Kochi University of Technology Academic Resource Repository

Title	Design of Prestressed Concrete Bridge Girder Usi ng Self-Compacting Concrete for Cambodian Rehabi litation
Author(s)	VONG Seng
Citation	高知工科大学,博士論文.
Date of issue	2006-09
URL	http://hdl.handle.net/10173/210
Rights	
Text version	author

Kochi, JAPAN http://kutarr.lib.kochi-tech.ac.jp/dspace/

DESIGN OF PRESTRESSED CONCRETE BRIDGE GIRDER USING SELF-COMPACTING CONCRETE FOR CAMBODIAN REHABILITATION

VONG Seng

A dissertation submitted to Kochi University of Technology in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Special Course for International Students Infrastructure Systems Department of Engineering Graduate School of Engineering Kochi University of Technology Kochi, Japan

August 2006

ABSTRACT

For rehabilitation of bridge in Cambodia after civil war, it is necessary to choose a type of structure which is economical, fast to build and durable. The precast prestressed concrete structure has been the choice of technology because the concrete structure needs less maintenance compared with other types of structure, the use of prestressing technology can save materials and the precast system can shorten the construction time even in adverse weather the progress of construction can be assisted. However there are still no original design manuals for pretension prestressed concrete (PC) bridge suitable for Cambodia. Therefore the design of prestressed concrete girder has been done to satisfy the requirements of Cambodian situation for now and for future such as the conditions of transporting and moving the girders for construction with the considerations of traffic load, climate and equipment.

The design method of PC girder for bridge construction in Cambodia is presented. The determination of the most suitable section of precast PC girder was made by the conditions of its self-weight and the total cost of bridge superstructure. Firstly section shape was determined by calculation of typical one and half lane girder bridge for the cases of T-shape and box-shape girders. Span was varied from 10m to 25m and concrete strength was varied as 45MPa, 60MPa and 75MPa and the height of girder was chosen to be the most optimum for each case. From this calculation, T-shape was selected by the condition of material cost. Then the design of 20 meters of span of typical two lanes girder bridges with one intermediate diaphragm were made for the cases of T-shape and T-shape with heavy bottom flange girders to determine the required section. The number of girders was varied from 14 to 8 girders in term of the change of top flange width. The height of girders was varied in 5 cm of step from 75cm to 120 cm. The concrete strength was varied as 40MPa, 60MPa and 80MPa. And bond control case was considered.

It was found that high strength concrete is required. As among high strength concrete types, self-compacting concrete (SCC) which needs no vibration gives most advantage, it is decided to be used in this study. The decision to use SCC because Cambodia does not have the appropriate level of technology for producing high strength concrete, SCC can be used to produce high strength concrete in stable condition and the use of SCC can also improve the construction process and the durability of concrete structures in Cambodia. The study of producing SCC with available materials on the market in Cambodia was made. The first experimental study on producing SCC in Cambodia was conducted in June 2004 at the Institute of Technology of Cambodia. The Japanese SCC-

Abstract

designing method was applied. Self-compacting performance was determined by method of slump flow test, V-funnel test and Box-shaped container test. Special requirements to produce SCC are powder and supper plasticizer (SP). The materials for making SCC were investigated. The selection of materials was made by the considerations of economic and environment conditions. Limestone powder was selected to be used. SP which is suitable for making SCC was imported and provided for the experiment by Sika (Cambodia) company. Other materials decided to be used in the experiment were ordinary Portland cement, river sand and crushed rhyolite. The result of trial mixes indicates that it is possible to make SCC in Cambodia. But some difficulties were found such as the slump flow value decreased significantly in short time, the shape of coarse aggregate were not well-rounded.

To apply SCC to PC structures successfully, creep and shrinkage are necessary to be investigated because SCC needs high powder content to produce high segregation resistance. Usually powder beside cement named additive is used to improve the quality of concrete and to reduce the concrete cost. However the existing prediction models for creep and shrinkage such as JSCE2002, ACI209 and CEB-FIP90 do not consider the effect of additive. So the experiment on creep and shrinkage of SCC with different limestone powder contents incorporating with ordinary Portland cement was carried out. The mix proportions were prepared as follows: firstly the mix was designed for the conventional concrete for strength of 55MPa. Based on this mix proportion SCC was designed by increasing the powder content in term of reducing coarse aggregate content and using the superplasticizer. Three types of SCC were produced with the same powder volume but different contents of limestone powder. From the result of the experiment, the shrinkages showed almost the same value for these four types of concrete with the same absolute water content. This means that powder content does not significantly affect on shrinkage. And creep test results showed that SCC which used highest limestone powder content showed highest creep. SCC with higher limestone powder content showed higher creep and SCC which was made by adding limestone powder content to conventional concrete showed higher creep than the conventional even the strength was considerably increased.

The experiment on the long term prestressed loss in the real scale PC girder under real climate in Cambodia was conducted to clarify the production quality of the PC girder using SCC. Prestress loss in PC girder was found lower than the loss calculated by time step method with using the existing creep and shrinkage models. The time dependent camber up to 56 days after transfer was also found lower than the predicted value.

TABLE OF CONTENTS

Abstract	
Acknowledgments	7
	0
CHAPTER I: INTRODUCTION	9
1.1- General	9
1.2- Purpose and scope of research.	10
1.3- Research outline	10
CHAPTER 2: BACKGROUNDS	11
2.1- Cambodian situation	11
2.2- Pretension girder	14
2.3- Bridge structure systems	17
2.4- Bridge width	17
CHAPTER 3: DESIGN METHODS	19
3.1- Specific design factors for Cambodian Situation	19
3.2- Design of pretension bridge girder	
3.3- Determination of girder section	
3.4- Creep and shrinkage of Self-compacting concrete	29
3.5- Prestress loss	
CHAPTER 4: PRODUCTION OF SELF-COMPACTING CONCR	ETE IN
CAMBODIA	40
4.1- General	40
4.2- Material investigation.	41
4.3- Experiment	45
CHAPTER 5: EXPERIMENTS ON PRESTRESS LOSS	
5.1- General	
5.2- Experiment setting	53
5.3- Strain and deflection measurement	55
5.4- Results and discussion	
CHAPTER 6: CONCLUSIONS	67

References	69
Annex 1: Creep and shrinkage models	70
Annex 2: Traffic load model	78
Annex 3: Computer program	81
Annex 4: Calculation Table	89

ACKNOWLEDGMENTS

It has been a great pleasure for me working at the Kochi University of Technology (KUT) as a doctoral student. This work would never have been possible if there were not the valuable advices, kind assistances and strong supports from my supervisor Professor Dr. Hiroshi SHIMA to whom I would like to express my deepest gratitude.

This dissertation represents the coming together of many influences over quite few years and the encouragement of friends, family, colleagues, and professors past and present.

Firstly I would like to express my profound thanks to members of my supervising committee: president of KUT Professor Dr. Hajime OKAMURA, Associate Professor Dr. Masahiro OUCHI, the head of Infrastructure Systems department Prof. Dr. Shunji KUSAYANAGI and Prof. Dr. Nobumitsu FUJISAWA for their precious advices and comments.

My sincere thanks go to Prof. CHHOUK Chhay Horng, head of Civil Engineering Department of the Institute of Technology of Cambodia (ITC) for his strong support and also to my colleagues at ITC.

Without special scholarship program of KUT, I would not have any chance to study my PhD at this university. So I would like to express my thanks to the organizers of this special program. And I would also like to express my thanks to Professor BAN Mikiko and the staffs of International Relation Center of KUT for their kind assistances of administration.

I would like also express my thanks to Mr. KAGEMASA, general manager of Maeda Corporation at Phnom Penh office, Dr. Tetsuya MISHIMA and Mr. YONEDA for their kind supports and assistances for the experimental work in Cambodia.

I want to give my sincere thanks to my friends, the students of ITC and staffs of Maeda at Phnom Penh office who contributed to the experiment in Cambodia, and also to the Sika(Cambodia) company.

Finally, my special thanks go to my father and my two older brothers.

CHAPTER 1: INTRODUCTION 1.1 General

The modernized road network development was started in Cambodia before 1960s. However, all most all of infrastructures including road network had been damaged by the civil war that suffered the country about 20 years from 1970 to until end of 1980s. After finished the civil war, rehabilitation and redevelopment of the infrastructures have been aggressively carried out by the new government.

The rehabilitation and maintenance of the road networks is now most critical and urgent requirement for the country. The large numbers of bridges along the national roads do not cope with the existing traffic loads as they were design to cater lower loads than the prevailing one. There are many cases of bridge collapse due to overloading. In addition, there were no enough bridges to provide access to all part of the country throughout a year. As a result, large parts of the country remain isolated during rainy season. According to the investigation made by the Ministry Public Works and Transport, Cambodia, over 20,000 numbers of bridges including in rural areas' shall be rehabilitated and/or reconstructed.

The rehabilitation and redevelopment of bridges are now been executing by the government with the Official Development Assistance so call ODA from the developed countries, such as France, Australia, USA and Japan. However, it can be observed the fundamental problem that those works are still not be done by local engineers and technicians. Because, all most all of rehabilitation and reconstruction bridge works are carried by the contractors coming from donor countries themselves and they apply own design standers and technologies to the works. Although Cambodian design standards have already been set up under the Australian ODA scheme, it is still not suitable for local conditions. For the future development of the country Cambodia, it is extremely important to set up a kind of system that those works shall be carried out by local engineers and technicians themselves. In order to overcome the existing situation of poor and insufficient infrastructure in Cambodia, this research was intended to develop appropriate design and construction technology for bridge rehabilitation and construction for the country of Cambodian. The issue to be discussed in this dissertation is the design of precast bridge girders that will be made using the pretension prestressed concrete (PC) to sustain the traffic load of non-standard truck and overloading on standard factory vehicles. The affects of the climate like hot weather with high relative humidity in the nights and low in the day time will also be considered. In addition, the

weight of the PC girder will also be carefully designed in order to safely transport the girders from the factory to the construction sites and erect properly.

Since Cambodia lacks skilled workforce to ensure high quality in construction works, this study was designed to develop such technology which utilizes less numbers of labors. A series of experiment was made to clarify the possibility of producing the good quality of PC bridge girder for Cambodian rehabilitation. Firstly the experiment on producing self compacting concrete (SCC) with available materials in Cambodia was conducted. SCC is innovated by Japanese researchers and Kochi University of Technology where the author made this study is one of the key center of this new technology. Then creep and shrinkage of SCC with different limestone powder contents were investigated. And real scale of selected PC girder using SCC was produced. The investigation of long term prestressed loss under real climate in Cambodia was made.

1.2 Purpose and scope of research

The main objective of this research is to develop a standard on design and construction of PC girders for short span bridge rehabilitation and construction in Cambodia. The research outcome would be validated by the production of real scale pretension PC bridge girder using SCC in Phnom Penh. This study was also aimed at disseminating the research outcome to the major stakeholders of infrastructure development of Cambodia, the Ministry of Public Works and Transport, Cambodia for the deployment of the technology in bridge rehabilitation and construction.

The scope of the study is the PC girder using SCC for short span bridge of 15 m to 25 m, the production of self-compacting concrete using the materials available on the market in Cambodia, creep and shrinkage of SCC and long term prestressed loss in real scale PC girder using SCC under the real climate in Cambodia.

1.3 Research outline

This dissertation is outlined as follows:

The situation of the infrastructure and necessity of the new technology for Cambodian rehabilitation is explained under the background of Chapter 2. The design methods for the PC girder are presented in Chapter 3. The production of SCC using the locally available materials in the Cambodian markets is explained in Chapter 4. Experiment on long term prestressed loss in real scale PC girder using SCC under the real climate in Cambodia is given the Chapter 5. And the conclusions of this work are presented in Chapter 6. The annexes give the more detail of calculation, formulas and explanations.

CHAPTER 2: BACKGROUNDS

2.1- Cambodian situation

General situation, climate and traffic are described in the following paragraphs:

2.1.1- Situations

Cambodia (Fig. 2.1.1.1) is a country situated in the Southeast Asia and surrounded by Laos, Vietnam, Thailand and gulf of Siam. It has a saucer-shaped with gently rolling alluvial plain drained by the Mekong River and shut off by mountain ranges which the Dangrek Mountains formed the frontier with Thailand in the northwest and the Cardamom Mountains and the Elephant Range are in the southwest. About half of the land is tropical forest. There are many rivers to collect the water from high land to the plain. In the rainy season the water from the high land and Mekong River flows into a big reservoir of Tonle Sap Lake.

The road networks in Cambodia were developed before 1960s. The roads are classified in to three types: National roads (1&2 digits), Provincial roads (3 digits) and the rural roads. The national and provincial roads are under the control of Ministry of Public Works and Transport (MPWT). Similarly, Ministry of Rural Development (MRD) is responsible for the operation and maintenance of the rural roads. The national and provincial roads in Cambodia are 4,165 km and 3,554 km respectively. The rural roads are about 31,000 km. The road networks have large number of bridges, about 4,000 along the national roads alone. The general design standards of the bridges were to cater lighter loads than current loads with many bridges are designed at present.

In addition, during 1970's and 1980's, many bridges were destroyed by the war and careless of maintenance. After 1991, the traffic volume had grown rapidly to their prewar levels. And recently a number of bridges were collapsed due to overloaded vehicles (Fig. 2.1.1.2 and Fig. 2.1.1.3).

This shows that Cambodia needs many bridges to be rehabilitated and to be built. About 20,000 bridges are required for primarily estimation.

Fig.2.1.1.1 Map of Cambodia

f Fig.2.1.1.3 the collapse of a bridge on the road from

Siem Reap to Bantey Srey temple on April 10, 2004

Fig.2.1.1.2 a heavy truck caused the collapse of a bridge on National Road 7 on May 14, 2004

2.1.2- Climate

Cambodia has a tropical monsoon climate, with the wet southwest monsoon occurring between November and April and the dry northeast monsoon the remainder of the year. Temperatures in Cambodia are fairly uniform throughout the Tonle Sap Basin area, with only small variations from the average annual mean of around 25°C. The maximum mean is about 28°C; the minimum mean, about 22°C. Maximum temperatures of higher than 32°C, however, are common and, just before the start of the rainy season, they may rise to more than 38°C. Minimum temperatures rarely fall below 10°C.

The relative humidity is high at night throughout the year; usually it exceeds 90 percent. During the daytime in the dry season, humidity averages about 50 percent or slightly lower, but it may remain about 60 percent in the rainy period.

Supphir		Temperatures							Discomfort	Precipitation and humidity						
(average hours per day)	Average daily				Highest Lowest		est	from heat	Relative humidity		Average		more than			
	minimum maximum		imum	recorded recorded		rded	humidity	All hours	х	precipitation		m/0.1 in				
		°C	°F	°C	°F	°C	°F	°C	°F		%		mm	in		
Jan	9	21	70	31	87	35	96	14	57	High	71		7	0.3	1	Jan
Feb	9	22	72	32	90	37	98	15	59	High	71		10	0.4	1	Feb
March	9	23	74	34	92	39	102	19	66	Extreme	70		40	1.6	3	March
April	8	24	76	35	94	41	105	20	68	Extreme	73		77	3.0	6	April
Мау	7	24	76	34	92	38	100	21	69	Extreme	81		134	5.3	14	Мау
June	6	24	76	33	91	38	101	21	70	Extreme	81		155	6.0	15	June
July	6	24	75	32	89	37	98	20	68	Extreme	83		171	6.7	16	July
Aug	6	26	76	32	89	36	97	22	72	Extreme	83		160	6.3	16	Aug
Sept	5	25	76	31	88	36	96	22	72	Extreme	85		224	8.8	19	Sept
Oct	7	24	76	30	87	34	93	21	70	High	83		257	10.1	17	Oct
Nov	8	23	74	30	86	34	93	18	64	High	79		127	5.0	9	Nov
Dec	9	22	71	30	86	35	96	14	58	High	74		45	1.8	4	Dec

Table 2.1.2 Climate data in Phnom Penh

2.1.3- Traffic

Source: Research Machines plc 2003.

In Cambodia the growth rate of transport vehicles has been noticed increasing rapidly for these last 15 years after the year of peace agreement 1991. Non standard vehicles and overloading on standards factory vehicles are observed circulating on the roads. These vehicles caused the serious degradation on the surface of rehabilitated roads and caused the collapse of many bridges before their designed service life. The damage of roads and bridges were also caused by the improperly use and carelessness of maintenance. The overloaded truck is the first factor of road and bridge destruction [14].

Ministry of Public Works and Transport (MPWT), Cambodia decided, in strong action plan, to prevent the risk dedicated from this overloaded truck and making some prevention measures by establishing a Sub-decree on Maximum Weight of Transport Vehicles Circulating on National Roads in September 1999. In the Sub-decree, the road networks in Cambodia were separated into two types: Type A and Type B.

After the traffic law is in effect, the overloaded trucks still caused damage on many roads and bridges as shown in the pictures of Fig.2.1.1.2, Fig.2.1.1.3 and Fig.2.1.3.2 due to weakness of controlling system. Table 2.1.3 shows the weights of overload trucks to the limitation on Maximum Weight which had been investigated [14].

A working group of weight scaling was implemented. The activities of weighing heavy trucks are shown in pictures of Fig. 2.1.3.3.

However most roads in Cambodia as can be seen in Fig. 2.1.3.1 carry lower traffic volume compared with the traffic in the industrial area of developed countries. This

special specific traffic has become a mayor problem to be discussed between road and bridge users, construction engineer and design engineer. Therefore, the traffic model for bridge design has to be well defined to satisfy the safety and economic conditions. The traffic load model for bridge design used in this study is presented in Chapter 3.

Fig.2.1.3.1 the traffic on national road 3

Fig.2.1.3.2 Overloaded truck caused the collapse of a bridge in Mongkul Borei on 07 Sep. 2004

N	Type of transport	Permissible	gross weight	Overload vehicles (tons)
1	vehicles	Type A (tons)	Type B (tons)	investigated
1	2 Axles truck	16	16	26
2	3 Axles truck	25	20	32
3	4WTrailer/Truck	35	30	44
4	5WTrailer	40	35	61

Table 2.1.3 Overloaded Truck and maximum load limit of allowable truck

Fig.2.1.3.3 Activities of truck weight scaling check

2.2- Pretension girder

Nowadays the prestressed concrete technology is commonly being used in a wide range of construction projects all over the world, particularly in bridge structures. But in Cambodia the application of this technology has been just started.

Until now most of bridges in Cambodia were built by conventional reinforced concrete (RC) with multi-short span of about 5 meters of each span as shown in Fig.2.2.1 and

steel bridges as shown in Fig.2.2.2. It has been observed that RC bridge took long time for the construction work and a lot of construction materials were used. Steel bridges and timber bridges were easy and took short time for construction but the bridges were damaged after about 5 years due to insufficient maintenance and lack of controlling system. The bridges could only be used for the temporary time. Good quality of steel bridges cost expensive because all construction materials have to be imported (there is no local production of steel) and it requires the good quality of painting for the long term protection against corrosion.

Fig.2.1.3.4: Reinforced concrete bridge

Fig.2.1.3.5: Steel bridge

The experiences in Japan showed that the increased interest in the construction of PC bridges is due to the initial cost and life-cycle cost of PC bridges, including repair and maintenance, are less expensive than those of steel bridges. And compared with the reinforced concrete (RC) bridges, PC bridges have proved to be more economically competitive and aesthetically superior due to the employment of high strength materials (concrete and prestressing tendons). The use of PC technology for bridge construction has been grown rapidly since the first start in 1950s as shown in Fig.2.2.3 [6].

Fig.2.2.1 Trend of construction of different types of bridges in Japan with increasing year

Pre-tensioning and post-tensioning systems have been considered in order to find the appropriate system of design and construction for Cambodian rehabilitation. It is required to set up an appropriate fabrication system of bridge graders that can provide the acceptable quality and quick and stable productions. This study is intended to use of pre-tensioning system because it is possible to produce many girders within a short period of time and under the reliable quality control. A specific method for pre-tensioning concrete is the long-line method. This method, the strands are tensioned for prestressing many members which will be cast end-to-end along a single bed. This economical method saves on labor and wedge costs and allows for reusable forms. As for short span bridge up to 20 meters pre-tensioning PC girder can be designed to satisfy the requirement of Cambodian situation (Chapter 3), pre-tensioning system has been chosen for this study.

Referred to standard girders used in developed countries such as in Japan (Fig.2.2.4), the weight of 20 meters of girder is about 20tons. It is difficult to use in Cambodia because of existing conditions of transportation. The design is needed to satisfy the requirements of Cambodian situation. The design method of PC bridge girder for Cambodian rehabilitation is presented in Chapter 3.

Fig.2.2.4: Standard PC girder used in Japan

2.3- Bridge structure systems

Fig.2.3.1 gives an overview of two different typical bridge deck structure systems in common use. In this study, non composite section type is used because it is simple for the construction and design while for composite section type, construction step and interaction between girder and slab have to be considered. In addition, quality of technology and labor affects more on composite section type as it requires more parts to be cast in site than that of the non-composite type. As can be seen in Fig.2.3.1, composite section types mean that the girder is precast at plant and slab is cast in site. And non composite section types means that there is no slab cast in site except the pavement.

Fig.2.3.1: overview of different typical bridge deck structure systems

2.4- Bridge width

Based on reference [8], three alternative bridge widths as shown in Fig.2.4.1 are commonly used in developing countries. Additional provision can be made for pedestrians and two-wheeled vehicles on one side of the roadway, or on both sides when the bridge is located close to a village. Footways should be a minimum of 1.5m wide. It was decided to be used in this study.

Typical cross sections	Descriptions
	single lane: for traffic flow less than 200 vehicles per day
	one and half lane : two lane for light weight vehicles, one lane for heavy vehicles
	two lanes: appropriate national standard

Fig.2.4.1: typical cross sections

CHAPTER 3: DESIGN METHODS

3.1- Specific design factors for Cambodian situation

The design PC girder for bridge construction in Cambodia should be considered the specific factors which influence the quality production of PC girder. The mains factors to be considered are equipments, local materials for construction, traffic load and climate effect. Equipment for construction in Cambodia is still limited. Investigation of local materials is presented in Chapter 4. The traffic load and climate effect are presented in the following paragraphs.

3.1.1- Traffic load

Unlike roads, bridges are not designed to sustain a total number of standard axle load cycles. Bridges are designed to sustain the traffic load model of heavy vehicles. Most countries have some form of design loading standards for bridges, but Cambodia has not yet determined an appropriate standard even for short span bridges.

The bridges in Cambodia normally carry low traffic volumes but overload weights as described in Chapter 2. The traffic load model is needed for the heaviest predicted loads expected during the life of the structure even it does not need to be designed for the heavy goods vehicles that are common in industrial areas of developed countries.

In general case, the decision of engineer to adopt the traffic load model for bridge design will be influenced by traffic predictions and by the resources available at present and in the foreseeable future. And the engineer should estimate the composition and volume of the vehicular traffic likely to use the road throughout the design life of the bridge. The volume of current traffic can be determined from a simple traffic count. The growth rate over the design life of the bridge is difficult to estimate, but the engineer should attempt to do so, taking into account the local factors which influence traffic growth, such as agricultural or industrial development, and national factors such as development planning and the general increase in gross domestic product. Vehicle weights can vary according to the season. Unless good quality data on vehicle weights are available it is advisable to carry out an axle weighing exercise at the time of year when the heaviest loads are transported.

Where it is expected that future development will increase the desired capacity, the choice is between building a low-cost bridge to serve until the development occurs or building a structure that is wider, longer or stronger than initially required but which

will cope with future needs. An alternative solution is to build permanent abutments and a light deck that can be upgraded or replaced when the development occurs.

Regarding the Japanese traffic load model for bridge design, two load types is defined: load type A and load type B. Normally the bridge designed to carry load type A is able to carry 70% of load type B. Tandem load is represented in Fig.3.1.1.1. It is used for local verification, slab design and structural member design of very short span bridge (normally less than 7 m of span). Lane load shown in Fig.3.1.1.2 is used for structural member design and verification.

Fig.3.1.1.1: T load

Fig.3.1.1.2: L load

The detail of values p1 and p2 are given in Annex 2. Safety load coefficient of traffic load is 2.5 for the ultimate limit states design. The impact coefficient is $i = \frac{20}{50 + L}$ which L is the length of span.

Graphic in Fig.3.1.1.3 shows the comparison between various codes of traffic load model for the case of the bending moment.

