
Kochi University of Technology Academic Resource Repository

�

Title

Considering Subjective Factors in Performance Mo

dels for Human-Computer Interface Design and Eva

luation

Author(s) Jing Kong

Citation 高知工科大学, 博士論文.

Date of issue 2006-03

URL http://hdl.handle.net/10173/222

Rights

Text version author

�

�

Kochi, JAPAN

http://kutarr.lib.kochi-tech.ac.jp/dspace/



 
 
 
 
 

Considering Subjective Factors in Performance Models for Human-
Computer Interface Design and Evaluation  

 
 
 
 

Jing Kong 
 
 
 
 
 
 

 
 

A dissertation submitted to 
Kochi University of Technology 

in partial fulfillment of the requirements  
for the degree of  

 
Doctor of Philosophy  

 
 
 
 
 

Graduate School of Engineering 
Kochi University of Technology 

Kochi, Japan 
 
 
 
 

 
March 2006 

 





Abstract

Considering Subjective Factors in Performance Models for

Human-Computer Interface Design and Evaluation

Jing Kong

Pointing tasks are basic and important for interaction in human-computer inter-
faces. A large numbers of candidate interfaces and devices for pointing tasks require
reliable models for device evaluation and design guidance.

Fitts’ law is one of the most famous models for pointing task in HCI and has
been used widely. Unfortunately, it is established on a thin theoretic base and its
adequacy remains debatable. The subjective factors or the humans individual factors
cannot be indicated reliably by Fitts’ law. Moreover, the two existing forms of Fitts’
law complicate the application situation. We regard that there are two layers of speed-
accuracy tradeoffs affecting the pointing performance, the task layer and the subjective
layer. Through a series of special manipulated experiments, we analyzed the two forms
of Fitts’ law from the aspect of reconciling the two layers of speed-accuracy tradeoffs.
Our investigation reveals the nature and relationship of the two layers of speed-accuracy
tradeoffs in pointing tasks. Moreover, the analysis gives a comprehensive comparison of
the two forms of Fitts’ law to clean away the doubts and hesitation existing in model
selection all along. This work helps us to realize that it is impossible to model the two
layers of speed-accuracy tradeoffs in pointing tasks by the simple relationship described
in Fitts’ law models accurately and completely.

Then we established a new model for pointing tasks through analyzing the data of
the performance time. We named the new model as SH-Model, which takes the human
factors or, the subjective factors into consideration from the aspect of performance
successful rates. A statistical tool, AIC, was applied for model evaluation. According
to the AIC values, the SH-Model is better than the traditional models.

Around the topic of subjective factors in modeling, we have also studied the op-
timal effective target width calculation method of Fitts’ law. Using the data from the
experiment where the subjects were instructed to perform with different speed-accuracy
tradeoffs, we explored the information processing or transmission rate of the human mo-
tor system. The application research of evaluation models on colors effects on pointing
tasks had also been studied.

This work will contribute to considering the human or subjective factors in modeling
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the performance. All these results will be beneficial for the future interface design and
device evaluation in HCI.

key words Human-computer interaction, pointing task, model, evaluation, Fitts’
law, speed-accuracy tradeoff
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Chapter 1

Introduction

1.1 Research Motivation

Human computer interaction (HCI) is a scientific branch of computer science also
intertwining with the knowledge of physiology, psychology, motor control, philosophy,
etc. Some typical performances, such as pointing, dragging and drawing, help users
to accomplish the complex task of interacting with computers. Therefore, researchers
in HCI have concentrated on devices design for these performances for a long time.
For pointing task along, as a result of tremendous developing speed of computing tech-
nologies, numerous new devices appear to the market (such as mouse, pen, joystick,
touchpad, trackball, eyetracker, etc.). Even the physiological organs like finger and eye
can be adapted as input devices [48]. Actually, pointing tasks are not limited to se-
lecting a target item from the screen. Tapping on keyboard and buttons on the mobile
phones can also be studied in this category (see Figure 1.1).

Fig. 1.1 Examples of pointing tasks

Facing the expatiatory catalogs of the devices and omnifarious choices candidates,
not only the users, but also the system designers are puzzled. Some people prefer
one certain kind of design, others may like another kind. We don’t know whether the
selections, or preferences are based on scientific researches, or purely user’s own habit.
Actually, some habits are really harmful. Hence, it is necessary to be sure that the
applied tools are suitable for certain application, that means, people can maneuver the
tool without great effort to adapt to the features of this tool, because the important thing
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Chapter 1 Introduction

is that the design of a tool should be capable of inspiring human potential and helping
them work happily and efficiently. We need tools congruent with human physiological
and psychological characters. One of the most important tasks of the researchers in
human computer interaction is to create tools friendly for human beings, not create tools
which force people to be trained very hard. There should also be considerate designs
for the handicapped. Therefore, it is crucial for us to find useful models to predict
and evaluate people’s performance using different devices and to test the feasibility and
efficiency of the devices on interfaces of different systems.

A model is a simplification of reality [37], and it can be applied to afford guidance
for design, propose standard for evaluation or provide a basis for understanding the mo-
tor behaviors. Unfortunately, modeling the performance in human computer interaction
has always been a tough job. It is one reason that until now the most famous model for
pointing tasks is still Fitts’ law [18], which has been used to predict and evaluate the
performance of rapid and aimed reciprocal movements in HCI since 1978 [9]. Never-
theless, the studies on the modeling works for pointing tasks will be beneficial not only
for device evaluation, but also for affording guidelines for interface design. Therefore,
considering the great importance of models in HCI, the studies on this topic are still
worthy of our imperative efforts.

1.2 Background Knowledge

1.2.1 Fitts’ Law and Speed-Accuracy Tradeoff

Most models in HCI can be categorized into two groups: the descriptive mod-
els with metaphoric characteristics (such as Guiard’s model of bimanual control [21])
and the predictive models with mathematics rigors. Simply speaking, “the descriptive
models provide a framework or context for thinking about or describing a problem or
situation”[37]. It is not the focus in this dissertation.

Fitts’ law belongs to the second group. Like Guiard’s model, Fitts’ law also emerged
from basic research area in motor control, and like the other predictive models in HCI,
it provide metrics to analyze the human performance mathematically without taking
time-consuming and resource-intensive experiments.

Acclaimed as one of the most successful human performance models[40], Fitts’ law
has served as one of the few quantitative foundations for human computer interaction
research. In particular, it has been used as a theoretical framework for computer input
device evaluation (e.g. Card et al. [9]; ISO [25]; MacKenzie [34]), a tool for optimizing
new interfaces (e.g. Lewis et al. [30]; MacKenzie and Zhang [36]; Zhai et al.[53]), as well
as a logical basis for modeling more complex human computer interaction tasks (Accot
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and Zhai[1]). Fitts’ law has also inspired alternative interaction techniques (e.g. Accot
and Zhai[3]; Kabbash and Buxton [26]; Zhai et al.[52]) and gained new understandings,
expansions, and applications in human computer interaction research in recent years
(e.g. Accot and Zhai[4]; Guiard et al.[22]; McGuffin and Balakrishnan[38]; Zhai et
al.[54]).

Despite its impressive successes and critical importance, however, some of the fun-
damental issues in Fitts’ law, either as a general human performance model or as a tool
for human computer interaction research, are still not fully understood in the literature.
Speed-accuracy tradeoff is one of them ∗1. In essence, Fitts’ law is about revealing the
rule of speed-accuracy tradeoff in human control performance.

For pointing tasks, Fitts’ law precisely models how task precision affects pointing
completion time.

Firstly, Fitts was seeking a universal formula to obtain the information capacity
of the motor system that could be applied to pointing tasks under a wide variety of
conditions. He developed some experiments including one direction pointing tasks and
observed the human performance. In Fitts’ paradigmatic experiment, subjects used a
pen to reciprocally point to two strips separated from each other by some distance on
a platform (see Figure 1.2).

Fig. 1.2 Fitts’ reciprocal pointing paradigm [34].

Fitts conceived that there was a constant information processing rate for the re-
sponse from a certain kind of task, no matter how it was performed. He defined the
concept of IP as the index of performance and used it to describe the information pro-
cessing rate of the pointing task[18]. According to the data derived from the experiment,
the first form of Fitts’ law was established as follows:

∗1 As in many human-performed tasks, the more precisely the task is to be accomplished, the slower

it is. Conversely, the faster the task is completed, the less precisely the task tends to be performed.
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IP =
ID

MT
= − 1

MT
log2(

W

2A
) (1.1)

ID: the index of difficulty of the task (measured in information unit bits);
MT : the expected average movement time for task completion;
A: the motor amplitude;
W : the target width limiting pointing accuracy.
After the descendent modifications of Equation.1.1, now the most popular form of

Fitts’ law is a direct analogy to Shannon theorem 17[31], since it is the most logical one
at the boundary condition A = 0 [31]:

MT = a + b log2(
A

W
+ 1) (1.2)

where a and b are regression coefficients. We call Equation.1.2 ID model in this
paper.

The ID of Fitts’ law is changed as follows:

ID = log2(
A

W
+ 1) (1.3)

Note that so far the precision parameters, A and W , are a priori task parame-
ters. In this sense the original Fitts’ law is about the relationship of temporal (speed)
performance and task precision. Ideally the human performer uses all of the precision
tolerance (W ) that the task specifies, no more, no less. Statistically, this means the
spread of the endpoints (hits) of Fitts’ aimed movements corresponds to the target
width.

In actuality, either when performing laboratory experiments or when selecting
graphical user interface (GUI) widgets on a computer with a mouse, the human per-
former (or the computer user in the context HCI) may or may not comply with the
task precision as specified by W — the width of the endpoints dispersion may depart
from the target width W , causing either over or under utilization of the target area.
In other words, the performer may introduce another layer of precision choice relative
to the nominal task precision. The performer may be biased towards accuracy and
use less area than the target gives, resulting in a more accurate than necessary but
slower performance. Conversely, the performer may be biased towards speed and use
more area than the target gives, resulting in a faster but more error prone performance.
This second layer (or component) of speed-accuracy tradeoff is subjective and personal
(hereafter referred as the subjective layer). In contrast, the bottom layer is objective
(task specified) and nominal.
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1.2.2 Another Form of Fitts’ Law Model

The existence of the subjective layer of accuracy complicates Fitts’ law. Facing
such a complication, students of Fitts’ law have implicitly or explicitly taken two views.
One is to continue to treat Fitts’ law as a task model as in Equation 1.2 based on A and
W , two nominal, a priori, and deterministic pointing task parameters. Alternatively,
Fitts’ law can be re-written based on actual behavioral parameters:

MT = a + b log2(
Ae + We

We
) (1.4)

correspondingly,

IDe = log2(
Ae + We

We
) (1.5)

where,

We = 4.133σ (1.6)

where Ae and We are a posteriori and statistical measurement of the actual move-
ments ∗2. As practiced in the literature, they are called effective distance and effective
target width, although the implication of the term effective is a biased one without proof.
For distinction, we refer Equation 1.2 as the task form of Fitts’ law and Equation 1.4
as the behavior form of Fitts’ law.

In fact the method of using We to correct errors or including factual accuracy
into consideration could be traced back to Crossman[12], who utilized the information
theory that the information in a normal distribution is log2 σ

√
2πe, where σ is the

standard deviation of distribution. A range of ± 4.133
2 σ includes about 96% of the

distribution. Therefore, if error rate equals to 4%, log2W is an accurate representation
of the information contained in the hits distribution. If the errors exceed 4%, We is
greater than W. If errors are less than 4%, We is smaller than W (see Figure 1.3). Thus,
the concept of We helps to include accuracy into Fitts’ law and make it more reasonable
from the behavior point. The behavior form of Fitts’ law has been accepted by ISO
standards 9241-9 [25].

Although some researchers support using We in Fitts’ law[34], no study has proved
that whether the a posteriori measurement is indeed cognitively, or quantitatively, equiv-
alent to a priori task specification. Paul Fitts’ own view on the theoretical basis of
Fitts’ law was not rigid. Empirically, there is a scarcity of evidence to prove or disprove
whether and how well substituting ID with IDe could compensate for the influence of

∗2 Since the difference of A vs. Ae is comparatively smaller than that of W vs. We, this study

focuses on the latter.
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Fig. 1.3 Actual hits distribution indication figure (the real distribution maybe

wider or narrower than the target width)

nominal and actual precision mismatch caused by the subjective layer of speed-accuracy
tradeoff. It will be empirically informative to measure whether human performance ad-
justed with effective width is equivalent to the performance under a nominal width of
the same size, had the performer complied with the exact target specification.

There are both practical and theoretical implications to each of the two forms of
Fitts’ law. For practical purposes, particularly for work in HCI, the desirability of task
vs. behavior form of Fitts’ law isn’t clear cut. Often it is desirable to relate a user’s
performance to the geometry of a graphical user interface. For example, for an interface
designer it is important to know a user’s average selection time as a function of task
parameters such as a GUI widget in certain size and location. For another example, in
Fitts’ law based stylus keyboard optimization research researchers are concerned tapping
time in relation to the geometrical variables – the relative location of keys (e.g. Lewis
et al., [30]; MacKenzie and Zhang, [36]; Zhai et al., [53]). A task form of Fitts’ law is
more desired in these cases. On the other hand, it is logically difficult to expect Fitts’
law in its task form to serve as a reliable tool in evaluating the performance of an input
device characterized by a and b constants in Fitts’ law ([55][34]) if the performer’s actual
pointing precision deviates too far from the specified task precision. In this case, it is
reasonable to expect that Fitts’ law in its behavioral form, or at least some modification
of the task form of Fitts’ law in consideration of the deviation, be more useful.
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1.3 Objectives and Research Issues

We will explore the problems existing in modeling pointing tasks from analyz-
ing the human or subjective factors in the performance. Therefore, the two layers
of speed-accuracy tradeoffs will be analyzed thoroughly, especially the second layer of
the speed-accuracy tradeoff incurred by performers. Through revealing the nature of
speed-accuracy tradeoff in pointing tasks and the relationship between system factors
and human’s factors, we will be able to compare the two models introduced previously
(the task form and behavior form of Fitts’ law). The comprehensive comparison of these
two models will in turn help us to understand pointing tasks more deeply.

Then we will go on to try to establish a model in which system factors as well as
human factors can be demonstrated respectively. Such a model should also be able to
disencumber the performers or subjects from keeping an error rate of 4% during the
task. The application of this model will be testified.

We will also try to resolve other related questions in pointing tasks, such as the
optimal calculation methods of the effective target width, the information transmission
rate analysis in pointing tasks, and the colors’ effects on pointing tasks.

All these studies will afford us an opportunity to understand the features of pointing
tasks comprehensively. The results will be instructive to study about other kinds of
motor behaviors in HCI.

1.4 Dissertation Structure

The structure of this paper is shown by Figure 1.4.
Chapter 2 in this dissertation scrutinizes the effects of the two forms of Fitts’ law

(Equation 1.2 and Equation 1.4) based on the analysis of speed-accuracy tradeoff. The
results of a series specially controlled experiments will be reported to help us observe
the subjects’ reciprocal pointing performance with different level of speed and accuracy
inclinations incurred by experimenters’ instructions. These experiments will testify the
existence of the two layers of speed-accuracy tradeoffs and their respective impact on
performance. Through these experiments we can also compare the two forms of Fitts’
law and know whether the two models can reconcile the two layers of speed-accuracy
tradeoff completely.

The study in Chapter 2 inspired us to do the studies in the following chapters
(Chapter 3 and Chapter 4). Some basic knowledge of the Fitts’ law models is discussed.

Then Chapter 5 will resolve the whole problem from a new horizon. A new model
named as SH-Model will be expounded in this chapter. The model will be compared with
the traditional Fitts’ law models by a statistical method AIC. We will also introduce
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Fig. 1.4 Dissertation structure

the application of this model.
Finally, we will discuss another application of Fitts’ law in pointing task—

comparing the color’s effects on pointing task. This is a first application of Fitts’ law
model in colors’ effects evaluation in HCI.

1.5 Summary

The research reported in this dissertation represents an initial exploration of con-
sidering human or subjective factors in modeling the performance in HCI.
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1.5 Summary

While a great deal of additional research will be needed to verify and extend the
results and guidelines reported in the following chapters, the research conducted here
provides an initial framework for further development of the methodologies and guide-
lines to include human or subjective factors in establishing the HCI performance models.

Since numerous new interfaces applying pointing devices appear to the market, we
need to use models to give clear evaluation of the different devices and reliable guide-
lines for more adaptable interfaces design. The research introduced in this dissertation
provides a first step for considering the human’s individual subjective factors in models
establishment in HCI.

– 9 –



Chapter 1 Introduction

This is a blank page.

– 10 –



Chapter 2

Speed-Accuracy Tradeoff in
Fitts’ Law Tasks

Pointing tasks in human computer interaction obey certain speed-accuracy trade-
off (SAT) rules (refer to Section 1.2.1). In general, the more accurate the task to be
accomplished, the longer it takes, and vice versa. Fitts’ law models the speed-accuracy
tradeoff effect in pointing as imposed by the task parameters, through Fitts’ index of
difficulty based on the ratio of the nominal movement distance and the size of the target.
Operating with different speed or accuracy biases, performers may utilize more or less
area than the target specifies, introducing another subjective layer of speed-accuracy
tradeoff relative to the task specification. A conventional approach to overcome the
impact of the subjective layer of speed-accuracy tradeoff is to use the a posteriori “ef-
fective” pointing precision We in lieu of the nominal target width W . Such an approach
has lacked a theoretical or empirical foundation. This chapter investigates the nature
and the relationship of the two layers of speed-accuracy tradeoffs by systematically con-
trolling both the index of difficulty and the index of target utilization in a set of three
experiments. Their results show that the impacts of the two layers of speed-accuracy
tradeoffs are not fundamentally equivalent. The use of We could indeed compensate
for the difference in target utilization, but not completely. More logical Fitts’ law pa-
rameter estimates can be obtained by the We adjustment, although its use also lowers
the correlation between pointing time and the index of difficulty. The study also shows
the complex interaction effect between the index of difficulty and the index of target
utilization, suggesting that a simple and complete model accommodating both layers of
speed-accuracy tradeoffs may not exist.

2.1 Pre-analysis

As we have introduced in Chapter 1, Fitts’ law in the task form (Equation 1.2)
cannot model the pointing performance accurately in the case of different speed or
accuracy inclination incurred from either task requests or subjective tendencies, since
the appointed target width is not used ideally with an error rate of 4%. Therefore,
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another derivation of Fitts’ law (Equation 1.4) is applied to compensate the subjective
layer of speed and accuracy tradeoff in pointing task.

For clarity of notations, in this chapter, we denote the index of difficulty based
on the nominal target width, as defined by Equation 1.3, Idn, and use Id as a generic
reference to index of difficulty. Meanwhile, we also change the format of IDe (see
Equation 1.5 in Introduction) into Ide.

We are trying to see whether there is a potentially more complete and more sophis-
ticated approach is to represent the two layers, or two components, of speed-accuracy
tradeoffs in one model. Such a model should relate time (or speed) to two independent
factors, both concerning precision. The first is the task precision, as specified by tar-
get parameters A and W . The second independent factor is the degree of target area
utilization the performer chooses. This is relative to the specified task precision and
subjectively introduced by the performer. The performer may choose to be less precise
than the task specification and use more area than W and hence gain a faster speed, or
choose to be more precise than the task specification and use less area than W , caus-
ing a slower completion speed. Another goal of this study is to explore whether there
exists a model of Fitts’ law that explicitly relate time to both layers of speed-accuracy
tradeoffs.

The degree of target area utilization has to do with the risk of missing the target the
performer is willing to take. A more risky behavior tends to result in a wider endpoints
distribution and cause over-utilization of the target area. A more risk-averse behavior
tends to result in a narrower endpoints distribution and cause under-utilization of the
target area.

Aiming for the “standard behavior” of approximately 4% error rate, most Fitts’ law
studies instructed the participants to perform “as fast as possible and as accurately as
possible”, but do not systematically vary or control experimental participants’ actual
precision relative to the nominal task precision; hence it is difficult to evaluate the
influence of the subjective layer of speed-accuracy tradeoff and the correction effects
using Ide. There have been very few exceptions ([20][5]) where the subjects’ performance
was controlled by different requirement on speed and accuracy, but the purposes of
these studies were completely different from this study, and the variations on speed and
accuracy in the studies are very limited.

The focus of this study is on the modeling aspects of speed-accuracy tradeoff in
aimed movements. The first task of is to empirically evaluate the Ide based behavior
form of Fitts’ law, when the target utilization levels are controlled to both sides of
the ideal case. For clarity and convenience, we first formally define the notation of
target width utilization. It is logical to assume that movement time is a function of
both nominal task difficulty as quantified by Idn and the level of target width (over)
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utilization by the performer, as quantified by Iu. Without committing to a particular
form of the function, we have:

MT = f(Idn, Iu) (2.1)

where the index of target width (over) utilization Iu is formally defined as:

Iu = log2(
We

W
) (2.2)

The logarithmic transformation here is merely for mathematical convenience and
symmetry with Id. The absolute value of Iu indicates the degree to which the actual
spread of the endpoints departs from the specified target width. A positive Iu means
the performer over utilizes the target width and misses the target (error) with more
than 4% probability. A zero Iu means the performer perfectly utilizes all variability
specified by the task, no more, no less, and the error rate is exactly 4%. A negative
Iu means that the performer under utilizes the target area, leaving a certain amount of
safety margin, and misses the target with less than 4% probability.

