0 < α � 1, so that the

relevant signals or components can be regarded as independent each other in order to simplify

the analysis. Although the result is useful for an ordinary α, the underlying behavior is different

from the analysis process under “slow adaptation” assumption. This phenomena could be stud-

ied. Furthermore, with some reasonable assumptions, it is possible to analyze the performance

of proportionate adaptive algorithms for non-Gaussian signals.
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Second, transform domain proportionate adaptive algorithms. Although this dissertation

concentrates on time domain adaptive algorithms, it is possible to apply the philosophy of pro-

portionate adaptation into transform domain adaptive algorithms. For the correlated input sig-

nals, the convergence of proportionate adaptive algorithms can be improved by whitening, or

so-called uncorrelation, the input signal, i.e., to make the eigenvalue spread of the input signal’s

auto-correlation matrix smaller. The affine projection algorithm partly uncorrelates the input

using the past P input vectors. Another method is to perform a unitary transform on the input

signal. The typical transforms include discrete cosine transform (DCT), discrete Fourier trans-

form (DFT) and wavelet transform. Not all proportionate adaptive algorithms can be smoothly

extended into transform domain. A sparse impulse response is not sparse anymore after some

unitary transforms. This will be the main concern of the extension. Using block adaptation and

DFT, the frequency domain proportionate adaptive algorithms are expected to improve conver-

gence for correlated input, especially for speech. The main advantages of frequency domain

adaptive algorithms include: saving computation, exploiting spectral information of correlated

input signals to improve performance. Its main disadvantage is introducing delay into the adap-

tation process. It is expected that applying proportionate adaptation into frequency domain

adaptive algorithms can achieve faster convergence with lower computational complexity.

Third, computational complexity reduction methods based on variable step-size technique.

Several computational complexity reduction methods have been proposed in this dissertation.

They aim to remove redundant computation at each iteration, or partly update coefficient vector

without degradation of convergence speed using selective partial-updating approach. Another

approach, that is to halt the adaptation process totally when the output error is in a bounded

range, as the set-membership filtering algorithms do, is promising to considerably reduce com-

putational complexity. However, the set-membership filtering adaptive algorithms show limited

steady-state misalignment improvement and relatively slow convergence. The reason is, |e(t)|

is not a good convergence criterion. In the non-parametric variable step-size approach, an esti-
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mate of power of e(t), σ2
e(t), is exploited. This estimate is more accurate than |e(t)| to measure

how close the adaptive filter w(t) is near to its optimal value h. It is expected that this method

can present better performance than the set-membership filtering adaptive algorithms. There are

two approaches can be proposed to halt the adaptation process in order to reduce computational

complexity greatly. The first one is to replace |e(t)| in the set-membership filtering adaptive

algorithms with σe(t). The second one is to halt the adaptation process in the non-parametric

variable step-size proportionate when α(t) is less than a predetermined threshold αs. Along

this direction, more works is required to verify the effectiveness of these two methods, and to

evaluate their performance on computation reduction.

Fourth, study on the proposed novel proportionate step gain. The optimal proportionate

step gain should be determined according to the difference between the current estimate and its

optimal value of each coefficient. Because the optimal value of each coefficient is not available,

it is proposed in Chapter 7 to approximately calculate the proportionate step gain according

to the difference between the current estimate of adaptive filter and its certain past estimate.

Simulation results have shown the effectiveness of this method. In the future, it is proposed

to investigate it in detail. It is obvious that, more accurate an approximation of |h − w(t)|

is, better performance improvement could be achieved. Although the approximation |w(t) −

w(t−M)| proposed in Chapter 7 has demonstrated good performance, it is possible to find more

approaches to do this work. Since this method is even effective for non-sparse impulse response,

it is proposed to investigate the performance of this method into some other applications, where

the underlying impulse response generally is not as sparse as the network echo path impulse

response, such as in wireless channel equalization, active noise control, and so on.
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List of Symbols

Bold lowercase letter: column vector.