Fig.3.1.1.3: Comparison of bending moment between various codes

This traffic load model is decided to be used for this study based on economic and safety considerations.

3.1.2- Climate effect

By the current climate in Cambodia described in Chapter 2, variation of temperature is neglected. The effect of temperature is taken at 28°C and the effect relative humidity is taken at 70%. As CEB-FIP 90 code model has taken accounts the effect of temperature and relative humidity on shrinkage and creep of concrete, it is used for the consideration of climate effect. The formulations are given below. All the symbols are kept the same as in the original [3], but the forms are rearranged in order to simplify the explanation.

Shrinkage formulation:

$$\frac{\varepsilon_{cs}(t,t_s,T)}{\varepsilon_s(f_{cm})} = -1.55 \cdot \left\{ 1 - \left(\frac{RH}{RH_0}\right)^3 \right\} \cdot \beta_{sT} \cdot \left(\frac{(t-t_s)/t_1}{\alpha_{sT}(T) + (t-t_s)/t_1}\right)^{0.5}$$
(1)

Creep formulation:

$$\frac{\phi(t,t_0,T) - \Delta\phi_{T,trans}}{\beta(f_{cm}).\beta(t_0)} = \left(\phi_T + (\phi_{RH} - 1)\phi_T^{1.2}\right) \left[\frac{(t-t_0)/t_1}{\beta_H \beta_T + (t-t_0)/t_1}\right]^{0.3}$$
(2)

The equation (1) is represented by the graphics in Fig.3.1.2.1 and equation (2) is represented by the graphics in Fig.3.1.2.2 for the cases of $T=20^{\circ}$ C, RH=80% and T=28°C, RH=70% with using the same values of h=165mm, ts=1day, t0=4days. The comparison of shrinkage and creep coefficient of concrete due to these two different conditions is given in table 3.1.2.

Fig.3.1.2.1: strength independent shrinkage and creep coefficient

Fig.3.1.2.2: strength independent shrinkage and creep coefficient

	notional size h (mm)								
Comparisons	1	00		300	600				
	30days	100years	30days	100years	30days	100years			
$\frac{\varepsilon_{cs}(t,t_s = 1 day, T = 28^{\circ}C, RH = 70\%)}{\varepsilon_{cs}(t,t_s = 1 day, T = 20^{\circ}C, RH = 80\%)}$	1.754	1.414	1.789	1.433	1.793	1.486			
$\frac{\phi(t,t_0 = 4days, T = 28^{\circ}C, RH = 70\%) - (\Delta\phi_{T,trans} = 0.0256)}{\phi(t,t_0 = 4days, T = 20^{\circ}C, RH = 80\%)}$	1.421	1.312	1.414	1.271	1.408	1.250			

Table 3.1.2: Comparison of shrinkage and creep coefficient due to deferent environment conditions

As can be seen in table 3.1.2, shrinkage and creep of concrete under climate in Cambodia show much higher than under climate in European countries. In calculation of prestress loss due to creep and shrinkage of concrete, for example, lump sum predicting long term loss for h = 100mm under climate in Europe is 7% due to shrinkage and 10% due to creep, it means that long term loss under climate in Cambodia will be 7x1.41=10% due to shrinkage and 10x1.34=13% due to creep. So climate effect is an important factor to be considered in prestressed concrete structure design for Cambodia.

3.2- Design of pretension bridge girder

The weight of precast girder is limited at 12 tons for the present time due to the conditions of transportation and moving the girder for construction. Low weight of precast girder can be determined by the combination of the following considerations:

- Shape of section
- High strength of concrete
- High prestressing force
- Number of girders
- Debonded materials: the prestressing force can be applied at largest eccentricity.

To determine the shape of girder, the calculation was made for typical one and half lane bridge as shown in Fig.3.2.1. Dimensions of T-shape and box shape girders are chosen as in Fig.3.2.2. The height of girder depends on the length of span. The calculation was done for the span of 10, 15, 20 and 25 meters and for three cases of design concrete strength: 45MPa, 60MPa and 75MPa. The traffic load type A given in Japanese standard for bridge design is used. Creep and shrinkage models given in CEB-FIP90 are used to predict the loss of prestress caused by climate effect. Temperature of 28°C and relative humidity of 70% are considered as the climate condition in Cambodia.

Fig.3.2.1: Typical one lane bridge of T-shape and box shape girders

Fig.3.2.2: Dimensions of T-shape and box shape girders

Fig.3.2.3: Material cost of girders for the case of concrete strength 60MPa

August 2006

Only the cost of concrete and PC strands is taken into account for the material cost shown in the graphic of Fig.3.2.3. And it can be seen that T-shape girder needs less materials compared with box shape. The same results are obtained for cases of design concrete strength of 45MPa and 75MPa. So T-shape girder is selected.

Then typical two lanes girder bridges of T-shape and T-shape with heavy bottom flange of 20 meters of span with one intermediate diaphragm as shown in Fig.3.2.4 and Fig.3.2.5 were designed by:

- Vary the number of girders from 14 to 8 girders in term of the change of top flange width

- Vary the height of girders in 5 cm of step from 75cm to 120 cm
- Vary the design strength of concrete: 40MPa, 60MPa and 80MPa
- Consider with the case of bond control.

Fig.3.2.4: Typical two lanes girder bridge of T-shape

Fig.3.2.5a: Typical two lanes girder bridge of T-shape with heavy bottom flange (14 girders)

Fig.3.2.5b: Typical two lanes girder bridge of T-shape with heavy bottom flange (8 girders)

The traffic load type B given in Japanese standard for bridge design is used. The calculation was verified at precast, at service and at ultimate limit states. The PC strands used for calculation are 15.24mm of nominal diameter, 1860MPa of ultimate strength and low relaxation.

Fig.3.2.6: Material cost of bridge superstructure

The results are represented on the graphic of Fig.3.2.6. Symbol used in graphic: TW30 means T-shape girder with 30cm of web, TB means T-shape with heavy bottom flange

girder, the number in the middle part represents the number of girders for the two lanes girder bridge and the final part represents the design strength of concrete. For example: $TW30_{12}$ f60 means T-shape girder with 12 girders for two lanes girder bridge and design strength of concrete = 60MPa. Based on this graphic T-shape with heavy bottom flange is selected.

STAAD.Pro was used for structural analysis. Adverse case for bending moment due to traffic load was considered as shown in Fig.3.2.9. Determination of prestressing force and eccentricity is based on the allowable stress method. Magnel diagram is drawn to simplify the calculation as shown in Fig.3.2.10:

- (1): border of tensile stress limit of concrete at transfer
- (2): border of compressive stress limit of concrete at transfer
- (3): border of tensile stress limit of concrete at service
- (4): border of compressive stress limit of concrete at service
- (5): maximum eccentricity can be applied

Feasible zone: safe combinations of eccentricity e and 1/Pi (Pi is prestressing force at transfer).

Fig.3.2.9: Traffic load position

Fig.3.2.10: Magnel diagram

3.3- Determination of girder section

The total cost of bridge superstructure is calculated for each case. The selection of girder was made by the conditions of transportation and economic. With the limitation of its self-weight, the precast PC girder can be selected by using the graphic shown in Fig.3.3.1.

For the case of the limitation of the self-weight at 12 tons, the girder of TB_12_f60 with 85 cm of height is selected. The dimensions of selected girder are shown in Fig.3.3.2. For the selected girder, the total prestressing force just after transfer is 2000kN and its eccentricity is 402.2mm. Bond control is required.

Fig.3.3.1: Total cost of bridge superstructure

Fig.3.3.2: Selected girders

Based on design method presented above, high strength concrete is required. As SCC gives most advantage among the high strength concrete types, it is suggested to be used. The use of SCC is not only for high strength but also for improving the construction process and the durability of concrete structures in Cambodia. However the use of SCC is still limited because of creep and shrinkage properties has not yet been clarified. So the study of creep and shrinkage of SCC was made which it is presented in the paragraph 3.4. The production of SCC with available materials on the market in Cambodia is presented in Chapter 4.

3.4- Creep and shrinkage of self-compacting concrete

The investigation on creep and shrinkage of SCC is very important for applying SCC to prestressed concrete structures. SCC needs high powder content to produce high segregation resistance. Usually powder beside cement named additive is used to improve the quality of concrete and to reduce the concrete cost. However the existing prediction models for creep and shrinkage such as JSCE2002, ACI209 and CEB-FIP90 do not consider the effect of the additive. Therefore, the experiment on creep and shrinkage of SCC with different limestone powder contents incorporating with ordinary Portland cement was carried out. The mix proportions were prepared as follows: firstly the mix was designed for the conventional concrete for strength of 55MPa. Based on this mix proportion SCC was designed by increasing the powder content and using the superplasticizer. Three types of SCC were produced with the same powder volume but different contents of limestone powder. From the result of the experiment, the effect of limestone powder content on creep and shrinkage was clarified.

Japan and European countries have demonstrated by test and applications the feasibility and benefits of SCC in highway construction. The concrete industry in the United States already recognizes the advantage of SCC [9]. In order to use SCC in prestressed concrete technology successfully, creep and shrinkage are important factors to be investigated. Many types of SCC have been developed among three main types: powder type, viscosity type and combination type.

Usually additive is used to produce SCC for the reason of cost saving and the improvement of concrete quality. Some additives are chemically reactive and some are chemically virtually inert. As powder content and powder type used for SCC are principle parameters effecting on creep and shrinkage, the investigation was made on SCC powder type with different limestone powder contents incorporating with ordinary Portland cement in this experiment. Four mix proportions were prepared as shown in

Fig.3.4.1 and the test was carried out under the same conditions. Furthermore in the prestressed concrete constructions, prestressing force was usually transferred at early age in order to shorten the construction time. In this experiment, the stress was applied at the age of 4 days for creep test.

Fig.3.4.1: Four types of mix proportions

Materials used for mix proportions: type of cement was ordinary Portland cement (specific gravity: 3.15), sand was mixed sand of 50% sea sand (specific gravity: 2.59, water absorption: 2.07, F.M.: 2.92) and 50% crushed sand (specific gravity: 2.59, water absorption: 1.67, F.M.: 3.27), coarse aggregate was crushed stone with maximum size of 20mm (specific gravity: 2.69, water absorption: 0.39, F.M.: 6.46), additive was limestone powder (specific gravity: 2.70), and chemical admixture was superplasticizer (type: SP8SB).

Decemination	~	(CC	S	CC1	SCC2		SCC3	
Descriptions		Mass	Volume	Mass	Volume	Mass	Volume	Mass	Volume
W/C ratio		0.4	1.27	0.4	1.27	0.35	1.10	0.31	0.97
S/(S+G) rat	tio (%)	44.05	44.98	49.05	50.00	49.05	50.00	49.05	50.00
LF/(C+LF)	ratio (%)	0	0	20.58	23.33	10.29	11.56	0	0
(W	175	0.175	175	0.175	175	0.175	175	0.175
/m3) m3/m3	С	437.5	0.138	437.5	0.138	500.85	0.159	567	0.180
	LF	0	0	113.4	0.042	56.7	0.021	0	0
(kg ne (S	777	0.300	777	0.300	777	0.300	777	0.300
ass olun	G	987	0.367	807	0.300	807	0.300	807	0.300
Unit ma Unit vo	SP	2.174	-	6.303	-	6.969	-	7.645	-
	А	-	0.02	-	0.045	-	0.045	-	0.045
Encal	flow(mm)	C1		675		625		605	
properties	V-funnel(s)	5lu 10	Slump = 10.15		0.15	11.45		12.48	
	Box(mm)	10.5 CIII		325		315		305	
Strongth	4days(MPa)	38	8.19	42.75		52.58		61.70	
Strength	28days(MPa)	56.34		65.36		72.55		80.67	

Table 3.4.1: Detail of mix proportions and some properties of concrete

Self-compactability was evaluated by a slump flow test, a V-funnel test and a Box container test. The strength of concrete was tested at the age of 4 days and at the age of 28 days (specimens: cylinder 100x200mm). The details of mix proportions and some properties of concrete are given in Table 3.4.1. The shape and dimensions of specimen are shown in Fig.3.4.2. A plastic duct for prestressing bar was arranged at the center of specimen. Sixteen point gages for the contact gage meter of 300mm basic length and two wire strain gages were put on two symmetry surfaces.

Fig.3.4.2: Dimensions and size of specimen

The experiment was performed under the same test conditions for these four types of concrete as shown in Table 3.4.2. The formwork was removed at 24 hours after casting and all specimens were air-cured in a constant temperature and constant humidity room at $20\pm2^{\circ}$ C, $60\pm5^{\circ}$.

Т	RH	Drying age	Loading age	Loading stress	Curing
°C	%	day	days	%strength at loading age	-
20±2	60±5	1	4	40	Air-cured

Table 3.4.2: Test conditions

Fig.3.4.3: Testing apparatus

The measurement of shrinkage was started after just removing formwork. For creep test, stress was introduced at the age of 4 days by tensioning a 21mm prestressing bar with

apparatus as shown in Fig.3.4.3 [1]. Because of the prestress loss due to shrinkage, creep and relaxation of prestressing steel which occurs with time, each specimen was reloaded to maintain the error of applied stress 2% [10].

The results of shrinkage are shown in Fig.3.4.4 and creep coefficients are shown in Fig.3.4.5.

As can be seen, the shrinkages show almost the same value for these four types of concrete with the same absolute water content. This means that powder content does not significantly effect on shrinkage. It was agreed with the reason given in JSCE2002 shrinkage model which uses water content (not W/C) as parameter.

Creep test results show that SCC1 which used highest limestone powder content shows highest creep and creep coefficients are proportional to limestone powder content. On the other hand, SCC1 also shows higher creep than CC. It means that even the case with the same powder volume (SCC1, SCC2 and SCC3) or the case with adding limestone powder content to conventional concrete (SCC1 and CC), the concrete using higher limestone powder content shows higher creep.

Design codes were used to calculate the shrinkage and creep coefficients as shown in Fig.3.4.6 and Fig.3.4.7 in which the graphics show that values obtained from three design codes vary considerably high. It was the reason that shrinkage and creep of CC were investigated in this experiment to compare the results with SCC1 instead of using design codes to study the effect of limestone powder content.

3.5- Prestress loss

3.5.1 General

Estimating prestress loss requires an accurate prediction of material properties and of the interaction between creep and shrinkage of concrete and the relaxation of prestressing steel.

Approaches for estimating prestress losses can be divided into the following three major categories:

(a) Time-Step methods

These methods are based on a step-by-step numerical procedure implemented in specialized computer programs for the accurate estimation of long-term prestress losses. As concrete creeps and shrinks, the prestressing strands shorten and decrease in tension. This, in turn, causes the strands to relax less than if they were stretched between two fixed points. Hence, "reduced" rather than "intrinsic" relaxation loss takes place. As the prestressing strand tension is decreased, concrete creeps less, resulting in some recovery. To account for the continuous interactions between creep and shrinkage of concrete and the relaxation of strands with time, time will be divided into intervals; the duration of each time interval can be made progressively larger as the concrete age increases. The stress in the strands at the end of each interval equals the initial conditions at the beginning of that time interval minus the calculated prestress losses during the interval. The stresses and deformations at the beginning of an interval are the same as those at the end of the preceding interval. With this time-step method, the prestress level can be estimated at any critical time of the life of the structure.

(b) Refined methods

In these methods, individual components of prestress loss are calculated separately and the total prestress losses are then calculated by summing up the separate components. Data representing the properties of materials, loading conditions, environmental conditions, and pertinent structural details have been incorporated in the prediction formulas used for computing the individual prestress loss components. Over the years, several methods have been developed.

(c) Lump-Sum methods

Lump-sum methods represent average conditions. They are useful in preliminary design, but the estimated loss should be recalculated in the final design. For example the approximate method given in the current AASHTO-LRFD specification, prestress loss
for girders with 270 ksi low-relaxation strands is given by the following formulas:

19+4PPR-4 (ksi) for Box girder

26+4PPR-6 (ksi) for rectangular beams and solid slabs

 $33[1-0.15(f'_{c}-6)/6] + 6PPR-6$ (ksi) for I girders

 $33[1-0.15(f'_{c}-6)/6] + 6PPR-8$ (ksi) for double Tees and voided slabs

Where: PPR is the partial prestress ration, which normally = 1 for precast pretensioned members.

However when high-strength concrete is used in precast prestressed concrete to allow for high levels of prestress and long span capacities, the experiment on prestress loss is required because the experience on prestress loss in high-strength concrete is still limited at this present time.

In this study, the long term prestress loss was preliminarily supposed at 20% of initial prestressing force just after transfer. Then the verification was made by formulas given in JSCE and by time step method which implemented in a computer program named section (Annex 3).

3.5.2 Calculation of prestress loss

Prestress loss was considered from the tensioning prestressing strands to the end of service design life as shown in Fig.3.5.2.1.

- tp: time at tensioning the strands
- tc: time at casting concrete

- t0: time at starting drying concrete
- t': time at transfer (cutting strands)
- t: time at any time
- tn: time of service design life
- P2: Prestressing force at tensioning
- P1: Prestressing force just after releasing
- P0: Effective prestressing force before transferring (cutting strands)
- Pi: Initial prestressing force just after transferring (cutting strands)
- Pt: Effective prestressing force at any time t
- Pe: Effective prestressing force at service design life

 $\Delta P2$: Loss at tensioning due to displacement of wedge when locking and the prestressing yard for the case of short and/or flexible prestressing yard

- $\Delta P1$: Loss due to relaxation from the time of tensioning to the time of transferring
- $\Delta P0$: Instantaneous loss due to shortening
- ΔP : Long term loss at service design life
- ΔPt : Long term loss at time t

The prestress loss is expressed in general form as shown in equation 3.5.2.1

$$\Delta \sigma_p = E_p \Delta \varepsilon_p + \Delta \sigma_{pr}(t, t_p) \qquad (3.5.2.1)$$

 $E_p \Delta \varepsilon_p$: Loss due to shortening

 $\Delta \sigma_{pr}(t,t_p)$: Loss due to relaxation from tensioning at time tp to any estimated time t

The loss at transfer and loss term loss at service design life, the formulations given in JSCE as described below were used.

(a) Loss at transfer

$$\Delta \varepsilon_{p} = \Delta \varepsilon_{cpg} = \frac{\sigma'_{cpg}}{E_{c}}$$
$$\Delta \sigma_{p0} = n_{p} \sigma'_{cpg} \qquad (3.5.2.2)$$

Where $n_p = E_p / E_c$

By including the loss due to shrinkage from the drying time to transfer time, loss at transfer can written as

$$\Delta \sigma_{p0} = n_p \sigma'_{cpg} + \varepsilon_{cs}(t', t_0) E_p \qquad (3.5.2.3)$$

(b) Long term loss at service design life The loss due to creep and shrinkage

 $\Delta \varepsilon_p = \Delta \varepsilon_{pcs} = \Delta \varepsilon_{cpgcs}$: At the level of prestressing force center

$$\Delta \varepsilon_{cpgcs} = \varepsilon_c(t,t') - \varepsilon_c(t',t')$$

$$\varepsilon_{c}(t,t') = \frac{\sigma'_{cpt} + \sigma'_{cdp}}{E^{*}} + \frac{\Delta\sigma_{cpg}}{E^{**}} + \varepsilon'_{cs}(t,t')$$
$$\varepsilon_{c}(t',t') = \frac{\sigma'_{cpt} + \sigma'_{cdp}}{E_{c}}$$

$$E^* = \frac{E_c}{1+\varphi}$$
: Effective modulus of concrete

$$E^{**} = \frac{E_c}{1 + \chi \varphi}$$
: Age adjusted effective modulus of concrete

$$\Delta \varepsilon_{cpgcs} = \frac{\sigma'_{cpt} + \sigma'_{cdp}}{E_c} \cdot \varphi + \frac{\Delta \sigma_{cpg}}{E^{**}} + \varepsilon'_{cs} (t, t')$$

$$\Delta\sigma_{cpg} = -(\frac{\Delta P_{cs}}{A_c} + \frac{\Delta P_{cs}e^2}{I_c}) = -\frac{\sigma'_{cpt}}{\sigma_{pt}}\Delta\sigma_{pcs}$$

$$\Delta \sigma_{pcs} = \frac{n_{p} \cdot \varphi(\sigma'_{cpt} + \sigma'_{cdp}) + E_{p} \cdot \varepsilon'_{cs}}{1 + n_{p} \cdot \frac{\sigma'_{cpt}}{\sigma_{pt}} \cdot (1 + \chi \varphi)}$$

For the case $\chi = \frac{1}{2}$

$$\Delta \sigma_{pcs} = \frac{n_p \cdot \varphi(\sigma'_{cpt} + \sigma'_{cdp}) + E_p \cdot \mathcal{E}'_{cs}}{1 + n_p \cdot \frac{\sigma'_{cpt}}{\sigma_{pt}} \cdot \left(1 + \frac{\varphi}{2}\right)}$$
(3.5.2.4)

loss of stress in the prestressing tendon due to creep and shrinkage Where $\Delta \sigma_{pcs}$: of concrete

- creep coefficient of concrete φ :
- Shrinkage strain of concrete \mathcal{E}'_{cs} :

- n_p : Ratio of Young's modulus of prestressing tendon to concrete
- σ_{vt} : Tensile stress of prestressing tendon just after prestressing
- σ'_{cpt} : Compressive stress of concrete at the location of prestressing tendon by prestressing force just after prestressing
- σ'_{cdp} : Compressive stress of concrete at the location of prestressing tendon by permanent load
- $\Delta \varepsilon_{cpgcs}$: The change of strain in concrete due to creep and shrinkage at the level of prestressing force.

The loss due to relaxation

 $\Delta \sigma_{pr} = \gamma \sigma_{pt} \quad (3.5.2.5)$

Where $\Delta \sigma_{pr}$: loss of tensile stress due to relaxation

 γ : Apparent relaxation ratio of tendon

$$\gamma = \gamma_0 \left(1 - 2\Delta \, \sigma_{pcs} \, \big/ \sigma_{pi} \right)$$

Where $\Delta \sigma_{\rm pcs}$: decrease in tensile stress of prestressing bar due to the shrinkage and the creep of concrete

 σ_{vi} : Tensile stress of prestressing bar just after prestressing

 γ_0 can be determined by using Table 3.5.2.1

 $\gamma_{\rm 01}$ and $\gamma_{\rm 02}$ can be determined by using Table 3.5.2.2

$1 a01e3.3.2.1. \gamma_0$						
Initial tensile stress/tensile strength	${\gamma}_0$					
0.75	γ_{02}					
0.70	$\gamma_{01} + 0.64(\gamma_{02} - \gamma_{01})$					
0.65	$\gamma_{01} + 0.36(\gamma_{02} - \gamma_{01})$					
0.60	$\gamma_{01} + 0.16(\gamma_{02} - \gamma_{01})$					
0.55	$\gamma_{01} + 0.04(\gamma_{02} - \gamma_{01})$					
0.50	${\gamma}_{01}$					

Table3.5.2.1: γ_0

Kind of prestressing steel	Specified valu tensile stress di	e for the initial vided by tensile
	stre	ngth
	0.50	0.75
Prestressing wire and wire strand	$\gamma_{01} = 3 \%$	$\gamma_{02} = 15\%$
Prestressing bar	$\gamma_{01} = 1\%$	$\gamma_{02} = 7\%$
Low-relaxation prestressing steel	$\gamma_{01} = 1\%$	$\gamma_{02} = 4\%$

Table 3.5.2.2: γ_{01} and γ_{02}

The relaxation ratio of prestressing steel shall be the value three times of that for 1000 hours test obtained by the relaxation test.

The long term loss at any time was calculated by using time step method. Creep and shrinkage models given in JSCE were used. Relation ration is proposed as in equation 3.5.2.6. Elastic recovery due to prestress loss was not considered. When environment temperature is taken into account, creep and shrinkage models given in CEB-FIP were used.

$$\gamma = \gamma_0 \left(\frac{t}{1000}\right)^{0.16} \tag{3.5.2.6}$$

Where t: time in hours (considered from tensioning) γ_0 : The value given in Table 3.5.2.1

The calculation of prestress loss is implemented in a program named "Section" which is presented in Annex 3.