In order to thoroughly study speed-accuracy tradeoff in pointing tasks, in particular
whether the impact of a non-zero Iu is compensated by replacing the task form of
Fitts’ law (Equation 1.2) with a behavior form of Fitts’ law (Equation 1.4), empirical
studies which systematically manipulate both index of difficulty Idn and index of target
utilization Iu have to be conducted.

2.2 Experiment SAT1

2.2.1 Set-up and Design

Twelve volunteers, of different gender (9 male and 3 female) and age (21 to 38
years, mean 26), participated in a target pointing experiment on a tablet computer
(FUJITSU FMV Stylistic) with a screen size of 21 cm x 15.6 cm. Each pixel on the
screen was 0.2055 mm wide. Similar to Fitts’ original experiment [18], participants did
reciprocal pointing on a pair of vertical strip targets with a stylus. The width (W )
of the targets and the center-to-center distances (A) between the two strips were set
at W = 12, 36, 72 pixels and A =120, 360, 840 pixels. The order of the nine width
and distance combinations was randomized. Twelve trials were presented in each W ,
A combination, with the first tap excluded in analysis. If tapped on the outside of
the target, an auditory signal was played. Each participant was instructed to repeat
the experiment three times with different operating conditions biased toward accuracy
or speed: accurate (A), neutral (N), and fast (F). They were instructed to tap the
targets “as accurately as possible” in Condition A, “as accurately as possible and as
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fast as possible” in Condition N, and “as fast as possible” in Condition F. The goal
was to make the participants operate at different levels of target utilization. The order
of the A, N, F conditions was balanced by a Latin square pattern across the twelve
participants.

2.2.2 Data Processing and Analysis

Occasionally, “accidental clicks” outside the general region of the target were reg-
istered, due to either the confusion of the participant, or instrument error. We used
two simple and conservative rules to remove these “outliers” from further analysis to
prevent their disproportional impact on modeling [43]. The first rule of removal was
that the user hit the same target the trial started from or the user landed in the direc-
tion opposite to where the destination target was. This was determined by the distance
between the hit point and the target center being greater than A −W/2. Twenty-five
trials were removed by this rule. The second rule was that the distance of the endpoint
to the target center was 8 times greater than the target size. Three additional trials
were removed by the second rule. A total of 28 trials were removed by these two rules,
constituting a small percentage of the total number of trials (3564).

2.2.3 The Index of Target Utilization Iu

The instructions for the operating strategy in the three experimental conditions
had an obvious impact on participants’ target utilization and error rate. The average
error rate in the A, N, F conditions was 3.2%, 10% and 19.4%, respectively. These rates
overall were higher than what we hoped. Ideally the error rate in the N condition would
be around 4% and A and F conditions be on the two opposite sides. A wide range of
target utilization levels was taken in the experiment by the participants (Figure 2.1).
Iu varied from -1 to 1.5 bit. Note that 1 bit of Iu change means that the spread of the
endpoints is twice or half of the specified target width. The operating conditions (A,
N, F) changed the overall Iu level. Furthermore, participants also shifted from target
under utilization in low Idn to target over utilization in high Idn trials, regardless of
the condition. Even under the N (neutral) condition, Iu was not maintained at the
ideal level (zero bit). This could be a deliberate choice of strategy shift by the human
performers, or it could be fundamentally difficult to maintain the same level of target
utilization facing targets with different Idn. Guiard (2002) explains the same effect from
a power constraint vs. precision constraint perspective, albeit in different terminologies.
Note also that the amount of shift caused by A and W change were not the same (Table
2.1).
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Fig. 2.1 The index of target utilization Iu changes with instruction and Idn.

Table 2.1 Mean Iu values in different levels of A or W

Instruction Bias

A N F Mean

A 120 -0.36 -0.07 0.34 -0.03

A 360 -0.30 0.21 0.76 0.23

A 840 -0.35 0.27 0.78 0.23

W 12 0.12 0.86 1.53 0.84

W 36 -0.47 -0.01 0.43 -0.02

W 72 -0.65 -0.44 -0.08 -0.39

Mean -0.34 0.14 0.63 0.14

2.2.4 The Nominal Idn Model

As a baseline for further analysis, we first applied the basic task form of Fitts’ law
(Equation 1.2) to the data collected, using the task’s nominal index of difficulty Idn.
The result is shown in Figure 2.2.

Fig. 2.2 Linear regression MT vs. Idn in Experiment SAT1.
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Table 2.2 Summary of MT vs Idn regression in Experiment SAT1

Strategy a b r2

A 160.7 149.8 0.949

p(F1,7) 0.013 <0.0001 <0.0001

N 122.6 118.1 0.981

p(F1,7) 0.001 <0.0001 <0.0001

F 123.1 92.4 0.994

p(F1,7) <0.0001 <0.0001 <0.0001

Mixed 135.4 120.1 0.696

p(F1,23) 0.036 <0.0001 <0.0001

When analyzed separately, within each operating condition MT and Idn correlated
strongly. 95% to 99% of variance in MT could be accounted for by the change of Idn.
There was a tendency that the more risky (faster-paced) the operating condition was,
the stronger the correlation between MT and Idn was. The robustness of Idn prediction
here is quite remarkable given the very different operating biases (different levels of
target width utilization) in these conditions. However, the coefficients of the regression
results (or a and b in Equation 1.2) varied from one condition to another. Table 2.2
summarizes the results. The statistical significance levels (p, based on F tests) are also
listed under each parameter, and the overall regression significance is listed under the
r2 value of the regression.

Results in Table 2.2 clearly show that Fitts’ law regression coefficients a and b using
the Idn model were influenced by the operating conditions (biases). b varied 62% from
Condition F to A in this experiment.

If we perform the same Fitts’ law regression based on the data from all conditions
mixed, while still keeping the same unit of analysis 8 (Idn levels) x 3 (operating con-
ditions), we obtain a much weaker correlation (r2 = 0.696), although the correlation is
still statistically significant.

2.2.5 The Effective Ide Model

We now test if the use of effective width, the behavior form of Fitts’ law, would
be able to compensate for the difference of operating conditions (strategy biases). The
linear regression results between mean trial completion time and the effective index of
difficulty Ide are shown in Figure 2.3 and Table 2.3.

Comparing Figure 2.2 vs. 2.3 and Table 2.2 vs.2.3, the following observations can
be made on the use of Ide.

First, the regression coefficients under different operating conditions were much
closer to each other with Ide, showing the effect of compensation for the different levels
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Fig. 2.3 MT vs. Ide regression in Experiment SAT1.

Table 2.3 Summary of MT vs Ide regression in Experiment SAT1

Strategy a b r2

A 92.7 156.3 0.831

p(F1,8) 0.42 <0.001 <0.001

N 41.5 147.1 0.839

p(F1,8) 0.65 <0.001 <0.001

F 56.1 132.9 0.870

p(F1,8) 0.39 <0.001 <0.001

Mixed 13.2 161.0 0.825

p(F1,25) 0.81 <0.0001 <0.0001

of target utilization. The a values from different conditions were all reduced and the b

values from different conditions became much closer to each other. From Conditions F
to A, the b values’ change was now 17.6% (in comparison to 62%).

Second, within each operating condition, between MT and Ide decreased from the
corresponding r2 between MT and Idn. Only 83% to 87% of the MT variance could
be accounted for by Ide (in comparison to 95% to 99% by Idn). The same trend of
r2 reduction can be observed in the data of [20]. Why this was true will be discussed
later. A counter example to this trend was seen in MacKenzie’s recalculation of Fitts’
1954 data [32], which found a slight increase in r2 by using Ide (from 0.983 to 0.99 and
0.98 to 0.988 respectively). Note that there the initial correlation was very high, and
the change of correlation was small. Furthermore, since Fitts’ 1954 data did not have
endpoints location recordings, the recalculation of We was based on Z-score conversion
from error rates—an imprecise or arbitrary estimation method when the error rate is
low or zero.
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Third, overall there was a shrinkage of the range of the independent variable from
Idn to Ide. Within the same condition, particularly for the more risky condition F, there
was a counter-clockwise rotation of the regression line.

Fourth, if we use data from all operating conditions together, the r2 value between
MT and Ide increased from the corresponding r2 value between MT and Idn regression
(0.723 to 0.825), showing a stronger regularity of MT = f(Ide) than MT = f(Idn) in
modeling pointing time in the presence of a wide range of target utilization.

In summary, the use of Ide demonstrated both benefits and drawbacks. It compen-
sated operating biases (more converging a and b parameters), but not completely. Its
robustness as a determinant of pointing time as measured by r2 decreased within each
operating condition but increased across conditions.

The utilization level in this experiment overall tilted to over utilization (positive
Iu, see Figure 2.1). Even in Condition A, the overall error rate was 3.2%. It will be
informative to also observe the more conservative under utilization side, as in the next
experiment.

2.3 Experiment SAT2

The experiment had two operating conditions: A and F. In Condition F, the in-
struction was, “Move as fast as possible. It is okay if a few errors are made”. A gentle
“ding” sound was played when an error was made. In Condition A, which in fact could
be called the EA (extremely accurate) condition, participants were instructed to “Try
to avoid any errors”, and a loud “ding” sound was played when a target was missed.

Eleven people of different gender (4 female and rest male) and age (20’s to 50’s),
who had not been in the first experiment, participated in this experiment with both
conditions. They were alternated between A to F and F to A order. An LCD display
with stylus touch-sensitive surface (Wacom LCD Tablet Model PL-400) was used as
the experiment apparatus. The rest of the experiment setup remained the same as
Experiment SAT1.

Due to the quality of the tablet used in this experiment, many more erroneous
trials were found. If the stylus struck the surface of the tablet too hard (and quickly
bounced up), no click was registered. This meant the next click could be aimed at the
“wrong” target. Using the same two rules outlined in Experiment SAT1, out of a total
of 2178 trials in this experiment, 160 trials were removed by the first rule (tapped on
the wrong side). Another 74 trials were removed by the second rule.

Under the instruction given in this experiment, participants indeed exhibited more
conservative (risk-averse) behavior. Figure 2.4 shows the index of target utilization (cf.
Figure 2.1). The Iu values at almost all Idn levels were negative (the average error rates
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Table 2.4 Fitts’ law regression results in Experiment SAT2

Bias a b r2 p

MT = a + bIdn A 110.5 172.6 0.932 <0.0001

F 111.0 119.0 0.921 <0.0001

Mixed 110.8 145.8 0.747 <0.0001

MT = a + bIde A -28.1 182.2 0.896 <0.0001

F 48.0 130.7 0.907 <0.0001

Mixed -19.1 165.1 0.825 <0.0001

were 0 and 0.5% respectively for A and F conditions, see Table 2.4), but participants
were clearly more conservative in Condition A than in Condition F. We tried to bias
the participants in this experiment to the direction opposite to Experiment SAT1 that
was overall on the risky side. Note that the operating condition labels (A, F, etc) are
relative within each experiment.

Fig. 2.4 The index of target utilization Iu in Experiment SAT2.

Fig. 2.5 MT vs. Idn and MT vs. Ide linear regressions results of Experiment SAT2.
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Table 2.4 and Figure 2.5 show Idn and Ide model regression results. Observations
similar to those in Experiment SAT1 can be made here, but to a lesser degree: (1) As
indicated by r2 values Idn is a (slightly) more robust pointing time determinant than
Ide within each condition; (2) Ide is more robust than Idn across conditions. (3) The
range of Ide shrank from that of Idn, but only from the low end of the index of difficulty
this time. In fact for the A condition, the high end of Ide was further extended to the
right. (4) Ide yielded more converging a and b parameters between the conditions than
Idn, hence it compensated for the different target utilization levels in different operating
bias conditions (but not completely and to a lesser degree than in Experiment SAT1).
Overall the changes caused by substituting Idn with Ide are lesser in this experiment.

To verify the observations in these two experiments, we decided to conduct a more
comprehensive experiment that covers a wide target utilization range on both sides.

2.4 Experiment SAT3

2.4.1 Set-up and Design

Fifteen volunteers, 5 female and 10 male, aged 20 to 36 years old, participated in
Experiment SAT3, in which the same experimental apparatus, software, and procedure
as in Experiment SAT1 were used. The difference is that a greater range of target uti-
lization is inducted: each participant was instructed to repeat the experiment five times
with different operational strategies: extremely accurate (EA), accurate (A), neutral
(N), fast (F) and extremely fast (EF). The following verbal instructions corresponding
to each task were given by the experimenter to the participants: Perform as accurately
as possible and dont worry about time or speed; try to avoid any error in Condition EA;
as accurately as possible but keep some speed in Condition A; as accurately as possible
and as fast as possible in Condition N; as fast as possible but keep some accuracy in
Condition F; and as fast as possible and some errors are acceptable in Condition EF.

2.4.2 Data Processing and Basic Results

Similar to Experiments SAT1 and SAT2, 16 accidental trials were removed from
the data pool out of a total of 7425 trials.

The error rates of the five conditions varied according to the verbal instructions,
and the overall error rates in the EA, A, N, F, EF conditions were 0%, 1%, 4%, 9%,
22%, respectively, which were rather ideal because in condition N the error rate was
at the standard 4% and the rest of the conditions were distributed symmetrically. As
shown in Table 2.5, the overall Iu levels of the first two experiments were either tilted
to positive (Experiment SAT1) or negative (Experiment SAT2). This experiment is
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Table 2.5 The Iu range and error rate in each operating condition of the first

three experiments

Bias Experiment SAT1 Experiment SAT2 Experiment SAT3
Error Iu max Iu min Error Iu max Iu min Error Iu max Iu min

rate (%) (bit) (bit) rate (%) (bit) (bit) rate (%) (bit) (bit)
EA 0 -0.63 -1.33
A 3.2 0.24 -0.78 0 -0.33 -1.04 1 -0.17 -1.22
N 10 1.11 -0.88 4 0.23 -0.61
F 19.4 1.74 -0.44 0.5 -0.05 0.83 9 0.81 -0.73
EF 22 2.04 -0.59

similar to a combination of the first two.
The basic results of Experiment SAT3 with regard to the impacts of Ide vs. Idn as

the determinant of mean trial completion time are summarized in Figure 2.6 and Table
2.5. The results in this more comprehensive experiment verified the trends observed in
the first two experiments. First, Idn was once again shown to be a remarkably robust
determinant of the mean pointing time within each condition. In spite of the very
different instructions and hence the very different levels of overall target utilization, the
r2 values of MT vs. Idn linear regression were all above 0.9. There was a trend of
increasing r2 value from the more risk-averse conditions to the more risky conditions,
consistent with the first two experiments. The r2 values of MT vs. Ide linear regression
in each condition were uniformly lower than their corresponding r2 values of MT vs.
Idn in the same condition (Figure 2.6). Within the same operating condition, Idn was
clearly a stronger determinant of mean pointing time than Ide.

Fig. 2.6 MT vs. Idn (left) and MT vs. Ide (right) linear regression in Condi-

tions EA, A, N, F and EF in Experiment SAT3.

Second, in contrast to the strength of Idn within each condition, Ide is a stronger
determinant than Idn when data from all conditions were merged in one regression.
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Table 2.6 Summary of MT vs. Idn and MT vs. Ide linear regression in Experiment SAT3

Tasks Error Idn Model Ide Model

(%) a b r2 a b r2

EA 0 201.1 214.7 0.904 63.6 203.7 0.841

p 0.09 <0.0001 <0.0001 0.7 <0.001 <0.001

A 1 209.5 185.6 0.899 76.0 187.3 0.750

p 0.05 <0.0001 <0.0001 0.69 0.0025 0.0025

N 4 170.9 130.6 0.961 75.8 149.0 0.867

p 0.003 <0.0001 <0.0001 0.886 <0.001 <0.001

F 9 140.5 113.5 0.995 45.0 143.2 0.926

p <0.0001 <0.0001 <0.0001 0.45 <0.0001 <0.0001

EF 22 138.5 83.8 0.992 7.49 147.2 0.881

p <0.0001 <0.0001 <0.0001 0.90 <0.001 <0.001

Mixed 172.1 145.6 0.460 -92.4 207.5 0.783

p 0.07 <0.0001 <0.0001 0.17 <0.0001 <0.0001

Ide accounted for 78% of the variance of mean trial completion time caused by both
different levels of index of difficulty and the very different five operating strategies (See
Figure 2.7). In comparison Idn could account for only 46%. In this sense Ide clearly has
the ability to convert some impact of the different levels of target utilization to index
of difficulty.

Third, there was an overall rightward shift of Ide values from their corresponding
Idn values at the low (left) end of index of difficulty, but on the high end, the shift
depended on the operating condition. For Condition EF and F, the high end Ide points
moved towards left, for Condition EA and A the high end Ide points actually further
extended to the right, for condition N there was little change.

Fourth, and perhaps most strikingly, the regression lines of MT vs. Ide were much
closer across different conditions than those of MT vs. Idn, particularly for the more
risky (faster) conditions (N, F, EF) (See Figure 2.6). The regression coefficients a and b
hence were more converging between the conditions with Ide than with Idn. Across the
five conditions (from EA to FF), the a values were between 139 ms and 209 ms for the
Idn model and between 7.5 ms and 76 ms for the Ide model. The b values were between
83 ms/bit and 214 ms/bit (158% difference) for the Idn model and between 143 ms/bit
and 203 ms/bit (42% difference) for the Ide model. This also supports that Ide could at
least partially overcome the different levels of target utilization due to operating biases
and produce more stable estimates of Fitts’ law coefficients.
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Fig. 2.7 MT vs. Idn and MT vs. Ide of all conditions combined.

2.4.3 The Interplay of Iu, Idn, and We

We now examine the distribution of Iu, which is related to the third point above
on the range and location of Ide shift. Figure 2.8 shows Iu across different Idn values
in each of the five conditions in Experiment SAT3. As a result of different operating
conditions, target utilization levels as measured by Iu shifted up or down over a wide
range (-1.33 to +2.04 bit) as a result of the instruction bias. Furthermore, Iu also
changed with Idn. While overall Iu was correlated with Idn (the higher the Idn, the
higher the level of over utilization the participants tended to make), the degree of such
a dependency changed with the operating condition. The more risky (faster-paced) the
overall strategy was, the stronger the dependency was. In Condition EF the dependency
was the strongest, with r2 =0.831. In Condition EA, in contrast, participants were quite
consistently risk-averse, keeping Iu well below 0 across all Idn values (r2 =0.14).

Fig. 2.8 The index of target utilization Iu changes with instruction and Idn.

As we can see in Figure 2.8, even within the same operating condition and at the
same Idn level, Iu could still be very different. This leads us to examine the influence on
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Iu separately by W and A (Figure 2.9, see also Table 2.7). W was shown to have much
stronger influence on Iu than A, as indicated by the slopes and r2 values. This gives rise
to an explanation of the fact that Ide was a weaker determinant than Idn of completion
time MT within each condition. Since MT and Idn form a very strong correlation within
each condition, any adjustment of Id will only weaken the strength of the correlation,
unless all Id’s were changed with the same proportion. The Ide adjustment, however,
depends on We (relative to W ), which is influenced more by W than by A. This means
the Fitts’ law regression points at the same or similar Idn, determined by (A + W )/W

ratio, may shift laterally to a different extent in Ide adjustment. Figure 2.10 shows
the relative shifts in one experimental condition (N) of the regression points when Idn

(diamonds) is changed to Ide (squares).

Fig. 2.9 The index of target utilization Iu as a function of W (left), A (right),

and instruction condition MT vs. Idn or Ide of Condition N.

Fig. 2.10 MT vs. Idn points (diamonds) shift different amount to MT vs. Ide

points (squares), causing lower correlation.
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Table 2.7 The standard deviation of endpoints at different A and W

Condition A W

12 36 72

EA 120 1.58 4.59 8.57

360 1.52 4.27 9.28

840 1.87 4.31 6.92

A 120 2.12 4.79 9.01

360 2.36 4.50 7.77

840 2.58 4.88 7.49

N 120 3.63 6.24 9.56

360 3.41 7.02 11.40

840 3.64 7.10 12.23

F 120 4.27 7.56 10.49

360 4.61 9.41 13.07

840 5.12 8.65 13.96

EF 120 7.27 8.33 11.59

360 10.51 12.94 17.00

840 11.94 14.75 22.34

Table 2.7 gives the standard deviation of the endpoints in Experiment SAT3 under
different A and W values. When accuracy was emphasized, standard deviation was
mostly decided by W . When accuracy was less emphasized, A began to exert impact
on the standard deviation.