Bold uppercase letter: matrix.

E{·} : Expectation operation.

{·}T : Transposition operation.

t : time index.

N : Number of adaptive filter coefficients.

w(t) : Adaptive filter coefficient vector, w(t) = [w0(t), w1(t), · · · , wN−1(t)]T .

h : Unknown impulse response, h = [h0, h1, · · · , hN−1]T .

w̃(t) : Adaptive filter coefficient error vector, w̃(t) = h − w(t).

x(t) : Input signal.

x(t) : Input vector, x(t) = [x(t) x(t − 1) · · · x(t − N + 1)]T .

R(t) : Input correlation matrix, R(t) = E{x(t)xT(t)}.
y(t) : Output of adaptive filter, y(t) = xT(t)w(t).

d(t) : Desired signal of adaptive filter.

v(t) : Disturbance signal.

e(t) : Error signal of an adaptive filter, e(t) = d(t) − y(t).

P : Projection order of APA.

p : p-th element of projection order P. p = 0, · · · P − 1.

α : Constant global step-size parameter.

α(t) : Time-varying global step-size parameter.

α(t) : Time-varying global step-size control matrix. α(t) = diag{α0(t), · · · , αP−1(t)}.
G(t) : Proportionate step-size control matrix, G(t) = diag{g0(t), g1(t), · · · , gN−1(t)}.
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List of Symbols

X(t) : Input matrix: X(t) = [x(t) x(t − 1) · · · x(t − P + 1)].

d(t) : Vector with recent P desired signal samples, d(t) = [d(t) d(t − 1) · · · d(t − P + 1)]T .

v(t) : Vector with recent P disturbance samples, v(t) = [v(t) v(t − 1) · · · v(t − P + 1)]T .

θ : Regularization parameter.

ε : A small positive number, or an objective convergence criterion of MPNLMS.

λ : Forgetting factor, or Lagrange multiplier.

λ : Diagonal matrix of Lagrange multiplier. λ = diag{λ0, · · · , λP−1}.
||x||22 : Euclidean norm of vector x, ||x||22 = xT x.

||x||2G : Weighted Euclidean norm of vector x, ||x||2G = xTGx.

β : Adjustable parameter of the IPNLMS algorithm.

β(t) : Time-varying adjustable parameter of IPNLMS and IMPNLMS.
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Appendix A

Related Mathematical Results

A.1 Matrix Inversion Lemma

If A, C and A + BCD are full rank matrix, then

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1. (A.1)

According to the matrix inversion lemma, replacing A = R, B = x, D = xT and C = 1,

yields

(R + xxT )−1 = R−1 − R−1xxT R−1

1 + xT R−1x
. (A.2)

This result is used in derivation of the RLS algorithm.

A.2 Gradient with Respect to Vector

Let w = [w1, w2, · · · ,wN]T is a column vector, J(w) is a real function of w. The gradient

is a vector defined as:

∇wJ(w) = ∇wJ(w1,w2, · · · ,wN) =

[
∂J
∂w1

,
∂J
∂w2

, · · · , ∂J
∂wN

]T

. (A.3)

Let x is an N × 1 column vector, A is N × N matrix, according the definition above, the

– 131 –



Appendix A Related Mathematical Results

following identities hold:

∇w(wT x) = x, (A.4)

∇w(xT w) = xT , (A.5)

∇w(wT Aw) = 2Aw. (A.6)

This results are widely used in derivation of normalized proportionate adaptive algorithms and

proportionate affine projection algorithms.
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[40] H. Deng and M. Doroslovački, “Wavelet-based mpnlms adaptive algorithm for network

echo cancellation,” EURASIP J. Audio Speech Music Process., vol.2007, no.1, pp.16–16,

Jan. 2007.