CHAPTER 4: PRODUCTION OF SELF-COMPACTING CONCRETE IN CAMBODIA

4.1- General

As known by its name, Self-Compacting Concrete (SCC) is a type of concrete that can flow under its own weight and completely fill a formwork, even in the presence of dense reinforcements, without vibration causing no segregation. Because it requires no vibration, many advantages of using SCC are provided such as faster construction, less manpower, easier placing, better surface finishes, thinner concrete section, highly effective in reducing noise especially in precast product plants, and safer working environment.

The special rheological requirements of SCC are high deformability with high segregation resistance. The additions of powder are commonly used to improve and maintain the workability, as well as to regulate the cement content and so reduce the heat of hydration, and special concrete admixture are necessary to be able to achieve fluid concrete with controlled workability, very high water reduction, and stable and cohesive concrete.

SCC was developed in Japan starting in the mid 1980s by Professor Hajime Okamura and then, in the summer of 1988 Kazumasa Ozawa was able to create the first SCC. Until now it has been developed and used for almost two decades. In Japan, it has become a standard concrete but in Cambodia it is a new and special concrete.

The durability problem caused by construction work (less skilled labors and less maintenance in the service time) is a main obstacle to be solved in Cambodia and the design for some types of concrete structures has been limited because of the difficulty of compacting concrete. Due to this necessity, the first experimental study on producing SCC in Cambodia was conducted in June 2004 at the Institute of Technology of Cambodia. The Japanese SCC-designing method was applied.

Advance investigation on materials available in Cambodia for producing SCC was made. The materials decided to be used in the experiment were ordinary Portland cement, limestone powder, river sand and crushed rhyolite that these materials are available on the market in Cambodia. Supperplasticizer was provided by Sika(Cambodia) company for the experiment. Self-compacting performance was determined by method of slump flow test, V-funnel test and Box-shaped container test. The result of trial mixes indicates that it is possible to make SCC in Cambodia. But some difficulties were found such as the slump flow value decreased significantly in short time.

4.2- Material investigation

The materials were selected by the conditions of economic and environment. The cost of some materials available in Cambodia is shown in Table 4.2.1.

Materials	Sand	Coarse	Portland	Limestone	Fly	Silica	Viscocrete				
		aggregate	cement	powder	ash	fume	HE-10				
Unit	ton	m^3	ton	ton	ton	ton	liter				
Unit cost (USD)	4.5	12.5	72	26	100	990	3				

Table 4.2.1: cost of materials

4.2.1- Cement (C)

In Japan and in Europe, the moderate heat or low heat cement types have been used for SCC because SCC need high content of cement that can cause the temperature rise in concrete. In Cambodia, only Ordinary Portland cement is available at the present time. So it was used in this research. Its chemical composition and physical properties are shown in Table 4.2.2.

Table 4.2.2: Chemical composition and physical properties of cement

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	Sp. gravity	Sp. Surface area
%	%	%	%	%	%	%	%		cm ² /g
21.1	5.2	3.3	65.3	1.0	2.71	0.08	0.54	3.15	3358

4.2.2- Additions

First some industrial by-products such as granulated blast furnace slag powder, fly ash, and silica fume were considered. Some of them could be found on the market in Cambodia, but the cost was very high. Then the agricultural by-products such as rice husk ash and rice straw ash was discussed. These raw materials were very suitable for making SCC, but many factors needed to be investigated before using and it required the future research. Finally stone powder such as finely crushed granite, dolomite and limestone was considered. Due to past experience of using limestone powder and because limestone powder can be found in Cambodia, limestone exists in Kompot and Battembang provinces, so limestone powder was selected to be used. A typical application example of limestone powder in Japan is its use in the anchorage of the

Akashi Kaikyo Bridge. Limestone powder can also inhibit the temperature rise of concrete when its proportion in concrete is high.

4.2.3- Aggregates

Normally in Cambodia, the sand (S) used for construction is river sand. Coarse aggregate (G) is gravel or crushed stone made from:

- Basalt in Kampong Cham and Snoul,
- Granites at Phnom Basset and in Kampong Chhnang,
- Limestone in Sisophon, Battambang and Kompot,
- Rhyolite from several hills near to Phnom Penh,
- ...

In this research, crushed rhyolite was used. The particle size distribution of fine and coarse aggregates is given in graphic of Fig.4.2.1. Two grading types of coarse aggregate were used.

Fig 4.2.1: Sieve analysis of aggregates

Further information on the physical properties of aggregates is given in Table 4.2.3.

5		00
Tune	Specific	Absorption
Турс	gravity	(%)
Sand	2.57	1.38
Crushed stone	2.73	0.42

Table 4.2.3: Physical properties of aggregates

Because the coarse aggregate were not well graded, more powder content was needed. And because the ordinary cement type was used, this type of SCC would show more plastic shrinkage and creep which require the future investigation for long term of hardened concrete performance.

4.2.4- Superplasticizer (SP)

The high requirements of SCC regarding workability, homogeneity and cohesion result in great demands on SP. The newest developments of SP technology shows outstanding results compared to normal SP. At the time of experiment only SP for conventional concrete is available on the market in Cambodia. The SP suitable for SCC is still not available. Because of its necessary requirement for making SCC, the study was made to find this material. The first consideration was to take this type of SP from Japan to Cambodia. Another consideration is to get this product through the local company of admixture for concrete. Fortunately, SP suitable for SCC could be ordered from Vietnam. General Manager of Sika (Cambodia) Ltd. had ordered Viscocrete HE-10 and offered specially for the experiment. He said that this type of SP will be available in Cambodia when the requirement increases. Viscocrete HE-10 which is ideal for the purpose of powerful plasticizing, special formulations to keep concrete cohesive and homogeneous, and controlled workability was used for the experiment

4.2.5- Apparatus

The apparatus for judging the fresh performance of SCC were made according to the recommendation of Japanese Society of Civil Engineering for self-compacting concrete.

Figure 4.2.2: V-funnel (Unit: mm)

Figure 4.2.3: Box-shaped container (Unit: mm)

Those apparatus are:

- 1- Abram's cone was used to measure the slump flow of SCC
- 2- V-funnel as shown in Fig.4.2.2 was used to measure the flow time of SCC

3- Box-shaped container as shown in Fig.4.2.3 was used to measure the passing ability through obstacles of reinforcement.

By applying Okamura's design method in order to find a good mix proportion for SCC two other apparatus were made to determine the dosage of superplasticizer and volumetric water-powder ratio. One apparatus was used to measure the slump flow of mortar and the other apparatus was used to measure the flow time of mortar (Fig.4.2.4).

4.2.6- Mixer

The tilting drum mixer as shown in Fig.4.2.5 is the popular mixer type in Cambodia. This type of mixer with effective capacity of 50 liters is available in the laboratory of Civil Engineering Department of ITC. It was decided to be used in the experiment.

Fig.4.2.5 Tilting drum mixer

4.3- Experiment

4.3.1- Mix design

The mix design is based on experience from Japan in which two famous methods have been used. One is the JSCE method which is suitable for the materials in that country and another was proposed by Okamura et al. in 1993 which was accepted by many countries over the world. This method is based on the assumptions that moderate-heat Portland cement or belite-rich Portland cement is the only source of powder material. Coarse aggregate volume is fixed at 50% of its solid volume (G_{lim}) in concrete excluding air. Fine aggregate volume is determined at 40% of the mortar volume where the particle smaller than 0.09mm are not considered as aggregate but as powder. The volumetric water to powder ratio has to be determined by tests on mortar at which the relative flow area is 5 and the relative funnel speed is 1 (Fig.4.2.4). Superplasticizer dosage is roughly estimated by the mortar tests mentioned above.

3.3.2- Mixing

Generally mixing times for SCC need to be longer than for conventional mixes. In this research, mixing was made through the procedure as shown in Fig.4.3.1

Fig.4.3.1: Mixing procedure

Note: W1 = 70% of total water

W2 = 30% of total water

4.3.3- Slump flow test

The procedure of doing this test was made according to recommendation of Japanese Society of Civil Engineering for self-compacting concrete. A slump cone in the shape of a truncated cone with the internal dimensions 200mm diameter at the base, 100mm diameter at the top and a height of 300mm, conforming to JIS A 1101, was used to measure the slump flow.

4.3.4- V-funnel test

The procedure of doing this test was made according to recommendation of Japanese Society of Civil Engineering for self-compacting concrete. V-funnel was used to measure the flow time of fresh concrete.

4.3.5- Box-shaped container test

The procedure of doing this test was made according to recommendation of Japanese Society of Civil Engineering for self-compacting concrete. This test was used to judge the requirement of passing ability.

4.3.6- Compressive strength test

The Walter & Bai compressive machine with the capacity of 3000kN was used to test the compressive strength. This machine is made in Switzerland. The compressive strength was tested at the age of 3days and 28days. The specimen was cylinder of 100mm diameter and 200mm height.

4.3.7- Results and discussions

The results of trial mixes are given in Table 4.3.7.1 and the mix design specification is shown in Table 4.3.7.2. As can be seen, many mix proportions could achieve the requirement of flowing without segregation (slump flow and funnel test).

N	Туре	W	С	LF	S	G	SP	Slump flow	Funnel	Box
0	of G	kg	Kg	kg	kg	Kg	kg	mm	S	mm
1	GB	161.6	413.7	190.9	840.6	791.1	6.047	675	105.00	90
2	GB	161.6	413.7	190.9	840.6	791.1	4.837	595	90.00	100
3	GB	183.8	418.0	192.9	849.3	716.6	4.888	800	19.00	200
4	GB	181.5	424.7	196.0	862.8	700.0	4.965	770	22.00	220
5	GB	183.8	418.0	192.9	849.3	716.6	4.277	740	11.14	275
6	GB	183.8	418.0	192.9	849.3	716.6	3.666	670	11.22	272
7	GB	185.7	422.4	195.0	777.8	779.9	3.704	680	11.00	170
8	GB	175.4	422.4	195.0	858.3	724.2	3.704	538	24.00	125
9	GB	196.0	422.4	222.8	777.8	724.2	3.872	775	15.65	220
10	GB	196.0	422.4	222.8	777.8	724.2	3.226	685	15.20	210
11	GB	187.7	426.9	225.2	786.1	731.9	3.913	655	7.65	280
12	GS	187.7	426.9	225.2	786.1	731.9	3.913	665	7.46	320
13	GS	181.9	413.7	218.2	761.8	791.1	3.792	660	14.00	200
14	GB	189.7	431.5	227.6	794.5	711.3	3.955	735	4.00	290
15	GB	185.7	422.4	195.0	831.5	724.2	3.704	680	6.55	150
16	GB	187.7	426.9	197.0	704.8	844.5	3.120	615	9.66	50
17	GB	162.7	429.1	109.8	872.2	823.4	5.389	628	28.52	90
18	GB	202.5	460.7	212.6	760.5	702.0	2.693	670	6.21	298

Table 4.3.7.1: test results of trial mix proportions

But to achieve one more condition, no blocking at the reinforcements which measured by box-shaped container, was very difficult to satisfy: only mixes 12 and 18 could be

verified. This problem was caused by the characteristic of coarse aggregates whose shape was not well rounded to flow freely around reinforcements and its grading was not good: its content must be less than that of good grading aggregates. Air content had been measured in several mixes and it was found around 2%, which was fixed in the mix design.

Table 4.5.7.2. mix design specification								
Slump flow	Box							
mm	S	mm						
650 ± 50	10 ± 5	\geq 300						

Table 1 2 7 2: mix design specificati

As described above, the difficulty of achieving the self-compacting degree of passing ability through obstacles of reinforcement was due to the effects of the characteristics of the coarse aggregate.

In mixes 11 and 12, the same mix proportions with two different grading types of coarse aggregate were tried. The detail of these mix proportions is given in Table 4.3.7.3. The mix using the coarse aggregate GB was shown that fresh concrete could not pass well through the obstacles of reinforcement (box test = 28cm), but it showed to flow freely when the coarse aggregate of GS was used (box test = 32cm).

By keeping the same properties of mortar, another mix was tried with increasing the coarse aggregate content of GS until 56.68% of its solid volume in concrete as shown in Table 4.3.7.4. It was seen that the fresh concrete could not flow through the obstacles (box test = 20cm). This means that coarse aggregate content is strictly determined in order to get the passing ability around the reinforcements.

Another mix proportion was shown in Table 4.3.7.5 that the coarse aggregate GB content was fixed at 50.30% of solid volume of concrete and sand content was fixed at 40.63% of mortar. In this case the properties of fresh concrete was satisfied in all conditions of its fresh performance, flow ability, high resistance to segregation and passing ability around reinforcement bars.

When the coarse aggregate content was fixed at 50% of its solid volume in concrete and sand content was fixed at 40% of mortar even though the grading was not good, the self compact ability was also reached. It means that the design method proposed by Okamura et al. in 1993 is also well-applied with the raw materials in Cambodia.

Slump flow of one mix with ratio W/P=0.80 by volume was measured with the time. Just after mixing, slump flow was 600mm and it remained 420mm after 20 minutes. It was shown to be decreased in short time in the hot weather. Compressive strength was tested at the age of 3days and 28days. Size of specimen was cylinder of 100mm diameters and 200mm heights.

Description	W	С	LF	S	G	SP	Air
Mass (kg/m ³)	187.7	426.9	225.2	786.1	731.9	3.913	
Volume (m^3/m^3)	0.188	0.136	0.083	0.302	0.271		0.020
Volume of mortar (m^3/m^3)		0.7	'09		G	$/G_{lim}$ (%	ó)
Fraction in mortar (%)	26.47	19.12	11.76	42.65		52.44	

Table 4.3.7.3: detail of mixes number 11 and 12

W/P (P =	= C+LF)	W/C	SP/P	S/(S+G)
by volume	by mass	by mass	%	by mass
0.86	0.29	0.44	0.6	0.52

Type of	Slump flow	Funnel	Box	Compressive strength	
G	mm	S	mm	3 days (MPa)	28 days (MPa)
GB	655	7.65	280	32.2	46.0
GS	665	7.46	320	34.4	50.5

Description	W	С	LF	S	G	SP	Air
Mass (kg/m ³)	181.9	413.7	218.2	761.8	791.1	3.792	
Volume (m^3/m^3)	0.182	0.131	0.081	0.293	0.293		0.020
Volume of mortar (m^3/m^3)		0.6	87		G/G _{lim} (%)		
Fraction in mortar (%)	26.47	19.12	11.76	42.65		56.68	

Table 4.3.7.4: detail of mix number 13

W/P (P =	= C+LF)	W/C	SP/P	S/(S+G)
by volume by mass		by mass	%	by mass
0.86	0.29	0.44	0.6	0.49

Type of	Slump flow	Funnel	Box	Compressi	ve strength
G	mm	S	mm	3 days (MPa)	28 days (MPa)
GS	660	14.00	200	38.6	55.0

Description	W	С	LF	S	G	SP	Air
Mass (kg/m ³)	202.5	460.7	212.6	760.5	702.0	2.693	
Volume (m^3/m^3)	0.203	0.146	0.079	0.293	0.260		0.020
Volume of mortar (m^3/m^3)	0.720				G	G/G_{lim} (%	ó)
Fraction in mortar (%)	28.13	20.31	10.94	40.63		50.30	

Table 4.3.7.5: detail of mix number 18

W/P (P = C + LF)		W/C	SP/P	S/(S+G)
by volume	by mass	by mass	%	by mass
0.90	0.30	0.44	0.4	0.52

Type of	Slump flow	Funnel	Box	Compressi	ve strength
G	mm	S	mm	3 days (MPa)	28 days (MPa)
GB	670	6.21	298	31.5	50.2

CHAPTER 5: EXPERIMENTS ON PRESTRESS LOSS

5.1- General

To clarify the design in above chapter, an experiment was carried out on one selected PC girder at Maeda precast plant Phnom Penh office. Because the experience on prestress loss in SCC is still limited until now, prestress loss was investigated in this experiment.

SCC was designed to get the basic design strength 60MPa at 28 days and 40MPa at transfer day. Mix proportion is shown in Table 5.1.1.

The prestress loss was measured by indirect method. The camber and strains on concrete along the PC girder at the location of prestressing tendon were measured. With this measurement method, only the prestress loss due to creep and shrinkage could be investigated. The loss due to relaxation is supposed by using equation (4.5.3.5).

Fig.5.1.1: Specimen

I I I I I I I I I I I I I I I I I I I									
			Mortar				CD		
#	А	G	G	I)	M/	Sr	W/C	W/P
			2	С	LF	vv	%P		
				0.7					
Volume 0.02		0.28			0.385		1	0.22	0.8
			0.28	0.315	0.2	214	0 171		0.55
		0.165			0.049	0.171			
Density		2 74	2.63	3 1 5	27	1	By	By	By
Density	-	2.74	2.05	5.15	2.1	1	Mass	Mass	Volume
Mass	-	767.2	828.5	518.5	133.1	171.1	6.516		

Table 5.1.1: Mix proportion

Fig.5.1.2 shows the position of PC strands and some PC strands were debonded at the end parts of girder. Drawing of reinforcement is given in Fig.5.1.3.

Fig.5.1.2: Position of PC strands

Fig.5.1.3: Drawing of reinforcement

Stresses on concrete at lower and upper surfaces were calculated in 0.5m step along girder without consideration of transferring prestressing force effect as shown in Table 5.1.2 for stress limit verification.

х	Bonded	Pi	e ₀	es	M0	Ms	$\sigma_{\chi i t o}$	σ_{csto}	σ_{citt}	σ_{cstt}
m	strands	kN	cm	cm	kNm	kNm	MPa	MPa	MPa	MPa
0.0	4	571	36.3	36.3	0.0	0.0	7.61	-1.45	6.09	-1.16
0.5	4	571	36.3	36.3	28.3	73.3	6.90	-0.92	4.25	0.21
1.0	4	571	36.3	36.3	55.1	144.1	6.23	-0.42	2.48	1.52
1.5	4	571	36.3	36.3	80.5	212.3	5.59	0.05	0.77	2.79
2.0-	4	571	36.3	36.3	104.4	278.0	4.99	0.50	-0.88	4.01
2.0+	8	1143	38.8	38.8	104.4	278.0	13.32	-1.48	5.78	2.43
2.5	8	1143	38.8	38.8	126.9	341.2	12.76	-1.06	4.20	3.61
3.0	8	1143	38.8	38.8	147.9	401.8	12.23	-0.67	2.68	4.74
3.5	8	1143	38.8	38.8	167.5	459.9	11.74	-0.31	1.22	5.82
4.0-	8	1143	38.8	38.8	185.6	515.4	11.29	0.03	-0.17	6.85
4.0+	12	1714	39.6	39.6	185.6	515.4	19.61	-1.95	6.49	5.27
4.5	12	1714	39.6	39.6	202.3	568.4	19.19	-1.64	5.16	6.25
5.0	12	1714	39.6	39.6	217.5	618.9	18.81	-1.35	3.90	7.19
5.5	12	1714	39.6	39.6	231.3	666.8	18.47	-1.10	2.70	8.08
6.0	12	1714	39.6	39.6	243.6	712.2	18.16	-0.87	1.56	8.93
6.5	12	1714	39.6	39.6	254.5	755.0	17.89	-0.67	0.49	9.72
7.0-	12	1714	39.6	39.6	263.9	795.3	17.65	-0.49	-0.52	10.47
7.0+	14	2000	40.2	40.2	263.9	795.3	21.99	-1.61	2.95	9.58
7.5	14	2000	40.2	40.2	271.9	833.1	21.79	-1.46	2.00	10.28
8.0	14	2000	40.2	40.2	278.4	868.3	21.63	-1.34	1.12	10.93
8.5	14	2000	40.2	40.2	283.5	900.9	21.50	-1.25	0.30	11.54
9.0	14	2000	40.2	40.2	287.1	931.1	21.41	-1.18	-0.45	12.10
9.5	14	2000	40.2	40.2	289.3	958.7	21.36	-1.14	-1.14	12.61
10.0	14	2000	40.2	40.2	290.0	983.7	21.34	-1.13	-1.77	13.08

Table 5.1.2: Stress verifications

Ultimate bending moment was calculate for the verification and the result is shown in Fig.5.1.3.

Fig.5.1.3: Ultimate bending moment

5.2- Experiment setting

A prestressing yard was made for the experiment purpose as can be seen in Fig.5.2.1. Formwork was made by steel plate as shown in Fig.5.2.2. Flexible pipe of 20mm inside diameter was used as debonded materials.

Fig.5.2.1 Prestressing yard

Fig.5.2.2: Formwork

The hydraulic jack of maximum 20 tons of capacity was used to tension the PC strands. The jack was calibrated by dynamometer. Calibration curve is given in the graphic of Fig.5.2.3. The tension force was control by pressure gauge and verified by its elongation as shown in Fig.5.2.4 and Fig.5.2.5.

SCC was mixed in a batching plant located about 50km from casting yard. Before mixing the SCC, moisture content in aggregate was checked and mix proportion was adjusted.

Trial casting of SCC was made 1 day before the real casting to the girder specimen and the fresh properties of SCC were checked by slump flow test, V-funnel test and box-shape container test. At casting day, the fresh property of SCC was checked only by slump flow test just after mixing and before casting. Two truck mixer were transported the concrete from batching plant to casting yard about 60min and it took 30min to cast the concrete to the formwork. Just after concrete filled the formwork, finishing work as can be seen in Fig.5.2.7 was carried out to smooth the surface of specimen.

Formwork was removed after 1day of casting. PC girder was cured for 5 days by water as shown in Fig.5.2.8. PC strands were cut at 6 days to transfer the prestress force to SCC girder by releasing method. It means that cutting strands were operated one by one wire (each strand compose of 7 wires).

Fig.5.2.3: Calibration curve

Table 5.2.1.	Fresh	properties	of SCC
10010.2.1.	1 10511	properties	01 5000

SCC	SP	Test	At batching	Just arrive at	Adjust	After
	used		plant	casting yard	SP	adjusting
Trial		Slump flow	675	510		700
casting	0.9%	V-funnel	-	-	0.2%	10.12
		Box	-	-		302
Casting	1.0%	Slump flow	645	625		-
		V-funnel	-	14.93	_	-

By considering the loss at tensioning and the loss at transferring due to elastic shortening, the PC strands were tensioned at total force 2279kN. After loss due to settlement of wedge the total tension force remains 2227kN.

Fig.5.2.4: Tensioning PC strands

Fig.5.2.5: Measurement of strand elongation

Fig.5.2.6: Casting SCC

Fig.5.2.7: Finishing

Compressive strength of concrete was tested on the age of transfer (6 days) and 28 days by using the specimen of cylinder 100x200mm.

Fig.5.2.8: Curing

Fig.5.2.9: SCC PC girder

5.3- Strains and deflection measurement

Strains on concrete were measured by contact gauge meter of 300mm of base. Contact point gauges were pasted on PC girder as shown in Fig.5.3.2. The measurement was made just before cutting strands, just after cutting strands and after cutting strands 1 day, 3days, 7 days, 14 days, 21 days, 28 days and 56 days.

At the same time of strain measurement, the cambers were measured at 20 points on both side of the bottom surface of PC girder.

Fig.5.3.1: Position of deflection measurement

Fig.5.3.2: Position of contact point gauges

5.4- Results and discussion

Compressive strength is shown in Table 5.4.1. Experiment values of prestress loss were derived from the measured strains on the concrete at the location of PC strands. The loss due to relaxation was excluded from the experimental values.

The calculation of prestress loss was made by time step method with using the creep and shrinkage model given in JSCE2002 including the loss due to relaxation. The relative humidity was taken as 70%. The time dependent cambers along the PC girder were checked and the strains of concrete at the section of mid-span were also checked.

Three case studies are presented: one is the case without consideration of adhering force and friction force between the bottom of formwork and PC girder which appear at the transferring time and friction forces at the end of supports which appear at after transferring, another case these effects were included in the calculation and the final case, the effects of temperature were considered. Adhering stress was supposed as 0.05MPa and friction coefficient was supposed as 0.4. The creep and shrinkage models given in CEB-FIP90 with consideration of the environment temperature 20°C and 28°C were used to check the time dependent temperature cambers for the extra case.