2.4.4 Preliminary Conclusions of Idn, Ide and the Two Layers of

Speed-Accuracy Tradeoffs

These three experiments systematically examined speed-accuracy tradeoffs in Fitts’
pointing tasks. They showed that both the nominal task precision and performer’s bias
in over or under utilizing the given task precision tolerate change pointing completion
time. The nominal index of difficulty Idn is a remarkably robust predictor of completion
time within each operating condition: the mean task completion time could be well
accounted for by Idn within each operating condition, even though the conditions were
at very different overall levels of target utilization as quantified by Iu. The problem
with the T = f(Idn) model, however, is that the regression coefficients (a and b in Fitts’
law) change with the overall level of Iu.

The experiments also showed that performers could rarely completely match the
nominal task precision specification. Iu is not only affected by the performers overall
bias towards speed (over utilization of target) or accuracy (under utilization), it also
interacts with Idn. Higher Idn tended to cause over utilization. Even if the performers
overall operated at the standard error rate (4%), as in Condition N in Experiment SAT3,

– 25 –



Chapter 2 Speed-Accuracy Tradeoff in Fitts’ Law Tasks

Iu still changed over 1 bit from low Idn to high Idn trials.
Overcoming some of the limitations of the MT = f(Idn) model, the MT = f(Ide)

model could compensate for some of the difference of Iu, particularly when the average
Iu was around 0 or negative. As a result of using Ide the a and b estimates were much
less affected by the operation conditions, and the r2 value between MT and Ide was
much higher when both Idn and Iu varied widely (data mixed from all conditions) than
the r2 value between MT and Idn (cf. Figure 2.6).

However, the correction effect of the Ide model is at the expense of a weakened
MT vs. Id relationship. Within each operating bias condition, MT vs. Ide consistently
yielded lower r2 than MT vs. Idn. This was partly due to the fact that the amount of
shift from Idn to Ide was influenced more by W than by A, so Idn to Ide shifts were not
always the same. Given the strong regularity of MT vs. Idn , any uneven change from
Idn would only result in a weaker regularity.

In sum, the behavioral model MT = f(Ide) offers a compromise. It could absorb
some of the mismatch between the nominal task specification and the performer’s actual
pointing precision, at the expense of a strong MT vs. Id regularity. The results of MT

vs. Ide regression in terms of coefficients a and b were more stable than those of MT vs.
Idn across operating biases, but they still did not completely converge. It appears that
We as a posteriori adjustment does not fully account for the time performance difference
caused by the second and subjective layer of speed-accuracy tradeoff the performance’s
incompliance with the task specification (a none-zero or varying Iu ) resulting in a
overall faster or slower speed.

2.5 Experiment SAT4

To observe more directly the exact extent of Iu impact on time performance, we
conducted yet another experiment that systematically controlled effective width We

and nominal target width W to a similar amount in two experimental conditions. If
We could compensate Iu variance, we would expect the MT vs. We relationship in the
presence of varying Iu to be identical or similar to the MT vs. W relationship when the
performers obediently complied with the target size specification W with no or little Iu

variance.

2.5.1 Set-up and Experimental Design

Ten volunteers, eight males and two females (averaging 24.2 years old), participated
in this experiment. Some of them had participated in Experiment SAT1 or Experiment
SAT2. The experiment was conducted on the same apparatus as in Experiments SAT1
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and SAT3 with a similar experimental procedure. It consisted of two parts (or schemes):
part A (the target width incompliant scheme) and part B (the target width compliant
scheme). In both parts, the participants performed reciprocal target tapping with a
fixed distance A of 400 pixels. In part A (“target incompliant”), W was fixed at 20
pixels. Participants performed under the five sets of strategy instructions as in Exper-
iment SAT3 (EA, A, N, F, EF). Under each instruction set, they performed 14 trials.
There was a total of 700 trials collected (= 5 instructions x 14 trials x 10 participants).
No accidental trials were observed. The goal of part A was to produce a set of time
measurements under the same nominal target width, but very different effective target
width We due to different levels of target width utilization. Based on the experience
of Experiment SAT3, Iu was about -1, -0.5, 0, 0.5 and 1 bits in EA, A, N, F and EF
bias conditions, respectively, which map 20 pixels (W ) to five different We values to
approximately 10, 14, 20, 28 and 40 pixels.

In part B (target compliant), W was set at 10, 14, 20, 28 and 40 pixels, correspond-
ing to the expected We values in part A. The goal of Part B was to produce a set of
time measurements when participants obediently complied with the given target widths
to an (almost) ideal extent: the | Iu | value should be less than 0.1 bit (i.e. We matches
W within 7% margin). To achieve that, we used a target width enforcement method
inspired by and refined from the verbal feedback method of Guiard and colleagues [54].
During the experiment (after the first 5 trials in each block), if the running Iu value was
greater than 0.1 (i.e. We > 1.072W ), which meant that the participant took too much
risk, a sign appeared in the middle of the two target strips to remind the performer to
slow down. In contrast, if Iu was less than -0.1 (i.e. We < 0.933W ), a sign of different
color appeared to remind the participant to speed up. If no sign was displayed, it meant
the participants current endpoints dispersion corresponded to W within a 7% margin
so the participant could keep his or her current pace.

The method of measuring the running Iu (We) value was as follows: Before the
participant performed the 15th trial in a W condition, the program calculated the
standard deviation of the endpoints distribution based on all of the past trials (from
1 to 14). From the 15th trial the program calculated the standard deviation of the
endpoints, based on the most recent 14 trials (i.e. a 14-trial moving window was used).
The experiment program stopped the current W condition and began the next one once
a block of a 14 trials whose | Iu | value was less than 0.1 was captured (i.e. their We

matched W by a less than 7% margin). These 14 trials were used in later analysis.
The program would have also aborted the current W condition if the participant had
performed 30 trials without reaching a 14 trial block that met the requirement. In the
actual experiment, none of the participants needed to use up the maximum 30 trials.
We analyzed the endpoints of the last 14 trials and confirmed that they were normally
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Table 2.8 Results of Experiment SAT4

EA A N F EF

part A

W 20 20 20 20 20

error % 0 1.4 4.2 17.8 25

We 9.54 14.98 18.20 30.58 37.69

Time 992.5 797.2 634.4 593.3 489.2

part B

W 10 14 20 28 40

We 11.03 14.54 21.90 30.96 44.36

Time 860.8 744.8 639.2 611.8 526.8

distributed. The order of the W condition was randomized in our experiment.
Therefore, through part A, we could observe the relationship between mean trial

completion time and the effective target widths under different levels of target utiliza-
tion as a result of the participants’ disrespect of the nominal target width to varying
directions and extent. Through part B, we could observe the relationship between mean
trial completion time and the nominal target width when the participants obediently
and effectively complied with the accuracy tolerance specified by the target. Comparing
the target width compliant scheme and the target width incompliant scheme we could
directly examine whether and how well We reconciles the two layers of speed-accuracy
trade-offs.

2.5.2 Results

Table 2.8 shows the results of Experiment SAT4. Figure 2.11 (left) shows the
logarithmic regression results from the two experiment schemes (Part A and B). Figure
2.11 (right) show the Fitts’ law regression of Part A and Part B, using Ide and Idn

respectively. The two sets of scatter plots (and regression lines and curves) show that
the relationship between completion time and We in the target incompliant scheme
(part A) and the relationship between completion time and W in the target compliant
scheme (part B) were consistent in direction, but different in extent. In the near-zero
range of Iu (< |0.5| bits, or W/20.5 < We < W/2−0.5 ), the difference was relatively
small. When Iu was beyond such a range, this difference increased rapidly. The greater
| Iu | was, the greater such a difference was.

The results of this experiment shed more light on the effect that Ide only partially
compensates for the time variance caused by different operating biases (different target
utilization levels): while the MT vs. We relationship in the presence of Iu variance was
similar to MT vs. W relationship when the performers obediently complied with the
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Fig. 2.11 The match between MT vs. We in the target incompliant scheme

and MT vs. W in the target compliant scheme (left) and their corresponding

Fitts’ law regressions (right).

target width specification (with no or little Iu variance), they did not exactly match in
extent. The impact of the We adjustment lagged behind the impact of W changes in
the same amount.

2.6 Further Analyses

The foregoing analyses clearly indicate that the use of We is an imperfect and
insufficient adjustment of W to overcome Iu variances in Fitts’ law tasks, although the
direction of adjustment was empirically correct. Is it possible to find an adjustment
that more fully compensates the impact of Iu variance? Given that We under-corrects
when the endpoints dispersion deviated significantly from the nominal width W (shown
in Figure 12), a more exaggerated effective width could possibly account for more of the
remaining difference in completion time. This suggests the following modified effective
width is worth investigating:

Wm = W (
We

W
)α (2.3)

i.e.

Wm = W (
4.133σ

W
)α (2.4)

Where σ is the standard deviation of the endpoints distribution. α should be
greater than 1 in order to cause Wm to nonlinearly exaggerate the impact of deviation
from W : When We is close to W , Wm has a similar value to We; When We À W or We

¿ W , Wm is much greater or much smaller than We. The greater the α value is, the
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more pronounced difference there is between Wm and We. When α is 1, Wm reduces to
We. Accordingly,

Idm = log2(
D + Wm

Wm
) (2.5)

and

MT = a + bIdm (2.6)

Based on the empirical data from Experiment SAT4, 1.5 is a good estimate of α.
Figure 2.12 (left) shows the mean trial completion time as a function of Wm with α =
1.5 (the target incompliant condition of Experiment SAT4). The relationship between
time and Wm matches almost exactly the relationship between time and nominal W

when participants closely obeyed the target width (the target compliant condition of
Experiment SAT4). Figure 2.12 (right) shows the corresponding Fitts’ law regressions
using Idn and Idm.

Fig. 2.12 The match between MT vs. Wm in the target incompliant scheme

and MT vs. W in the target compliant scheme (left) and their corresponding

Fitts’ law regressions (right).

Of course, the value of α based on one small experiment (Experiment SAT4) is not
likely to be an accurate estimate for other data sets, although it is plausible that a better
compensation may be achieved by Wm with certain α value. A potential difficulty that
Wm faces, however, is the limitations of We adjustment that we see in the first three
experiments: while the We adjustment reduced the discrepancy of Fitts’ law coefficients
measured under different operating biases, it also weakened the strong regularity within
each operating condition as modeled by MT = f(Idn). Since Wm is a more exaggerated
version of We, the correlation of MT vs. Idm may be reduced further from that of MT

vs. Idn within each operating condition. Another obvious weakness of the notion of
Wm is that since it is based on W , We and another parameter α, its direct definition is
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lacking or to be discovered in the future.
To test the possibly stronger compensation power of Wm and its likely drawbacks,

we reanalyzed the first three experiments, substituting Ide with Idm (with α = 1.5).
The results are summarized in Figures 2.13 to 2.15 and Table 2.9.

Fig. 2.13 MT vs. Idm regression of Experiment SAT1 (Compare with Figures 2.2, 2.3).

Fig. 2.14 MT vs. Idm regression of Experiment SAT2 (Compare with Figure 2.5).

Based on the degree of convergence of the regression coefficients (see Column 9 of
Table 2.9), Idm compensates for the different levels of Iu slightly better (Experiment
SAT1, Experiment SAT2) or better (Experiment SAT3) than Ide. Taking the b value in
Experiment SAT3 (the most comprehensive and balanced experiment) as an example,
under the EA, A, N, F, EF operating conditions b was 215, 186, 131, 113, 83 ms/bit
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Fig. 2.15 MT vs. Idm regression of Experiment SAT3 (Compare with Figure 2.6).

with Idn; and 204, 187, 149, 143, 147 ms/bit with Ide . With Idm, b was 198, 180,
154, 153, 143 ms/bit. If we use the estimates under Condition N as the best possible
estimate, the b values can be written as percentage changes from its best estimate, as
shown in Table 2.10. Idm appears to offer better correction of operating biases than Ide

(See also Figure 2.15 in comparison to Figure 2.6).
However, the limitations of Idm were also apparent. First, it still could not com-

pletely compensate for the speed accuracy tradeoff caused by different levels of target
utilization. The coefficients measured under different operating biases still did not fully
converge. Second, since Wm is a nonlinear amplification (or reduction) of We , it weak-
ened the regularity found in MT vs. Id even more than We, as indicated by the further
decreased r2 values within each condition (Table 2.9). When mixing all biased condi-
tions, the r2 of MT vs. Idm was similar to the r2 of MT vs. Ide: weaker in Experiment
SAT1, but stronger in Experiments SAT2 and SAT3.

One could argue that stronger results with Idm could be achieved with different α

values. As Table 2.11 shows, this was indeed true, but there was not a α value that is
optimal for all experiments with different ranges and sets of operating biases.
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Chapter 2 Speed-Accuracy Tradeoff in Fitts’ Law Tasks

Table 2.10 b estimate as percentage variation from the neutral condition (N) in

Experiment SAT3

EA (%) A (%) N (base) F (%) EF(%)

Idn 64.1 42 131 -13.7 -36

Ide 36.9 25.5 149 -4 -1.3

Idm 28.6 16.9 154 -0.6 -7.1

Table 2.11 Regression results with mixed conditions at different α values

α = 1.2 α = 1.3 α = 1.5 α = 1.8
a b r2 a b r2 a b r2 a b r2

EXP. SAT1 13.9 162.1 0.808 19.0 161.3 0.792 31.2 157.9 0.745 86.2 144.1 0.656
EXP. SAT2 -44.6 168.4 0.835 -57.1 169.8 0.839 -80.9 172.4 0.845 -113.1 175.3 0.849
EXP. SAT3 -100.7 207.3 0.806 -98.2 205.4 0.811 -82.1 198.8 0. 807 -37.4 184 0.778

Mathematically, the α term in Equations 2.3 to 2.6 can be separated from Idn.
Considering that A is typically greater or much greater than W , and when We/W is
not too distant from 1, the following equation approximates Equation 2.6:

MT = a + b log2(
A + W

W
)− bα log2(

We

W
) (2.7)

or
MT = a + bId − bu (2.8)

or
MT = a + bId + cIu (2.9)

where c = −bα.
Multiple regression results (a, b, and c) based on the first three experiments, how-

ever, tended to be highly dependent on which experimental conditions were included in
the regression, suggesting the complex interactive nature of the Idn and Iu effect.

Figure 2.16 shows the mean of the completion time MT as a function of Idn and
Iu based on data from Experiment SAT3 (all conditions mixed). As we can see, while
MT increased with Idn and decreased with Iu, in general, they did not form a strictly
monotonic function, suggesting complex interaction effects between Idn and Iu. This
means that it is difficult, if not impossible, to establish a model that captures both
layers of speed-accuracy tradeoffs in a complete and yet simple (linear) manner.

2.7 General Discussions and Conclusions

We have systematically explored the two layers of speed-accuracy trade-offs in Fitts’
aimed movement tasks. Fitts’ law in its original form reveals the speed-accuracy tradeoff

– 34 –



2.7 General Discussions and Conclusions

Fig. 2.16 3D perspective illustration of MT = f(Idn, Iu) based on data from

all conditions in Experiment SAT3.

relationship between pointing completion time and task precision based on the nominal,
objective, geometrical parameters of the target (A and W ). However, in actuality speed-
accuracy relationship in pointing also contains another subjective layer which depends
on how obediently the performer complies with the specified target width and what
bias the performer takes (toward either accuracy or speed). This performer introduced
accuracy layer causes a discrepancy between the nominal task precision and the actual
behavior precision. We defined an index of target utilization, Iu = log2(4.133σ/W ),
to quantify the degree of this mismatch. As is implicitly realized in the Fitts’ law
literature, and as this study has explicitly and systematically shown, Fitts’ law tasks
tend to involve both layers of speed-accuracy tradeoffs. Our study shows Iu is never
constant in an experiment, even within the same instruction set, such as “as accurately
as possible and as fast as possible”, except when an enforcement method is applied,
as in Experiment SAT4. The overall Iu level can be influenced by the experimental
instruction in the laboratory, or by performers’ preference and task strategy in real
world tasks.

This study clearly demonstrated that varied Iu values influence Fitts’ law regression
modeling, resulting in different a, b coefficients which in the context of human-computer
interactions are often used to characterize an input system’s efficiency. The classic

– 35 –



Chapter 2 Speed-Accuracy Tradeoff in Fitts’ Law Tasks

approach to correct the influence of varying Iu is the so-called “effective target width”
method. This approach takes the performer’s actual behavioral parameter, We, rather
than the nominal target width W , as the basis of index of difficulty calculation. Such
an approach has not had a strong theoretical or empirical foundation in the literature.

In a set of four experiments, we deliberately manipulated Iu over a wide range or
controlled to specific levels through instructions and feedback control, which enabled us
to investigate the two layers of speed-accuracy tradeoffs systematically. Our investiga-
tion has led to the following conclusions.

First, the task form of Fitts’ law MT = f(Idn) is a very strong model. The nominal
Idn is an impressive determinant of mean movement time, accounting for up to 99% time
variance within an experimental condition. Revisions of index difficulty to a behavior
form, either through We, or its more aggressive version Wm, consistently weaken the
regularity within an particular operating bias condition. On the other hand the resulting
coefficients of MT vs. Idn can be easily swung by Iu levels. In the context of HCI, this
poses a serious challenge to assessing the quality of various input systems [55].

Second, Ide partially incorporates the second, subjective accuracy layer into Fitts’
law model by adopting an actual and behavior parameter We. The first three experi-
ments showed that adopting We reduced the discrepancy of a and b estimates between
different experimental conditions. Experiment SAT4 shows that, although not com-
pletely congruent, the impact of the a posteriori effective target width was similar to
that of a priori nominal target width with which the performer obediently complied.
The compensation effect of We was also shown by the higher r2 value of MT vs. Ide

regression across different operating biases (mixed data from all conditions) than the
r2 value of MT vs. Idn regression. This study, to our knowledge, provided the first
systematic empirical foundation for the use of We. However, the compensation effect of
We is gained at the cost of weakened regularity within each experimental condition.

Third, Idm, the more aggressive version of Ide, takes a step further than Ide: it
more fully compensates for the Iu impact but further weakens regularity within each
operating strategy condition.

Fourth, in the absence of the subjective layer of speed-accuracy tradeoff (the per-
former completely complies with task specification, keeping Iu at or near zero), both
Ide and Idm revert to the nominal Idn. In that sense, no harm can be done by adopting
Ide and Idm.

Fifth, the level of target utilization in Fitts’ law tasks, as measured by the index
of target utilization Iu = log2(

We

W ), can be influenced by three factors: the overall
operating bias (in the lab by instruction, in reality by user’s strategic choice); nominal
target W ; and target distance A. However, W and A have very different degrees of
impact on Iu, with the former being far greater than the latter. This means that the
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change from Idn points (determined by A and W ) to Ide points (determined by A and
We) is not uniform. Given that MT and Idn forms a very strong correlation within
each strategy, the use of Ide or Idm would only weaken this correlation. A compromise
has to be made between the goodness of fit within each condition and better estimates
of a and b. Fundamentally, the use of Ide or Idm is to incorporate a different layer of
speed-accurate tradeoff (the subjective layer) into a very strong time and task accuracy
relationship as modeled by MT = f(Idn).

Sixth and finally, the two layers of speed accuracy tradeoff in pointing interact in
a complex manner. They do not cause a simple additive effect, hence the difficulty of
using MT = f(Ide) or MT = f(Idm) and any other potential relationship as a strong
general model.

In summary, this systematic investigation reveals the nature and the relationship
of speed and accuracy in pointing. The implication of this study depends on the spe-
cific purpose of use. Theoretically we now know that the two layers of speed-accuracy
tradeoffs, the objective and task layer and the subjective and behavior layer have dif-
ferent impact on task performance. The impact of actual pointing precision We and the
impact of nominal pointing precision W are not equivalent, but are numerically similar,
particularly when We is not too distant from W . The findings in this work also have
more general implications to human motor control theory. This study shows that even
for a low level tapping task, both external visual feedback and internal bias settings
contribute to the control process. In a manual stabilization task, Pew [41] showed that
humans not only react instantaneously to the position of a controlled object, but can
also adjust higher level control parameters to achieve stabilization. This experiment
shows that in pointing tasks performers could adjust their overall bias towards speed
or accuracy and integrate such an internal high level setting with the external low level
visual feedback to manage a pointing process.