– 136 –



References

[41] M.R. Petraglia and G. Barboza, “Improved PNLMS algorithm employing wavelet trans-

form and sparse filters,” Porc. 16th European Signal Processing Conference (EU-

SIPCO2008), Lausanne, Switzerland, pp.1–5, Aug 2008.

[42] M. Yukawa, “Krylov-proportionate adaptive filtering techniques not limited to sparse sys-

tems.,” IEEE Trans. Signal Processing, vol.57, no.3, pp.927–943, 2009.

[43] S. Douglas, “Adaptive filters employing partial updates,” IEEE Trans. Circuits Syst. II,

vol.44, no.3, pp.209–216, Mar 1997.

[44] T. Aboulnasr and K. Mayya, “Selective coefficient update of gradient-based adaptive algo-

rithms,” Proc. IEEE International Conference on Acoustics, Speech, and Signal Process-

ing, (ICASSP ’97), Munich, Germany, pp.1929–1932, Apr. 1997.

[45] O. Tanrkulu, B. Baykal, A.G. Constantinides, and J.A. Chambers, “Residual echo signal

in critically sampled subband acoustic echo cancelers based on IIR and FIR filterbanks,”

IEEE Signal Processing Lett., vol.45, pp.901–912, 1997.

[46] T. Schertler, “Selective block update of NLMS type algorithms,” Proc. IEEE International

Conference on Acoustics, Speech, and Signal Processing, (ICASSP ’98), Seattle, WA,

pp.1717–1720, May 1998.

[47] T. Aboulnasr and K. Mayyas, “Complexity reduction of the NLMS algorithm via selec-

tive coefficient update,” IEEE Trans. Signal Processing, vol.47, no.5, pp.1421–1427, May

1999.

[48] K. Dogancay and O. Tanrkulu, “Selective-partial-update NLMS and affine projection algo-

rithms for acoustic echo cancellation,” Proc. IEEE International Conference on Acoustics,

Speech, and Signal Processing, (ICASSP ’00), Istanbul, Turkey, pp.448–451, June 2000.

[49] K. Dogancay and O. Tanrikulu, “Adaptive filtering algorithms with selective partial up-

dates,” IEEE Trans. Circuits Syst. II, vol.48, no.8, pp.762–769, Aug 2001.

[50] A. Tandon, M.N.S. Swamy, and M.O. Ahmad, “Partial-update L∞-norm based algo-

rithms,” IEEE Trans. Circuits Syst. I, vol.54, no.2, pp.411–419, Feb 2007.

– 137 –



References

[51] K. Dogancay and O. Tanrikulu, “Selective-partial-update NLMS and affine projection al-

gorithms for acoustic echo cancellation,” Proc. IEEE International Conference on Acous-

tics, Speech, and Signal Processing, (ICASSP’00), pp.448–451, May 2000.

[52] S. Gollamudi, S. Nagaraj, S. Kapoor, and Y.F. Huang, “Set-membership adaptive equaliza-

tion and updator-shared implementation for multiple channel communications systems,”

IEEE Trans. Signal Processing, vol.46, no.9, pp.2372–2384, Sep 1998.

[53] S. Gollamudi, S. Nagaraj, S. Kapoor, and Y.F. Huang, “Set-membership filtering and a

set-membership normalized LMS algorithm with an adaptive step size,” IEEE Signal Pro-

cessing Lett., vol.5, no.5, pp.111–114, May 1998.

[54] S. Werner, M.L.R. de Campos, and J.A. Apolinario, “Data-selective constrained affine

projection algorithm,” Proc. IEEE International Conference on Acoustics, Speech, and

Signal Processing, (ICASSP ’01), Salt Lake City, Uta, pp.3745–3748, May 2001.

[55] P.S.R. Diniz and S. Werner, “Set-membership binormalized data-reusing algorithms,”

IEEE Trans. Signal Processing, vol.51, no.1, pp.124–134, Jan 2003.