	U	
Ν	6 days (MPa)	28 days (MPa)
1	58.28	79.59
2	62.20	79.24
3	53.89	69.07
4	56.78	70.09
5	57.73	63.92
Mean	57.8	72.4

Case study 1:

At transfer

After transfer

Fig.5.4.1: Strains of concrete at the location of PC strands

	r i i i i i i i i i i i i i i i i i i i	0
Date	Experiment (%)	Calculation (%)
Just after transfer	6.78	8.71
After 56 days of transfer	2.36	12.96

Camber at mid-span

Fig.5.4.2: Time dependent camber at mid-span

Fig.5.4.3: Time dependent camber along the PC girder

Case study 2:

At transfer

Fig.5.4.4: Strains of concrete at the location of PC strands

Table 5.4.5. Prestress loss at the middle part of PC girder					
Date	Experiment (%)	Calculation (%)			
Just after transfer	6.78	7.94			

2.36

After 56 days of transfer

X (m)

12.75

Fig.5.4.6: Distribution of concrete strains at the section of mid-span of PC girder

As can be seen in Fig.5.4.4 and Fig.5.4.6, prestress loss and distribution of strains of concrete at the mid-span section at 56 days shows quite lower compared with the calculation. One reason can be said that because the calculation values of prestress loss was made by many assumptions such as using beam theory of section plane remain plane after deformation, using existing linear creep and shrinkage models and prediction of elastic modulus of concrete by its strength.

Case study 3:

The climate data at the time of experiment given in graphics of the Fig.5.4.7 was obtained from Pochentong Meteorology station. This case study shows the change of PC girder properties due to the effect of temperature. The assumption was set for the study which describes in the following explanations.

Thermal expansion of concrete was taken as 0.00001 /°C. By considering the expansion of PC steel the same as the concrete, the variation of temperature does not affect the prestress loss. But it makes the change of the measured values of prestress loss.

Fig.5.4.7: Climate data at the time of experiment

Supposing the variation of temperature as $\pm 5^{\circ}$ C, the change of the measured value of prestress loss is ± 100 MPa (- means prestress gain). The camber affected by temperature was calculated by assuming that the temperature differential from top to bottom was $\pm 10^{\circ}$ C.

Fig.5.4.8: Camber along PC girder with consideration of temperature effects

August 2006

Fig.5.4.9: Camber at mid-span of PC girder with consideration of temperature effect

Fig.5.4.10: Camber at mid-span by using CEB-FIP90 code

All case studies above show that PC girder is in the safety condition. It means that existing models of creep and shrinkage can be used for predicting prestress loss in PC girder using self-compacting concrete in Cambodia. This experiment clarified the possibility of producing good quality prestressed concrete girder with Cambodian local materials and the design of PC girder presented in Chapter 3.

CHAPTER 6: CONCLUSIONS

In this research, the author found the successful way in producing SCC by using the available local materials in Cambodia. Further, the author develop the design standards and construction method for PC girder using SCC suiting for the local technical level, traffic conditions and climatic situation for the rehabilitation and construction of short span bridges in Cambodia. A real scale PC girder using SCC was also produced in order to validate the research outcome. The experiment showed that the proposed technology can successfully be used in bridge rehabilitation and construction in Cambodia.

Traffic load model given in Japanese standard for bridge design was decided to be used in this study and the author concluded that it is equally applicable in Cambodian environment. Self-weight of precast prestressed concrete girder was limited at 12 tons for the present time due to the conditions of transporting and moving the girder for construction.

The studies can be concluded as follows:

(1) Low weight prestressed concrete girder using self-compacting concrete for Cambodia at present time can be produced by the combination of:

- Using T-shape with heavy bottom flange girder,
- Using high strength concrete,
- Applying high prestressing force,
- Minimizing the dimensions of PC girder section by using more number of girders.

(2) If much heavier girders could be transported to the construction sites and big capacity of construction equipment can be variable, it can be said that the required bridge graders cost and construction cost will be lower than the recommended method.

(3) Self-compacting concrete can be produced with available materials in the Cambodian market. Limestone powder produced in Cambodia is one of powder materials used for self-compacting concrete. Ordinary Portland cement using in Cambodia can be used for producing self-compacting concrete. Slump flow value decreased significantly in short time in this experiment.

(4) The test of creep and shrinkage of self-compacting showed that limestone powder content does not significantly effect on shrinkage. JSCE2002 shrinkage model which considers absolute water content as main parameter can be applied to self-compacting

concrete using limestone powder. Self-compacting concrete with higher limestone powder content shows higher creep and self-compacting concrete which was made by adding limestone powder content to conventional concrete shows higher creep than the conventional even the strength is considerably increased.

(5) The production of real scale prestressed concrete girder using self-compacting concrete in Cambodia had shown the possibility of producing good quality prestressed concrete girder with Cambodian local materials.

REFERENCES

1. Shima H., Noritake K., 'Strain increase of concrete subjected to sustain compressive stress at early age', ICCM/IBST2001.

2. JSCE, 'Standard specifications for concrete structure-2002'- March, 2002

3. CEB-FIP, 'Model Code 1990', Thomas Telford, 1993

4. JSCE, 'Recommendation for Self-Compacting Concrete', August 1999

5. 社団法人日本道路協会, "コンクート橋編", 道路橋示方書同解説, 平成14年3月

6. Mutsuyoshi, H. and Witchukreangkrai, E.: Recent Techniques of Prestressed Concrete Bridges in Japan, Proceedings of the Ninth National Convention on Civil Engineering (NCCE9), Thailand, Paper No. STR-INV02 (2004.5)

7. Edward G. Nawy, 'Prestressed concrete'- Prentice Hall, Third edition 2000

8. Oversea road note 9, 'a design manual for small bridge'- Transport Research Laboratory 2000.

9. Ouchi, Nakamura, Osterson, Hallberg, and Lwin, 'Application of self-compacting concrete in Japan, Europe and the United States', ISHPC 2003

10. Sakata Kenji, Ayano Toshiki, 'A non linear creep prediction equation for concrete', Concrete Library International of JSCE No. 21, June 1993

11. V. Seng, H. Shima, M. Ouchi, 'Possibility of self-compacting concrete in Cambodia'- Proceeding of International Conference on Concrete Technology in Developing Countries, Kuala Lumpur, 2004

12. Vong Seng, Hiroshi Shima, 'Creep and shrinkage of self-compacting concrete with different limestone powder contents', Proceeding of the Second North American Conference on the Design and Use of Self-Consolidating Concrete (SCC) and the Fourth International RILEM Symposium on Self-Compacting Concrete, SCC2005

13. Vong Seng, Hiroshi Shima, 'Design of pretension prestressed concrete girder bridge for Cambodian rehabilitation', Proceeding of conference, EASEC10, Bangkok, Thailand

14. Ministry of public work and transportation, 'Maximum weight limitation on transport vehicle circulating on road network in Cambodia', seminar documentation, 1999, in Khmer language.

Annex 1: Creep and shrinkage models

1- JSCE 2002 model

Model for normal strength concrete Range of applicability

- $45\% \le RH \le 80\%$
- $130kg/m^3 \le W \le 230\%$
- $100mm \le V/S \le 300mm$
- $3 days \le t_0 \le 90 days$
- $40\% \le W/C \le 65\%$
- $f'_{c}(28) \le 55 \text{ MPa}$
- $260kg/m^3 \le C \le 500kg/m^3$ (for creep condition)

Formulation

Shrinkage

$$\varepsilon'_{cs}(t,t_0) = \left[1 - \exp\left\{-0.108(t-t_0)^{0.56}\right\}\right]\varepsilon'_{sh}$$
$$\varepsilon'_{sh} = -50 + 78\left\{1 - \exp\left(\frac{RH}{100}\right)\right\} + 38\ln w - 5\left[\ln\left(\frac{v/s}{10}\right)\right]^2 \qquad (x10^{-5})$$

 t_0 : starting drying concrete age

t₀ is replaced by
$$t = \sum_{i=1}^{n} \Delta t_i \exp\left[13.65 - \frac{4000}{273 + T(\Delta t_i)/T_0}\right]$$

t is the temperature adjusted concrete age

 Δt_i is the number of days where a temperature T prevails

 $T(\Delta t_i)$ is the temperature (°C) during the time period Δt_i

 $T_0 = 1^{\circ}C$

Creep

$$\varepsilon'_{cc}(t,t',t_0)/\sigma'_{cp} = \left[1 - \exp\{-0.09(t-t')^{0.6}\}\right]x\varepsilon'_{cr}$$

$$\varepsilon'_{cr} = \varepsilon'_{bc} + \varepsilon'_{dc}$$

$$\varepsilon'_{bc} = 15(c+w)^{2.0}(w/c)^{2.4}\{\ln(t')\}^{-0.67}x10^{-10}$$

$$\varepsilon'_{dc} = 4500(w/c)^{4.2}(c+w)^{1.4}\left[\ln\left(\frac{v/s}{10}\right)\right]^{-2.2}\left\{1 - \frac{RH}{100}\right\}^{0.36}t_0^{-0.30}x10^{-10}$$

August 2006
Model for high strength concrete Range of applicability

$$40\% \le RH \le 90\%$$

 $130kg / m^3 \le W \le 230\%$
 $100mm \le V / S \le 300mm$
 $f'_c (28) \le 80$ MPa
 $1day \le t_0 \le 98days$
 $t_0 = 98days$ if $t_0 > 98days$

Formulation

Shrinkage

$$\varepsilon'_{cs}(t,t_0) = \varepsilon'_{ds}(t,t_0) + \varepsilon'_{as}(t,t_0)$$

 $\varepsilon'_{ds}(t,t_0) = \frac{\varepsilon'_{ds\infty}.(t-t_0)}{\beta + (t-t_0)}$
 $\beta = \frac{4W\sqrt{V/S}}{100 + 0.7t_0}$
 $\varepsilon'_{ds\infty} = \frac{\varepsilon'_{ds\rho}}{1 + \eta t_0}$ (x10⁻⁶)
 $\varepsilon'_{ds\rho} = \frac{\alpha(1 - RH/100)W}{1 + 150 \exp\left\{-\frac{500}{f'_c(28)}\right\}}$
 $\eta = 10^{-4}\left\{15 \exp(0.007 f'_c(28)) + 0.25W\right\}$

 $\alpha = 11$ normal and low heat cement

 $\alpha = 15$ high early strength cement

$$\varepsilon'_{as}(t,t_0) = \varepsilon'_{as}(t) - \varepsilon'_{as}(t_0)$$

$$\varepsilon'_{as}(t) = \gamma \varepsilon'_{as\infty} \left[1 - \exp\{-a(t-t_s)^b\} \right] \quad (x10^{-6})$$

$$\varepsilon'_{as\infty} = 3070 \exp\{-7.2(W/C)\}$$

W/C	а	b
0.20	1.2	0.4
0.23	1.5	0.4
0.30	0.6	0.5
0.40	0.1	0.7
>=0.50	0.03	0.8

Creep

$$\varepsilon'_{cc}(t,t',t_0)/\sigma'_{cp} = \frac{4W(1-RH/100)+350}{12+f'_{c}(t')}\ln(t-t'+1)$$

2- CEB-FIP90 model

Range of applicability

- $12MPa \le f_{ck} \le 80MPa$
- $\left| \sigma_c \right| \le 0.6 f_{cm}(t_0)$
- $40\% \le RH \le 100\%$
- $0^{\circ}C < T < 80^{\circ}C$

The prediction model is not applicable to:

- Concrete subjected to extreme temperatures, high (e.g. nuclear reactors) or low (e.g. LNG-tanks)

- Very dry climatic conditions (average relative humidity RH < 40%)

- Structural lightweight aggregate concrete

Shrinkage

 $\varepsilon_{cs}(t,t_s) = \varepsilon_{cs0}.\beta_s(t-t_s)$ $\varepsilon_{cs0} = \varepsilon_s(f_{cm}).\beta_{RH}$

$$\varepsilon_s(f_{cm}) = [160 + 10\beta_{sc}(9 - f_{cm}/f_{cmo})] 10^{-6}$$

Type of cement	32.5	32.5R 42.5	42.5R 52.5
β_{sc}	4	5	8

$$\beta_{RH} = \begin{cases} -1.55\beta_{sRH} & \text{for} & 40\% < \text{HR} < 99\% \\ +0.25 & \text{for} & \text{HR} > 99\% \end{cases}$$

$$\beta_{sRH} = 1 - \left(\frac{RH}{RH_0}\right)^3$$

$$\beta_{s}(t-t_{s}) = \left(\frac{(t-t_{s})/t_{1}}{350(h/h_{0})^{2} + (t-t_{s})/t_{1}}\right)^{0.5}$$

Effect of temperature

$$\alpha_{sT}(T) = 350 \left(\frac{h}{h_0}\right)^2 \exp[-0.06(T/T_0 - 20)]$$

 $\alpha_{sT}(T)$ replaces the product $350(h/h_0)^2$ in last equation

 $\beta_{RH,T} = \beta_{RH} \beta_{sT}$ replaces β_{RH} in last equation

with
$$\beta_{sT} = 1 + \left(\frac{8}{103 - 100RH/RH_0}\right) \left(\frac{T/T_0 - 20}{40}\right)$$

Creep

With the rang of service stresses $|\sigma_c| < 0.4 f_{cm}(t_0)$

$$\begin{split} \varepsilon_{cc}(t,t_{0}) &= \frac{\sigma_{c}(t_{0})}{E_{ci}} \phi(t,t_{0}) \\ J(t,t_{0}) &= \frac{1}{E_{c}(t_{0})} + \frac{\varphi(t,t_{0})}{E_{ci}} \\ \varepsilon_{c\sigma}(t,t_{0}) &= \sigma_{c}(t_{0}) \bigg[\frac{1}{E_{c}(t_{0})} + \frac{\varphi(t,t_{0})}{E_{ci}} \bigg] = \sigma_{c}(t_{0}) J(t,t_{0}) \\ \phi(t,t_{0}) &= \phi_{0}(t_{0}).\beta_{c}(t-t_{0}) \\ \phi_{0}(t_{0}) &= \phi_{RH}.\beta(f_{cm}).\beta(t_{0}) \\ \phi_{RH} &= 1 + \frac{1 - RH / RH_{0}}{0.46.3 \sqrt{h/h_{0}}} \\ \beta(f_{cm}) &= \frac{5.3}{\sqrt{f_{cm}/f_{cm0}}} \\ \beta(t_{0}) &= \frac{1}{0.1 + (t_{0}/t_{1})^{0.2}} \\ \beta_{c}(t-t_{0}) &= \bigg[\frac{(t-t_{0})/t_{1}}{\beta_{H} + (t-t_{0})/t_{1}} \bigg]^{0.3} \\ \beta_{H} &= 150 \bigg\{ 1 + \bigg(1.2 \frac{RH}{RH_{0}} \bigg)^{18} \bigg\} \cdot \frac{h}{h_{0}} + 250 \qquad < 1500 \\ h_{0} &= 100 \text{ mm} \end{split}$$

 $f_{cm0} = 10 \text{ MPa}$ $f_{1} = 1 \text{ day}$ $RH_0 = 100\%$ Effect of type of cement and curing temperature

Modifying the age at loading

$$t_0 = t_{0,T} \cdot \left(\frac{9}{2 + (t_{0,T} / t_{1,T})^{1.2}} + 1\right)^{\alpha} \ge 0.5 \text{ days}$$
$$t_{0,T} = \sum_{i=1}^n \Delta t_i \exp\left[13.65 - \frac{4000}{273 + T(\Delta t_i) / T_0}\right]$$

 $t_{0,T}$ is the temperature adjusted concrete age

 Δt_i is the number of days where a temperature T prevails

 $T(\Delta t_i)$ is the temperature (°C) during the time period Δt_i

 $T_0 = 1^{\circ}C$

	32.5	32.5R 42.5	42.5R 52.5
Type of cement	slow hardening cement	normal and rapid hardening cement	rapid hardening high strength
α	-1	0	1

Effect of high stresses

With the rang of service stresses $0.4 f_{cm}(t_0) < |\sigma_c| < 0.6 f_{cm}(t_0)$

$$k_{\sigma} = \left|\sigma_{c}\right| / f_{cm}(t_{0})$$

$$\phi_{0,k} = \phi_{0} \exp[\alpha_{\sigma}(k_{\sigma} - 0.4)] \text{ for } 0.4 < k_{\sigma} < 0.6$$

$$\phi_{0,k} = \phi_{0} \text{ for } k_{\sigma} < 0.4$$

$$\alpha_{\sigma} = 1.5$$

Effect of temperature

 $\beta_{H,T} = \beta_H \beta_T \quad \text{replaces } \beta_H \text{ in last equation}$ $\beta_T = \exp[1500/(273 + T/T_0) - 5.12]$ $\phi_{RH,T} = \phi_T + (\phi_{RH} - 1)\phi_T^{1.2}$ $\phi_T = \exp[0.015(T/T_0 - 20)]$

 $\phi(t,t_0,T) = \phi_0 \beta_c(t-t_0) + \Delta \phi_{T,trans}$

$$\Delta \phi_{T,trans} = 0.0004 (T/T_0 - 20)^2$$

Development of strength with time

$$f_{cm}(t) = \beta_{cc}(t) f_{cm}$$
$$\beta_{cc}(t) = \exp\left\{s\left[1 - \left(\frac{28}{t/t_1}\right)^{1/2}\right]\right\}$$

 $t_1 = 1 \text{ day}$

	32.5	32.5R 42.5	42.5R 52.5
Type of cement	slow hardening cement	normal and rapid hardening cement	rapid hardening high strength
S	0.38	0.25	0.20

Effect of temperature

 $f_{cm}(T) = f_{cm}(1.06 - 0.003T/T_0)$

 $f_{\rm cm}$ is the compressive strength at $20^{\rm o}{\rm C}$

Strength under sustained loads

$$f_{cm,sus}(t,t_0) = f_{cm}\beta_{cc}(t)\beta_{c,sus}(t,t_0)$$
$$\beta_c(t,t_0) = 0.96 - 0.12 \left\{ \ln \left[72 \left(\frac{t-t_0}{t_1} \right) \right] \right\}^{1/4}$$

Modulus of elasticity

$$E_{ci} = E_{co} [(f_{ck} + \Delta f) / f_{cmo}]^{1/3}$$
$$\Delta f = 8 \text{ MPa}$$
$$f_{cmo} = 10 \text{ MPa}$$
$$E_{co} = 2.15 \times 10^4 \text{ MPa}$$
$$f_{cm} = f_{ck} + \Delta f$$

$$E_{ci} = E_{co} [f_{cm} / f_{cmo}]^{1/3}$$

 $E_{c} = 0.85 E_{ci}$

Effect of temperature $E_{ci}(T) = E_{ci}(1.06 - 0.003T/T_0)$

Development of modulus of elasticity with time $E_{ci}(t) = \beta_E(t)E_{ci}$

 $\beta_E(t) = \left[\beta_{cc}(t)\right]^{0.5}$

3- ACI209 model

Calculate Compressive Strength:

$$f_c'(t_0) = f_c'(28) \frac{t_0}{b + ct_0}$$

where;

 $f_c'(t_o) = compressive strength of concrete at age of concrete loading, t_o$

Type of Cement	Moist Cure	ed Concrete	Steam Cure	ed Concrete
Ι	b = 4.0	c = 0.85	b = 1.0	c = 0.95
III	b = 2.3	c =0.92	b = 0.7	c = 0.98

Note: The experimental $f_c'(t_0)$ was used for the calculations to obtain a more accurate value.

Calculate Modulus of Elasticity:

$$E_{cmt0} = 33\gamma^{3/2} (f_c'(t_0))^{1/2}$$

Note: The experimental E_{cmto} was used when calculating the compliance function to obtain a more accurate value.

Calculate Shrinkage Strain:

$$\varepsilon_s(t_s) = \frac{t_s}{b + t_s} K_{SS} K_{SH} \varepsilon_{shu}$$

Kss = 1.14 - 0.09(V/S)
 $\varepsilon_{shu} = 780 \times 10^{-6}$ in/in

Humidity	Moist Cured Concrete	Steam Cured Concrete
40 % ≤H ≤80 %	$b = 35$ $t \ge 7$ days	$b = 55 t \ge 1$ to 3 days
	$K_{SH} = 1.4 - 0.01 H$	$K_{SH} = 1.4 - 0.01H$
80 % ≤H ≤100 %	$b = 35 t \ge 7 days$	$b = 55 t \ge 1$ to 3 days
	$K_{SH} = 3 - 0.03H$	$K_{SH} = 3 - 0.03H$

Calculate Creep Strain:

$$\varepsilon_{cc}(t) = \frac{\sigma}{E_{cmt0}} C_c(t)$$

Where
$$C_c(t) = \frac{t^{0.6}}{10 + t^{0.6}} C_{cu} K_{CH} K_{CA} K_{CS}$$

and
 $C_{cu} = 2.35$
 $K_{CH} = 1.27 - 0.0067 H$

 $K_{CS} = 1.14 - 0.09(V/S)$

Moist Cured Concrete	Steam Cured Concrete
t, t₀≥7 days, H ≥40 %	t, to ≥ 1 to 3 days, H ≥ 40 %
$K_{CA} = 1.25$ (to) ^{-0.118}	$K_{CA} = 1.13$ (to) ^{-0.095}

Calculate Creep Compliance Function:

$$J(t,0) = \frac{1+C_c(t)}{E_{cmt0}} \quad \mu / psi$$

Calculate Total Strain:

$$\varepsilon(t) = \varepsilon_s(t) + \frac{\sigma}{E_{cmt^0}} (1 + C_c(t))$$

Annex 2: Traffic load model

The change in time of model vehicles used in Japanese for traffic load model in bridge design:

T荷重の載荷位置

けたAの反力の影響線と L荷重の載荷方法

		主載荷荷重(幅 5.5)	m)			
	等分布荷重 μ	,		等分布荷重 p2		4V. 10
	荷重(kgf/m²)	荷	了重 (kgf/m	²)	位戰何 荷 重
載荷長 D(m)	曲げモーメントを 算 出 す る 場 合	せん 断力を 算出する場合	$L \leq 80$	80 <l≦130< th=""><th>L>130</th><th></th></l≦130<>	L>130	
10	1,000	1, 200	350	430-L	300	主載荷荷 重の50%

Values of uniform load p1 and p2

For the case of A load type, D=7m

Impact load coefficient

A点の動的応答曲線

Annex 3: Computer program

Three models (JSCE2000, CEB-FIP90 and ACI209) of creep and shrinkage were implemented in a program named creep.

Materials —				Environment conditions		
Strength f'c(28)	50	MP	a	Curing temperature	20	Celsius
Water content (W)	175	kg/	/m3	Relative humidity (RH)	60	%
Cement content (C)	437	kg/	′m3	OK I	Cance	el
Others						
Loading stress	ſ	16	MPa	Age at loading(t')	28	day
				Age at beginning of drying(t	0) 1	day
Volume-surface ratio	(V/S)	100	mm	Age of concrete (t)	365	day

Input table for JSCE model

Total strain up to 365 days

Materials			Environment conditions		
Strength f'c(28)	80	MPa	Curing temperature	20	Celsius
Water content (W)	175	kg/m3		120	CONCINC
Cement content (C)	560	k∉∕m3	Relative humidity (RH)	60	*
Normal or	low heat ce	ement			
C High early	strength c	ement	OK	Cance	a
)thers					
Loading stress	16	MPa	Age at loading(t')	28	days
	(V/S) 100) mm	Age at beginning of drying	:(t0) 1	days
Volume-surface ratio					

Input table for JSCE model for high strength concrete

Total strain up to 365 days

Materials				Environment conditions		
Strength fck	50	MPa		Curing temperature	20	- Celsius
Class of cemen	t: C 32.5			Relative humidity (RH)	60	- *
	 32.5R, 4 42.5R, 5 	2.5 2.5		Temperature	20	Celsius
Others				ССК	Car	ncel
Loading stress		16	MPa	Age at loading(t0)	28	days
Effective thicknes	ss (2Ac/u)	200	mm	Age at beginning of drying	(ts) 1	days

Input table for CEB-FIP90 model

Total strain up to 365 days

Materials —		Environn	nent con	ditions ——	
f'c28 50) MPa	Curing	types	Moisture	
Density 24	kN/m	3	C	Steam	
Cement types	- -	RH	60	- %	
•	Type I				
C	Туре 🎞	[0	ιK	Car	ncel
Others				1917	
Loading stress	16 MPa	Age of concrete a	t loading	28	days
		Age of concrete a	t drying	1	days
11/0	100 mm	Age of concrete		loor.	

Input table for ACI209 model

Total strain up to 365 days

PC girder design is implemented in a program named 'Section'.