Practically, the findings in this study suggest that in order to accurately measure
Fitts’ law parameters, Iu should be kept as close to zero as possible and its variance
should be kept as low as possible. One possible method of controlling Iu in Fitts’ law
studies is to use endpoints standard deviation-based feedback, as we did in Experiment
SAT4. When Iu is highly varied or when it is not near zero, however, this study
provides an empirical foundation for the application of We or its more aggressive and
more complete version, Wm, to adjust for Iu changes. These adjustments consistently
yield more logical Fitts’ law parameter estimates, a and b, although one should also be
aware of the limitations and side effects of We or Wm, including reduced correlation
between pointing time and index of difficulty within each operating strategy and their
incomplete compensation for the subjective layer of speed-accuracy tradeoff.
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Chapter 3

The Optimal Calculation
Method of the Effective Target
Width of Fitts’ Law

The use of effective target width (We) in Fitts’ law has been a widespread applied
method for one directional pointing task evaluation, especially when different speed or
accuracy inclinations incurred by subjective factors exist. However, the concrete meth-
ods for calculating We have not been formally integrated. Although the IDe model has
been discussed a lot in Chapter 2, the optimal calculation method of We is not studied.
Therefore, this chapter focuses on resolving this problem. A Testing Experiment and
a specially designed and controlled Comparison Experiment are described in this chap-
ter. The experiments and the data analysis results show that after comparing the two
existing methods for calculating effective target width, the method of mapping all the
abscissa data in one integrated coordinate system to perform the calculation is proven
to be better for human computer interface modeling than dividing the data into two
groups and mapping them in two separate coordinate systems.

3.1 Background Knowledge and Related Works

Although Fitts’ law has been used widely in HCI and advocated by many re-
searchers [34], it is still under suspicion[56]. One problem is that the calculation of the
We has not been integrated.

In Equation 1.5, We = 4.133SD. SD is the standard deviation of the hits dis-
tribution. For SD calculation, some researchers use one united coordinate system to
calculate the average of the x-coordinates to get SD, as in Douglas, Kirkpatrick and
MacKenzies research[15]. We call this method the Combined-coordinate-system Method
(the CC method) in this chapter. Some others use two sets of coordinate systems to
calculate the average of the x-coordinates to get SD, as Isokoski and Raisamo have
done in their study[24]. In this method the averages of the x-coordinates need to be
calculated for the left and right coordinate systems respectively. We call this method
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the Separate-coordinate-system Method (the SC Method) in this chapter.
However, at present, no research has been reported on the preferred method of We

calculation for the application of the Fitts’ law model. Moreover, no comparison has
been reported in the ISO standards 9241-9[25]. Therefore, in this study we compare the
two methods to see which one is better for calculating We. The results derived from
this work will be of great help for the further application of Fitts’ law to the HCI field.

3.2 Testing Experiment: Testing the Hits’ Distribu-

tion

The SC method is much more complex than the CC method, but some researchers
still support the SC Method because they hold to the hypothesis that with bigger targets
the users tend to click near the nearest edge of the rectangular target rather than near
the middle of it. They therefore go on to argue that if the SD is calculated in relation
to a united center, the off-center click distribution will inflate the standard deviation
and bring inaccurate results of We [24].

To observe whether the distribution of the input hits is as Isokoski and Raisamo
assumed, we developed a pointing task experiment with different A and W (target
width) combinations.

3.2.1 Subjects

Ten volunteers, five male and five female (average 28.8 years old), participated in
this experiment.

3.2.2 Apparatus

We used a desktop PC with a color LCD monitor, the EIZO FlexScan L567 (screen
size 338 mm (H) x 270 mm (V)) in this experiment. The Resolution was 1024 x 768. 1
pixel was 0.264 mm. The input device was the Microsoft Wheel Mouse Optical 1.1A.

3.2.3 Procedure

The experimental procedure was designed according to the ISO 9241-9 standard
[25]. During the experiment, participants did reciprocal pointing with a mouse at a pair
of vertical strip targets displayed on the screen. The width (W ) of the targets and the
center-to-center distances (A) between the two strips were set at W = 12, 36, 72 pixels
and A =120, 360, 840 pixels. The order of the nine width and distance combinations
was randomized. The start position of the cursor was the center of the screen. Twelve
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Table 3.1 The SD and IDe with the CC method and the SC method in the

Testing Experiment.

Methods Combinations(in pixels) SD(in pixels) IDe(in pixels)

the CC A=120, W=12 3.44 3.24

Method A=120, W=36 8.77 2.11

A=120, W=72 12.11 1.76

A=360, W=12 3.29 4.78

A=360, W=36 9.73 3.31

A=360, W=72 14.57 2.80

A=840, W=12 3.06 6.07

A=840, W=36 8.66 4.61

A=840, W=72 15.32 3.83

the SC A=120, W=12 3.39 3.26

Method A=120, W=36 7.75 2.25

A=120, W=72 10.07 1.96

A=360, W=12 3.27 4.79

A=360, W=36 9.55 3.34

A=360, W=72 13.26 2.92

A=840, W=12 3.05 6.08

A=840, W=36 8.42 4.65

A=840, W=72 15.00 3.86

trials were presented in each W -A combination, with the first tap excluded in analysis.
If the user tapped on the outside of the target, the task would not be abandoned and
an auditory signal would be played.

The subjects were required to perform the tapping task as fast and accurately as
possible, as described in Fitts’ paradigm experiment[18]. During the task, except for
the sound indicating a mistake had occurred, there was no other feedback to affect the
subjects performance∗1.

3.2.4 Results

Table 3.1 shows the SD, IDe, and the corresponding amplitude and target width
combinations in the Testing Experiment.

Figures 3.1 and 3.2 show the input hits distribution of the pointing task in the
Testing Experiment. The abscissa values indicate the horizontal distribution range of
the hits (E.g., the target width in Figure 3.1 is from -36 to 36, and the target center’s
position is 0). The ordinate values indicate the distribution density of the hits in
corresponding horizontal positions (E.g., in Figure 3.1, 2 hits fall into the area from 24

∗1 In the Comparison Experiment, with each of the subjects taps there was an instant feedback

signal appearing in the screen to remind the subjects to slow down or hurry up.
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Fig. 3.1 The distribution of the input hits (A=840 pixels W=72 pixels)

to 28, therefore, the value of the ordinate is 2).

3.2.5 Discussion

Table 3.1 shows that the values of SD when using the SC method are less than
when using the CC method, which in turn increases the values of IDe. However the
changing amount of SD is uneven. For big target sizes, the SC method decreases the
standard deviation more; for small target sizes, the SC method decreases the standard
deviation slightly or does not decrease the standard deviation significantly.

We compared the effects of different target sizes in Figures 3.1 and 3.2. The off-
center tendency described by Isokoski and Raisamo is not clearly demonstrated with
either bigger sizes (W=72 pixels) or smaller sizes (W=36 pixels): for the left target,
the distribution of the dots did not lean obviously to the right of the center, meanwhile,
the distribution of the dots around the right target did not lean obviously to the left off
the center.
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Fig. 3.2 The distribution of the input hits (A=840 pixels W=36 pixels)

3.3 Comparison Experiment: Comparing the CC

Method and the SC Method

Although the Testing Experiment has shown that Isokoski and Raisamo’s assump-
tion was not supported, a clear comparison between the CC method and SC method
could not be given only through the Testing Experiment. Therefore, we were intrigued
to develop another experiment to concretely check which method of We calculation is
better.

To analyze and compare the two methods of We calculation accurately, we devel-
oped an experiment that could produce a set of time measurements when participants
kept their tapping within the given target widths to an almost ideal extent.

Since the results would be obtained from the ideal experimental situation, we ex-
pected to see a more precisely defined difference between the two methods.

3.3.1 Subjects

The same subjects in the Testing Experiment participated in the Comparison Ex-
periment.
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3.3.2 Apparatus

The same apparatus in the Testing Experiment was applied in the Comparison
Experiment, but the program was different because it was designed for different exper-
imental purposes.

3.3.3 Design

The study was partially intrigued by the study of the speed and accuracy tradeoff
introduced in the last chapter, so the experiment design was according to Experiment
SAT4 (see 2.5). In the Comparison Experiment, participants reciprocally pointed with
a mouse on a pair of vertical strips which were at a fixed distance apart A of 400 pixels.
W (appointed target width) was set at 10, 14, 20, 28 and 40 pixels. If the outside
region of the target was tapped, the task would not be abandoned and an auditory
signal would be played as a warning signal. The start position of the cursor for both
parts was the center of the screen.

Through this experiment, by observing the ideal input hits distribution, we can see
whether either of the methods is superior in modeling a pointing task.

3.3.4 Procedure

We applied the following procedures for the CC method and SC method to calculate
SD and control the program for the CC method and SC method.

For the CC method, the program calculated the SD based on a one coordinate sys-
tem (see Figure 3.3(b)). It meant that the standard deviation (SD) could be calculated
by:

SD =

√∑n
i=1(xi − x̄)2

n− 1
(3.1)

In Equation 3.1, xi was the ith of the participant’s selection point’s x-coordinates
(They were mapped into one united coordinate system). x̄ was the mean of
x-coordinates. n was the number of the trials.

For the SC method, the situation was more complex. The program calculated SD

based on two sets of coordinate systems (see Figure 3.3(c)). The concrete steps were
as follows: first, to compute the averages of the left and right x-coordinates of the
previous 14 trials (or less than this number before the 15th trial), secondly, to get the
xi-xaverage, (i = 1, 2 · · ·n, n ≤ 14), here xi was the ith hit’s x-coordinate, and xaverage

was the average of the values of xi, then there should be 14 numbers of xi-xaverage.
(One point noticeable here was that for the left side hits and right side hits, the values
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Fig. 3.3 The description figure of the two methods of effective target width

calculation. ((a) indicates the hits distribution of the left and right targets; (b)

indicates that the CC method was used to calculate the average, SD and We; (c)

indicates that the SC method was used to calculate the average, SD and We.)

of xaverage were different∗2, here we used xi-xaverage only for the convenience of the
following narration. The next step was to get the SD of the 14 (xi-xaverage)s, if x′i=xi-
xaverage, then

SD′ =

√∑n
i=1(x

′
i − x̄′)2

n− 1
(3.2)

For both the CC method and the SC method, the procedure of measuring the
running We value was as described in Section 2.5.

With either We calculation method, the total amount of data for analysis was 700

∗2 for the left side hits, xi-xaverage should be written as xileft
-xaverageleft , and for the right side

hits, xi-xaverage should be written as xiright
-xaverageright .
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Fig. 3.4 The regression between mean time and IDe using the CC method

Fig. 3.5 The regression between mean time and IDe using the SC method

(14 (trials) x 10 (subjects) x 5 (combinations of A and W ) = 700).

3.3.5 Results

After the experiment, we collected data and drew the Fitts’ law regression lines in
Figures 3.4 and 3.5.

In Fitts’ law, the relationship between movement time and target width is a log-
arithm relationship (Equations 1.2 and 1.4). Therefore, a logarithm relation curve
between movement time and We will be more helpful to compare the effect of the two
calculation methods. Therefore, we also made the logarithmic regression lines between
the MT and We based on the data of the experiment (Fig. 3.6 and Fig 3.7).

3.3.6 Discussion

In Figure 3.4, R2 of the regression line of the CC method is near to 1 (0.989), which
means (that) by using the CC method the regression of Fitts’ law is ideal and strong.
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Fig. 3.6 The match between mean time and We by using the CC method

Fig. 3.7 The match between mean time and We by using the SC method

The regression of Fitts’ law line in Figure 3.5 is still big (0.909), but not as great as
indicated by Figure 3.4. This means that the SC method is not as precise as the CC
method.

Figure 3.6 shows that with the CC method, the logarithm relationship between
movement time and effective target width is obvious and all five dots are restricted to
the curve (R2 = 0.988). However, in Figure 3.7, the dots are scattered around the
logarithm curve and are not confined tightly to the curve (R2 = 0.907).

Since in the Comparison Experiment, the system gave an immediate response to
the subject for each trial, the performance was under almost ideal control, therefore, the
regression between MT and IDe and the regression between MT and We was expected
to be rather strong. From this point of view, the regression of the Fitts’ law line in
Figure 3.5 and the logarithmic regression in Figure 3.7 (related to the SC method) are
not strong enough.
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3.4 General Discussions and Conclusions

The data from the uncontrolled Testing Experiment can help us to investigate the
reason for the inadequacies in the SC method.

As explained previously, the values of We calculated by the SC method decrease
from those values calculated by the CC method, and the changing amount for different
combinations of A and W are different (see Table 3.1). For big target sizes, the SC
method decreases the standard deviation and We more; for small target sizes, the SC
method decreases the standard deviation and We slightly. This irregular variation of
SD or We obtained from using the SC method will result in a weaker regression between
the mean time and IDe than the regression obtained by using the CC method. These
results show that the use of the SC method produces irregular effects on different target
sizes.

In the specially controlled Comparison Experiment, for the SC method, we used
the two sets of coordinate systems to calculate the standard deviation, which means
the requirements placed on the individual subject were less rigid than if we had used a
one coordinate system. Nevertheless, when we analyze the data, we must mix all the
subjects data together, and the standard deviation for all the dots will then be inflated.
That is the reason why the effective target width obtained from the SC method is bigger
than expected.

Based on the above analysis, it is logical to conclude that using one coordinate
system to calculate the effective target width is more reliable.

Moreover, the CC calculation method is also much easier and more convenient than
the SC method.

Another point worthy of note is that all the subjects in the two experiments were
right-handed. Since for the left-handed person, the situation can simply be reversed, we
can assume that the preferred hand will not affect the analytical results of this study.

In conclusion, we studied and compared two methods for calculating We. The
results show that the CC method (Combined-coordinate-system Method) is better than
the SC method (Separate-coordinate-system Method), i.e., it is better to map all the
abscissa data into one integrated coordinate system to do the calculation, rather than to
divide the data into two separate groups according to the corresponding target positions.

We believe that the data shown by this study affords a detailed and reliable com-
parison of the two methods of We calculation based on the information derived from the
input hits with different target sizes. The Combined-coordinate-system method recom-
mended in this study will help researchers and developers determine more confidently
and precisely the optimum effective target widths calculation method for pointing tasks.
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Chapter 4

The Information Processing
Rate Analysis and Its
Application in Fitts’ Law
Models Comparison

Fitts’ law was established on the assumption that the information processing pro-
cedure of human machine systems is analogous to wireless information systems. With a
normal distribution of input amplitudes, the information processing rate should reach
its maximum, i.e. it should reflect the channel capacity of the information transmis-
sion system of the pointing task. The purposely manipulated experiments carried out
for Chapter 2 afford us the opportunity to observe the performance under various sit-
uations of varying degrees of accuracy and speed, and to testify this assumption and
compare models based on this assumption consequently. In this chapter, the input hits
distributions in different performance conditions were analyzed in detail. Then through
applying the different forms of Fitts’ law formulations, we described the varying tenden-
cies of 1/b (the reciprocal of the task difficulty coefficient of the regression formulation of
Fitts’ law) in different performance conditions. Thereafter, two Fitts’ law formulations
were compared and analyzed on the basis of their ability to describe the information
processing rate during tasks with different performance conditions.

4.1 Background Knowledge and Related Works

Although researchers have made a great deal of effort to support Fitts’ law from
either a theoretical perspective or via its application, the theoretical support for Fitts’
law remains incomplete and the actual application of Fitts’ law in pointing tasks can
only partly support it.

One reason for the incomplete studies on Fitts’ law in literature is that during their
experiments the researchers did not adopt different performance conditions which would
have permitted them (and us) to observe a more comprehensive range of relationships
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and influential factors which exist during such tasks.
One exception could be the study introduced in Chapter 2, where a series of exper-

iments with different performance conditions have been performed to reveal the nature
and the relationship of speed and accuracy in a pointing task.

However, in Chapter 2, one question still remains untouched: “if the performance
conditions vary greatly, can the existing models describe the information transmission
of the pointing task precisely?” Actually, the concept of information processing rate
has almost been ignored since its first appearance in the original paper of Fitts’ law[18],
and the analysis of the information processing rate has not been discussed much ei-
ther. Although some researchers still doubt the authenticity of the analogy between the
information system and the human system, Chan and Childress have verified from infor-
mation theory that Fitts’ law complies with a unifying noise-velocity relationship based
on the analysis of information transmission in human-machine systems[10]. However,
their study did not discuss the question proposed here.

Moreover, through this chapter we can also compare different forms of Fitts’ law
through the analysis of information processing rates. We think that Fitts’ law models
can be compared from the perspective of their ability to describe the information pro-
cessing rate. This is the first time that the models have been compared by analyzing
their ability to describe the information processing procedure of pointing tasks. Once
we are clear about the relationship between the parameters in the models and the in-
formation transmission rate , it will not only be easier to decide which model is more
applicable, but also be able to help researchers understand some motor control features
in pointing tasks. The development of the study of information processing rates will be
a new horizon for Fitts’ law theory analysis.

4.2 Theoretical Analysis

Reviewing the problem in the light of the origin of Fitts’ law, the main reason for the
doubts about Fitts’ law is that it is not derived from strict mathematical deduction but
is based only on a direct analogy of Shannon’s information theory[47] (see Equation.4.1).

C = B log2(
S

N
+ 1) (4.1)

According to Shannon, “the capacity of a channel of band W (B) perturbed by
white thermal noise power N when the average transmitter power is limited to P (S)”
is given by C in Equation.4.1. Shannon also pointed out that information can be trans-
mitted as binary digits at the rate B log2(

S
N + 1) bits per second, through sufficiently

involved encoding systems. “ To approximate this limiting rate of transmission the
transmitted signals must approximate, in statistical properties, a white noise.”
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4.3 Experimental Data Analysis

The core function of Shannon Theorem 17 in Fitts’ law study is to afford theoretic
relations and help to establish a model for the major functional factors in motor tasks.

In Fitts’ law models (Equation 1.2), the coefficient b, in ms/bit, can be called the
difficulty coefficient, reflecting the information processing rate or, the capacity of the
information channel required by the task.

1
b

=
ID

MT − a
=

1
MT − a

log2(
A

W
+ 1) (4.2)

This part, 1/b, is similar in calculation method to IP in Equation.1.1. Another
term used to indicate information processing rate is TP (throughput)[12] [15] [25][24]
[37]. Since b can indicate the information transmission efficiency of a pointing task,
with “ideal” performance, the highest information processing rate of the human motor
system can be achieved, then with normal distribution of amplitudes, or near to it, the
largest value of 1/b should be observed.

4.3 Experimental Data Analysis

Since we want to see the information processing rate of different performance con-
ditions, so the varied performance conditions manipulated by the experiment will afford
a good chance to observe the information transmission ability with various performance
situations.

Therefore, we utilize the data of Experiment SAT3 (refer to Chapter 2) to observe
the relationship between different performance situations (different inclinations to speed
or accuracy) and the information processing rate. As for the details of the experiment,
including the subjects, apparatus and procedures, please refer to Chapter 2.

4.3.1 Results

The horizontal distributions of the input hits are shown in Figure 4.1, 4.2, 4.3,
4.4 and 4.5. The histograms indicate the relative frequency of the real input hits’
distribution, and the lines of normal density indicate the normal distribution with the
corresponding averages and standard deviations calculated from the real input hits’
distribution. For example, in task EA, since about 45% of input hits fell inside the
region between 572 and 574, the pole’s height is about 0.45 in Figure 4.1. With the
average and standard deviation of the input hits, we could also trace the normal density
lines, and there are some deviations between the values of the histogram and normal
density lines.

In Figures 4.1, 4.2, 4.3, 4.4, and 4.5, the values of the x-coordinate indicate the
horizontal position of the input hits in the interface. For the right side, the target center
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Fig. 4.1 The distribution of input hits in task EA with combination A1.

is 572, and for the left side, the target center is 452. The two borderlines’ x-coordinate
values of the right target are 566 and 578 respectively, and the two borderlines’ x-
coordinate values of the left target are 466 and 464 respectively ∗1.

4.4 Discussion

Figures 4.1, 4.2, 4.3, 4.4, and 4.5 show that in task N, the input hits’ distribution fits
the normal distribution better than those in the other tasks. The standard deviations∗2

in Table 4.1 show that the standard deviation of task N is smaller than that of the
other task conditions. It means that in task N, the input hits’ distribution fits the
normal distribution the best of the five task distributions. These data afford us the

∗1 We have obtained the distribution figures of all nine A − W combinations and can see similar

distribution of other combinations of A − W . However, due to the limited space, here we only

show one group.
∗2 Here the standard deviations indicate the deviations between the real distributions relative fre-

quency and the normal density, not the standard deviations of the input hits around the target.
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Fig. 4.2 The distribution of input hits in task A with combination A1.

Table 4.1 The standard deviations between the real input hits’ distribution of

the five tasks and normal distribution

Standard deviations EA A N F EF

Right 0.03 0.05 0.01 0.03 0.02

Left 0.05 0.03 0.02 0.02 0.03

chance to observe the information processing rate with ideal performance and with the
performance inclinations to speed and accuracy distributed symmetrically around it
respectively.

4.4.1 The ID Model

We first applied the basic form of Fitts’ law model, i.e. the ID model (Equation
1.2), to the data collected. The result shown in Table 4.2 shows that the slopes of
the regression lines varied greatly depending on the different demands on speed and
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Fig. 4.3 The distribution of input hits in task N with combination A1.