[56] S. Werner and P.S.R. Diniz, “Set-membership affine projection algorithm,” IEEE Signal

Processing Lett., vol.8, no.8, pp.231–235, Aug 2001.

[57] S. Werner, J.A.A. Jr., M.L.R. de Campos, and P.S.R. Diniz, “Low-complexity constrained

affine projection algorithms,” IEEE Trans. Signal Processing, vol.53, no.12, pp.4545–

4555, Dec 2005.

[58] O. Tanrikulu and K. Dogancay, “Selective-partial-update proportionate normalized least-

mean-squares algorithm for network echo cancellation,” Proc. IEEE International Con-

ference on Acoustics, Speech, and Signal Processing, (ICASSP’02), Orlando, FL, USA,

pp.1889–1892, May 2002.

[59] O. Hoshuyama, R. Goubran, and A. Sugiyama, “A generalized proportionate variable step-

size algorithm for fast changing acoustic environments,” Proc. IEEE International Con-

ference on Acoustics, Speech, and Signal Processing, (ICASSP ’04), Montreal, Quebec,

– 138 –



References

Canada, pp.161–164, May 2004.

[60] J.D. Gordy, T. Aboulnasr, and M. Bouchard, “Reduced-complexity proportionate NLMS

employing block-based selective coefficient updates,” Proc. IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing, (ICASSP ’08), Las Vegas, USA,

pp.233–236, Mar. 2008.

[61] H. Deng and M. Doroslovacki, “New sparse adaptive algorithms using partial update,”

Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing,

(ICASSP ’04), pp.845–8, May 2004.

[62] S. Werner, J.A. Apolinario, and P.S.R. Diniz, “Set-membership proportionate affine pro-

jection algorithms,” EURASIP J. Audio, Speech, and Music Process., vol.2007, no.1,

pp.1–10, 2007.

[63] A.W.H. Khong and P.A.A. Naylor, “Efficient use of sparse adaptive filters,” Proc. 40th

Asilomar Conf. on Signals, Systems and Computers (ACSSC ’06), Pacific Grove, Calif,

USA, pp.1375–1379, Oct-Nov 2006.

[64] T. Gansler, J. Benesty, S.L. Gay, and M.M. Sondhi, “A robust proportionate affine projec-

tion algorithm for network echo cancellation,” Proc. of IEEE International Conference on

Acoustics, Speech, and Signal Processing, (ICASSP’00), pp.793–796, May 2000.

[65] P.O. Hoyer, “Non-negative matrix factorization with sparseness constraints,” J. Mach.

Learn. Res., vol.5, pp.1457–1469, 2004.

[66] A.W.H. Khong, P.A. Naylor, and J. Benesty, “A low delay and fast converging improved

proportionate algorithm for sparse system identification,” EURASIP J. Audio Speech Mu-

sic Process., vol.2007, no.1, pp.13–20, 2007.

[67] T. Gansler, J. Benesty, M.M. Sondhi, and S.L. Gay, “Dynamic resource allocation for

network echo cancellation,” Proc. IEEE International Conference on Acoustic, Speech

and Signal Processing (ICASSP’01), Salt Lake City, UT, USA, pp.3233–3236, May 2001.

[68] R. Kwong and E. Johnston, “A variable step size LMS algorithm,” IEEE Trans. Signal

– 139 –



References

Processing, vol.40, no.7, pp.1633–1642, July 1992.

[69] A. Mader, H. Puder, and G.U. Schmidt, “Step-size control for acoustic echo cancellation

filter - an overview,” Signal Processing, vol.80, no.9, pp.1697–1719, Sept. 2000.

[70] A.I. Sulyman and A. Zerguine, “Convergence and steady-state analysis of a variable step-

size NLMS algorithm,” Signal Processing, vol.83, no.6, pp.1255–1273, 2003.

[71] J. Benesty, H. Rey, L.R. Vega, and S. Tressens, “A nonparametric VSS NLMS algorithm,”

IEEE Signal Processing Lett., vol.13, no.10, pp.581–584, Oct 2006.