1 1	5
T D:¥Data¥Experiment in Cambodia¥GirderS02¥New¥58x85.sec	
File SectionType Design View About!	
Kochi University of Technology	
Dimensions of section	ks
bt0 = 58 cm bt1 = 🔝 cm	
bw = 15 cm bb = 35 cm	
ht0 = 16 cm ht1 = 0 cm	
ht2 = 4 cm hw = 45 cm	×
hb1 = 8 cm hb0 = 12 cm	Ĝ
Section after connection	
bdl = 10 cm bdr = 10 cm	
ОК	
-Section properties	
Precast section Section at service	
A = 2369.00 2369.00 cm2	N
Ydi = 48.80 48.80 cm	
Yds = 3620 3020 cm	
ki = 22.70 22.70 cm	
Wi = 39896.52 39896.52 cm3	
Ws = 53771.11 53771.11 cm3	
IG = 1946764.44 1946764.44 cm4	
It = 134750.12 134750.12 cm4	·
Wg = 5.80 5.80 kN/m	

Section properties of girder

Free body diagram for simple case

Determination of prestressing force and its eccentricity

Ultimate limit states design and verification

Ultimate limit states design and verification

Bond control verification

🔳 D:¥Data¥Experim	nent in Cambo	dia¥GirderS02¥Ne	w¥58x85.se	B					
File SectionType De	esign View Ab	out!							
nstrands 2 debobded length 7	2 strands 7 m	length 20.00 M0max 290.00	m kNm Ms	958.7 kNm					
y strands 5	ō cm	Msmax 983.70	kNm ×	9.5 m					
(Chang	and OK				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	led P 571.43 571.43 571.44 571.44 571.44 571.44 1142.8 1142.8 1142.8 1142.8 1142.8 1142.8 1142.8 1142.8 1714.2 1714.2 1714.2 1714.2 1714.2 1714.2 1714.2 1714.2 2000.0 2000.0 2000.0 2000.0	e0 3 36.30 3 36.30 3 36.30 3 36.30 3 36.30 3 36.30 3 36.30 3 36.30 5 38.80 6 38.80 6 38.80 6 38.80 6 38.80 6 38.80 6 38.80 6 38.80 9 39.63 9 39.63 9 39.63 9 39.63 9 39.63 9 39.63 9 39.63 9 39.63 9 39.63 9 39.63 9 39.63 9 40.22 0 40.22 0 40.22 0 40.22 0 40.22 0 40.22	es 36.30 36.30 36.30 36.30 38.80 38.80 38.80 38.80 38.80 39.63 39.63 39.63 39.63 39.63 39.63 39.63 39.63 39.63 39.63 39.63 39.63 39.63 39.63 39.63 39.63 39.63 40.22 50 50 50 50 50 50 50 50 50 50	M0 0.00 28.27 55.10 80.47 104.40 104.40 126.88 147.90 167.48 185.60 202.27 217.50 231.27 243.60 254.48 263.90 263.90 271.88 278.40 289.27 289.00	Ms 0.00 73.30 144.10 212.30 278.00 278.00 278.00 451.20 401.80 459.90 515.40 515.40 515.40 515.40 518.90 666.80 712.20 755.00 795.30 833.10 868.30 900.90 931.10 958.70 983.70	S0i 7.61 6.90 6.23 5.59 4.99 13.32 12.76 12.23 11.74 11.29 19.61 19.19 18.81 18.47 18.81 18.47 18.16 17.89 21.59 21.99 21.63 21.99 21.63 21.50 21.34	SOs -1.45 -0.92 -0.42 0.05 0.50 -1.48 -1.06 -0.67 -0.31 0.03 -1.95 -1.64 -1.35 -1.10 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67 -0.49 -1.61 -1.34 -1.25 -1.18 -1.14 -1.13	Sti 6.09 4.25 2.48 0.77 -0.68 5.78 4.20 2.68 1.22 -0.17 6.49 5.16 3.90 2.70 1.56 0.49 -0.52 2.95 2.00 1.12 0.30 -0.45 -1.14 -1.77	Sts -1.16 0.21 1.52 2.79 4.01 2.43 3.61 4.74 5.82 6.85 5.27 6.25 7.19 8.08 8.93 9.72 10.47 9.58 10.25 10.26 10.25 10.26 10.25 10.26 10.25 10.26 10.25 10.26 10.26 10.25 10.26 10.27 10.28 10.26 10.28 10.26 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.20 10.28 10.20 10.28 10.20 10.28 10.20 10.20 10.20 10.28 10.20

Prestress loss

Camber and deflection

Annex 4: Calculation Table

Notation	
h	Girder height
А	Girder section area
Self-weight	Self-weight of girder
Ι	Inertia of girder section
Wi	Lower part of section modulus
Ws	Upper part of section modulus
M self	Bending moment due to self-weight
Mdesign	Bending moment due to service load
Msdu	Bending moment due to ultimate load
Pi	Initial prestressing force just after transfer
e	Eccentricity of prestressing force
Ap	Total section area of prestressing steel
n	Number of prestressing steel
σpi	Initial prestress just after transfer
σ limits	Stress limit (compressive and tensile at transfer and at
	service)
σ at support	Stress at support
σ at span	Stress at span
Debonded	Debonded length and number of debonded strands
σ at support	Stress at support after debonded strands
σ at X1	Stress at debonded location
Mcr	Cracking bending moment
Mu	Ultimate bending moment
Cost/girder	Cost of concrete and PC strands per girder
Cost	Cost of concrete and PC strands

#	unit										G13	f60									
h	cm	7	5	8	0	8	5	9	0	9	5	1(00	10	05	1	10	1	15	12	20
А	cm ²	26	46	27	96	29	46	30	96	32	46	33	96	35	46	36	96	38	46	39	96
Self- weight	ton	13.	414	14.	180	14.	945	15.	711	16.4	457	17.2	222	17.	988	18.	754	19.	499	20.2	265
I	cm ⁴	133	8445	1610	5833	1930	0091	2280	0107	2668	8765	3097	7947	356	9534	408	5408	464	7448	5257	7533
Wi	cm ³	320	051	364	427	410	067	459	970	511	33	565	556	622	237	68	176	74	371	808	322
Ws	cm ³	402	266	453	398	507	789	564	438	623	343	685	503	749	917	81:	585	88	506	956	579
M self	kNm	32	4.0	34	2.5	36	1.0	37	9.5	39′	7.5	41	6.0	43	4.5	45	3.0	47	1.0	48	9.5
Mdesign	kNm	96	4.3	98	3.7	100)3.0	102	2.4	104	1.8	106	1.1	108	30.4	109	9.7	111	9.0	113	8.3
Msdu	kNm	186	50.4	188	35.4	191	0.3	193	5.3	196	0.2	198	5.1	200)9.9	203	34.7	205	59.4	208	4.1
Pi	kN			24	50	22	48	21	00	19	80	18	90	17	95	17	25	16	545	15	85
e	cm			33	.14	37	.00	40	.37	43.	.44	46	.03	49	.17	51	.74	54	.99	57.	.55
Ар	mm ²			22	40	21	00	18	20	16	80	16	80	15	40	15	40	14	00	14	00
n	Strands			1	6	1	5	1	3	1	2	1	2	1	1	1	1	1	0	1	0
:	MPa			10	94	10	70	11	54	11	79	11	25	11	66	11	20	11	75	11	32
орі	%			6	5	6	4	6	9	7	1	6	7	7	0	6	7	7	'0	6	8
σ limita	MPa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
o minits	IVIF d	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σ at	MPa			-9.12	-7.30	-8.75	-7.00	-8.24	-6.59	-7.70	-6.16	-7.13	-5.71	-6.72	-5.38	-6.27	-5.02	-5.94	-4.75	-5.57	-4.45
support				31.05	24.84	27.88	22.31	25.22	20.18	22.92	18.34	20.95	16.76	19.24	15.39	17.76	14.21	16.44	13.15	15.25	12.20
σ at span	MPa			-1.58	14.37	-1.64	12.75	-1.51	11.52	-1.32	10.55	-1.06	9.78	-0.92	9.05	-0.72	8.46	-0.62	7.89	-0.45	7.44
				21.65	-2.16	19.09	-2.12	16.97	-2.06	15.15	-2.04	13.59	-2.00	12.26	-1.97	11.11	-1.92	10.11	-1.89	9.20	-1.88
Debonded	Strands			1	3	1	3	1	1	1	0	1	0	9)	9	-		8	5	;
	X1(m)			9.	.0	9.	.5	9.	.0	8.	.0	7.	.5	7	.0	6	.5	6	.0	5.	.5
σ at	MPa			-1.	71	-1.	.17	-1.	27	-1.	28	-1.	19	-1.	.22	-1.	.14	-1	.19	-1.	11
support				5.	82	3.	72	3.	88	3.8	82	3.4	49	3.	50	3.	23	3.	29	3.0)5
σ at X1	MPa			-1.	65	-1.	.66	-1.	58	-1.	58	-1.	44	-1.	.44	-1.	.40	-1	.47	-1.	49
				21	.74	19	.12	17	.05	15.	.46	14.	.05	12	.89	11	.93	11	.12	10.	.42
Mcr	kNm			98	5.4	100	05.1	102	5.5	104	4.7	106	4.3	108	34.5	110)5.1	112	25.1	114	3.8
Mu	kNm			189	98.4	201	2.6	198	51.9	199	3.2	211	9.0	208	54.4	219	19.7 	213	51.1	223	6.0
Cost/girder	USD			64	5.1	64	0.9	61	4.8	609	9.1	624	4.8	61	9.7	63	5.4	63	0.2	64	s.9
Cost	USD			978	9.8	981	3.5	916	2.7	885	4.8	900	0.4	878	33.6	893	35.7	873	38.3	889	6.9

#	unit		75 80 2646 2796 13.414 14.180 1338445 1616833 32051 36427 40266 45398 324.0 342.5 964.3 983.7 1860.4 1885.4								G13	8 f40									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	1	10	11	5	12	20
А	cm ²	26	46	27	96	29	46	30	96	32	46	33	96	35	46	36	96	38	46	39	96
Self-weight	ton	13.	414	14.	180	14.	945	15.	711	16.4	457	17.	222	17.	988	18.	754	19.4	499	20.2	265
Ι	cm ⁴	1338	8445	1610	5833	1930	0091	2280	0107	2668	8765	309	7947	3569	9534	408:	5408	4647	7448	5257	7533
Wi	cm ³	320	051	364	427	410)67	459	970	511	33	565	556	622	237	68	176	743	371	808	322
Ws	cm ³	402	266	453	398	507	789	564	438	623	343	685	503	749	917	81:	585	885	506	956	579
M self	kNm	32	4.0	34	2.5	36	1.0	37	9.5	39	7.5	41	6.0	43	4.5	45	3.0	47	1.0	489	9.5
Mdesign	kNm	96	4.3	98	3.7	100	03.0	102	2.4	104	1.8	106	51.1	108	30.4	109	9.7	111	9.0	113	8.3
Msdu	kNm	186	60.4	188	35.4	191	0.3	193	5.3	196	0.2	198	35.1	200)9.9	203	34.7	205	9.4	208	4.1
Pi	kN							22	90	21	40	19	40	18	60	17	90	17	10	16	50
e	cm							37	.10	40.	.76	46	.03	49	.17	51	.74	54	.99	57.	.55
Ар	mm ²							22	40	19	60	16	80	15	40	15	40	14	00	14	00
n	strands							1	6	1	4	1	2	1	1	1	1	1	0	1	0
	MPa							10	22	10	92	11	55	12	08	11	62	12	21	11	79
орі	%							6	1	6	5	6	9	7	2	7	0	7	3	7	1
- limita	MDa	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
o mints	MPa	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σ at support	MPa							-7.66	-6.13	-7.40	-5.92	-7.32	-5.86	-6.96	-5.57	-6.51	-5.21	-6.18	-4.94	-5.80	-4.64
o ut support	ivii u							25.88	20.70	23.65	18.92	21.50	17.20	19.94	15.95	18.43	14.74	17.09	13.67	15.88	12.70
σ at span	MPa							-0.93	11.99	-1.02	10.79	-1.25	9.63	-1.16	8.85	-0.96	8.27	-0.86	7.70	-0.68	7.26
0 at span	ivii u							17.62	-1.54	15.88	-1.45	14.15	-1.56	12.96	-1.41	11.78	-1.39	10.76	-1.37	9.82	-1.38
Debonded	strands							1	4	1	2	1	0	9)	9	9	8	3	8	3
Debonaca	X1(m)							8	.0	8.	0	9	.0	8	.5	8	.0	7.	.5	7.	.0
σ at support	MPa							-0.	96	-1.	06	-1.	.22	-1.	.27	-1	.18	-1.	24	-1.	16
o at support	ivii a							3.	23	3.3	38	3.	58	3.	63	3.	35	3.4	42	3.	18
σ at X1	MPa							-1.	20	-1.	28	-1.	31	-1.	.29	-1.	.18	-1.	19	-1.	14
								17	.95	16.	.19	14	.22	13	.12	12	.05	11.	.15	10.	.37
Mcr	kNm			<u> </u>				102	.7.8	105	0.7	106	3.4	109	0.9	111	1.0	113	0.7	114	8.8
Mu	kNm							196	53.2	198	5.5	199	96.1	201	6.4	213	32.7	207	6.2	218	1.0
Cost/girder	USD							65	1.7	624	4.9	59	9.2	59	2.8	60	7.3	60	0.9	61	5.4
Cost	USD							982	4.0	926	8.1	884	2.2	859	0.3	872	26.8	849	4.3	863	7.3

#	unit										G13	f80									
h	cm	7	5	8	0	8	5	9	0	9	5	1(00	1()5	11	0	11	15	12	20
А	cm ²	26	46	27	96	29	46	30	96	32	46	33	96	35	46	36	96	38	46	39	96
Self-weight	ton	13.4	414	14.	180	14.	945	15.	711	16.4	457	17.	222	17.	988	18.	754	19.4	499	20.2	265
Ι	cm^4	1338	3445	1616	5833	1930	0091	2280	0107	2668	8765	3097	7947	3569	9534	4085	5408	4647	7448	5257	7533
Wi	cm ³	320	051	364	127	410)67	459	970	511	33	565	556	622	237	681	76	743	371	808	322
Ws	cm ³	402	266	453	398	507	789	564	438	623	343	685	503	749	917	815	585	885	506	956	579
M self	kNm	324	4.0	342	2.5	36	1.0	37	9.5	39	7.5	41	6.0	434	4.5	45	3.0	47	1.0	48	9.5
Mdesign	kNm	96	4.3	98.	3.7	100	03.0	102	2.4	104	1.8	106	1.1	108	0.4	109	9.7	111	9.0	113	8.3
Msdu	kNm	186	0.4	188	5.4	191	0.3	193	5.3	196	0.2	198	5.1	200	9.9	203	4.7	205	9.4	208	4.1
Pi	kN	28	50	23	60	22	10	21	00	19	60	18	50	17	70	16	80	16	15	15	55
e	cm	27.	.26	34.	.39	37	.36	40	.37	43.	44	46	.59	49.	.17	52.	.42	54.	.99	57.	.55
Ap	mm ²	26	60	21	00	19	60	18	20	16	80	15	40	15	40	14	00	14	00	14	00
n	strands	1	9	1	5	1	4	1	3	1	2	1	1	1	1	1	0	1	0	1	0
	MPa	10	71	11	24	11	28	11	54	11	67	12	01	11	49	12	00	11	54	11	11
орг	%	6	4	6	7	6	8	6	9	7	0	7	2	6	9	7	2	6	9	6	7
= limita	MDa	2.26	2.71	2.21	2.65	2.17	2.6	2.13	2.56	2.09	2.52	2.06	2.48	2.03	2.44	2	2.41	1.98	2.38	1.95	2.35
o minits	MPa	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32
σ at	MPa	-8.52	-6.82	-9.44	-7.55	-8.75	-7.00	-8.24	-6.59	-7.62	-6.10	-7.13	-5.71	-6.63	-5.30	-6.25	-5.00	-5.84	-4.67	-5.46	-4.37
support	Ivii a	35.01	28.01	30.72	24.58	27.61	22.09	25.22	20.18	22.69	18.15	20.69	16.55	18.98	15.18	17.46	13.97	16.14	12.91	14.96	11.97
σ at span	MPa	-0.48	17.13	-1.89	14.12	-1.65	12.75	-1.51	11.52	-1.24	10.61	-1.06	9.78	-0.83	9.12	-0.70	8.48	-0.51	7.98	-0.35	7.53
o at span	IVII a	24.90	-2.08	21.32	-2.43	18.82	-2.34	16.97	-2.06	14.92	-2.22	13.33	-2.21	11.99	-2.18	10.82	-2.16	9.81	-2.13	8.91	-2.11
Debonded	strands	1	4	1	2	1	1	1	0	9)	8	3	8	3	7	7	7	7	7	1
Debolided	X1(m)	5.	.5	8.	.0	7	.5	7.	.0	6.	5	6	0	5.	.5	5.	.5	5.	.0	4.	.5
σ at	MPa	-2.	24	-1.	89	-1.	88	-1.	90	-1.	90	-1.	95	-1.	81	-1.	87	-1.	75	-1.	64
support	ivii a	9.2	21	6.	14	5.	92	5.	82	5.0	67	5.	54	5.	18	5.2	24	4.8	84	4.4	49
σ at X1	MPa	-2.	11	-2.	19	-2.	09	-2.	12	-2.	02	-2.	03	-2.	00	-1.	82	-1.	84	-1.	89
0 at X1	wir a	26.	.95	21	.69	19	.37	17.	.71	15.	87	14	51	13	.41	12.	.16	11.	.39	10.	.74
Mcr	kNm	98	4.5	99	1.9	101	4.0	104	5.3	105	6.9	107	6.2	109	6.8	111	6.7	113	7.2	115	7.4
Mu	kNm	190	5.3	189	5.0	196	0.8	201	1.7	202	6.3	199	7.4	211	2.7	204	9.7	215	64.6	225	9.4
Cost/girder	USD	71	9.8	65	6.7	65	3.4	65	0.0	640	5.6	64	3.2	66	0.7	65	7.8	67:	5.3	692	2.8
Cost	USD	102	86.4	968	1.6	946	8.6	926	8.6	908	1.7	890	7.7	908	9.7	898	0.8	916	i 9.3	935	7.8

#	unit										G12	2 f60									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	11	15	12	20
А	cm ²	27	54	29	04	30	54	32	04	33	54	35	04	36	54	38	04	39	54	41	04
Self- weight	ton	13.	973	14.	718	15.4	484	16.2	250	17.0	015	17.	761	18.	527	19.	292	20.	058	20.	804
Ι	cm^4	1402	2218	1693	3272	2020)483	2385	5747	2790)955	3237	7996	3728	8756	4265	5120	4848	3970	5482	2190
Wi	cm ³	328	832	373	318	420)74	470)96	523	383	579	933	637	745	698	817	76	149	827	739
Ws	cm ³	434	424	489	901	546	641	606	540	668	397	734	411	80	180	872	203	944	480	102	011
M self	kNm	33	7.5	35	5.5	374	4.0	392	2.5	41	1.0	42	9.0	44	7.5	46	6.0	48	4.5	502	2.5
Mdesign	kNm	103	35.0	105	54.5	107	4.0	109	3.4	111	2.9	113	2.3	115	1.7	117	71.1	119	0.5	120	9.9
Msdu	kNm	200	07.0	203	32.1	205	7.2	208	2.2	210	7.2	213	2.2	215	57.1	218	32.0	220	6.8	223	1.6
Pi	kN			26	48	24	35	22	30	21	10	20	00	19	20	18	20	17	50	16	70
e	cm			33	.15	36.	.77	41.	.01	44.	.05	47	14	49	.74	52	.91	55	.50	58.	.76
Ар	mm ²			25	20	22	40	19	60	18	20	16	80	16	80	15	40	15	40	14	00
n	strands			1	8	1	6	1	4	1	3	1	2	1	2	1	1	1	1	1	0
mi	MPa			10	51	10	87	11	38	11	59	11	90	11	43	11	82	11	36	11	93
Opi	%			6	3	6	5	6	8	6	9	7	1	6	8	7	1	6	8	7	1
σlimits	MPa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
0 111113	ivii a	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σ at	MPa			-8.83	-7.07	-8.41	-6.73	-8.12	-6.50	-7.60	-6.08	-7.14	-5.71	-6.66	-5.33	-6.26	-5.01	-5.85	-4.68	-5.55	-4.44
support				32.64	26.11	29.25	23.40	26.38	21.10	24.03	19.23	21.98	17.59	20.24	16.19	18.58	14.86	17.18	13.74	15.93	12.74
σ at span	MPa			-1.56	14.50	-1.57	12.92	-1.65	11.53	-1.46	10.55	-1.29	9.72	-1.08	9.04	-0.91	8.42	-0.73	7.92	-0.62	7.42
o ut spun				23.11	-2.14	20.36	-2.12	18.04	-2.11	16.19	-2.02	14.58	-1.96	13.22	-1.88	11.90	-1.91	10.82	-1.89	9.86	-1.88
Debonded	strands			1	5	1	3	1	2	1	1	1	0	1	0	9	9	9)	8	3
	X1(m)			9	.0	9.	.0	10	.0	8.	.5	8	0	7	.0	7	.0	6	.5	6.	.0
σ at	MPa			-1.	.47	-1.	58	-1.	16	-1.	17	-1.	19	-1.	.11	-1.	.14	-1.	.06	-1.	11
support	ivii a			5.	44	5.4	49	3.2	77	3.'	70	3.	56	3.	37	3.	38	3.	12	3.	19
σ at X1	MPa			-1.	.64	-1.	64	-1.	65	-1.	60	-1.	52	-1.	58	-1.	.40	-1.	35	-1.	41
				23	.21	20.	.45	18.	.04	16.	.36	14	.87	13	.85	12	.50	11	.60	10.	.83
Mcr	kNm			105	56.9	107	5.8	109	4.1	111	6.9	113	8.2	116	1.4	117	7.4	119	7.0	121	5.8
Mu	kNm			208	39.7	212	7.9	213	4.0	215	1.7	213	7.3	226	53.1	221	5.1	233	30.4	224	8.7
Cost/girder	USD			69	8.5	672	2.9	648	8.4	642	2.2	63	7.0	65	2.2	64	7.5	66	3.2	65	8.0
Cost	USD			989	93.9	937	1.1	910	0.4	872	6.2	850	8.0	858	32.4	844	12.3	858	32.7	840	0.5

#	unit										G12	2 f40									
h	cm	7	5	8	0	8	5	9	0	9	5	10)0	10)5	1	10	11	15	12	20
А	cm ²	27	54	29	04	30	54	32	04	33	54	35	04	36	54	38	04	39	54	41	04
Self-weight	ton	13.	973	14.	718	15.	484	16.2	250	17.	015	17.	761	18.	527	19.	292	20.	058	20.	804
Ι	cm^4	1402	2218	1693	3272	2020	0483	2385	5747	2790)955	3237	7996	3728	8756	426	5120	4848	3970	5482	2190
Wi	cm ³	328	332	373	318	420)74	470)96	523	383	579	933	637	745	698	817	761	149	827	739
Ws	cm ³	434	424	489	901	540	541	606	540	668	897	734	411	801	180	872	203	944	480	102	011
M self	kNm	33	7.5	35	5.5	37	4.0	392	2.5	41	1.0	42	9.0	44	7.5	46	6.0	48	4.5	502	2.5
Mdesign	kNm	103	5.0	105	54.5	107	4.0	109	93.4	111	2.9	113	2.3	115	1.7	117	1.1	119	0.5	120	9.9
Msdu	kNm	200	07.0	203	32.1	205	57.2	208	32.2	210	7.2	213	2.2	215	57.1	218	32.0	220	6.8	223	1.6
Pi	kN									22	80	20	70	19	60	18	90	18	10	17	50
e	cm									41.	.28	46	.28	49	.74	52	.34	55	.50	58.	.08
Ар	mm ²									21	00	18	20	16	80	16	80	15	40	15	40
n	strands									1	5	1	3	1	2	1	2	1	1	1	1
-mi	MPa									10	86	11	37	11	67	11	25	11	75	11	36
орг	%									6	5	6	8	7	0	6	7	7	0	6	8
σlimita	MDo	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
0 mints	WIF a	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σ at	MPa									-7.27	-5.82	-7.14	-5.71	-6.80	-5.44	-6.38	-5.10	-6.05	-4.84	-5.70	-4.56
support										24.77	19.81	22.44	17.96	20.66	16.53	19.14	15.31	17.77	14.22	16.55	13.24
σ at span	MPa									-1.13	10.82	-1.30	9.71	-1.21	8.93	-1.03	8.33	-0.93	7.76	-0.77	7.30
o ur opun										16.92	-1.43	15.04	-1.59	13.64	-1.54	12.46	-1.46	11.41	-1.42	10.48	-1.38
Debonded	strands									1	3	1	1	1	0	1	0	9)	9)
	X1(m)									8.	.5	9	.5	9	.0	8	.0	7.	.5	7.	.0
σ at	MPa									-0.	97	-1.	10	-1.	13	-1	.06	-1.	10	-1.	04
support	u									3.	30	3.4	45	3.4	44	3.	19	3.	23	3.	01
σ at X1	MPa									-1.	27	-1.	31	-1.	27	-1	.25	-1.	25	-1.	22
										17.	.10	15	.06	13	.71	12	.73	11.	.80	11.	.02
Mcr	kNm									112	3.1	113	3.0	115	4.0	117	7.3	119	9.2	122	.0.4
Mu	kNm									212	9.4	215	2.3	219	0.5	231	7.6	227	0.8	238	6.1
Cost/girder	USD									65	7.1	63	1.4	62.	5.0	63	9.0	63	2.6	64	7.1
Cost	USD									910	9.4	871	6.2	847	1.7	853	31.7	831	1.1	843	7.1