Table 4.2 Linear regression of the five tasks with the ID model

EA A N F EF

a 201.1 209.5 170.9 140.5 138.5

b 214.7 185.6 130.6 113.5 83.8

R2 0.904 0.899 0.961 0.995 0.992

accuracy, i.e., the five tasks (EA, A, N, F, EF). With Table 4.2∗3, it is easy to predict
that with greater speed, i.e., from task EA to task EF, the slope of the regression lines
(b), will decrease and the regression lines will consequently reach a line parallel to the
horizontal line. This means that the ID model cannot include the factor of accuracy
properly. When the speed exceeds a certain value, even in different ID conditions,
with significantly different error rates, no correction in movement time from different
accuracy levels can be integrated by the ID model.

Table 4.2 shows that, although correlations of MT and ID are strong in each task
(with R2 more than 0.90), the coefficients of regression varied greatly from one task

∗3 In Table 4.2 and Table 4.3, we only give the regression results of a, but we did not analyze them,

because a is a non-information factor of the system[55] and not the main point of discussion in

this chapter.
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Fig. 4.4 The distribution of input hits in task F with combination A1.

to another. Under different instructions, b changed very noticeably (varied more than
100% from Task EA to EF in this experiment given that we used the middle task, task
N, as the standard). With greater emphasis on accuracy b increased accordingly.

Therefore, we produced Figure 4.6 to reveal the complete trend of 1/b across the
tasks. From Figure 4.6 we can see that with less stress on accuracy, or more emphasis
on speed, 1/b increases uniformly.

According to Figure 4.6 and the analysis in Sect.1, the biggest value of 1/b, or the
maximum information processing rate (task information capacity) should appear when
the signal, or the input hit amplitudes, follow normal distribution. However, here it is
obvious that with greater speed, or with more errors, 1/b increases if the ID model is
applied. This tendency contradicts the analogy of the information theory and seems
to indicate that Equation.1.2 is not adequate to describe the information transmission
procedure of the human performance in pointing tasks.

4.4.2 The IDe Model

We then tested the effect of the IDe model (Equation 1.4). The results of linear
regressions between average movement time MT and the effective index of difficulty
IDe are shown in Table 4.3.

In Table 4.3, we can observe that although, as pointed out in [56], R2 decreased from
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Fig. 4.5 The distribution of input hits in task EF with combination A1.

Table 4.3 Linear regression of the five tasks with the IDe model

EA A N F EF

a 63.6 76.0 75.8 45.0 7.49

b 203.7 187.3 149.1 143.2 147.2

R2 0.841 0.750 0.867 0.926 0.881

the corresponding regression result using ID for each task, there are also advantages
brought by using the IDe model. First, the variance amplitude of b in different tasks
was reduced a lot (varied about 42% from the biggest value to the smallest value using
Task N as the comparison basement), and 1/b, the information transmitting rate for
performing the task, was also reduced a lot.

Secondly, Table 4.3 also shows that with greater speed, the slopes of the regression
lines decrease slowly and there is a minimum value for the slopes. Beyond that point, the
slope will rebound and this implies that no horizontal line will appear. This means that
the IDe model can include the factor of accuracy better than the ID model. When the
speed exceeds a certain value, in different conditions, with significantly different error
rates, using the IDe model, correction in movement time with various accuracy levels
can be reconciled by the IDe model.
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Fig. 4.6 The variation in 1/b according to the ID model.

Fig. 4.7 The variation of 1/b according to the IDe model.

We drew a figure showing the variation of 1/b, Figure 4.7 which shows a mild
increase of 1/b with the increased emphasis on speed. Moreover, unlike the broken lines
in Figure 4.6, there is one potential peak for the broken lines of 1/b in Figure 4.7. The
peak value of 1/b, or the maximum information processing rate appears in the case of
Task F. In fact, the values of 1/b around Task N, F and EF are quite similar to each
other, and the 1/b value of Task EF does not reach a higher level as it did when using
the ID model. As analyzed in Sect.1, when the input hits amplitude follows normal
distribution, the information processing rate of the performance system will reach its
theoretic maximum value, i.e. the information channel capacity. Although here the
peak does not happen in the case of Task N, it shows a big correction when compared
with the lines shown in Figure 4.6, where the broken lines reach higher values with
more emphasis on speed, which is obviously illogical according to the analogy of the
information theory. This figure implies that although the IDe model is not a perfect
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version for the resolution of all problems in Fitts’ law, it is an important step in the
right direction.

4.5 General Discussions and Conclusions

Although Fitts’ law has been applied widely in human computer interaction, it has
remained an unclear and unverified analogy with Shannon Theorem 17, and it has not
been thoroughly studied. A lot of research has been carried out to verify or improve it.
All the efforts are to acquire a reliable model for HCI. Since Fitts’ law is derived from
the analogy to Shannon’s information theory, if Fitts’ law really does model performance
accurately, according to the information capacity calculation formulation, it should turn
out to produce identical characteristics from other aspects of Shannon’s Theorem 17,
not only from the analogy of “amplitudes to signals” and “variability to noise” [34],
i.e., the conceiving of the information processing procedure in a human performance
system can be mostly explained in the same way that the information system should be
validated.

This study utilized the results of Experiment SAT3 in Chapter 2 which was designed
according to the original Fitts’ aimed reciprocal pointing task paradigm and in which we
had systematically manipulated the performance of the subjects in order to determine
(through analysis) whether the information processing procedure expressed in Shannons
theory can also be applied to human performance. We consider that this will make the
application of Fitts’ law more reliable.

By analyzing and comparing the estimates of the regression coefficients, we explored
deep into the background theory of the coefficients of the models. This study mainly
discussed the variation of b in Fitts’ law models and related it to the information pro-
cessing or transmission rate. Then some points related to the information transmission
procedure of the pointing tasks were observed.

With the nominal ID model, 1/b, the information processing rate varied greatly.
This contradicts Fitts’ theory according to which the information output of the human
motor system in any particular type of task is relatively constant over a range of task
conditions. Moreover, the inclination of the broken lines of 1/b creates doubts. The
biggest value of 1/b appeared in Task EF, which means that with error rates of more
than 20%, or with an input distribution near to Figure 4.5, the subjects utilized the
information channel most efficiently and then the informational transmission rate was
able to reach its maximum, i.e. the channel capacity was utilized to the full efficiency.
This is illogical and contrary to) the theoretic source of Shannon theorem 17 “to ap-
proximate the limiting rate of transmission the transmitted signals must approximate
a white noise”.
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While using the IDe model, 1/b for different tasks remained almost constant, and
the biggest value of 1/b appeared in task F. Although the peak value of 1/b did not
appear in task N, the 1/b value of task N is near the maximum and there is not a
uniform increasing tendency of 1/b with more emphasis on speed. The coherence of the
tendency of 1/b with the changes in performance helps to support the IDe model better
in logic.

These analytical results help us to answer the question proposed early in this chap-
ter: “When the performance conditions vary greatly, can the existing model(s) describe
the information transmission in pointing tasks precisely?” The ID model can not de-
scribe the performance completely with different speed and accuracy inclinations. On
the other hand, the IDe model can describe the performance much better in this respect.

As we have explained in the earlier part of this chapter, the project introduced
by Chapter 2 has included detailed analysis of the comparison of the two models. For
the current situation, the two models have different applications because of their dif-
ferent features and advantages. Therefore, the analysis of this chapter is not a mere
comparison of the two forms of Fitts’ law (Equation 1.2 and Equation 1.4). It points
out a direction for better modeling in the human computer interaction field. If we
are to continue using the information capacity theory as a background support for hu-
man performance measurement, we need to confirm that the variation tendencies of
the information processing rate in the human pointing task under varied conditions are
consistent with what Shannon theorem 17 implies.

The main contribution of this study is that it discovers another factor which is
essential for standard models comparison and evaluation, and it also lends support to
the use of the IDe model of Fitts’ law to model the pointing performance in varied
conditions. These works will benefit not only Fitts’ law researchers in HCI, but also
studies in the field of experimental psychology and other related areas.
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Chapter 5

SH-Model: A Model Based on
both System and Human
Effects for Pointing Task
Evaluation

In the previous chapters, the limitations of the Fitts’ law models incurred by the two
layers of speed-accuracy tradeoffs have been discussed comprehensively. The traditional
methods to resolve the problems are based on the analysis of input hits’ distribution (i.e.
spatial constraint). In this chapter, we developed a new model (SH-Model) based on
temporal distribution to alter the traditional models. The new model and the traditional
models are compared in two experiments using AIC (Akaike’s Information Criterion), a
criterion for statistical model selection. The results show that the new model is better
than the traditional ones in performance evaluation. Moreover, the human effects that
cannot be observed clearly by using Fitts’ law models can be represented by the SH-
Model. Therefore, we evaluated four input devices, a mouse, a pen with a big tablet,
a trackball and a pen with a small tablet. The comprehensive analysis including the
SH-Model, ANOVA analysis and questionnaire can offer a clear comparison of the four
input devices. The coefficients of the human factor in the SH-Model show the features
of different human performance effects when using different devices. According to our
analysis, the mouse is the best for the pointing task designed for our experiment, whereas
the trackball is the worst. This chapter not only verifies the application of the SH-Model
as a valid evaluation tool for the various devices, but also helps us to observe the human
effects separately from the system effects.

5.1 Background Knowledge

The appearance of more and more computer input devices makes designing human
computer interfaces a more complex matter. Designers have to choose suitable devices
from a lot of candidates. Sometimes the choice can be made comparatively easily, but
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in other cases, when more than a few input devices may be applicable, it is not easy
to make a final decision. Many factors including physical characteristics (such as me-
chanical reliability and installation space) and cost have to be considered. Therefore,
empirical experiments are necessary if the best selection from a range of input interfaces
is to be achieved. Meanwhile, as a basis for empirical analysis in human interface de-
sign, researchers use performance evaluation models to afford prediction and evaluation
power.

As introduced in the previous chapters, Fitts’ law, as a powerful tool for devices
evaluation of pointing tasks, are still under suspicion. To resolve the inaccuracy prob-
lems brought by the subjective layer of speed-accuracy tradeoff in pointing tasks, the
methods proposed by the previous research depend on the spatial distribution of the
hits, i.e. researchers are compelled to develop methods which ensure that error rates
are limited to 4% (refer to Equation 1.4). Since it has been tested as impossible to
establish a simple relationship in the Fitts’ law form to describe both the system effects
and human effects, here we established a new model based on the concept of temporal
distribution which is not limited by spatial constraints.

5.2 The New Model: SH-Model

Our model is based on the general information theory, different from the traditional
Fitts’ models based on the concept of the capacity of channel of Shannon’s theory.

The effects on the performance of a pointing task can be divided into two parts:
the system effect and the human effect∗1. The system effect can be expressed by the
condition of a pointing task such as the amplitude between two targets and the target
width. The human effect can be indicated by the accuracy of pointing generally.

Regarding the system effect of one-dimensional pointing tasks, assuming the target
horizontally and randomly appears within the interaction area, the probability of the
target falling into the interface area, Ps, can be represented as

Ps =
W

A + W
(5.1)

Considering unstable factors, we use λ, a parameter, to redefine the probability as:

Ps =
W

A + (λ + 1)W
(5.2)

Thus the self-information of the system is defined as:

∗1 We use “effect” here rather than “factor” because “human factor” has been used with wider

meaning.
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SIs = log2(
1
Ps

) = log2(
A

W
+ λ + 1) (5.3)

Here SIs means Self-Information. The value of the parameter λ can be estimated
by the minimum AIC method (described in Section 5.2.1). To establish a complete and
accurate model, we should consider not only system effects but also user performance
effects. Thus, we take accuracy in pointing as an indicator of the human effect.

If we use Ph to indicate the probability of hits falling into the target width achieved
by the user and call it the “Probability of success”, and simultaneously define the ratio
of the number of hits falling outside the target width to the total number of hits as
the error rate, then Ph + error rate = 1. Thus, Equation 5.4 can be regarded as
self-information depending on the probability of success reflecting the effects of human
performance.

SIh = log2(
1
Ph

) (5.4)

In our calculation, the Ph is calculated by the different combinations of target
widths and amplitudes. Since SIh and SIs affect the movement time, a linear model
which represents the movement time can be stated:

MT = a + bSIs + cSIh (5.5)

MT is the estimation of the real data. a, b and c are the three coefficients.
The reason for taking logarithmic-transformation of MT in Equation 5.5 is that

according to observation of the experimental data in the pointing task of the experi-
ments that we had executed previously, the data of the movement time do not follow
normal distribution, and most data have the distribution close to the lognormal distri-
bution. One example is shown by Figure 5.1 ∗2. The histogram indicates the relative
frequency of the MT data’s distribution, and the line of normal density indicates the
normal distribution with the corresponding average and standard deviation calculated
from MT . Using these experimental data to estimate coefficients may incur biased
estimation[49]. According to Everitt[17], after logarithmic-transformation, this kind of
data will follow normal distribution (see the data after logarithmic-transformation in
Figure 5.2). Therefore, in order to avoid getting biased estimations of the parame-
ters in models, we took the natural logarithm of the data for movement time so that
the logarithmic-transformed data followed the normal distribution. Meanwhile, to keep
each part of the formulation identical, we took a logarithm of every part (SIs and SIh).

∗2 Here in Figures 5.1 and 5.2 we only show the observation of the data of Experiment SAT1 in

Chapter 2 as an example because of the limited space. Actually, we can also observe the similar

data distribution from other experiments.
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Anyway, whether the transformation will provide better estimation of the parameters
can be testified by the models evaluation methods (described in the following parts).

Fig. 5.1 The MT distribution histogram and the normal distribution curve

The standard deviation between the real distribution of MT and normal distri-

bution is 0.036

Fig. 5.2 The ln(MT ) distribution histogram and the normal distribution curve

The standard deviation between the real distribution of ln(MT ) and normal

distribution is 0.029

Thus, we established the following new model:

ln(MT ) = a′ + b′ ln(SIs) + c′ ln(SIh) (5.6)

Here a′, b′ and c′ are also coefficients but probably different from a, b and c in values.
The concept of distribution we discussed here is completely different from the con-

cept in the traditional Fitts’ law model researches. In the literature, researchers referred
to the spatial distribution of the input hits. This point has been a theoretical and experi-
mental dilemma for researchers of Fitts’ law studies as we discussed in the introduction.
Contrarily, the concept of distribution in this study was reference to the movement
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time (i.e. temporal distribution). We utilize the logarithmic transformation in order to
construct a linear model for the logarithmic-transformed movement time data with the
normal-distributed error term∗3. Because Equation 5.6 only gives the part of MT that
can be predicted by the model, a more exact expression of the model should be given
by adding an error term. Therefore we should add the error term ε at the right-hand
of Equation 5.6. As previously discussed in the introduction, here MT is an estimation
based on the real data and is recorded as MTreal. The real data can be expressed in
the following equation.

ln(MTreal) = a′ + b′ ln(SIs) + c′ ln(SIh) + ε (5.7)

Equation 5.7 can be considered to be a regression model for ln(MTreal) with ln(SIs)
and ln(SIh) being two independent variables. In this model SIs shows the effects of the
system, such as the effects of different amplitudes and target widths, and SIh shows
the effects of the human. Thus, Equations 5.6 and 5.7 contain complete information of
both the system and the human. We call this new model the SH-Model (S indicates the
System and H the Human). The variables ln(SIs) and ln(SIh) are not independent of
each other, and their correlation coefficient can be estimated statistically.

When we consider Ph as a parameter in a binomial distribution, its maximum
likelihood estimate can be given as follows:

Ph =
n

m
(5.8)

where n is the number of the hits falling inside the target, m is the total number of
attempts.

If we use Equation 5.8 to calculate Ph, either of two extreme situations could arise.
One extreme arises when all the hits fall inside the target, Ph=1. The other extreme
arises when all the hits fall outside the target, then Ph=0. Equation 5.6 could not be
applied in either of these situations. We therefore used a Bayesian method to estimate
Ph by using a uniform prior distribution [42]. The following equation gives the posterior
mean of Ph.

Ph =
n + 1
m + 2

(5.9)

Omitting the error term ε, another form of Equation 5.6 for computing the predic-
tive value of MT is:

MT = ea′SIb′
s SIc′

h (5.10)

∗3 Here error refers to the difference between the observation of movement time and the estimation

of that calculated by corresponding equations.
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5.2.1 Model Evaluation by AIC

There are two main ways to evaluate regression models. The traditional one is
the use of a coefficient of determination R2. It indicates the degree of fit of models
to the observed data but it cannot represent the predictive ability of models, neither
can it be applied to nonlinear models. We usually evaluate models by the descriptive
ability and the predictive ability. The former shows how well the model fits the data
under analysis, and the latter can indicate how well the model predicts the value of data
that can be obtained in future under the same condition. With more parameters, the
model’s descriptive ability will be improved, but the stability of estimates for parameters
will deteriorate so that the predictive ability will decrease. The purpose of statistical
modeling is to obtain a model with a strong predictive ability, so the key problem in
model selection is how to get a good trade-off between the descriptive ability and the
stability of estimates. Thus, it is important to evaluate predictive ability of a model
objectively.

Another approach to model evaluation is to use information criteria (ICs), such
as AIC and BIC [46]. AIC (Akaike’s Information Criterion) is a criterion for model
selection [6]. When a number of models are available, we have to select one as the best
among the alternative models. Akaike’s minimum AIC method [6][28][45], is developed
for statistical model selection. This method can be interpreted from a maximization of
the expected entropy of the predictive distribution approach [7]. It can be applied to
comparisons for not only linear but also nonlinear models[8]. It is a better choice for us
to compare the new model (SH-Model) with the traditional models (ID model and We

model)with AIC.
AIC is defined on the basis of the maximum log-likelihood and the number of

parameters to be estimated by the maximum likelihood method, i.e., it is defined as
follows:

AIC = −2M + 2N (5.11)

Where, M is maximum log likelihood of the model, N is number of estimated
parameters in the model. The term −2M measures the decrease in predictive ability of
a model that is contributed to the AIC value by the increase in descriptive ability of a
model, and the term 2N measures the decrease in predictive ability of a model that is
contributed to the model by the increase in the number of parameters of a model (related
to the stability of estimates of parameters). Thus, the trade-off between the descriptive
ability and the stability of estimates for a model can be obtained by minimizing the
value of AIC.

Meanwhile, for the linear regression model with the error term following normal
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distribution, the least square estimation agrees with the maximum likelihood estimation.
Therefore, by using the method of the least squares, we can not only estimate the
parameters in models, but also get the AIC value of different models easily and then
compare the effects of different models. For two models that have different numbers of
parameters we can estimate the parameters and calculate their AIC values by using the
same set of data. Although more parameters can make the model more descriptive, the
minimum AIC method itself can reimburse the deviation brought by the parameters
before it gives out the final results. That means that AIC can show the consistency
between reality and prediction and can test both the descriptive ability and predictive
ability in a model comprehensively [28]. Overall, the model with the smallest AIC value
can be regarded as the best one [6].

Therefore, we decided to use the minimum AIC method to evaluate the models.

5.2.2 Experiment on PDA

To compare the performance of our new model with the traditional models, we
used the data from a pointing experiment on a PDA, which was developed according to
the one-direction pointing task defined in ISO 9241-9 [25].

(1) Subjects

Twelve subjects (6 male, 6 female, aged from 20 to 22, all right handed) were tested
in the experiment.

(2) Apparatus

The PDA used in the experiment was a Psion RevoTM running Windows EPOC,
157 mm (width) x 79 mm (height) x 18 (thickness). The weight of the PDA was 200 g.
The display was 480 x 160 pixels (1 pixel is about 0.24 mm). A stylus pen was used as
the input device. Experimental software was developed with Java.

(3) Design

The experiment was a 3 x 3 within-subjects factorial design. The factors and levels
were as follows:

• Target widths: 10, 20, 40 pixels (2.4, 4.8, 9.6 mm)
• Amplitudes, or distances between the center of targets: 100, 200, 300 pixels (24,
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48, 72 mm)

Each subject performed the task in 30 trials in each of nine conditions. There was
no rest time between two conditions, because the performance time was so short (within
30 minutes) that no fatigue would be incurred by it. The height of the targets was 90
pixels in all trials. Targets were presented in different order to the various subjects.

Because the actual time slot of the first trial was zero, the total number of data that
we processed was 3(targets amplitudes) x 3(target widths) x 29(trials) x 12(subjects)
= 3132.

(4) Procedure

In the experiment, two rectangles were shown on the display. One was filled and
the other was unfilled. Subjects sat down and held the device with their non-dominant
hands. They were instructed not to rest their hands on the table or any other objects
during the test. Upon contact the rectangles would switch places and the subjects would
again attempt to point to the unfilled rectangle.

Before testing, the subjects were asked to point to the unfilled rectangle (called
“target” below) with the input device as fast and accurately as possible. All subjects
performed 10 warm-up trials.