[72] C. Paleologu, S. Ciochina, and J. Benesty, “Variable step-size NLMS algorithm for under-

modeling acoustic echo cancellation,” IEEE Signal Processing Lett., vol.15, no.10, pp.5–8,

Jan. 2008.

[73] C. Paleologu, J. Benesty, and S. Ciochina, “A variable step-size affine projection algorithm

designed for acoustic echo cancellation,” IEEE Trans. Acoust., Speech, Signal Processing,

vol.16, no.8, pp.1466–1478, Nov. 2008.

[74] H.C. Shin, A.H. Sayed, and W.J. Song, “Variable step-size NLMS and affine projection

algorithms,” IEEE Signal Processing Lett., vol.11, no.2, pp.132–135, Feb. 2004.

[75] S. Saiki and M. Fukumoto, “Improvement of the IPNLMS algorithm exploiting variable

step size,” IEICE Tech. Rep., vol.107, no.180, pp.25–28, Aug 2007.

[76] J. Tanpreeyachaya, I. Takumi, and M. Hata, “Performance improvement of variable step-

size NLMS,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol.E78-A, no.8,

pp.905–914, Aug. 1995.

– 140 –



Appendix B

Related Publications

B.1 Articles in or submitted to refereed journals

1. Ligang Liu, Masahiro Fukumoto, Sachio Saiki, and Shiyong Zhang. A Variable Step-size

Proportionate Affine Projection Algorithm for Identification of Sparse Impulse Response.

EURASIP J. on Advances in Signal Process., To appear soon.

2. Ligang Liu, Masahiro Fukumoto, Sachio Saiki, and Shiyong Zhang. A Variable Step-size

Proportionate NLMS Algorithm for Identification of Sparse Impulse Response. IEICE

Trans. Fundam. Electron. Commun. Comput. Sci., Conditionally Accepted.

3. Ligang Liu, Masahiro Fukumoto, and Sachio Saiki. A Novel Proportionate Normalized

Least Mean Square Algorithm. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,

Submitted for publication.

4. Ligang Liu, Masahiro Fukumoto, and Sachio Saiki. Better Approximation of Segment

Proportionate NLMS Algorithm. IEICE Trans. Fundam. Electron. Commun. Comput.

Sci., Submitted for publication.

B.2 Articles in full paper refereed international conference

proceedings

1. Ligang Liu, Masahiro Fukumoto and Shiyong Zhang. A variable step-size proportionate

affine projection algorithm for network echo cancellation. In Proc. the 16th Interna-

– 141 –



Appendix B Related Publications

tional Conference on Digital Signal Processing (DSP2009), pages 1-6, Aegean island of

Santorini, Greece, Jul. 2009

2. Ligang Liu, Masahiro Fukumoto, and Shiyong Zhang. Improvement of the Mu-law Pro-

portionate NLMS Algorithm. In Proc. IEEE International Symposium on Circuits and

Systems (ISCAS2009), pages 2045-2048, Taipei, Taiwan, May. 2009

3. Ligang Liu, Masahiro Fukumoto, and Shiyong Zhang. A variable parameter improved

proportionate normalized LMS Algorithm. In Proc. IEEE International Conference on

Circuts and Systems (APCCAS2008), pages 201-204, Macau, China, Dec. 2008

4. Ligang Liu, Masahiro Fukumoto, and Sachio Saiki. An improved mu-law proportionate

NLMS algorithm. In Proc. IEEE International Conference on Acoustic, Speech and Signal

Processing (ICASSP2008), pages 2987-3000, Las Vegas, USA, Mar. 2008

5. Ligang Liu, Masahiro Fukumoto, and Sachio Saiki. A New Structure for Sound Repro-

duction System. In Proc. IEEE International Symposium on Circuits and Systems (IS-