#	unit										G12	f80									
h	cm	7	5	8	0	8	5	9	0	9	5	10)0	1()5	11	10	11	15	12	20
А	cm ²	27	54	29	04	30	54	32	04	33	54	35	04	36	54	38	04	39	54	41	04
Self-weight	ton	13.	973	14.	718	15.4	484	16.2	250	17.	015	17.	761	18.	527	19.	292	20.	058	20.8	304
Ι	cm^4	1402	2218	1693	3272	2020	0483	2385	5747	2790)955	3237	7996	3728	3756	4265	5120	4848	8970	5482	190
Wi	cm ³	328	332	373	318	420)74	470)96	523	383	579	933	637	745	698	817	76	149	827	'39
Ws	cm ³	434	424	489	901	546	541	606	540	668	397	734	411	80	80	872	203	944	480	102	011
M self	kNm	33'	7.5	35	5.5	374	4.0	392	2.5	41	1.0	429	9.0	44	7.5	46	6.0	48	4.5	502	2.5
Mdesign	kNm	103	5.0	105	4.5	107	4.0	109	3.4	111	2.9	113	2.3	115	1.7	117	1.1	119	90.5	120	9.9
Msdu	kNm	200	07.0	203	2.1	205	7.2	208	2.2	210	7.2	213	2.2	215	7.1	218	32.0	220)6.8	223	1.6
Pi	kN	28	10	25	70	23	60	22	10	20	85	19	70	18	80	17	90	17	20	16	40
e	cm	30.	.60	34	.20	38.	.02	41.	01	44.	.05	47.	.14	49	.74	52	.91	55	.50	58.	76
Ар	mm ²	26	60	23	80	21	00	19	60	18	20	16	80	16	80	15	40	15	40	14	00
n	strands	1	9	1	7	1	5	1	4	1	3	1	2	1	2	1	1	1	1	1	0
c ni	MPa	10	56	10	80	11	24	11	28	11	46	11	73	11	19	11	62	11	17	11	71
брі	%	6	3	6	5	6	7	6	8	6	9	7	0	6	7	7	0	6	7	7	0
o limite	MPa	2.26	2.71	2.21	2.65	2.17	2.6	2.13	2.56	2.09	2.52	2.06	2.48	2.03	2.44	2	2.41	1.98	2.38	1.95	2.35
0 mints	ivii a	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32
σ at	MPa	-9.60	-7.68	-9.12	-7.30	-8.69	-6.95	-8.05	-6.44	-7.51	-6.01	-7.03	-5.62	-6.52	-5.21	-6.16	-4.92	-5.75	-4.60	-5.45	-4.36
support	wir a	36.39	29.11	32.40	25.92	29.05	23.24	26.14	20.91	23.75	19.00	21.65	17.32	19.81	15.85	18.27	14.62	16.89	13.51	15.64	12.51
σ at snan	MPa	-1.83	16.16	-1.85	14.26	-1.85	12.70	-1.58	11.59	-1.37	10.63	-1.18	9.80	-0.94	9.15	-0.81	8.51	-0.63	8.00	-0.52	7.50
0 at span	ivii a	26.11	-2.41	22.88	-2.33	20.16	-2.28	17.81	-2.30	15.90	-2.24	14.25	-2.22	12.79	-2.22	11.60	-2.16	10.52	-2.13	9.57	-2.11
Debonded	strands	1	5	1	3	1	2	1	1	1	0	ç)	ç)	8	3	5	8	7	1
Debolided	X1(m)	8.	.0	8	.0	8.	.0	7.	5	7.	.0	6.	.5	6	.0	5	.5	5	.0	5.	0
σ at	MPa	-2.	02	-2.	15	-1.	74	-1.	72	-1.	73	-1.	76	-1.	63	-1.	68	-1.	.57	-1.	64
support	IVII a	7.0	66	7.	62	5.	81	5.0	50	5.4	48	5.4	41	4.	95	4.	98	4.	61	4.0	59
σ at X1	MPa	-2.	14	-2.	15	-2.	12	-1.	98	-1.	92	-1.	90	-1.	83	-1.	.89	-1.	.91	-1.	76
0 at XI	wir a	26.	.52	23	.26	20.	.52	18.	33	16.	.61	15.	15	13	.92	12	.95	12	.11	11.	09
Mcr	kNm	104	4.8	106	6.4	108	37.5	110	5.5	112	7.2	114	7.1	116	6.2	118	8.7	120)9.8	122	9.8
Mu	kNm	204	7.7	209	3.9	210)5.9	216	6.3	218	7.2	216	7.6	229	3.4	224	0.5	235	55.8	226	9.7
Cost/girder	USD	73	5.2	71	1.5	68	7.7	684	4.3	68	0.9	67	7.6	69	5.1	69	1.7	70	9.2	700	5.3
Cost	USD	102	86.6	968	9.5	930	8.3	911	1.8	892	7.2	875	4.6	891	6.6	876	52.1	893	30.1	883	5.5

#	unit										G11	f60									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	1()5	1	10	1	15	12	20
А	cm ²	28	80	30	30	31	80	33	30	34	80	36	30	37	80	39	30	40	80	42	30
Self-weight	ton	14.	614	15.	359	16.	125	16.	891	17.	657	18.	402	19.	168	19.	934	20.	700	21.4	445
Ι	cm ⁴	1470)858	1775	5832	2118	8437	2500)578	2924	4160	3391	080	3903	3232	4462	2507	5070	0796	5729	9983
Wi	cm ³	330	538	382	241	43	119	482	270	530	591	593	379	653	333	71:	551	78	032	847	775
Ws	cm ³	470	032	529	912	590)58	654	467	72	136	790)63	862	248	93	687	101	382	109	330
M self	kNm	35	3.0	37	1.0	38	9.5	403	8.0	42	6.5	44	4.5	46	3.0	48	1.5	50	0.0	51	8.0
Mdesign	kNm	110)7.8	112	7.4	114	7.0	116	6.5	118	86.0	120	5.5	122	25.0	124	14.5	126	54.0	128	3.4
Msdu	kNm	215	5.5	218	0.7	220)5.8	223	0.9	225	6.0	228	1.0	230	6.0	233	30.9	235	55.8	238	0.6
Pi	kN					26	05	23	90	22	35	21	20	20	30	19	30	18	55	17	75
e	cm					37	.07	41.	.14	44	.82	47	.88	50	.51	53	.62	56	.23	59.	.41
Ар	mm ²					23	80	21	00	19	60	18	20	18	20	16	80	16	80	15	40
n	strands					1	7	1	5	1	4	1	3	1	3	1	2	1	2	1	1
mi	MPa					10	95	11	38	11	40	11	65	11	15	11	49	11	04	11	53
орг	%					6	6	6	8	6	8	7	0	6	7	6	9	6	6	6	9
- limita	MDa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
0 mints	IVIF d	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σ at	MPa					-8.16	-6.53	-7.84	-6.27	-7.46	-5.97	-7.00	-5.60	-6.52	-5.21	-6.14	-4.91	-5.74	-4.59	-5.45	-4.36
support	u					30.59	24.47	27.55	22.04	25.08	20.06	22.93	18.35	21.06	16.85	19.37	15.50	17.91	14.33	16.64	13.31
σ at span	MPa					-1.56	12.89	-1.61	11.54	-1.55	10.47	-1.38	9.65	-1.15	8.99	-1.00	8.38	-0.81	7.87	-0.71	7.38
o ut spun						21.55	-2.13	19.09	-2.13	17.14	-2.03	15.45	-1.95	13.98	-1.90	12.64	-1.89	11.51	-1.87	10.53	-1.83
Debonded	strands					1	4	- 1	2	1	1	1	1	1	0	9	9	9	9	8	3
	X1(m)					9	.0	9.	.5	9	.0	8	.5	7.	.5	7	.0	6	.5	6.	.0
σ at	MPa					-1.	44	-1.	57	-1.	.60	-1.	08	-1.	50	-1	.53	-1	.44	-1.	49
support						5.	40	5.:	51	5.	37	3.	53	4.	86	4.	84	4.	48	4.:	54
σ at X1	MPa					-1.	63	-1.	63	-1.	.61	-1.	50	-1.	49	-1	.46	-1	.41	-1.	47
						21	.64	19.	.12	17	.22	15	.62	14	.42	13	.25	12	.29	11.	.50
Mcr	kNm					114	8.6	116	6.5	118	89.6	121	1.8	123	3.6	125	52.2	127	72.4	129	3.6
Mu	kNm					225	9.7	226	7.3	231	2.9	230	8.0	244	4.3	240	06.0	253	31.8	246	0.0
Cost/girder	USD					70	7.4	682	2.4	67	7.2	67	2.0	68	7.2	68	2.0	- 69	7.7	69	2.5
Cost	USD					906	58.6	865	5.4	843	8.9	832	6.9	830	1.6	811	8.1	824	46.8	807	9.8

#	unit										G11	f40									
h	cm	7	5	8	0	8	5	9	0	9	5	10)0	10	05	11	10	11	15	12	20
А	cm ²	28	80	30	30	31	80	33	30	34	80	36	30	37	80	39	30	40	80	42	30
Self-weight	ton	14.	614	15.	359	16.	125	16.	891	17.	657	18.4	402	19.	168	19.	934	20.	700	21.4	445
Ι	cm ⁴	1470)858	177:	5832	2118	8437	2500)578	2924	4160	3391	080	3903	3232	4462	2507	5070)796	5729	9983
Wi	cm ³	330	538	382	241	43	119	482	270	536	591	593	379	653	333	715	551	780	032	847	775
Ws	cm ³	470	032	52	912	590	058	654	167	721	36	790)63	862	248	930	687	101	382	109	330
M self	kNm	35	3.0	37	1.0	38	9.5	40	8.0	42	6.5	44	4.5	46	3.0	48	1.5	50	0.0	518	8.0
Mdesign	kNm	110	07.8	112	27.4	114	7.0	116	6.5	118	6.0	120	5.5	122	25.0	124	14.5	126	64.0	128	3.4
Msdu	kNm	215	5.5	218	30.7	220)5.8	223	0.9	225	6.0	228	1.0	230	06.0	233	30.9	235	5.8	238	0.6
Pi	kN									24	00	22	50	20	75	19	90	19	20	18	40
e	cm									41.	.96	45.	.68	50	.51	53	.62	56	.23	59.	.41
Ар	mm ²									22	40	19	60	18	20	16	80	16	80	15	40
n	strands									1	6	1	4	1	3	1	2	1	2	1	1
	MPa									10	71	11	48	11	40	11	85	11	43	11	95
орг	%									6	4	6	9	6	8	7	'1	6	8	7	2
σ limita	MDo	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
0 mmts	IVII a	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σ at	MPa									-7.06	-5.65	-6.80	-5.44	-6.66	-5.33	-6.33	-5.06	-5.94	-4.75	-5.65	-4.52
support										25.65	20.52	23.51	18.81	21.53	17.23	19.98	15.98	18.54	14.83	17.24	13.80
σ at span	MPa									-1.15	10.79	-1.18	9.81	-1.29	8.87	-1.19	8.22	-1.01	7.71	-0.91	7.22
										17.71	-1.57	16.02	-1.50	14.44	-1.53	13.25	-1.41	12.13	-1.36	11.13	-1.34
Debonded	strands									1	3	1	2	1	1	1	0	1	0	9)
	X1(m)									8.	.5	8.	.5	9	.5	9.	.0	8	.0	7.	.5
σat	MPa									-1.	32	-0.	97	-1.	.03	-1.	.05	-0.	99	-1.	03
support										4.	81	3.3	36	3.	31	3.	33	3.	09	3.	14
σ at X1	MPa									-1.	28	-1.	31	-1.	.31	-1.	.24	-1.	21	-1.	21
										17.	.89	16.	.19	14	.46	13	.31	12	.39	11.	.52
Mcr	kNm									118	9.3	121	1.8	122	28.4	125	04.6	127	7.0	129	1.7
Mu	KNM									228	4.3	228	9.7	236	09.9	234	+2.7	246	08.5	240	0.9
Cost/girder	USD									69	0.6	66.	5.8	65	9.0	65	2.6	66	6.6	660	J.2
Cost	USD									871	8.6	833	0.7	829	93.5	806	59.3	812	4.3	792	.2.1

#	unit										G11	f80									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	1	15	12	20
А	cm ²	28	80	30	30	31	80	33	30	34	80	36	30	37	80	39	30	40	80	42	30
Self-weight	ton	14.	614	15.	359	16.	125	16.	891	17.0	657	18.	402	19.	168	19.	934	20.	700	21.4	445
Ι	cm^4	1470)858	1775	5832	2118	3437	2500)578	2924	160	339	080	3903	3232	4462	2507	5070)796	5729	983
Wi	cm ³	336	538	382	241	431	119	482	270	536	591	593	379	653	333	71	551	78	032	847	175
Ws	cm ³	470	032	529	912	590)58	654	167	721	36	790)63	862	248	930	587	101	382	109	330
M self	kNm	35	3.0	37	1.0	38	9.5	40	8.0	420	5.5	44	4.5	46	3.0	48	1.5	50	0.0	518	8.0
Mdesign	kNm	110	7.8	112	27.4	114	7.0	116	6.5	118	6.0	120	5.5	122	25.0	124	4.5	126	64.0	128	3.4
Msdu	kNm	215	5.5	218	30.7	220	5.8	223	0.9	225	6.0	228	1.0	230	06.0	233	80.9	235	5.8	238	0.6
Pi	kN	29	70	27	20	25	85	23	70	22	10	20	90	19	80	19	00	18	05	17	35
e	cm	31.	.23	34	.77	37.	.07	41	.14	44.	82	47	.88	50	.99	53	.62	56	.80	59.	.41
Ар	mm ²	28	00	25	20	22	40	21	00	19	60	18	20	16	80	16	80	15	40	15	40
n	strands	2	0	1	8	1	6	1	5	1	4	1	3	1	2	1	2	1	1	1	1
mi	MPa	10	61	10	79	- 11	54	11	29	11	28	11	48	11	79	11	31	11	72	11	27
брі	%	6	4	6	5	6	9	6	8	6	8	6	9	7	1	6	8	7	0	6	7
σ limite	MDa	2.26	2.71	2.21	2.65	2.17	2.6	2.13	2.56	2.09	2.52	2.06	2.48	2.03	2.44	2	2.41	1.98	2.38	1.95	2.35
0 mints	wii a	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32
σ at	MPa	-9.41	-7.53	-8.90	-7.12	-8.10	-6.48	-7.78	-6.22	-7.38	-5.90	-6.90	-5.52	-6.47	-5.17	-6.04	-4.83	-5.69	-4.55	-5.33	-4.26
support	wii a	37.89	30.31	33.71	26.97	30.35	24.28	27.32	21.85	24.80	19.84	22.61	18.09	20.69	16.55	19.07	15.26	17.56	14.05	16.26	13.01
σ at span	MPa	-1.90	16.03	-1.89	14.19	-1.50	12.94	-1.54	11.60	-1.47	10.54	-1.28	9.73	-1.10	9.03	-0.90	8.45	-0.76	7.92	-0.59	7.48
0 at span	wii a	27.39	-2.63	24.01	-2.52	21.32	-2.32	18.86	-2.31	16.86	-2.25	15.12	-2.21	13.60	-2.20	12.34	-2.13	11.16	-2.15	10.15	-2.13
Debonded	strands	1	6	1	4	1	2	1	1	1	1	1	0	9)	9	Ð	1	3	7	1
Debolided	X1(m)	8.	.0	8	.0	7.	.0	7.	.0	7.	0	6	.5	6	.0	5	.5	5	.5	5.	.0
σ at	MPa	-1.	88	-1.	.98	-2.	02	-2.	07	-1.	58	-1.	59	-1.	.62	-1.	.51	-1	.55	-1.	94
support	wii a	7.:	58	7.	49	7.:	59	7.	28	5.3	31	5.	22	5.	17	4.	77	4.	79	5.9) 1
σ at X1	MPa	-2.	20	-2.	17	-2.	10	-2.	10	-2.	00	-1.	97	-1.	96	-1.	.94	-1	76	-1.	77
0 at XI	wii a	27.	.81	24	.39	22.	.13	19	.62	17.	57	16	.04	14	.74	13	.71	12	.45	11.	.68
Mcr	kNm	111	0.6	113	2.7	115	9.3	117	8.4	120	0.4	122	1.3	124	1.1	126	54.2	128	32.0	130	1.9
Mu	kNm	216	8.7	222	.4.2	224	9.5	232	5.7	234	9.7	233	9.7	230)7.2	243	33.0	236	57.4	248	2.7
Cost/girder	USD	77	1.2	74	7.5	72	2.7	71	9.8	710	5.9	71	3.6	71	0.2	72	7.7	72	4.8	742	2.3
Cost	USD	100	59.4	936	6.0	879	6.7	868	8.0	865	6.3	849	2.6	833	9.9	848	38.4	839	6.2	849	5.2

#	unit										G10) f60									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10	05	1	10	1	15	12	20
А	cm ²	30	24	31	74	33	24	34	74	36	24	37	74	39	24	40	74	42	24	43	74
Self-weight	ton	15.	339	16.	105	16.	850	17.	616	18.	382	19.	148	19.	893	20.	659	21.	425	22.	190
Ι	cm ⁴	1542	2654	1862	2500	222	1614	2621	924	306	5349	3553	3801	4089	9186	467	3407	530	8360	5995	5941
Wi	cm ³	344	446	39	169	44	174	494	459	550)19	608	352	669	956	73	329	79	969	868	375
Ws	cm ³	510	056	57	397	640	009	708	387	780	028	854	430	930	090	101	008	109	181	117	609
M self	kNm	37	0.5	38	9.0	40	7.0	42	5.5	44	4.0	46	2.5	48	0.5	49	9.0	51	7.5	53	6.0
Mdesign	kNm	119	92.9	121	2.6	123	32.2	125	1.8	127	'1.4	129	1.0	131	0.6	133	30.1	134	19.6	136	i9.1
Msdu	kNm	232	29.9	235	55.1	238	30.3	240	5.5	243	0.6	245	5.7	248	30.7	250)5.7	253	30.6	255	5.4
Pi	kN					28	00	25	80	24	05	22	50	21	50	20	60	19	65	18	90
e	cm					37	.51	41	.45	45	.05	48	.76	51	.43	54	.50	57	.63	60	.27
Ар	mm ²					25	20	22	40	21	00	19	60	19	60	18	320	16	80	16	80
n	strands					1	8	1	6	1	5	1	4	1	4	1	3	1	2	1	2
mi	MPa					11	11	11	52	11	45	11	48	10	97	11	32	11	70	11	25
орг	%					6	7	6	9	6	9	6	9	6	6	6	8	7	0	6	7
σlimits	MPa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
0 111113	ivii a	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σ at	MPa					-7.98	-6.39	-7.66	-6.13	-7.25	-5.80	-6.88	-5.50	-6.40	-5.12	-6.06	-4.85	-5.72	-4.58	-5.36	-4.29
support						32.20	25.76	29.05	23.24	26.33	21.06	23.99	19.19	21.99	17.59	20.37	16.29	18.81	15.05	17.43	13.95
σ at span	MPa					-1.63	12.86	-1.66	11.53	-1.56	10.50	-1.47	9.61	-1.24	8.96	-1.12	8.32	-0.98	7.79	-0.81	7.35
1						22.99	-2.13	20.45	-2.07	18.26	-2.05	16.39	-2.02	14.82	-1.98	13.56	-1.85	12.34	-1.83	11.26	-1.81
Debonded	strands					1	5	1	3	1	2	1	1	1	1	1	0	2	9	ç)
	X1(m)					9	.0	10	0.0	9	.0	8	.5	7	.5	7	.5	7	.0	6	.5
σ at	MPa					-1.	.33	-1.	44	-1.	45	-1.	47	-1.	.37	-1.	.40	-1.	.43	-1.	.34
support						5.	37	5.4	45	5.	27	5.	14	4.	71	4.	70	4.	70	4	36
σ at X1	MPa					-1.	.69	-1.	66	-l.	62	-l.	59	-l.	.56	-l.	.43	-1.	.41	-l.	.37
Man	1-Ni					123	.08	125	.45	18	.54	10	.30	15	.27	13	.99	12	.92	12	.02
Mu	kinm kNm					123	0.0	240	4./	245	4.0	129	20.8	13	14.U	134	+1.0	130	17.2	138	73.1
Cost/girder						235	3.0	240		243	3.6	240	8 A	202	3.6	235	20.0 20	234	3.8	207	9.1
Cost	USD					260 860	5.7 18 5	220 220	9.5 17 0	×11 ×12	6.1	707	4 3	705	3.0	784	54.5	760	5.0 07.6	781	9.5 4.6
COSt	030					005	0.5	039	4.7	012	.0.1	193	ч.J	190	50.5	/80	JH.J	705		/01	- 1 .0

#	unit										G10) f40									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	11	5	12	20
А	cm ²	30	24	31	74	33	24	34	74	36	24	37	74	39	24	40	74	42	24	43	74
Self-weight	ton	15.	339	16.	105	16.	850	17.	616	18.	382	19.	148	19.	893	20.	659	21.4	425	22.	190
Ι	cm^4	1542	2654	1862	2500	222	1614	262	1924	3065	5349	3553	3801	4089	9186	4673	3407	5308	3360	5995	5941
Wi	cm ³	344	146	39	169	441	174	494	459	550	019	608	352	669	956	733	329	799	969	868	375
Ws	cm ³	510	056	573	397	640	009	708	887	780	028	854	430	930)90	101	008	109	181	117	609
M self	kNm	37	0.5	38	9.0	40	7.0	42	5.5	44	4.0	46	2.5	48	0.5	49	9.0	517	7.5	530	5.0
Mdesign	kNm	119	02.9	121	2.6	123	2.2	125	51.8	127	1.4	129	01.0	131	0.6	133	30.1	134	9.6	136	9.1
Msdu	kNm	232	.9.9	235	55.1	238	30.3	240)5.5	243	0.6	245	5.7	248	80.7	250)5.7	253	0.6	255	5.4
Pi	kN											24	00	22	80	21	05	20	30	19	50
e	cm											46	.40	49	.64	54	.50	57.	.15	60.	27
Ар	mm ²											21	00	19	60	18	20	18	20	16	80
n	strands											1	5	1	4	1	3	1	3	1	2
c ni	MPa											11	43	11	63	11	57	11	15	11	61
орі	%											6	8	7	0	6	9	6	7	7	0
σ limita	MDo	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
0 mints	wir a	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σ at	MPa											-6.68	-5.34	-6.35	-5.08	-6.19	-4.95	-5.82	-4.66	-5.53	-4.43
support												24.66	19.73	22.71	18.17	20.81	16.65	19.31	15.45	17.99	14.39
σ at span	MPa											-1.26	9.77	-1.19	9.00	-1.25	8.22	-1.08	7.71	-0.98	7.21
o ut spun												17.06	-1.49	15.54	-1.40	14.01	-1.49	12.84	-1.43	11.82	-1.37
Debonded	strands											1	2	1	2	1	1	1	1	1	0
	X1(m)											9	.0	8	.5	9.	.5	8.	.0	8.	.0
σ at	MPa											-1.	34	-0.	91	-0.	.95	-0.	90	-0.	92
support												4.	93	3.	24	3.	20	2.9	97	3.0)0
σ at X1	MPa											-1.	32	-1.	30	-1.	.26	-1.	27	-1.	16
												17	.14	15	.70	14	.02	13.	10	12.	.06
Mcr	kNm											129	97.9	132	2.2	133	34.8	135	8.1	138	1.4
Mu	kNm											246	64.8	249	98.5	253	32.7	266	9.0	261	6.8
Cost/girder	USD											69	9.6	69	3.2	68	8.4	70	1.9	690	5.0
Cost	USD											798	36.2	786	57.3	783	3.5	781	8.5	767	9.7