Fig. 5.3 Regression line of the ID model of Exp. on PDA

During the experiment, the subjects accidentally pointed in the wrong direction
away from the target (e.g. when the target appeared in the left, the subject pointed to
the right). That was related to the inertia and anticipation of the fast movements of the
subjects. It was unrelated to the one-dimensional task, so we deleted these accidental
hits. Thus the total valid data is 3132(complete data number)-118(accidental data
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Fig. 5.4 Regression line of the IDe model of Exp. on PDA

Fig. 5.5 Regression curved surface projection of the SH-Model (λ=0) of Exp. on PDA

number)=3014.

(5) AIC Values

To test the feasibility of our new model (Equations 5.6,5.10), we applied the exper-
imental data to the ID model (Equation 1.2) and the IDe model (Equation 1.4) to see
whether there was any difference in the effects of different models.

The results of the calculation are shown in Table 5.1. The model with the lowest
AIC value will be regarded as the best one (see Section 5.2.1). Ph was calculated by
each combination of A and W.

The corresponding AIC value of the ID model (Equation 1.2) is 38927. The re-
gression line is shown in Figure 5.3.
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Table 5.1 AIC values of the three models with the data of Experiment on PDA

Model Formulation AIC

ID Model MT = 197.39 + 75.3log2(
A

W
+ 1) 38927

IDe Model MT = −5.05 + 165.3log2(
A

We
+ 1) 39078

SH-Model MT = e5.27{log2(
A

W
+ 1)}0.64{log2 (

1

Ph
)}−0.03 37696

The AIC value of the IDe model is 39078, which is larger than that of the ID

model. The regression line is shown in Figure 5.4.
To compare the effects of the new model with the traditional models, we set the

parameter λ = 0 in the SH-Model (Equation 5.10), then the model is determined as:

MT = e5.27{log2(
A

W
+ 1)}0.64{log2(

1
Ph

)}−0.03 (5.12)

The corresponding AIC value is 37696∗4.
In Figure 5.5, for convenience of contrast with the other two regression lines, we

used the two dimension figure for the regression curved surface of the SH-Model, so
there is no SIh in this figure. It can be regarded as a projection of the curved surface
on the surface of ln(MT ) and ln(SIs). This model includes a negative coefficient in the
place of c′ (-0.03). It is easy to explain: if the subject performs quickly, he or she may
make more mistakes, so Ph will be smaller and SIh will become bigger, then the value
of the MT will be smaller for any occurrences of the negative value of c′.

From the above computation with the PDA experimental data, the SH-Model ob-
tained the lowest AIC (37696). Therefore, this model can be regarded as the best of
the three models. The traditional models have bigger AIC values. This indicates that
those models cannot describe the data that agree with the real data as accurately as
the new model can. These conclusions can effectively test the reasons for the doubts
regarding traditional Fitts’ models.

As previously noted, the input hits may not be limited by the outer boundaries of
the two targets, and may not be 0. Thus we changed the value from λ=0 to λ=1, λ=2,
and λ =3, and the AIC results are shown in Table 5.3.

∗4 Here the AIC value was computed by adding twice the sum of all data to the AIC value of the

model for the log-transformed data, so it is comparable with the others [28].
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Table 5.2 AIC values of the three models with the data of Experiment on Tablet PC

Model Formulation AIC

ID Model MT = 136.46 + 119.99log2(
A

W
+ 1) 47465

IDe Model MT = 53.52 + 153.05log2(
A

We
+ 1) 47859

SH-Model MT = e5.40{log2(
A

W
+ 1)}0.71{log2(

1

Ph
)}−0.00012 46077

5.2.3 Experiment on Tablet PC

To make sure our models have universality and are not limited to PDA experi-
mental data, we utilized the data of the Experiment SAT1 (see Section2.2) to see if it
indeed supports our conclusions. In this section we called Experiment on Tablet PC for
convenience.

The ID model (Equation 1.2), the IDe model (Equation 1.4), and the SH-Model
(Equation 5.6 or 5.10) applied from the experimental data and their AIC values are
shown in Table 5.2.

The regression curves of the three models are shown in Figure 5.6 and Figure 5.7.
Figure 5.8 shows the regression curved surface projection of the SH-Model. Ph was cal-
culated by each combination of A and W. Therefore, the different functions of different
instructions during the tasks can be expressed by Equation 5.6 effectively.

Fig. 5.6 Regression line of the ID model of Exp. on Tablet PC

From the above computation, we can conclude that with the data of Experiment
on Tablet PC, the SH-Model still has the lowest AIC (46077) (see Table 5.2). The
experimental outcome gave powerful support to our previous conclusion.

The AIC results of the SH-Model with different λs are shown in Table 5.3.
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Fig. 5.7 Regression line of the IDe model of Exp. on Tablet PC

Fig. 5.8 Regression curved surface projection of the SH-Model (λ=0) of Exp. on Tablet PC

5.2.4 Discussion

This study proposed an alternative model, SH-Model, for the development of the
solution for Fitts’ law’s problems. Using the ID model, if error rates have not been
considered, in other words, if the experimenter does not control the error rates dur-
ing the experiment, or if subjects cannot follow the instructions accurately, then the

Table 5.3 AIC values of SH-Model of different λs

Experiment λ=0 λ=1 λ=2 λ=3

Experiment on PDA 37696 37689 37691 37694

Experiment on Tablet PC 46077 46037 46032 46039
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Table 5.4 Error Distribution Percentage
SH-Model ID Model IDe Model

Negative Positive Negative Positive Negative Positive
error (%) error (%) error (%) error (%) error (%) error (%)

Experiment 47.8 52.2 54.9 45.1 55.1 44.9
on PDA

Experiment PC 52.8 47.2 58.9 41.1 59.7 40.3
on Tablet

experimental data may not follow the normal distribution and/or keep the error rate
of 4%. Using the IDe model as a post hoc method, though the error rate is modified
to be 4%, it is still not certain whether or not the experimental data can follow the
normal distribution. This means there may be a difference between the reality and the
prediction.

We compared the AIC values of different models including two traditional ones with
the new one designed in this study. From Tables 5.1 and 5.2, the AIC results show that
the new model is much better than the traditional ones. There is another noteworthy
point: the AIC values of the IDe model were even greater than the ID model. One
reason is that Experiment on PDA was developed on the PDA, and the subjects could
not rest their hands on knees, tables or any kind of platform. This might have made
them produce more mistakes. So the standard deviation of the experimental data of
movement time was greater and that made the AIC values larger. In Experiment on
Tablet PC, the AIC value of the ID model was still better than that of the IDe model
although the difference in the AIC values between the two models decreased. This may
be due to the fact that using We to modify the Fitts’ law model is from the point of
the input hits distribution. It may not contribute to the modification of MT. AIC or
similar methods are able to show whether the We model can be more advantageous.
From the viewpoint of modification of MT, the greater AIC values of MT mean that the
IDe model cannot model the performance better than the ID model. We calculated the
error rate for Experiment on PDA (26.11%) and Experiment on Tablet PC (10.94%).
With these two kinds of data on the PDA and the tablet PC, the SH-Model always
offers the smallest AIC, which means the new model is better than the traditional ones.

The larger AIC values of the traditional models lend support to doubts about the
traditional Fitts’ law formulations. At the same time, this also testifies to the feasi-
bility of using AIC values to examine different models in human computer interaction.
Although we introduce one more parameter here, the AIC results can show that there
is a great difference between the new model and the traditional ones. The qualitative
difference is greater than twice the number of the new parameters plus 1, e.g. using
the data of Experiment on PDA, λ=0, the AIC value of the SH-Model is 37696, and
that of the ID model is 38927. There is only one more parameter in the SH-Model so
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to double the sum of 1 parameter plus one is 4, i.e. 2 x (1 parameter + 1) = 4. Then
38927-37696=1231 is much bigger than 4.

Regarding the benefits of the SH-Model, first, it provides the development of the
solution for Fitts’ law’s problems. It is established based on the concept of temporal
distribution rather than the traditional concept of spatial constraint. Second, with the
new model, we need not keep within the error rate of 4% constantly and strictly, either
by controlling experimental conditions or when calculating We. Third, it can distinguish
between system and human effects.

We propose using “SH-Model” as the name for the new model because we proposed
the concept of separating the two parts in one model. Indeed, SIs in Equation 5.3 is
different in its physical meaning from the traditional Fitts’ law formulation. It is decided
by the situation of the task. Meanwhile, the SIh in Equation 5.4 is obviously determined
by the subjective effect of the performers. The two parts of the information can be
observed clearly and distinctly in the SH-Model. From the traditional models, although
the system effect and human effect are both considered, they cannot be separately
considered and hence they are not easy for others to observe. We need to analyze
deeply to find the effects of the two separate parts upon the performance.

In the SH-Model, we add another parameter of Ph to consider the human effect.
This means that we need to know the error rate to apply this model. In this situation,
the SH-Model has a similar function to the IDe model (including the behavioral effects
or accuracy into movement time). However, because the IDe model only modifies the
error rate to be 4%, we do not know whether the data follow the normal distribution.
The SH-Model is established from the viewpoint of temporal distribution (movement
time), thus we can fix the error rate and estimate the MT at different levels (i.e. not
only 4%). Furthermore, Ph can affect the movement time so that with this information
the model can be more reliable. The benefits derived from the increase in complexity
in the new model outweigh any inconvenience caused by increased complexity.

We have tested the effects of four different parameters: λ=0, 1, 2, 3. The compar-
ison of the results (see Table 5.3) shows that, for Experiment on PDA, λ = 1 produced
the smallest AIC, for Experiment on Tablet PC, λ = 2 produced the smallest AIC.
Comprehensively, this means that most of the input hits would fall into the range of
(A + 2W ) to (A + 3W ) as shown in Figure 5.9.

The smallest AIC value of the model with λ = 1 or λ = 2 shows that most of the
hits, including the successful attempts and the misses will fall into the shallow gray
area indicated in Figure 5.9. This shows that interfaces with targets should leave at
least this much space between any two targets. The reason for the different optimal
λ determined by the minimum AIC method in the two experiments is that we used
apparatus with different screen sizes. The PDA screen is so small that the subjects
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were unable to move their hands freely and also that their attention was focused on a
much smaller area. That might make them point to a smaller range. Conversely, the
tablet PC’s screen is rather big, so it is natural for the subjects to point to a big range.
Then the areas of most hits are different and so are the optimal λs, i.e. optimal λs
may be expected from different devices. Certainly we can select even more values for
parameter λ. Then the corresponding AIC values can indicate whether there are better
λs for the models.

Fig. 5.9 The range of input hits when λ =1 to 2

We analyzed the experimental data through the ID−MT figures (shown in figures
5.3, 5.4 and 5.6, 5.7). Through these figures we can see that the numbers of those hits
beside the two parts of the regression lines are significantly different. This means that
the distribution of the data is obviously different from a normal distribution. From the
SH-Model we can see that the data’s distribution beside the two parts of the regression
plane are nearly symmetrical (see Figures 5.5 and 5.8). We can also see whether the
percentages of the number of errors are greater than 0 or smaller than 0 from Table
4. It is easy to conclude that after logarithm transformation, the data follow normal
distribution more accurately and with the new model we can evaluate performance
better [17][45]. The estimated MT values can be observed from the trend lines in
Figures 5.3 to 5.8∗5.

∗5 A point worthy of noting is that we cannot compare these figures simply, because different units

of the axis of the coordinates were applied. Meanwhile, since the movement time’s unit is in

milliseconds (ms), the values of the Y axis are very big and it is not easy to observe the difference

from movement time. Also because the unit of Figures 5.5 and Figure 5.8 is different from Figures

5.3, 5.4, 5.6 and 5.7, the simple comparison of the values of the Y axis will be meaningless.
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5.2.5 Conclusions

Our goal in this study is to provide an alternative model for solving the problems
of the traditional Fitts’ models. In the experiments, we used the data derived from the
use of a stylus pen to test the feasibility of different models. We have demonstrated
that the SH-Model is better than the traditional models based on the AIC analysis in
the PDA and tablet PC experiments.

Our future work includes investigations of various pointing tasks and more pointing
devices in order to clarifying the SH-Model’s range of application.

5.3 Application of the SH-Model

5.3.1 The Application of Models in Device Comparison

Referring back to the literature on human computer interaction, Fitts’ law was first
applied to computer input device evaluation by Card and colleagues [9]. A mouse, an
isometric joystick, step keys, and text keys were compared in target selection tasks in
that research. That study promoted the commercial application of the mouse. After
Card and colleagues’ avant-garde research which applied Fitts’ law to commercially
used input devices, some similar studies were carried out using Fitts’ law as a basis for
comparison [34]. These studies were invaluable in the original testing and evaluation of
many commercial computer input devices.

Epps had evaluated six input devices (two kinds of touchpad, a mouse, a trackball
and two kinds of joystick) using three different models[16]. In his research, the trackball
and the mouse provided the best target acquisition performance of the six devices.

However, in the evaluation study carried out by MacKenzie et al., among the three
devices evaluated, the trackball was a poor performer for both pointing task and the
dragging task [33]. The performance of the mouse and the stylus with tablet in the
pointing task was similar, while that of the stylus with tablet was slightly higher. Based
on the introduction of the application of ISO 9241 part 9 standard, Douglas, Kirkpatrick
and MacKenzie compared a joystick and a touchpad in their study [15]. They concluded
that for the one-directional pointing task, the joystick was slightly better than the
touchpad, but the result was not significant.

Another evaluation study was carried out by Poika Isokoski and Roope Raisamo[24].
Six mice were compared in their experiment. They verified that although the mice
performed almost equally well, the larger mice performed a little more slowly.

In these studies, all the researchers used a traditional model such as the ID model
or the IDe model. An exception was the comparison study of Accot and Zhai [2]. They
used the Steering Law to compare five devices (mouse, stylus, touchpad, trackball and
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trackpoint) in a steering task. According to their study, the compared devices could
be classified into three groups, and the performance rankings for the groups was 1) the
tablet and the mouse, 2) the trackpoint, 3) the touchpad and the trackball.

Although many studies on the use of models to evaluate devices have been devel-
oped, the SH-Model, a newly proposed model, has not gained enough attention and
support as an effective evaluation tool for input devices. There has been no study on
device evaluation based on the SH-Model. The SH-Model is a model derived from the
time series analysis; it is not based on the analysis of spacial distribution of the input
hits made by the subjects. Moreover, it can clearly show information about the individ-
ual humans effects on performance as distinct from the information about the system
[44]. This characteristic may help us to observe the devices features more precisely.

5.3.2 Research Purposes

Through this research, we aim to realize two purposes. First, we want to test
whether the SH-Model can be generalized, i.e. whether it can be reliably applied to the
evaluation of different pointing devices. Although the first study on the SH-Model has
afforded the data of an experiment on a tablet personal computer with an electronic pen
as the input device[44], the feasibility of using the SH-Model to evaluate other kinds of
devices has not been verified. In this part, we will make it clear whether the SH-Model
is suitable for other types of devices such as a mouse and other environments such as a
desktop personal computer system.

The second purpose of this research is to show how to apply the SH-Model to device
selection and how to observe the characteristics of different input devices through the
SH-Model. Previously, researchers used to depend on Fitts’ Law as a primary input
device evaluation tool to do similar analyses.

5.3.3 Comparison Experiment

We executed an experiment according to the Fitts’ law paradigm experiment with
four different devices to produce the data for device comparison.

(1) Subjects

Twelve subjects, of different genders and ages (3 females and 9 males, 21 to 32
years old, average age 25) participated in the experiment. All the subjects were right
hand dominant.

– 77 –



Chapter 5 SH-Model: A Model Based on both System and Human Effects

Fig. 5.10 Experimental interface

(2) Apparatus

The experimental apparatus included a desktop personal computer (screen size:
43cm/17.0” Diagonal, pixel pitch: 0.264mmH x 0.263mmV, each pixel on the screen
was 0.264 mm wide) (see Fig.5.10), a mouse (Agiler AGM 6124X), a pen with big
tablet (WACOM Intuos. Graphics Tablet model i-900 serial), a pen with small tablet
(WACOM FAVO Tablet F410 ET0405), and a trackball (Microsoft Trackball Explorer
1.0) (Fig.5.11). The experimental program utilized the full-screen mode as shown in
Fig.5.10.

This experiment, however, should not be regarded as an absolute comparison of
the four input devices mentioned above. As described in [2], to definitely compare the
performance of different types of devices is impracticable, because of a lot of hardware
and software implementation details including resolution, sampling frequency, form fac-
tors, sensor technology, transfer functions, etc. However, it is still feasible to make an
estimate of different devices in performing a certain task for a common user when he or
she uses the devices with the default settings. We agree with this opinion and compare
four representative devices for the pointing task while keeping all the default values in
the system software. In this way we were able to determine which device is the best for
pointing when an average user simply uses it as an input tool.

(3) Design

The combinations of different width (W ) and amplitude (A) between the two strips
were set at W = 12, 36, 72 pixels and A =120, 360, 840 pixels (see Table 3.1). The
order of the 9 width and distance combinations was randomized. Twelve trials were
presented in each combination, with the first tap excluded in analysis.
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Fig. 5.11 Experimental input devices

(4) Procedure

Similar to the paradigmatic Fitts’ experiment[18], participants reciprocally pointed
with appointed input devices to a pair of vertical strip targets which appeared on the
screen of the PC. Once the white rectangle (the target) was tapped, the position of the
white rectangle and black rectangle were reversed, and the subjects were required to
tap the current white one as quickly and accurately as possible. A warning beep was
played if the subject tapped outside the target.

To reduce the effects of bias due to the users varying degrees of familiarity with the
devices, we arranged adaptation practice before the real experiment. The adaptation
practice time was 20 minutes for each device and each subject. Since the pointing task is
a simple task, it did not take much time for users to become familiar with it. Therefore,
we assumed that 20 minutes would be enough for the practice segment. The order of
the four devices of the mouse, the pen with big tablet, the pen with small tablet and
trackball were balanced by a Latin Square.

After the experiment, we asked each subject to fill in a questionnaire, which helped
us to obtain their views on each device. From this we compiled overall usability rankings,
reasons for their preferences and other comments. As for the rankings, we asked the
subjects to give scores to each of the four devices, the highest score being 4 and the
lowest being 1.
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Table 5.5 AIC values of the three models for the four devices

Devices ID model IDe model SH-Model

Mouse 16024.3 16050.5 15631.1

Pen with small tablet 16540.5 16871.1 16031.9

Pen with big tablet 16682.5 17383.1 16118.8

Trackball 18095.7 18103.0 17527.5

Fig. 5.12 Average movement time of each combination for the four input devices

(5) Results

The AIC values of different models and different devices are listed in Table 5.5. It
is obvious that the SH-Model can obtain the smallest AIC values for each of the four
devices.

The average movement time for each A and W combination is shown in Fig.5.12
and Table 5.7. In Fig.5.12, A1, A2, ..., C3 represent the nine combinations of different
A and W set in the experiment. The respective IDs of the nine combinations (from A1
to C3) are listed in Table 5.7.

Using ANOVA to analyze the data, we were able to determine a significant differ-
ence among the four devices on average movement time, (F3,32) = 4.98, p < 0.01.

Fig.5.13 helps us to see what would happen if we use the ID model (Equation
(1.2)). However, since Equation (1.2) cannot depict the complex interactions between
the effects of the tasks difficulty and the performers’ subjective inclination, it is not a
completely reliable model for device evaluation.

With partial modification of the ID model, the IDe model may depict a more
reliable picture of the trend lines for the tasks and the four input devices (Fig.5.14).
Unfortunately, all R2 values for the four tasks’ regression lines are smaller or much
smaller than those derived from the ID model. The R2 of the regression line for the
pen with big tablet is actually too small to be reliable. This means that although
the IDe model helps to observe the reality more clearly, the results brought by it are
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Fig. 5.13 Regression lines for the four tasks using the ID model

Fig. 5.14 Regression lines for the four tasks using the IDe model

simultaneously unstable.
Thereafter, to check the feasibility of the SH-Model for the evaluation of the four

different input devices, we applied the experimental data to the SH-Model to see whether
there was any difference among the effects of different devices and, if there was some
difference, which one would be the best one for pointing tasks. Coefficients estimated by
the least square method are shown in Table 5.6. Note that although the estimation of
c in the SH-Model is comparatively small as an absolute value, the modifying quantity
is still significant for the non-linear formulation (Equation (5.10)).
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Table 5.6 Coefficients in the SH-Model estimated by the least square method

Coefficient Mouse Pen with big tablet Trackball Pen with small tablet

a 6.30 5.91 7.02 5.74

b 0.533 0.789 0.461 0.837

c 0.0771 0.000837 0.104 -0.00594

Fig. 5.15 Regression curving surfaces with the SH-Model of the four tasks

Fig.5.15∗6 shows the interaction of the two factors (SIh and SIs) in pointing tasks
and their effects on movement time. We can see that in most cases, the mouse took the
least movement time in the pointing task for the desktop computer. In the mean time,
the trackball took the most time of the four devices.