CAS2008), pages 1144 - 1147, Seattle, USA, May. 2008

B.3 Articles in local conference proceedings

1. Ligang Liu, Masahiro Fukumoto, and Sachio Saiki. Proportionate adaptative algorithms

guided by estimation of channel sparsity. In Proc. of the 22nd SIP SYMPOSIUM (SIP’07),

pages 587–591, Sendai, Japan, Nov. 2007

2. Sachio Saiki, Masahiro Fukumoto, and Ligang Liu. An improved VSS-IPNLMS algorithm

exploiting adaptive parameter adjustment. In Proc. of the 23nd SIP SYMPOSIUM (SIP’08),

pages 207–211, Kanazawa, Japan, Nov. 2008

3. Ligang Liu, Masahiro Fukumoto, Sachio Saiki, Eiji Fukutomi and Shiyong Zhang. A

variable parameter IPNLMS algorithm, In Proc. of the International Conference on Next

Era Information Networking, (NEINE’08), pages 139-144, Kochi, Japan, Dec. 2008

– 142 –



B.3 Articles in local conference proceedings

4. Sachio Saiki, Ligang Liu, Masahiro Fukumoto. An Improved VSS-IPNLMS Algorithm, In

Proc. of the International Conference on Next Era Information Networking, (NEINE’08),

pages 151-156, Kochi, Japan, Dec. 2008

5. Kouichirou Kanai and Masahiro Fukumoto and Sachio Saiki and Eiji Fukutomi and

Ligang Liu. Movement Detection of the Audient in Sound Field Reproduction, In Proc.

of the International Conference on Next Era Information Networking, (NEINE’08), pages

324-326, Kochi, Japan, Dec. 2008

6. Ligang Liu, Masahiro Fukumoto, Sachio Saiki, and Shiyong Zhang. Adaptive inverse

filtering algorithms for sound reproduction without model of channel. In Proc. of the

International Conference on Next Era Information Networking, (NEINE’07), pages 269–

274, Shanghai, China, Sep. 2007

7. Sachio Saiki, Masahiro Fukumoto, and Ligang Liu. A convergence evaluation of the

IPNLMS algorithm exploiting variable step-size. In Proc. of the International Confer-

ence on Next Era Information Networking (NEINE’07), pages 313–317, Shanghai, China,

Sep. 2007

8. Eiji Fukutomi, Ligang Liu, Masahiro Fukumoto, and Akihiro Shimizu. Security evaluation

of cryptosystem exploiting variable function. In Proc. of the International Conference

on Next Era Information Networking (NEINE’07), pages 256–261, Shanghai, China, Sep.

2007

9. Kouichirou Kanai, Masahiro Fukumoto, Sachio Saiki, and Ligang Liu. Receive the partic-

ular zone sound using the correlation. In Proc. of the International Conference on Next

Era Information Networking (NEINE’07), pages 493–495, Shanghai, China, Sep. 2007

10. Ligang Liu, Sachio Saiki, Masahiro Fukumoto, and Shiyong Zhang. Cross-talk component

cancellation using adaptive inverse filter in sound field reproduction system. In Proc.

of the International Conference on Next Era Information Networking (NEINE’06), pages

114–118, Kochi, Japan, Sep. 2006

– 143 –



Appendix B Related Publications

11. Sachio Saiki, Masahiro Fukumoto, and Ligang Liu. Improvement of convergence accu-

racy for BCGM-OR algorithm. In Proc. of the International Conference on Next Era

Information Networking (NEINE’06), pages 119–124, Kochi, Japan, Sep. 2006

12. Eiji Fukutomi, Ligang Liu, Masahiro Fukumoto, and Akihiro Shimizu. Security of cryp-

tosystems using variable function. In Proc. of the International Conference on Next Era

Information Networking (NEINE’06), pages 74–79, Kochi, Japan, Sep. 2006

– 144 –


	LIU_Dissertation_FrontCover
	Spine
	LIU_Dissertation-20090911