#	unit										G10	f80									
h	cm	7	5	8	0	8	5	9	0	9	5	1(00	10)5	11	10	1	15	12	20
А	cm ²	30	24	31	74	33	24	34	74	36	24	37	74	39	24	40	74	42	24	43	74
Self-weight	ton	15.	339	16.	105	16.	850	17.0	616	18.	382	19.	148	19.	893	20.	659	21.	425	22.	190
Ι	cm^4	1542	2654	1862	2500	222	1614	2621	924	3065	349	3553	8801	4089	9186	4673	3407	5308	8360	5995	5941
Wi	cm ³	344	146	391	169	44]	174	494	159	550	19	608	352	669	956	733	329	799	969	868	375
Ws	cm ³	510)56	573	397	640	009	708	387	780	28	854	130	930)90	101	008	109	181	117	609
M self	kNm	37	0.5	38	9.0	40	7.0	42:	5.5	444	4.0	462	2.5	48	0.5	49	9.0	51	7.5	530	5.0
Mdesign	kNm	119	2.9	121	2.6	123	2.2	125	1.8	127	1.4	129	1.0	131	0.6	133	0.1	134	19.6	136	9.1
Msdu	kNm	232	9.9	235	5.1	238	30.3	240	5.5	243	0.6	245	5.7	248	80.7	250	5.7	253	30.6	255	5.4
Pi	kN	32	50	29	10	26	75	25	00	23	55	22	30	21	10	20	10	19	25	18	50
e	cm	31	.15	35	.45	39	.12	42.	39	45.	71	48.	76	51	.84	54	.50	57	.63	60.	27
Ар	mm ²	30	80	26	60	23	80	22	40	21	00	19	60	18	20	18	20	16	80	16	80
n	strands	2	2	1	9	1	7	1	6	1	5	1	4	1	3	1	3	1	2	1	2
mi	MPa	10	55	10	94	11	24	11	16	11	21	11	38	11	59	11	04	11	46	11	01
брі	%	6	3	6	6	6	7	6	7	6	7	6	8	6	9	6	6	6	9	6	6
σlimits	MPa	2.26	2.71	2.21	2.65	2.17	2.6	2.13	2.56	2.09	2.52	2.06	2.48	2.03	2.44	2	2.41	1.98	2.38	1.95	2.35
0 mints	WII a	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32
σ at support	MPa	-9.08	-7.27	-8.80	-7.04	-8.30	-6.64	-7.75	-6.20	-7.30	-5.84	-6.82	-5.46	-6.37	-5.10	-5.91	-4.73	-5.60	-4.48	-5.25	-4.20
FF		40.14	32.11	35.51	28.40	31.74	25.39	28.62	22.90	26.06	20.85	23.78	19.02	21.71	17.37	19.87	15.90	18.43	14.74	17.06	13.65
σ at span	MPa	-1.82	16.10	-2.03	14.08	-1.94	12.61	-1.75	11.46	-1.61	10.46	-1.41	9.66	-1.21	8.98	-0.97	8.44	-0.86	7.88	-0.69	7.44
		29.38	-2.52	25.57	-2.55	22.52	-2.50	20.02	-2.41	17.99	-2.26	16.18	-2.19	14.54	-2.20	13.07	-2.24	11.96	-2.13	10.89	-2.11
Debonded	strands	1	7	1	5	1	3	1	2	1	1	1	0	ç)	ç)	5	3	8	;
	X1(m)	8.	.0	8	.5	8	.5	7.	.5	7.	5	7.	0	6	.5	5.	.5	5	.5	5.	.0
σ at support	MPa	-2.	06	-1.	85	-1.	.95	-1.	94	-1.	95	-1.	95	-1.	.96	-1.	82	-1.	.87	-1.	75
		9.	12	7.	47	7.	47	7.	16	6.9	95	6.'	79	6.	68	6.	11	6.	14	5.0	59
σ at X1	MPa	-2.	11	-2.	18	-2.	09	-2.	13	-1.	96	-1.	89	-1.	.84	-1.	97	-1.	.82	-1.	83
		29.	.81	25	.80	22.	.73	20.	.56	18.	50	16.	.86	15	.42	14	.45	13	.27	12.	.44
Mcr	kNm	119	9.3	121	6.5	123	6.6	125	9.1	128	5.7	130	8.4	132	26.7	134	2.5	136	9.3 	139	0.0
Mu Cost/si 1	KNM	234	3.7	236	01.2	239	2.1	247	5.0	251	4.0	251	3.6	249	0.7	262	5.0	257	1.5	269	1.2
Cost/girder	USD	83	0.3	-/8	b.l	76	2.4	75	5.5	75	0.6	75	2.2	- /4	8.8	76	5.8	/6	5.0	780	J.5
Cost	USD	999	0.6	905	1.2	864	3.6	840	9.8	830	6.0	815	2.1	800	18.3	809	98.3	801	4.5	815	4.5

#	unit										G09	9 f60									
h	cm	7	75 80 3150 3300 15.980 16.746 1600391 1932415 35071 39889 54495 61238 386.0 404.5 1298.8 1318.6 2544.0 2569.4		0	8	5	9	0	9	5	10	00	10)5	1	10	1	15	12	20
А	cm ²	31	50	33	00	34	50	36	00	37	50	39	00	40	50	42	00	43	50	45	00
Self- weight	ton	15.	980	16.	746	17.	492	18.2	257	19.	023	19.	769	20.	534	21.	300	22.	066	22.	832
I	cm ⁴	1600	0391	1932	2415	2305	5102	2720	0400	3180	0246	368	6566	424	1282	4840	6304	550	3543	6214	1900
Wi	cm ³	350	071	398	889	449	996	503	886	560)58	620	008	682	233	74	732	81	502	885	541
Ws	cm ³	544	495	612	238	682	258	755	547	83	103	909	921	989	999	107	336	115	930	124	779
M self	kNm	38	6.0	40	4.5	42	2.5	44	1.0	45	9.5	47	7.5	49	6.0	51	4.5	53	3.0	55	1.5
Mdesign	kNm	129	98.8	131	8.6	133	8.3	135	8.1	137	7.8	139	7.5	141	7.2	143	36.8	145	56.4	147	6.0
Msdu	kNm	254	14.0	256	59.4	259	94.7	262	0.0	264	5.2	267	0.4	269	95.4	272	20.5	274	45.5	277	0.4
Pi	kN							29	30	27	05	25	40	23	25	22	15	21	20	20	40
e	cm							39.	.52	43	.50	46	.95	52	.16	55	.22	58	.30	60	.96
Ар	mm ²							26	60	23	80	22	40	21	00	19	60	18	20	18	20
n	strands							1	9	1	7	1	6	1	5	1	4	1	3	1	3
	MPa							11	02	11	37	11	34	11	07	11	30	11	65	11	21
орг	%							6	6	6	8	6	8	6	6	6	8	7	0	6	7
σlimits	MPa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
		24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σ at support	MPa							-7.19	-5.75	-6.95	-5.56	-6.60	-5.28	-6.51	-5.21	-6.12	-4.90	-5.79	-4.63	-5.43	-4.35
support								1.25	24.90	28.20	11.02	25.74	20.60	23.51	18.81	21.64	17.31 8.40	20.04	16.03	18.58	14.86
σ at span	MPa							-1.55	-2.06	20.01	-2.01	-1.55	-1.94	-1.30	-1.96	-1.55	-1.91	-1.19	-1.84	12 35	-1.81
	strands							1	5	1	4	1	3	1	2	1	1	1	0	1	0
Debonded	X1(m)							8.	.0	8	.5	8	.0	9	.0	8	.0	7	.5	7.	.0
σat	10							-1.	51	-1.	.23	-1.	24	-1.	.30	-1	.31	-1	.34	-1.	25
support	МРа							6.:	55	4.	98	4.	83	4.	70	4.	64	4.	62	4.2	29
σ at X1	MPa							-1.	58	-1.	.54	-1.	56	-1.	.55	-1	.52	-1	.48	-1.	41
								22.	.72	20	.19	18	.35	16	.32	15	.03	13	.91	12	.91
Mcr	kNm							136	1.7	138	32.2	140	94.9	142	22.1	144	43.4	146	57.5	148	8.7
Mu	kNm							269	3.0	268	33.1	273	1.0	280	08.2	278	39.4	274	48.0	288	4.3
Cost/girder	USD							793	3.5	76	8.5	76	3.3	75	9.6	75	3.9	74	8.8	76	4.5
Cost	USD							814	9.9	791	0.8	773	3.7	772	27.5	750)5.4	734	46.3	744	7.1

#	unit										G09) f40									
h	cm	7	5	8	0	8	5	9	0	9	5	1()0	1	05	1	10	1	15	12	20
А	cm ²	31	50	33	00	34	50	36	600	37	50	39	00	40)50	42	.00	43	50	45	00
Self- weight	ton	15.	980	16.	746	17.	492	18.	257	19.	023	19.	769	20.	534	21.	300	22.	066	22.3	832
Ι	cm^4	1600)391	1932	2415	230	5102	2720	0400	3180	0246	3686	6566	424	1282	484	6304	550	3543	6214	4900
Wi	cm ³	350	071	398	389	449	996	503	386	560)58	620	008	68	233	74′	732	81:	502	885	541
Ws	cm ³	544	495	612	238	682	258	755	547	83	103	909	921	98	999	107	336	115	930	124	779
M self	kNm	38	6.0	40	4.5	42	2.5	44	1.0	45	9.5	47	7.5	49	6.0	51	4.5	53	3.0	55	1.5
Mdesign	kNm	129	8.8	131	8.6	133	38.3	135	58.1	137	7.8	139	7.5	14	17.2	143	86.8	145	56.4	147	6.0
Msdu	kNm	254	4.0	256	i9.4	259	94.7	262	20.0	264	5.2	267	0.4	269	95.4	272	20.5	274	45.5	277	0.4
Pi	kN													24	95	23	60	22	.45	20	90
e	cm													49	.03	52	.85	56	.10	60.	.96
Ар	mm ²													22	240	21	00	19	60	18	20
n	strands													1	6	1	5	1	4	1	3
	MPa													11	14	11	24	11	45	11	48
орг	%													6	57	6	7	6	i9	6	9
σlimits	MPa	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
0 mmts	ivii a	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σat	MPa													-6.20	-4.96	-6.00	-4.80	-5.70	-4.56	-5.57	-4.45
support														24.09	19.27	22.31	17.85	20.61	16.49	19.03	15.23
σ at span	MPa													-1.19	9.36	-1.21	8.59	-1.11	8.00	-1.15	7.38
	strands													16.82	3	15.42	-1.38 2	14.07	-1.38	12.81	-1.44 1
Debonded	X1(m)													8	5	9	0	8	5	8	5
	, Ari(iii)													-1		-1	20	-1	22	-0	86
σ at support	MPa													4.	52	4.	46	4.	42	2.9	93
														-1	.30	-1	.26	-1	.21	-1.	.25
σ at X1	MPa													16	.98	15	.49	14	.22	12	.95
Mcr	kNm													142	22.5	144	19.8	146	58.9	148	\$2.1
Mu	kNm													277	78.6	282	22.2	281	13.8	282	4.0
Cost/girder	USD													74	7.6	74	2.2	73	5.8	73	0.0
Cost	USD							l		l				764	46.4	757	70.9	738	37.5	733	4.6

#	unit										G09	f80									
h	cm	7	5	8	0	8	5	9	0	9	5	1(00	10)5	11	10	11	5	12	20
А	cm^2	31	50	33	00	34	50	36	00	37	50	39	00	40	50	42	00	43	50	45	00
Self-weight	ton	15.	980	16.	746	17.4	492	18.2	257	19.	023	19.	769	20.	534	21.	300	22.	066	22.8	332
Ι	cm ⁴	1600)391	1932	2415	2305	5102	2720	0400	3180	0246	3680	6566	424	1282	4840	6304	5503	3543	6214	900
Wi	cm ³	350	071	398	889	449	996	503	386	560)58	620	008	682	233	743	732	815	502	885	541
Ws	cm ³	544	495	612	238	682	258	755	547	831	103	909	921	989	999	107	336	115	930	124	779
M self	kNm	38	6.0	40	4.5	42	2.5	44	1.0	45	9.5	47	7.5	49	6.0	51	4.5	53	3.0	55	1.5
Mdesign	kNm	129	8.8	131	8.6	133	8.3	135	8.1	137	7.8	139	97.5	141	7.2	143	86.8	145	6.4	147	6.0
Msdu	kNm	254	4.0	256	i9.4	259	94.7	262	0.0	264	5.2	267	0.4	269	5.4	272	20.5	274	5.5	277	0.4
Pi	kN	36	20	32	50	29	30	27	30	25	45	24	00	22	90	21	80	20	70	19	95
e	cm	30	.63	34	.81	39.	.12	42.	.81	46	.11	49	.45	52	.16	55	.22	58	.30	60.	96
Ар	mm ²	35	00	30	80	26	60	23	80	22	40	21	00	21	00	19	60	18	20	18	20
n	strands	2	5	2	2	1	9	1	7	1	6	1	5	1	5	1	4	1	3	1	3
c ni	MPa	10	34	10	55	11	02	11-	47	11	36	11	43	10	90	11	12	11	37	10	96
орг	%	6	2	6	3	6	6	6	9	6	8	6	8	6	5	6	7	6	8	6	6
σ limita	MDo	2.26	2.71	2.21	2.65	2.17	2.6	2.13	2.56	2.09	2.52	2.06	2.48	2.03	2.44	2	2.41	1.98	2.38	1.95	2.35
0 mints	lvir a	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32
σ at	MPa	-8.85	-7.08	-8.63	-6.90	-8.30	-6.64	-7.89	-6.31	-7.33	-5.87	-6.90	-5.52	-6.41	-5.13	-6.02	-4.82	-5.65	-4.52	-5.31	-4.25
support	Ivii a	43.11	34.49	38.21	30.57	33.97	27.17	30.78	24.62	27.72	22.18	25.29	20.23	23.16	18.53	21.30	17.04	19.57	15.65	18.17	14.54
σ at apap	MPa	-1.77	16.75	-2.02	14.63	-2.11	12.97	-2.05	11.67	-1.81	10.71	-1.65	9.85	-1.40	9.19	-1.23	8.57	-1.05	8.04	-0.89	7.58
0 at span	Ivii a	32.10	-2.55	28.07	-2.49	24.58	-2.57	22.03	-2.33	19.52	-2.40	17.59	-2.30	15.89	-2.24	14.41	-2.19	13.03	-2.22	11.94	-2.14
Debonded	strands	1	9	1	7	1	5	1	3	1	2	1	1	1	1	1	0	ç)	9)
Deboliaca	X1(m)	7	.5	8	.5	9.	.5	9.	.0	8.	.0	7	.5	6	.5	6	.0	6.	.0	5.	5
σ at	MDo	-2.	.13	-1.	96	-1.	.75	-1.	86	-1.	83	-1.	.84	-1.	71	-1.	.72	-1.	74	-1.	63
support	lvir a	10	.35	8.	68	7.	15	7.2	24	6.	93	6.	74	6.	18	6.	09	6.	02	5.5	59
σ at V1	MDo	-2.	21	-2.	17	-2.	.13	-2.	11	-2.	03	-1.	.98	-2.	01	-2.	.00	-1.	79	-1.	79
0 at AI	lvir a	32.	.79	28	.30	24	.60	22.	.11	19.	.85	18	.07	16	.78	15	.52	14	.07	13.	20
Mcr	kNm	130)4.5	132	25.2	133	9.9	136	9.6	138	4.3	140)8.5	143	0.9	145	53.4	146	9.6	149	4.9
Mu	kNm	256	59.9	262	.6.5	262	21.5	262	20.0	266	5.1	268	35.2	284	2.4	281	9.2	277	3.8	291	0.1
Cost/girder	USD	90	7.5	86	3.9	82	0.2	79	6.0	79	2.1	78	8.7	80	5.7	80	2.3	79	9.5	81	7.0
Cost	USD	995	52.7	899	8.9	857	9.2	813	5.8	792	0.9	777	3.4	783	6.4	770	07.0	762	7.1	774	8.6

#	unit										G08	f60									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10	05	11	10	11	15	12	20
А	cm ²	33	66	35	16	36	66	38	16	39	66	41	16	42	66	44	16	45	66	47	16
Self-weight	ton	17.	078	17.	823	18.	589	19.	355	20.	120	20.	866	21.	632	22.	397	23.	163	23.	909
Ι	cm ⁴	1689	9918	204	1192	2435	5429	2874	621	3360	0741	3895	5749	448	1593	5120	0209	5813	3528	6563	3471
Wi	cm ³	360	004	409	965	462	225	517	779	576	523	637	753	70	167	768	862	838	835	910)83
Ws	cm ³	602	219	670	551	753	369	833	865	916	531	100	165	108	962	118	020	127	336	136	910
M self	kNm	41	2.5	43	0.5	44	9.0	46	7.5	48	6.0	50	4.0	52	2.5	54	1.0	55	9.5	57	7.5
Mdesign	kNm	134	4.6	136	64.5	138	34.5	140	4.5	142	4.4	144	4.3	146	54.1	148	34.0	150)3.8	152	3.6
Msdu	kNm	269	0.7	271	6.4	274	1.9	276	7.5	279	2.9	281	8.4	284	13.7	286	59.0	289	94.2	291	9.4
Pi	kN							30	10	27	80	25	60	24	00	22	70	21	60	20	80
e	cm							40	.52	44.	.43	49	.05	52	.93	56	.62	59	.70	62.	.42
Ар	mm ²							28	00	25	20	23	80	22	40	21	00	19	60	19	60
n	strands							2	0	1	8	1	7	1	6	1	5	1	4	1	4
mi	MPa							10	75	11	03	10	76	10	71	10	81	11	02	10	61
орг	%							6	4	6	6	6	4	6	4	6	5	6	6	6	4
σ limits	MDa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
0 mints	Ivii a	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σ at	MPa							-6.74	-5.39	-6.47	-5.18	-6.32	-5.05	-6.03	-4.83	-5.75	-4.60	-5.40	-4.32	-5.07	-4.06
support	u							31.44	25.15	28.44	22.76	25.92	20.73	23.73	18.98	21.86	17.49	20.11	16.09	18.66	14.93
σ at span	MPa							-1.13	11.45	-1.17	10.37	-1.28	9.37	-1.24	8.61	-1.17	7.97	-1.00	7.49	-0.85	7.07
o ut opun								22.41	-1.97	20.01	-1.96	18.01	-1.92	16.28	-1.88	14.82	-1.82	13.44	-1.85	12.32	-1.80
Debonded	strands							1	6	1	4	1	3	1	2	1	1	1	1	1	0
	X1(m)							7.	0	7.	.5	7	.5	7	.5	7	.5	7	.0	6	.5
σ at	MPa							-1.	35	-1.	44	-1.	49	-1.	.51	-1.	.53	-1.	16	-1.	.45
support								6.	29	6.	32	6.	10	5.	93	5.	83	4.	31	5.	33
σ at X1	MPa							-1.	64	-1.	50	-1.	.60	-1.	.54	-1.	.45	-1.	.40	-1.	.37
								23	.23	20	.54	18	.50	16	.75	15	.26	14	.04	13	.10
Mcr	kNm							141	2.7	143	1.9	145	53.1	147	74.5	149	98.2	151	4.5	153	7.7
Mu	kNm							285	2.3	283	6.2	293	3.9	297	7.8	298	38.8	295	6.6	310	3.3
Cost/girder	USD							83	5.7	81	1.7	80	7.0	80	2.3	79	7.6	79	2.5	80	8.2
Cost	USD							753	4.0	727	3.5	717	6.0	707	78.6	698	31.1	689	9.7	693	3.3

#	unit										G08	6 f40									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	0	11	5	12	20
А	cm ²	33	66	35	16	36	66	38	16	39	66	41	16	42	66	44	16	45	66	47	16
Self-weight	ton	17.	078	17.	823	18.	589	19.	355	20.	120	20.	866	21.	632	22.	397	23.	163	23.9) 09
Ι	cm ⁴	1689	9918	204	1192	2435	5429	2874	4621	3360	0741	3895	5749	448	1593	5120)209	5813	3528	6563	471
Wi	cm ³	360	004	409	965	462	225	51	779	576	523	637	753	70	167	768	862	838	335	910	183
Ws	cm ³	602	219	670	551	753	369	833	365	910	531	100	165	108	962	118	020	127	336	136	910
M self	kNm	41	2.5	43	0.5	44	9.0	46	7.5	48	6.0	50	4.0	52	2.5	54	1.0	559	9.5	57	7.5
Mdesign	kNm	134	14.6	136	54.5	138	34.5	140)4.5	142	4.4	144	4.3	146	54.1	148	4.0	150	3.8	152	3.6
Msdu	kNm	269	90.7	271	6.4	274	41.9	276	57.5	279	02.9	281	8.4	284	3.7	286	i9.0	289	4.2	291	9.4
Pi	kN													25	05	23	10	22	15	21	40
e	cm													51	.37	56	.62	59.	.70	62.	42
Ар	mm ²													22	40	21	00	19	60	19	60
n	strand s													1	6	1	5	1	4	1	4
	MPa													11	18	11	00	11	30	10	92
брі	%													6	7	6	6	6	8	6	5
- limita	MDa	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
σ limits	MPa	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σ at	MPa													-5.94	-4.75	-5.85	-4.68	-5.53	-4.43	-5.22	-4.18
support	u													24.21	19.37	22.25	17.80	20.62	16.50	19.20	15.36
σ at span	MPa													-1.14	8.69	-1.27	7.89	-1.14	7.38	-1.00	6.95
0 at span	ivii u													16.76	-1.50	15.21	-1.51	13.95	-1.44	12.86	-1.37
Debonded	strand s													1	3	1	2	1	1	1	1
Debonaca	X1(m)													8	.5	9.	.5	8.	5	8.	0
σ at	MD-													-1.	.11	-1.	17	-1.	19	-1.	12
support	MPa													4.	54	4.4	45	4.4	42	4.	12
σ at X1	MPa													-1.	.25	-1.	28	-1.	24	-1.	17
														16	.93	15.	.23	14.	10	13.	12
Mcr	kNm													146	59.7	148	7.4	151	1.7	153	7.0
Mu	kNm													284	5.9	291	9.0	289	5.7	304	2.5
Cost/girder	USD													76	9.2	76-	4.3	75	7.4	77	.9
Cost	USD													696	59.6	695	0.5	673	9.5	681	5.5
#	unit										G08	f80									
-------------	-----------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	--------------	-------	-----------------
h	cm	7	5	8	0	8	5	9	0	9	5	1(00	10)5	11	10	1	15	12	.0
А	cm ²	33	66	35	16	36	66	38	16	39	66	41	16	42	66	44	16	45	66	47	16
Self-weight	ton	17.	078	17.	823	18.	589	19.3	355	20.	120	20.	866	21.	632	22.	397	23.	163	23.9) 09
Ι	cm^4	1689	9918	204	192	2435	5429	2874	4621	3360	0741	3895	5749	448	593	5120	0209	581	3528	6563	471
Wi	cm ³	360	004	409	965	462	225	517	779	576	523	637	753	70	67	768	362	83	335	910	183
Ws	cm ³	602	219	676	551	753	369	833	365	916	531	100	165	108	962	118	020	127	336	136	910
M self	kNm	41	2.5	43	0.5	44	9.0	46'	7.5	48	5.0	50	4.0	52	2.5	54	1.0	55	9.5	577	7.5
Mdesign	kNm	134	4.6	136	4.5	138	34.5	140	4.5	142	4.4	144	4.3	146	4.1	148	34.0	150)3.8	152	3.6
Msdu	kNm	269	0.7	271	6.4	274	1.9	276	7.5	279	2.9	281	8.4	284	3.7	286	9.0	289	94.2	291	9.4
Pi	kN	37	30	33	40	30	10	28	00	26	20	24	70	23	30	22	30	21	20	20	30
e	cm	31	.36	35	.70	40.	.19	43.	.85	47.	15	50	.48	53	.87	56	.62	59	.70	62.	83
Ар	mm ²	36	40	32	20	28	00	25	20	23	80	22	40	21	00	21	00	19	60	18	20
n	strands	2	6	2	3	2	0	1	8	1	7	1	6	1	5	1	5	1	4	1	3
	MPa	10	25	10	37	10	75	11	11	11	01	11	03	11	10	10	62	10	82	11	15
орг	%	6	1	6	2	6	4	6	7	6	6	6	6	6	6	6	4	6	5	6	7
- 1::4-	MD-	2.26	2.71	2.21	2.65	2.17	2.6	2.13	2.56	2.09	2.52	2.06	2.48	2.03	2.44	2	2.41	1.98	2.38	1.95	2.35
σ limits	мга	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32
σ at	MPa	-8.34	-6.67	-8.13	-6.50	-7.84	-6.27	-7.39	-5.91	-6.88	-5.50	-6.45	-5.16	-6.06	-4.85	-5.65	-4.52	-5.30	-4.24	-5.01	-4.01
support	ivii a	43.57	34.86	38.61	30.89	34.38	27.50	31.05	24.84	28.04	22.44	25.56	20.45	23.35	18.68	21.48	17.18	19.74	15.79	18.31	14.65
σ at span	MDa	-1.49	15.65	-1.76	13.67	-1.88	12.10	-1.78	10.93	-1.57	10.04	-1.42	9.26	-1.26	8.59	-1.06	8.06	-0.90	7.57	-0.79	7.12
o at span	wii a	32.11	-2.49	28.10	-2.42	24.67	-2.45	22.02	-2.28	19.61	-2.28	17.65	-2.21	15.90	-2.19	14.44	-2.13	13.07	-2.15	11.97	-2.08
Debonded	strands	1	9	1	7	1	5	1	3	1	2	1	1	1	0	1	0	9)	8	;
Beconada	X1(m)	7	.0	7	.5	8	.0	8.	.0	7.	0	6	.5	6	.0	5	.5	5	.5	5.	0
σ at	MPa	-2.	25	-2.	12	-1.	96	-2.	05	-2.	02	-2.	01	-2.	02	-1.	88	-1	.89	-1.	93
support	wii a	11	.73	10	.07	8.	60	8.0	62	8.2	25	7.	99	7.	78	7.	16	7.	05	7.0)4
σ at X1	MPa	-2.	11	-2.	16	-2.	12	-2.	01	-2.	05	-2.	03	-2.	03	-1.	99	-1	79	-1.	85
0 at XI	ivii a	33	.14	28	.75	25.	.06	22.	.38	20.	37	18	.62	17	.10	15	.86	14	.42	13.	55
Mcr	kNm	135	52.5	137	3.9	139	1.8	141	8.7	143	7.9	146	1.6	148	2.2	150	5.8	152	3.3	154	8.0
Mu	kNm	269	98.9	277	3.6	278	85.6	277	4.3	282	5.4	285	4.5	286	1.4	301	8.7	298	32.5	292	4.3
Cost/girder	USD	95	3.8	90	9.7	86	5.5	84	1.8	83	7.9	83	4.5	83	1.1	84	8.6	84	5.8	842	2.4
Cost	USD	930)3.6	836	5.0	794	0.3	760	6.2	740	3.2	726	7.6	714	1.1	724	0.1	716	57.5	705	9.0