When we used ANOVA to analyze the ranks of the devices assessed by different
subjects, we found a significant difference existed among the four input devices, (F3,44)
= 14.3, p<0.0001. From Fig.5.16, we can see the comprehensive ranks of the four input

∗6 Here the curving surface of the pen with small tablet is different from the others because the

value of coefficient c is minus, thus some of the curving surface cannot be shown in this figure.
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Fig. 5.16 Rankings of the four devices according to the preferences of the subjects

devices. Of the four devices, the mouse obtained the highest score of 45 with a tiny
standard deviation of 0.45. The second in ranking which was accepted by most subjects
was the pen with small tablet, with a standard deviation of 0.67. The pen with big
tablet acquired a score of 23 with a standard deviation of 0.90, and the last one was the
trackball, with a comparatively bigger standard deviation of 1.14.

The error rate for the tasks on the four devices are 1.9%, 2.5%, 0.8%, 2.5% re-
spectively for the mouse, the pen with big tablet, the trackball and the pen with small
tablet.

5.3.4 Discussion

In the previous part of this chapter, the SH-Model was shown to be better than
the traditional models. After this experiment, we also calculated the AIC values of the
different models with the data derived from different input devices. Table 5.5 shows
the AIC values of three models. The fact that the SH-Model can obtain the smallest
AIC values for different input devices not only supports the conclusion in the previous
study that the SH-Model can successfully modify the inaccuracy brought by using the
traditional Fitts’ law models (the ID and IDe models), but also help to widen the
application of the SH-Model to various input devices besides pens. The SH-Model can
also be applied to a desktop system which may be different from a tablet PC.

The following paragraphs will first give some ANOVA analyses and some basic
analysis based on the traditional evaluation methods, and then we will use the SH-
Model to analyze the features of the four devices tested by our experiment. We also
compared the evaluation results of this research with those of other related papers.
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Table 5.7 Comparison of average movement time of different input devices and

A−W combinations

Combinations ID ln(SIs) Mouse Pen with big tablet Trackball Pen with small tablet

A3 1.42 0.347 505.4 517.2 925.9 448.1

A2 2.12 0.749 631.5 656.8 1096.5 601.2

B3 2.58 0.950 657.9 821.9 1078.5 721.8

A1 3.46 1.24 886.5 959.9 1547.3 868.6

B2 3.46 1.24 758.1 948.9 1247.3 909.3

C3 3.66 1.30 840.5 1124.8 1259.9 1057.0

C2 4.60 1.53 980.4 1285.2 1606.5 1178.9

B1 4.95 1.60 1054.7 1254.4 1747.6 1170.5

C1 6.15 1.82 1248.7 1643.0 1987.9 1548.0

(1) Analysis Based on Traditional Methods

According to the ANOVA analysis, there is a significant difference in the average
movement time corresponding to each A-W combination of four input devices. Based
on Table 5.7 and Fig.5.12, we can see that as the difficulty of the tasks (ID and IDe)
increased, more time was needed for completing the tasks for all the devices. This trend
can also be observed from Fig.5.13 and Fig.5.14.

However, as discussed in the HCI modeling field, we can never merely consider the
average movement time because other factors also interact with the difficulty of any task.
For example, in the experiment, when we compare performance based on movement
time, the trackball will be the least suitable one. However, when the comparison is
based on error rate, the trackball is a good choice. In the SH-Model, we use ln(SIh) to
express this factor. The effects of this part will be described mainly by the error rate.
Amongst the four devices, the subjects made the fewest mistakes when they used the
trackball to fulfill the task (error rate = 0.8%). When using the pens (the pen with
small tablet and the pen with big tablet), the subjects made the most mistakes.

A different and even contrary result is reached depending on whether error rates or
movement times are used as the basis for comparison. This means that we need a more
comprehensive, inclusive and reliable method to assess and compare the four devices.

(2) Analysis Based on the SH-Model

Fig.5.13 shows that according to the ID model, in most cases, the mouse costs the
least in terms of performance time. With a greater index of difficulty, the difference
in performance time is bigger. Nevertheless, Fig.5.13 cannot show the error rate or
individual performance situation, therefore it is not adequate for device evaluation for
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the pointing tasks.
Since there is a factor of real performance (the effective target with, We), Fig.5.14

can show a more comprehensive comparison for the four input devices using IDe.
Fig.5.13 and Fig.5.14 roughly show that for the pointing task with an identical re-
quirement for both speed and accuracy, the mouse is better than the other devices and
the trackball performed the worst. However, with the IDe model, as we have observed,
all R2 values for the four tasks’ regression lines are small and sometimes too small to
be reliable. Moreover, although the information on individual performers is included
in Fig.5.14, we cannot observe it directly from this figure. Therefore, we used the
SH-Model to do the device evaluation and to observe the features of different devices.

Fig.5.15 gives a more comprehensive description of the pointing task. In this figure,
we can see that the effect from SIh is obvious. This is seen most clearly by referring
to the data for the trackball. When the task situation is fixed, a bigger SIh derived
from smaller Ph will incur a bigger increase in movement time (see Fig.5.15). For the
other devices, the increase is not so apparent. This implies that in pointing tasks which
require subjects to perform quickly and accurately, it is not easy for the subjects to
increase speed when they use the trackball. This agrees with the fact that the subjects
were able to obtain greater speed when using the other devices. Considering the effect
of SIs simultaneously, Fig.5.15 (a) shows that the mouse is the most suitable device
for the pointing task because when task difficulty (which can be expressed by SIs) is
increased, people do not need to slow down greatly to keep an acceptable degree of
accuracy. Furthermore, when using the mouse in any given task situation, it is not very
difficult to increase the speed.

The SH-Model can also give us a more precise description of a user’s performance
through the coefficients of b and c (see Table 5.6). The values of b for the pen with big
tablet and the pen with small tablet are comparatively larger than for the other two
devices, which means that the difficulty of the task has more effect on movement time
with the pens because ln(SIs) is a factor decided by the task. When SIs increases,
much more time is needed when using the pens than when using the mouse or the
trackball. The value of b for the trackball is the smallest, which means that the effect
of the task is not obvious. As for the values of the coefficients for c, with smaller
speed or correspondingly smaller error rates, movement time will be decreased more to
compensate for the over emphasis exerted on the task by the subjects∗7. Conversely,
with greater speed and usually a correspondingly greater error rate, movement time will
be decreased slightly. Sometimes there may even be additional effects if the error rate is
too big. We can also see that the value of c for the trackball is the largest, which means

∗7 As we have explained previously in this chapter, although the absolute value of c is very small,

since the SH-Model is a non-linear model, its function is still significant.
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the movement time will be reduced more in accordance with the requirement of the
task. On the other hand, almost no amount of time will be reduced for the movement
time of the pens.

We can derive coherent conclusions from the subjects’ comments on the devices
using the SH-Model. From Fig.5.16, it is clear that the mouse is supported by most
subjects as the most suitable input device for pointing tasks. On the other hand, most
of the subjects did not show any preference for the trackball. For the pens, the subjects’
opinions were strongly divided. The pen with small tablet obtained a score of 31 whereas
the pen with big tablet only got a score of 23, just a little higher than the trackball.

Comprehensively speaking, through applying the SH-Model (Table 5.6 and
Fig.5.15), it is clear that for the pointing task designed for this experiment, the mouse
is the most suitable input device, the pen with small tablet ranks second, the pen with
big tablet ranks third, and the trackball ranks fourth (last).

However, these results do not mean that trackball is definitely bad for users. Ac-
tually it is designed for precise pointing in a small area of screen space. The results
we obtained through this study support its ability to acquire low error rates. Simul-
taneously, the results also show that the trackball is not suitable for target acquisition
tasks which require higher rates of speed. Actually, the evaluation results of the four
candidate devices may vary in different tasks, such as writing tasks, steering tasks [2],
etc.

(3) Comparing the Evaluation Results with Related Works

Here it is necessary to analyze the evaluation results of this study and the related
studies. The results in this study support the conclusion of Card’s paper[9], however,
this study gives a more comprehensive analysis of the performance of the four different
devices through the application of the SH-Model.

In the pointing task experiment developed by MacKenzie et al. [33], the perfor-
mance of the mouse and the stylus with tablet was almost the same. This conclusion is
similar to the results in this study. Nevertheless, here we can give a clearer and more
precise comparison through the SH-Model (Fig.5.15).

Contrary to this study, for the one-dimensional pointing task, Epps concluded
that the trackball performed better than the mouse [16]. The reason for the difference
between Epps’ paper and this study is that in their task design, the target was a rather
small square. Therefore, the emphasis naturally slipped toward accuracy rather than
speed. In that situation, the performance of the trackball would be better, as we
discussed previously.

Interestingly, Accot and Zhai (1999) have classified the mouse and the pen with
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tablet together in the same group in steering tasks [2]. Through this part, it is also
possible to class these devices into one group. Future study which will focus on more
devices will be instructive and will help us to classify different devices for different
purposes.

Certainly, as a model with the a posteriori information (Ph), the prediction ability
of the SH-Model will be weakened somewhat, which happens also to the IDe model.
However, this cannot affect the evaluation ability of the SH-Model for pointing tasks. As
previously discussed in Sect. 1.1, the evaluation models which do not take into account
different degrees of accuracy or which are based on the hypothesis that all the subjects
always perform with the same error rate are not accurate for device evaluation. The
real performance (in the task) has to be included. Moreover, in the SH-Model, we can
fix the error rate and estimate the movement time at different levels. The application
of a range of data in an experiment can also influence the design of the interface. The
comprehensive ability of the SH-Model in prediction and evaluation has been discussed
by [44] and all the conclusions are supported by AIC values.

5.3.5 Conclusions

We carried out the experiment presented in this section to make a first effort to
evaluate different input devices with the SH-Model. Four commonly used computer
input devices were compared and analyzed in the experiment with several indices.

From the analysis of the SH-Model and some other analyses, we can see that the
best input device for the pointing task with a requirement for both speed and accuracy
as used in this study is the mouse. The second is the pen with small tablet, the third is
the pen with big tablet, and the last is the trackball. This order means that for a certain
kind of system with human computer interaction, different input devices will affect the
users’ performance in different ways and it is necessary to evaluate the devices for the
system and select the most suitable one for each case.

5.4 General Conclusions

The study in this chapter has the following significant points for the HCI applica-
tions.

First, we introduced a new method which applies the general information theory
(self-information) and also the probability theory to established pointing performance
models.

Second, it is the first attempt to observe the effects of system and human beings
distinctly in one model.
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Third, we have not only verified the advantages of the SH-Model, but we have
also applied the powerful AIC statistical tool to the evaluation of human performance
models for the first time in the human computer interaction area.

Fourth, in the device comparison based on the SH-Model, for each of the four
devices, the SH-Model obtains the minimum AIC value, which means not only that the
SH-Model is better than the other traditional models, but it also supports the idea that
the SH-Model can be applied to other kinds of human computer interfaces.

Finally, the SH-Model can effectively evaluate input devices for pointing tasks which
require both speed and accuracy. The coefficients estimated by the least square method
in the model help us to understand the difference between different input devices.

We have established a new model, the SH-Model, for the pointing task in HCI, and
testified its’ superiority over the traditional models through AIC analysis. Thereafter,
the devices evaluation in different tasks will also contribute to user interface design by
affording reliable guidance. We believe we have shown that the SH-Model achieves this
better than the traditional models. This agrees with the idea that the establishment of
more reliable evaluation models is one of the more important tasks of researchers in the
field of human-computer interaction.
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Chapter 6

Influence of Colors on
Pointing Tasks

Fitts’ law has been applied to evaluate the pointing task widely. However, the
quantitative effect of using color in the interfaces has not been discussed by literature.
This chapter introduces the research on the color effects in pointing task by using
Fitts’ law as the evaluation method. Different colors and color demonstrating styles are
applied in the experiments with similar design of the paradigm Fitts’ law pointing task.

The experimental results show that when the subjects use mouse as the input
device, there is no significant difference among the mean time of performance with the
interface with colored target and white target. The results also reveal that the color
demonstrating styles will bring no significant difference to pointing task when the mouse
is applied, either.

However, when the tablet personal computer and pen are applied, the subjects
without much experience in tablet personal computer usage need more time to perform
the task with colored target than with the white target. Especially when the colors are
changed randomly during the subjects tapping on the target, the difference is even more
obvious. These results are testified by the Checking Experiment and Learning Effect
Experiment across different groups of subjects.

6.1 Introduction

Fitts’ law (both the ID and IDe model) has been applied widely in human computer
interaction even with the lack of theoretic supports since 1978 [9][36]. However, although
the circumstances of human computer interaction are mostly colorful, all the existing
researches of the pointing task related with Fitts’ law, either theoretic or applications,
are based on black and white interfaces. The effects of color have not been considered
into the motor tasks related with Fitts’ law researches. Therefore, the purpose of this
study is to evaluate the pointing task with colored interfaces by Fitts’ law models (the
ID and IDe model). This will be a new horizon for Fitts’ law applications.
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6.2 Color Experiment 1: on Interface with Fixed

Colors

First we measured the effect of color in pointing task when the colors of the targets
were fixed.

6.2.1 Subjects

Eleven volunteers, of different genders and ages (20 to 29 years, nine males and two
females, average 22.3 years old) participated in a target pointing experiment. All the
subjects’ dominating hands were the right hands.

6.2.2 Apparatus

We used two sets of apparatus to test the influence of color on human performance in
HCI interfaces. The first set of apparatus includes a Tablet Computer (FUJITSU FMV
Stylistic, with the screen size of 21cm x 15.6cm, each pixel on the screen was 0.2055mm
wide) and a plastic pen. The second set of apparatus includes a desktop personal
computer (screen size: 43cm/17.0 Diagonal, pixel pitch: 0.264mmH x 0.263mmV, each
pixel on the screen was 0.264 mm wide) and a mouse (Agiler AGM 6124X).

Calibration

We measured luminance and chromatic coordinates of the colors that we used as
stimuli by spectral radiometer (CS-1000 made by Konica-Minolta). In measurement on
tablet PC, we set the angle between the tablet PC and the detector of the radiometer in
66 degree from the horizontal surface, which was obtained as the average of 5 observers’
experiments. Distance from the screen and the detector was 30 cm for the tablet PC and
50 cm for the PC (LCD), those were also obtained as the average of viewing distance
of these observers.

Table 6.1 shows the luminance and chromatic coordinates of them presented by the
PC (LCD) and the tablet PC with Standard Error of the Mean (SEM) and error rate.
Figure 6.1 shows the chromatic coordinates plotted in CIE u-v coordinates. As shown
in the figure, the colors presented by the tablet PC are much closer to the background
white compared to the ones by the PC (LCD). Although red, green and blue shown
in the figure are the most saturated colors that can be presented by the table PC, the
difference of saturation between PC and tablet PC possibly affects the results of this
research. We thought, however, that we should use the most saturated colors for each
screen because the aim of this research is to estimate the effects of using colors to human
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Table 6.1 Luminance and chromatic coordinates of stimuli used in PC (LCD)

and tablet PC.

Color of Stimuli Values SEM Error rate

Red

PC (LCD) Lv 40.71 +-0.78 1.92

u’ 0.4204 +-0.0011 0.27

v’ 0.5271 +-0.0007 0.14

Tablet PC Lv 52.81 +-1.09 2.06

u’ 0.2829 +-0.0021 0.76

v’ 0.5144 +-0.0011 0.22

Green

PC(LCD) Lv 86.45 +-1.78 2.06

u’ 0.1403 +-0.0005 0.34

v’ 0.5632 +-0.0013 0.23

Tablet PC Lv 69.64 +-1.12 1.61

u’ 0.1979 +-0.0006 0.32

v’ 0.5272 +-0.0038 0.72

Blue

PC(LCD) Lv 16.94 +-0.34 2.01

u’ 0.1295 +-0.0012 0.90

v’ 0.2886 +-0.0021 0.72

Tablet PC Lv 44.98 +-0.98 2.71

u’ 0.1996 +-0.0035 1.76

v’ 0.4520 +-0.0054 1.18

Background White

PC(LCD) Lv 147.24 +-2.47 1.68

u’ 0.2060 +-0.0004 0.19

v’ 0.4816 +-0.0018 0.37

Tablet PC Lv 93.41 +-0.41 0.44

u’ 0.2191 +-0.0002 0.10

v’ 0.4940 +-0.0004 0.07

performances on the PC and tablet PC. Also, because we expect that it is most likely
to use the most saturated colors instead of desaturated (whitish) colors in the design of
interface.

6.2.3 Procedure

Similar to the original Fitts experiment [18], participants did reciprocal pointing
on a pair of vertical strip targets with the plastic pen or the mouse according to the
experimenters’ instructions. The widths (W ) of the target were set at W = 12, 36,
72 pixels and the center to center distances (D) between the two strips were set at D

=120, 360, 840 pixels, the consequent IDs of different D −W combinations designed
for the experiments mentioned in this chapter are shown by Table 6.2. The order of the
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Table 6.2 Index of Difficulty of different A−W combinations designed for experiments.

ID D W

3.46 120 12

2.12 120 36

1.42 120 72

4.95 360 12

3.46 360 36

2.58 360 72

6.15 840 12

4.60 840 36

3.66 840 72

Fig. 6.1 CIE u’v’ chromatic coordinates of stimulus colors in PC(LCD) and

tablet PC. Squares and circles denote coordinates of colors by PC(LCD) and by

tablet PC, respectively. Open symbols denote background white for each screen.

9 widths and distance combinations was randomized. 12 trials were presented in each
pair of targets, with the first tap excluded in analysis. If tapped on the outside of the
target, an auditory signal was played.

During the task, in the two rectangles, the non-target one was black, while the
colors of target rectangle changed from the regularly used white into one of the tricolors
(red, blue and green) in one A-W combination. Once tapped, the positions of the target
rectangle and the non-target rectangle would reverse. The appearance of the three colors
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Fig. 6.2 Experiment interfaces (when the target is blue)

Table 6.3 Error rates and accidental trials of Color Exp.1.

Apparatus and colors Error rates Accidental trials

Pen (mix) 0.016 5

Pen (red) 0.017 0

Pen (green) 0.019 2

Pen (blue) 0.013 3

Mouse (mix) 0.024 5

Mouse (red) 0.033 1

Mouse (green) 0.023 3

Mouse (blue) 0.018 1

was balanced by a Latin square sequence and set by the experimenter before the subject
began to tap. Therefore the total number of the trials afforded for one subject to fulfill
is 3 (colors) x 3 (distances) x 3 (widths) x 12 (trials) = 324.

The interface of the experiment tool was shown in Fig.6.2.

6.2.4 Error Rates

During the experiment, due to either the confusion of the participant, or instrument
error, accidental clicks outside the general region of the target were registered. The
information of the accidental trials and error rates in Color Experiment 1 were listed
by Table 6.3.

6.3 Color Experiment 2: on Interface with Randomly

Changing Colors

6.3.1 Subjects

The same subjects in Color Experiment 1 also took part in Color Experiment 2.
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Table 6.4 Error rates and accidental trials of Color Exp. 2.

Apparatus and colors Error rates Accidental trials

Pen (mix) 0.019 18

Pen (red) 0.012 4

Pen (green) 0.027 7

Pen (blue) 0.018 7

Mouse (mix) 0.027 1

Mouse (red) 0.022 0

Mouse (green) 0.027 0

Mouse (blue) 0.032 1

6.3.2 Apparatus

We used the same apparatus of Color Experiment 1 in Color Experiment 2.

6.3.3 Procedure

The procedure of the task was the same with that of Color Experiment 1, except
that the colors of the target rectangle were changed randomly during one section of the
A and W combination, i.e. while doing the pointing task, the color of the target will
change randomly without any warning after each pointing. The total number of the
trials afforded for one subjects to fulfill is 3 (distances) x 3 (widths) x 12 (trials) = 108.

6.3.4 Error Rates

The error rates of the subjects with different apparatus and interfaces are shown
by Table 6.4.

6.4 Non-color Experiment

To make comparison with the effects of whether using colors in the pointing task,
we utilized some data from the experiments we had developed previously [56][29] and
called the related experiments as Non-color experiment for conveniences.

One part of the Non-color Experiment using tablet personnel computer and pen
was developed by the project of [56], where the two models, ID and IDe, have both
been discussed thoroughly. Fifteen volunteers, 5 female and 10 male, aged 20 to 36 years
old, participated in it. We picked up the part of the data of the experiment of Zhai et al.
[56] which had the similar procedure as in Color Experiment 1 for comparison. During
the experiment of this part, the target rectangle was always white and the non-target
rectangle was always black.
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Table 6.5 Error rates and accidental trials of Non-Color Exp.

Input device Error rates Accidental trials

Pen 0.04 1

Mouse 0.02 0

The error rate of the task was 4%, and one accidental trial was excepted from the
data for analysis.

The other part of the Non-color Experiment using regular personnel computer and
mouse was developed by the project of [29]. Twelve subjects, of different genders and
ages (3 female students and 9 male students, 21 to 32 years old, average 25) participated
in the experiment. All the subjects dominant hands were the right hands. The procedure
of this part was similar with that of Color Experiment 1. During the experiment of this
part, the target rectangle was always white and the non-target rectangle was always
black.

6.5 Checking Experiment

Because we used different subjects between the experiments with colored target
and the experiments with the white target, to make the comparison reliable, we asked
5 subjects to perform all the experiments mentioned above (Color Exp. 1, Color Exp.
2 and Non-color Exp.) and organized the data as Checking Experiment∗1. However,
in the Checking Experiment, since our purpose was merely to test the reliability of
the comparison results of Color Exp.1, Color Exp. 2 and Non-color Exp., we asked the
subjects to perform the pointing task only under one D−W combination (D=840 pixels,
W=12 pixels). The reason for this choice is that with low level of difficulty, different
colors may not incur much difference in performance, only with big task difficulty, the
difference can be significant.

6.6 Results and Discussion

Since both the ID model and IDe model of Fitts’ law have obtained supports, we
show the comparison results of applying both the two models.

∗1 The purpose of the Checking Exp. is to check whether the comparison results of the experiments

with different subjects are identical. The subjects included in the Checking experiment need to

perform all the experiments that had been performed by different sets of subjects.
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Fig. 6.3 MT − IDe regression lines with different colors of the target in Color

Exp.1 and Non-color Exp. (pen)

Fig. 6.4 MT − ID regression lines with different colors of the target in Color

Exp.1 and Non-color Exp. (pen) and the MT − ID relationship with different

colors of the target in Checking Exp. of Color Exp.1 and Non-color Exp. (pen)

(The open symbols denote the data points of Checking Experiment.)

6.6.1 Difference Incurred by Different Colors

First, we performed ANOVA and found that there was no significant statistical
difference among the mean time of the different colors afforded by the experiment if we
used the pen as the input device.

However, from the Fitts’ law analysis (based on ID and IDe), we can still observe
that the colored targets cost more time on average than the white target (Figs. 6.3 and
6.4).

Fig. 6.4 also shows the Checking Experiment results of Color Exp.1, through which
we can test whether the sequences of the time cost by different colors for different groups
of subjects are reliable. We did T-test to test the statistical significance of the difference
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Fig. 6.5 MT − IDe regression lines with different colors of the target in Color

Exp. 1 and Non-color Exp. (Mouse)

between different colors of the Checking Exp. There is significant difference between
white and red (P108(t >=2.23)<0.05), white and green (P108(t >=5.13)<0.0001), white
and blue (P108(t >=3.49)<0.001), green and blue (P108(t >=2.29)<0.05), red and green
(P108(t >=2.48)
<0.05), there is no significant difference between blue and red.

Therefore, the results of the Checking Exp. could support the comparison conse-
quences of Color Exp.1 and Non-color Exp.: colored target costs more time than the
white target. Nevertheless, the difference between the performance with different colors
(red, green and blue) is not significant. Meanwhile, Table 6.3 and the results of error
rates of Non-color Exp. show that during the task with different colors, the subjects
made less errors with colors compared to the one without color∗2.

ANOVA shows that there was neither significant statistical difference among the
mean time of the different colors afforded by the experiment if we used the mouse as
the input device.

Fitts’ law regression lines (Figs. 6.5 and 6.6) also show that using mouse and desk-
top PC, targets in different colors bring almost no difference in mean time even though
we vary the difficulty of the task.

T-test results of the Checking Exp. only show significant difference between white
and red (P108(t >=2.19)<0.05), white and blue (P108(t >=2.61)
<0.05), but not between blue and red, white and green, green and blue, red and green.

Therefore, after the Checking Exp., even there is tiny difference between the re-
gression lines in Figs. 6.5 and 6.6 and the T-test analysis, we think that the difference

∗2 This difference of error rates is included in the IDe Model
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Fig. 6.6 MT − ID regression lines with different colors of the target in Color

Exp. 1 and Non-color Exp. (Mouse) and the MT−ID relationship with different

colors of the target in the Checking Exp. Of Color Exp.1 and Non-color Exp.

(Mouse)

brought by different colors of the target can be ignorable when we use the mouse as the
input device.

6.6.2 Differences Incurred by the Color Demonstrating Styles

Next we test the difference brought by the color changing styles.

Analysis of the Data with Pen

According to ANOVA, there is no significant statistical difference among the mean
time of different color demonstrating styles with the pen as the input device.

However, Figs. 6.7 and 6.8 coherently show that the targets in randomly changing
colors cost more performance time than the targets in fixed color. When the difficulty
increases, subjects need more time to track the targets in randomly changing colors.
The difference in the data of performance time with the pen is obvious.

However, the Checking Exp. results contradict the comparison results of Color
Exp. 1 and 2 (see Fig6.8).

We did T-test to test the statistical significance of the difference between different
color changing styles of the Checking Exp. There is significant difference between the
data of Random and Fixed task (P218(t >=3.77)<0.001).

One potential reason for the conflicts between the Checking Exp. and Color Exp.
1 and 2 may be the different pointing task participation experience of the subjects in
Color Exp. 1 and 2 and the subjects in the Checking Exp. In both Color Exp. 1 and
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Fig. 6.7 MT − IDe regression lines of the mixed data of three colors in Color

Exp. 1 (fixed) and Color Exp. 2 (random). (pen)

Fig. 6.8 MT − ID regression lines of the mixed data of three colors in Color

Exp. 1 (fixed) and Color Exp. 2 (random) (pen) and the MT − ID relationship

of the mixed data of three colors in the Checking Exp. Of Color Exp. 1 (fixed)

and Color Exp. 2 (random). (pen)

2, five of the total 11 subjects had some experience of using the tablet PC and had
taken part into similar pointing task executed in the lab previously, and the others were
completely new for tablet PC performance. On the contrary, all the five subjects in
the Checking Exp. had experience of the similar pointing task more than one hour,
therefore, the conflicts between the Checking Exp. and Color Exp. 1 and 2 may imply
some learning effects of the pointing task.

Therefore, we carried out an experiment to check the learning effects.

6.2.1.1 Learning Effect Experiment

Eight subjects without either pointing task participation experience or any experi-
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Fig. 6.9 Learning Effect Experiment results of throughput with the Random

task of Group A and Fixed Color task of Group B in Day 1

ence of using the tablet PC were involved in the Learning Effect Experiment. Each of
the subjects took part in the experiment 20 times altogether in two successive days (20
repeats). The subjects were divided into two groups with four persons in each group.
The subjects in Group A performed 10 repeats of the Random task in the first day,
and 10 repeats of the Fixed Color task in the second day. For the subjects in Group
B, the sequence of the Random task and Fixed Color task was reversed. The time slot
between two repeats was 1 hour. During each time, the task procedure was similar with
that in Checking Exp. except that in the Random experiment part, the subjects would
perform 6 trials for three times in one repeat, and in the Fixed Color experiment part,
the subjects would perform each color for 6 trials in one repeat. The total trial number
of one subject is 360=6x3x20. Altogether 21 accidents were exempted from analysis.

We checked the learning effect based on Throughput (Equation 6.1), which is de-
cided by both performance time and error rates according to ISO9241-9 standard[25].

Throughput =
IDe

MT
(6.1)

The result shown by Fig. 6.9 shows that the throughput was increased through
more practices for both the two tasks, and for the Random task, the improvement was
greater.

Through the data of Day 2, we know that after the practice of Day 1, the perfor-
mance of both tasks intends to be more stable. No more learning effects can be clearly
observed through Fig. 6.10.

Thus the results of the Learning Effect Exp. make it easy to explain the conflict
happened in the Checking Exp. against Color Exp. 1 and Color Exp. 2. Since in the
Checking Exp., all the subjects are experienced in pointing task and tablet PC usage,
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Fig. 6.10 Learning Effect Experiment results of throughput with the Fixed

Color task of Group A and Random task of Group B in Day 2

their performance for the two kinds of tasks were close. On the contrary, in Color Exp.
1 and Color Exp. 2, those novice subjects need more time to fulfill the random task
than the Fixed Color task. After training, it will cost similar time for the subjects to
perform the Random task and the Fixed Color task.

Analysis of the Data with Mouse

According to ANOVA, there is no significant statistical difference among the mean
time of different color demonstrating styles with mouse as the input device.

When the mouse was applied as the input device, the Checking Exp. results (T-test
results show that there is no significant difference between the Random and Fixed color
tasks) are identical with those obtained from Color Exp. 1 and 2, and the time difference
of performing with Random and Fixed tasks is smaller than that of using pen as the
input device (see Fig. 6.11 and Fig. 6.12), these can be because mouse is a familiar
tool for all the subjects. Even though some of the subjects have no experience of using
mouse to perform the pointing task designed in this study, their abundant experience
of using mouse help them adapt to the task quite easy.

6.6.3 Differences Incurred by the Colored Interfaces

Finally we compared the results of the experiments with and without colors.
The ANOVA results show that there is no significant difference among the mean

time of the colored interfaces and the black and white interfaces, either with fixed colors
or randomly changing colors, pen or mouse.
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Fig. 6.11 MT − IDe regression lines of the mixed data of three colors in Color

Exp. 1 (fixed) and Color Exp. 2 (random). (Mouse)

Fig. 6.12 MT − ID regression lines of the mixed data of three colors in Color

Exp. 1 (fixed) and Color Exp. 2 (random) (Mouse) and the MT−ID relationship

of the mixed data of three colors in the Checking Exp. of Color Exp. 1 (fixed)

and Color Exp. 2 (random). (Mouse)

Nevertheless, Fig. 6.13 and Fig. 6.14 show that with the randomly changing colors
in the interface, subjects need more time to track the target with pen.

The results of Checking Exp. are identical with the comparison results (Fig. 6.14
). T-test results show that there is no significant difference between the Fixed Color
and Random tasks of the Checking Exp.

However, the difference in movement time is not clear when mouse was applied as
the input device (see Fig. 6.15 and Fig. 6.16).

The comparison results of the Checking Exp. are not the same with the comparison
between Color Exp. 2 and Non-color Exp. Nevertheless, the T-test shows no significant
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Fig. 6.13 MT − IDe regression lines of the interface with color (Color Exp. 2)

and without color (Non-color Exp.) (pen)

Fig. 6.14 MT − ID regression lines of the interface with color (Color Exp. 2)

and without color (Non-color Exp.) (pen) and the MT − ID relationship of the

checking Experiment of the interface with color (Color Exp. 2) and without color

(Non-color Exp.) (pen)

difference exists between the Non-color and Randomly changing color, therefore, we
may ignore the discrepancy.

When the colors of the target are fixed, there is no obvious difference among the
colored interfaces and the non-color interface either with pen or mouse (see Fig. 6.17,
Fig. 6.18, Fig. 6.19 and Fig. 6.20). Although the comparison results made by Color
Exp. 1, Non-color Exp. and Checking Exp. are not the same, since in either group
of comparison there is no significant statistical difference and the difference of direct
observation of the regression lines is also tiny, the difference between the Non-color task
and Fixed Color task can be ignored.
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Fig. 6.15 MT − IDe regression lines of the interface with color (Color Exp. 2)

and without color (Non-color Exp.) (Mouse)

Fig. 6.16 MT − ID regression lines of the interface with color (Color Exp. 2)

and without color (Non-color Exp.) (Mouse) and the MT − ID relationship of

the Checking Exp. Of the interface with color (Color Exp. 2) and without color

(Non-color Exp.) (Mouse)

6.7 Conclusions

In this chapter, we thoroughly compared the effects of whether using colors in the
pointing tasks through Fitts’ law and ANOVA. Three colors (red, green and blue) are
applied in the experiments. Moreover, we also tested the effect of different color demon-
strating styles during the pointing task (fixed colors and randomly changing colors).
In case that there would be discrepancy brought by different subjects in the color and
non-color experiments, we also carried out the Checking experiment for the three exper-
iments (Color Exp. 1, Color Exp. 2 and Non-color Exp.). A learning effect experiment
was executed to explain the relationship between the Checking Exp. and the main
experiments.
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Fig. 6.17 MT − IDe regression lines of the interface with color (Color Exp. 1)

and without color (Non-color Exp.) (pen)

Fig. 6.18 MT − ID regression lines of the interface with color (Color Exp. 1)

and without color (Non-color Exp.) (pen) and the MT − ID relationship of the

Checking Exp. of the interface with color (Color Exp. 1) and without color

(Non-color Exp.) (pen)

The great regression of the relationship of mean time and ID or IDe demonstrates
that Fitts’ law is effective for the device evaluation of the interface with colored targets.

With the experimental data, it is not difficult to make conclusions on colors effects
that:

1. in pointing task, different colors will not bring significant difference on subjects
performance. However, when the subjects used pen, they need more time to perform
the color task.

2. in the task with randomly changing colors, for the novice subjects, the perfor-
mance is worse than in the task with fixed color. However, the difference is ignorable
when the subjects used the mouse.
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Fig. 6.19 MT − IDe regression lines of the interface with color (Color Exp. 1)

and without color (Non-color Exp.) (Mouse)

Fig. 6.20 MT − ID regression lines of the interface with color (Color Exp. 1)

and without color (Non-color Exp.) (Mouse) and the MT − ID relationship of

the Checking Exp. of the interface with color (Color Exp. 1) and without color

(Non-color Exp.) (Mouse)

3. in the task with colors(red, green and blue) and without color(white), if the color
is fixed when the target is tapped, the subjects performance keeps almost constant.

For the intervened effects of different colors and different input devices, we can con-
clude that the performance situation will be different, although differences are not big.
When people use pen to tap the target with randomly changing colors, the performance
time is a little longer than they tap the target without color or without changing color.
The reason might be that when people use the mouse, there is friction, so the speed
is not very fast and it is easier for subjects to adjust the performance power when the
mouse approaches the target, no matter the target is white, colorful or even with ran-
domly changing colors. However, using the pen, there is no friction to limit the speed
of the pen, and sometimes it is difficult to change the accelerating power to adjust the
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route of the pen. If the targets color is changed without previous warning, it is difficult
for the subjects to make change according to their visual feedback. However, these
phenomena were only apparent for the novice subjects. For the experienced subjects,
the difference will be reduced.

These conclusions imply that even though there is no big difference for different
color targets in the usual occasions, for some special situations, for instance, novice user,
or tablet pen, the designers need to deliberatively consider the application of colors and
the color demonstrating or changing styles.
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This is a blank page.
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Chapter 7

General Conclusions

This chapter addresses the main contributions of this dissertation and summarizes
the research that was carried out.

7.1 Overview of Contributions

Models for pointing tasks are crucial for devices evaluation. The human subjective
factors should never be neglected in this area. In the traditional model studies for
pointing task, some psychological effects of human beings on the performances have not
been emphasized enough. Therefore, there were problems in applying the traditional
models. We have to restrict the subjects to perform with the “standard error rate”,
or ignore the difference in movement time incurred by different performance accuracy.
These methods that we have utilized during the past to deal with the inaccuracy of the
traditional models were either unrealistic, or unfair for device evaluation.

The two layers of speed-accuracy tradeoffs (the task layer and the subjective layer)
in Fitts’ law tasks had been studied in detail in Chapter 2. Then a thorough comparison
between the two forms of Fitts’ law (the task form (Equation 1.2) and the behavior
form (Equation 1.4)) has been achieved. We defined an index of target utilization, Iu =
log2(4.133σ/W ), to quantify the discrepancy between the nominal task precision and
the actual behavior precision caused by the subjective layer of speed-accuracy tradeoff.
A series of special controlled experiment were carried out for the observation of the
effects of the two layers of speed-accuracy tradeoffs. The experimental results show
that Iu is never constant in an experiment, even with the same instruction, except
when an enforcement method is applied, as in Experiment SAT4. The overall Iu level
can be influenced by the experimental instruction in the laboratory, or by performers’
preference and task strategy in real world tasks. Through the study introduced in
Chapter 2, theoretically, we know that the two layers of speed-accuracy tradeoffs, have
different impact on task performance. Practically, the findings in Chapter 2 suggest that
in order to accurately measure Fitts’ law parameters, Iu should be kept as close to zero
as possible and its variance should be kept as low as possible. This study also provides
an empirical foundation for the application of We or its more aggressive and more
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complete version, Wm, to adjust for Iu changes, in case Iu is highly varied. Although
these adjustments consistently yield more logical Fitts’ law parameter estimates, we
should still be aware of the limitations and side effects of We or Wm, including reduced
correlation between pointing time and index of difficulty within each operating strategy
and their incomplete compensation for the subjective layer of speed-accuracy tradeoff.

The study on the speed-accuracy tradeoff problem and the comparison between the
two forms of Fitts’ law intrigued us to develope other researches about the Fitts’ law
models. We studied and compared two methods for calculating We. The results show
that the Combined-coordinate-system Method is better than the Separate-coordinate-
system Method, i.e., it is better to map all the abscissa data into one combined coordi-
nate system to do the calculation, rather than divide the data into two separate groups
according to the corresponding target positions. Thus the data shown by Chapter 3
affords a detailed and reliable comparison of the two methods of We calculation based
on the information derived from the input hits with different target sizes. Since no
research has been reported on this problem, the results of this study will be of great
help for the applications of the effective target width in modeling for pointing tasks.

We utilized the results of Experiment SAT3 to analyze the information processing
procedure of pointing tasks. By analyzing and comparing the estimates of the regression
coefficients, we explored deep into the background theory of the coefficients of the
models. This study mainly discussed the variation of b in Fitts’ law models and related
it to the information processing or transmission rate. The analytical results show that
the ID model can not describe the information transmission or processing procedure of
pointing tasks completely with different speed-accuracy tradeoffs. On the other hand,
the IDe model can describe the information transmission procedure during pointing
tasks better. This study discovers a new factor which is essential for models evaluation,
and lends support to the use of the IDe model of Fitts’ law to model the pointing
performance in varied conditions.

Since we have concluded that it is impossible to completely reconcile the two lay-
ers of speed-accuracy tradeoffs by Fitts’ law models, we thought about proposing an
alternative model for solving the problems of the traditional Fitts’ law models. There-
fore, in Chapter 5, we proposed a new model named as SH-Model and demonstrated
that the SH-Model is better than the traditional models based on AIC analysis. This
is the first time that the human factors have been demonstrated separately from the
system factors on pointing task performance. This model can also help us to escape
from the restriction on the normal distribution of the input hits. Then we also testified
the feasibility of using the SH-Model to evaluate and compare different input devices.
The research results introduced in Chapter 5 will contribute to user interface design by
affording reliable guidance.
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Finally, considering the importance of different colors on performances and the
lack of study on this topic, we thoroughly compared the effects of whether using colors
in the pointing tasks through Fitts’ law and ANOVA. The data afforded by Chapter
6 imply that even though there is no big difference for different color targets in the
usual occasions, for some special situations, for instance, novice user, or tablet pen,
the designers need to deliberatively consider the application of colors and the color
demonstrating or changing styles. These conclusions will also be instructive for the
future UI designs.

Comprehensively, in this thesis, first, we examined the feasibility of the traditional
models for pointing tasks, and revealed the main features of the pointing task perfor-
mance, especially the effects of the human subjective factors. Based on the detailed
analysis of traditional models, we proposed a new model to demonstrate the human
subjective factors in pointing tasks. This new model helps us to have a more accurate
and comprehensive observation of the performance of pointing tasks with different de-
vices, and hence is more reliable in devices evaluation. The results are important for
human computer interface design and evaluation.

7.2 Future Directions

We aim to establish a model which can accurately include the human physiological
and psychological information into a mathematical function. Such a model will be really
reliable and applicable for human computer interaction input devices evaluation. It will
also help to predict human performance. All these works can assist us to know whether
the existing devices are appropriate for the performance, and if they are not suitable,
what kind of modification in computer interfaces design should be adopted to enhance
peoples performance efficiency without much labor.

For the present situations, Fitts’ law is mostly applied in time-minimizing tasks
as the pointing tasks described in this thesis. We also need to model the behavior of
space-minimizing tasks, such as navigating hierarchical menus and tracing the outline
of a shape. We had better also accomplish the work to unify different motor behaviors
in one theoretical framework [37].

Since the technologies of interfaces between human and computer have been de-
veloped significantly, it is also necessary to carry out the model related research on the
performance models application for new input techniques. Since currently most human
potential has not been explored completely, the study on human performance models
will be helpful to develop new devices or interfaces utilizing those unexplored body parts
and give fair evaluation of those lately developed hardware or software.
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7.3 Final Summary

Pointing task, together with some other basic performances, is of great importance
in HCI studies. Developed from the area of motor control or motor behavior, modeling
for pointing tasks helps us understand the performance. The understanding will be
instructive for not only devices comparison, but also design guidance.

The studies introduced in this dissertation will contribute to the modeling work
mainly from the aspect of considering human’s factors or subjective factors in models’
studies. These works will motivate much more explorations in human’s factors, or sub-
jective factors in modeling the pointing performance. The knowledge will be instructive
for UI design comprehensively.
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