#	unit										G14	f60									
h	cm	7	5	8	0	8	5	9	0	9	5	1(00	10)5	1	10	1	15	12	20
А	cm ²	20	03	20	78	21	53	22	28	23	03	23	78	24	53	25	28	26	603	26	78
Self- weight	ton	10.	164	10.	536	10.	909	11.	302	11.0	675	12.	068	12.	441	12.	813	13.	207	13.:	579
I	cm ⁴	125	6787	1498	8146	1765	5369	2059	9405	2381	201	2731	703	311	1857	3522	2605	396	4892	4439) 660
Wi	cm ³	30	847	345	510	383	319	422	273	463	368	506	503	549	976	594	486	64	132	689	€12
Ws	cm ³	36	687	409	947	453	347	498	385	545	557	593	862	642	299	693	366	74	562	798	386
M self	kNm	24	5.5	25	4.5	26	3.5	27	3.0	28	2.0	29	1.5	30	0.0	30	9.5	31	9.0	32	8.0
Mdesign	kNm	82	0.8	83	0.3	83	9.6	849	9.0	85	8.3	86	7.6	87	6.9	88	6.1	- 89	5.3	904	4.4
Msdu	kNm	161	0.6	162	2.6	163	4.4	164	6.3	165	8.0	166	9.6	168	31.2	169	02.7	170	04.0	171	5.3
Pi	kN	20	30	18	45	17	10	16	00	15	05	14	30	13	50	12	90	12	230	11	80
e	cm	31	.74	35	.34	38	.57	41.	44	44	.35	46	98	49	.94	52	.55	55	.57	58.	.18
Ар	mm ²	21	00	18	20	16	80	15	40	14	00	14	00	12	60	12	60	11	20	11	20
n	strands	1	5	1	3	1	2	1	1	1	0	1	0	ç	Ð	9	Ð		8	8	3
gni	MPa	90	57	10	14	10	18	10	39	10	75	10	21	10	71	10	24	10	98	10	54
opi	%	5	8	6	1	6	1	6	2	6	4	6	1	6	4	6	1	6	6	6	3
σlimits	MPa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
0 111110		24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σat	MPa	-7.43	-5.94	-7.04	-5.64	-6.60	-5.28	-6.11	-4.89	-5.70	-4.56	-5.30	-4.24	-4.98	-3.99	-4.67	-3.74	-4.44	-3.55	-4.19	-3.35
support		31.02	24.82	27.77	22.22	25.15	20.12	22.87	18.29	20.93	16.74	19.29	15.43	17.77	14.21	16.50	13.20	15.38	12.31	14.37	11.49
σ at span	MPa	-0.74	16.43	-0.83	14.64	-0.79	13.23	-0.64	12.13	-0.53	11.17	-0.39	10.37	-0.32	9.65	-0.21	9.04	-0.16	8.45	-0.08	7.97
		23.06	-1.79	20.40	-1.84	18.28	-1.79	16.41	-1.79	14.85	-1.77	13.53	-1.71	12.31	-1.74	11.30	-1.70	10.41	-1.65	9.61	-1.63
Debonded	strands	1	2	1	0	9)	9)	8	3	1	7		7		7		6	(5
	X1(m)	7	.0	6	.5	6	.5	6.	.0	5.	.5	5.	5	5	.0	5	.0	4	.5	4	.5
σ at	MPa	-1.	.49	-1.	63	-1.	65	-1.	11	-1.	14	-1.	59	-1.	.11	-1.	.04	-1	.11	-1.	05
support		6.	20	6.4	41	6.	29	4.	16	4.	19	5.'	79	3.	95	3.	67	3.	85	3.:	59
σ at X1	MPa	-1.	.34	-1.	59	-1.	50	-1.	51	-1.	58	-1.	39	-1.	.48	-1.	.32	-1	.46	-1.	32
		23	.78	21	.30	19	.12	17.	.44	16	.08	14	70	13	.67	12	.60	11	.91	11.	.05
Mcr	kNm	83	5.1	84	3.0	85	4.2	86	3.3	87	3.5	88	5.2	89	3.0	90	4.2	91	5.9	92	6.5
Mu	kNm	165	51.5	166	0.3	171	3.2	173	5.4	170	6.2	181	1.1	174	3.1	183	37.5	173	35.3	181	9.1
Cost/girder	USD	53	6.5	50	2.4	48	9.6	47	6.3	46	3.0	47	1.1	45	7.9	46	6.0	45	2.7	46	0.8
Cost	USD	850)5.5	785	2.3	758	2.3	734	0.4	702	1.5	705	7.9	682	9.9	694	13.3	665	52.4	676	5.8

#	unit										G14	f40									
h	cm	7	5	8	0	8	5	9	0	9	5	1(00	1()5	11	10	1	15	12	20
А	cm ²	20	03	20	78	21	53	22	28	23	03	23	78	24	53	25	28	26	03	26	78
Self- weight	ton	10.	164	10.:	536	10.	909	11.	302	11.0	675	12.	068	12	441	12.	813	13.	207	13.:	579
Ι	cm^4	1256	5787	1498	8146	1765	5369	2059	9405	2381	201	273	1703	311	857	3522	2605	3964	4892	4439) 660
Wi	cm ³	308	347	345	510	383	319	422	273	463	68	506	503	549	976	594	486	64	132	689)12
Ws	cm ³	366	587	409	947	453	347	498	385	545	557	593	362	642	299	693	366	74	562	798	386
M self	kNm	24	5.5	25	4.5	26	3.5	27.	3.0	282	2.0	29	1.5	30	0.0	30	9.5	31	9.0	32	8.0
Mdesign	kNm	82	0.8	83	0.3	83	9.6	84	9.0	858	8.3	86	7.6	87	6.9	88	6.1	89	5.3	904	4.4
Msdu	kNm	161	0.6	162	22.6	163	34.4	164	6.3	165	8.0	166	9.6	168	31.2	169	92.7	170	04.0	171	5.3
Pi	kN							16	50	15	55	14	70	13	95	13	35	12	80	12	20
e	cm							41.	.22	44.	08	46	.98	49	.94	52	.55	55	.16	58	.18
Ар	mm ²							16	80	15	40	14	00	12	60	12	60	12	60	11	20
n	strands							1	2	1	1	1	0	Ģ	Ð	ç	Ð	9	÷	8	3
σni	MPa							98	32	10	10	10	50	11	07	10	60	10	16	10	89
opi	%		-				-	5	9	6	0	6	3	6	6	6	3	6	1	6	5
σ limits	MPa	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
		18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σ at support	MPa						-	-6.23	-4.98	-5.81	-4.65	-5.45	-4.36	-5.15	-4.12	-4.83	-3.87	-4.55	-3.64	-4.33	-3.46
								-0.76	12.04	-0.64	11.08	-0.54	10.25	-0.48	9.52	-0.37	8.91	-0.27	8.37	-0.22	7.86
σ at span	MPa							17.04	-1.29	15.45	-1.28	14.07	-1.28	12.90	-1.26	11.87	-1.24	10.95	-1.22	10.10	-1.24
	strands							1	0	9)	8	3		7	1	7	í.	7	(5
Debonded	X1(m)							7.	.0	6.	5	6	.0	6	.0	5	.5	5	.5	5.	.0
σ at	MDa							-1.	04	-1.	06	-1.	09	-1.	14	-1.	.07	-1.	.01	-1.	08
support	MPa							3.9	92	3.9	92	3.	97	4.	08	3.	79	3.	54	3.	71
σ at X1	MPa							-1.	25	-1.	28	-1.	33	-1.	.22	-1.	.27	-1	.14	-1.	25
0								17.	.62	16.	20	14	.99	13	.77	12	.92	11	.96	11.	.29
Mcr	kNm							864	4.6	874	4.3	88	3.8	89	4.1	- 90	4.9	91	5.4	92	3.2
Mu	kNm							165	3.4	169	1.9	171	7.2	169	02.7	178	37.1	188	31.4	177	9.4
Cost/girder	USD							48	0.4	460	5.5	45	2.6	43	9.2	44	6.2	45	3.7	43) .8
Cost	USD							760	7.2	725	8.9	692	.4.5	665	53.2	670)9.2	681	4.2	650	7.9

#	unit										G13	660 f60									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10	05	1	10	1	15	12	20
А	cm ²	21	11	21	86	22	61	23	36	24	11	24	86	25	61	26	536	27	11	27	86
Self-weight	ton	10.	702	11.0	095	11.	468	11.3	840	12.2	234	12.	606	12.	979	13.	372	13.	745	14.	138
Ι	cm^4	1324	1954	1579	9060	1860	0256	2169	9502	2507	755	2875	5970	327	5100	370	6095	4169	9907	4667	7483
Wi	cm ³	315	522	352	268	39	165	432	211	474	402	517	736	56	212	608	828	655	583	704	175
Ws	cm ³	401	91	448	326	490	504	545	520	595	573	647	758	70	075	75	523	810)99	868	303
M self	kNm	25	8.5	26	8.0	27	7.0	28	5.0	293	5.5	30-	4.5	31	3.5	32	3.0	33	2.0	34	1.5
Mdesign	kNm	89	4.3	90	3.8	91	3.2	92	2.8	932	2.3	94	1.8	95	1.2	96	0.6	97	0.0	979	9.3
Msdu	kNm	176	8.9	178	31.0	179	92.9	180	5.0	181	6.8	182	.87	184	40.4	185	52.1	186	53.7	187	5.2
Pi	kN			20	00	18	60	17	30	16	30	15	30	14	-60	13	90	13	20	12	70
e	cm			36	.20	39	.42	42.	.71	45.	.63	48	.59	51	.26	53	.93	56	.92	59.	.56
Ар	mm ²			19	60	18	320	16	80	15	40	14	00	14	-00	14	00	12	60	12	60
n	strands			1	4	1	3	1	2	1	1	1	0	1	0	1	0	9	Ð	9)
mi	MPa			10	20	10	22	10	30	10	58	10	93	10	43	9	93	10	48	10	08
брі	%			6	1	6	1	6	2	6	3	6	5	6	52	5	i9	6	3	6	0
σlimits	MPa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
0 mmts		24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σ at support	MPa			-7.00	-5.60	-6.55	-5.24	-6.15	-4.92	-5.72	-4.58	-5.33	-4.26	-4.98	-3.98	-4.65	-3.72	-4.40	-3.52	-4.16	-3.32
o ur support				29.68	23.74	26.95	21.56	24.51	19.60	22.45	17.96	20.52	16.42	19.01	15.21	17.60	14.08	16.33	13.06	15.29	12.23
σ at span	MPa			-1.02	14.56	-0.97	13.17	-0.90	12.01	-0.76	11.07	-0.62	10.28	-0.51	9.59	-0.38	9.00	-0.30	8.44	-0.22	7.96
• • F				22.08	-1.89	19.87	-1.76	17.89	-1.75	16.22	-1.71	14.64	-1.78	13.44	-1.71	12.29	-1.71	11.26	-1.73	10.45	-1.66
Debonded	strands			1	1	1	0	9)	8	3	7	7	,	7	,	7	(5	e	5
	X1(m)			7.	.0	6	.5	6.	.5	6.	.0	5.	.5	5	.5	5	.0	5	.0	4.	.5
σ at support	MPa			-1.	50	-1.	.51	-1.	54	-1.	56	-1.	60	-1	.49	-1.	.40	-1.	.47	-1.	39
				6.	36	6.	22	6.	13	6.	12	6.	16	5.	70	5.	28	5.	44	5.	10
σ at X1	MPa			-1.	56	-1.	.65	-1.	54	-1.	56	-1.	58	-1	.41	-1.	.45	-1.	.33	-1.	41
				22.	.76	20	.74	18.	.70	17.	.21	15.	.83	14	.57	13	.61	12	.53	11.	.91
Mcr	kNm			91:	5.2	92	9.2	93	9.1	950	0.6	95	6.1	96	9.2	97	8.1	98	6.1	999	9.6
Mu	KNM			1/9	4.3 5.4	185	07.8	189	07.7	187	4.7	182	2.0	193	51.9 0.0	203	56.8 0.7	194	4.8	203	9.1
Cost/girder	USD			53	5.4	52	2.1	50	9.4	49	5.1	48	2.8	49	0.9	49	8.5	48	5.7	493	5.3
Cost	USD			787	0.5	754	18.3	729	17.7	699	5.0	670	15.4	681	0.7	687	/0.5	663	i9.3	670	15.6

#	unit										G13	f40									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	0	11	5	12	20
А	cm ²	21	11	21	86	22	61	23	36	24	11	24	86	25	61	26	36	27	11	27	86
Self-weight	ton	10.	702	11.	095	11.4	468	11.3	840	12.2	234	12.	606	12.	979	13.	372	13.	745	14.	138
Ι	cm^4	1324	4954	1579	9060	1860	0256	2169	9502	2507	755	2875	5970	3275	5100	3706	5095	4169	9907	4667	483
Wi	cm ³	315	522	352	268	391	65	432	211	474	402	517	736	562	212	608	328	655	583	704	75
Ws	cm ³	401	191	448	326	496	504	545	520	595	573	647	758	700)75	755	523	810)99	868	303
M self	kNm	25	8.5	26	8.0	27	7.0	28	6.0	293	5.5	30	4.5	31	3.5	32	3.0	332	2.0	34	1.5
Mdesign	kNm	894	4.3	90	3.8	913	3.2	922	2.8	932	2.3	94	1.8	95	1.2	96	0.6	970	0.0	979	€.3
Msdu	kNm	176	58.9	178	1.0	179	2.9	180	05.0	181	6.8	182	8.7	184	0.4	185	2.1	186	3.7	187	5.2
Pi	kN									16	70	15	80	14	90	14	30	13	70	13	15
eccentricity	cm									45.	.40	48	.32	51	.26	53.	.93	56.	.92	59.	56
Ap	mm ²									16	80	15	40	14	00	14	00	12	60	12	60
n	strands									1	2	1	1	1	0	1	0	с,)	9)
T	MPa									99	94	10	26	10	64	10	21	10	87	10	44
орг	%									6	0	6	1	6	4	6	1	6	5	6	2
σlimita	MBo	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
6 mints	WIF a	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σ at	MPa									-5.80	-4.64	-5.43	-4.35	-5.08	-4.07	-4.79	-3.83	-4.56	-3.65	-4.30	-3.44
support	wir a									22.92	18.34	21.11	16.89	19.41	15.52	18.10	14.48	16.94	13.56	15.83	12.67
σ at anon	MDa									-0.84	11.01	-0.73	10.20	-0.61	9.51	-0.51	8.89	-0.47	8.31	-0.37	7.84
0 at span	WII a									16.69	-1.33	15.23	-1.31	13.83	-1.40	12.79	-1.31	11.88	-1.23	10.99	-1.23
Debonded	strands									1	0	ç)	5	3	8	3	7	7	7	7
Debolided	X1(m)									7.	0	6	.5	6	.5	6.	.0	6.	.0	5.	5
σ at	MPa									-0.	97	-0.	99	-1.	.02	-0.	96	-1.	01	-0.	96
support	wii a									3.8	82	3.	84	3.	88	3.	62	3.2	77	3.5	52
σ at X1	MPa									-1.	29	-1.	31	-1.	16	-1.	19	-1.	12	-1.	17
						-				17.	.25	15	.95	14	.51	13.	.64	12.	.69	11.	97
Mcr	kNm									940	5.4	95	6.7	96	1.3	97:	5.4	98	9.4	999	€.2
Mu	kNm									186	0.5	189	9.7	187	7.0	198	1.8	190	0.3	199	4.7
Cost/girder	USD									498	8.7	48	4.8	47	1.4	47	8.4	46	5.0	472	2.0
Cost	USD									730	1.7	697	8.3	671	9.8	676	5.3	651	3.4	656	5.4

#	unit										G13	f80									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	0	11	15	12	20
А	cm^2	21	11	21	86	22	61	23	36	24	11	24	86	25	61	26	36	27	11	27	86
Self-weight	ton	10.	702	11.	095	11.4	468	11.8	840	12.2	234	12.0	506	12.	979	13.	372	13.	745	14.1	138
Ι	cm^4	1324	4954	1579	9060	1860)256	2169	9502	2507	755	2875	5970	3275	5100	3700	5095	4169	9907	4667	7483
Wi	cm ³	315	522	352	268	391	165	432	211	474	02	517	736	562	212	608	328	655	583	704	175
Ws	cm ³	40	191	448	826	496	504	545	520	595	573	647	758	700)75	755	523	810)99	868	303
M self	kNm	25	8.5	26	8.0	27	7.0	28	5.0	29	5.5	304	4.5	31	3.5	32	3.0	33	2.0	34	1.5
Mdesign	kNm	89	4.3	90	3.8	91	3.2	922	2.8	932	2.3	94	1.8	95	1.2	96	0.6	97	0.0	979	9.3
Msdu	kNm	176	58.9	178	1.0	179	2.9	180	5.0	181	6.8	182	8.7	184	0.4	185	2.1	186	53.7	187	5.2
Pi	kN	21	55	19	65	18	10	16	90	15	85	14	95	14	20	13	45	12	85	12	30
e	cm	32	.66	36	.20	39.	.42	42.	71	45.	63	48.	.59	51	.26	54	.26	56	.92	59.	.56
Ар	mm ²	22	40	19	60	18	20	16	80	15	40	14	00	14	00	12	60	12	60	12	60
n	strands	1	6	1	4	1	3	1	2	1	1	1	0	1	0	ç)	ç	Ð	ç)
c ni	MPa	90	52	10	03	99	95	10	06	10	29	10	68	10	14	10	67	10	20	97	76
орг	%	5	8	6	0	6	0	6	0	6	2	6	4	6	1	6	4	6	1	5	8
σ limite	MDa	2.26	2.71	2.21	2.65	2.17	2.6	2.13	2.56	2.09	2.52	2.06	2.48	2.03	2.44	2	2.41	1.98	2.38	1.95	2.35
0 mints	WII a	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32
σ at	MPa	-7.30	-5.84	-6.88	-5.50	-6.38	-5.10	-6.00	-4.80	-5.57	-4.45	-5.20	-4.16	-4.84	-3.87	-4.56	-3.65	-4.28	-3.42	-4.02	-3.22
support	ivii a	32.54	26.03	29.16	23.33	26.22	20.98	23.94	19.15	21.83	17.47	20.05	16.04	18.49	14.79	17.10	13.68	15.89	12.71	14.81	11.85
σ at span	MPa	-0.87	16.41	-0.90	14.66	-0.79	13.31	-0.76	12.12	-0.61	11.20	-0.50	10.38	-0.37	9.70	-0.28	9.07	-0.19	8.54	-0.09	8.06
0 at span	wii a	24.34	-2.34	21.56	-2.30	19.15	-2.34	17.32	-2.21	15.60	-2.20	14.17	-2.16	12.92	-2.13	11.79	-2.11	10.83	-2.08	9.96	-2.05
Debonded	strands	1	2	1	0	ç)	8	3	7		7	7	(5	(5	4	5	5	5
Debonaca	X1(m)	5	.5	5	.5	5.	.5	5.	0	5.	0	4.	5	4	.0	4	.0	3	.5	3.	.5
σ at	MDa	-1.	83	-1.	97	-1.	96	-2.	00	-2.	02	-1.	56	-1.	94	-1.	52	-1.	.90	-1.	79
support	Ivii a	8.	13	8.	33	8.0	07	7.9	98	7.9) 4	6.0	02	7.	40	5.	70	7.	06	6.5	58
σ at X1	MPa	-2.	17	-2.	11	-1.	93	-2.	07	-1.	85	-1.	92	-1.	98	-1.	82	-1.	.91	-1.	75
0 at A1	wii a	26	.00	23	.10	20.	.58	18.	.97	17.	16	15.	.95	14	.92	13	.70	12	.97	12.	.01
Mcr	kNm	90	5.9	91	6.3	92	3.6	93	8.1	94′	7.2	958	8.3	96	9.0	97	8.7	98	9.8	100	0.5
Mu	kNm	183	31.9	182	8.5	188	4.1	192	4.2	190	3.0	185	0.5	195	5.4	186	9.4	196	53.8	205	8.1
Cost/girder	USD	59	2.9	56	0.2	54	8.3	53	5.9	524	4.0	51	1.6	52	0.1	50	8.2	51	6.7	525	5.7
Cost	USD	849	94.4	792	5.5	769	9.5	742	1.6	720	2.1	700	2.2	702	1.7	686	7.2	689	99.7	701	6.7

#	unit										G12	f60									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	1	15	12	20
А	cm ²	22	19	22	94	23	69	24	44	25	19	25	94	26	69	27	44	28	19	28	94
Self-weight	ton	11.	261	11.	633	12.	006	12.	399	12.	772	13.	165	13.	538	13.	910	14.	304	14.0	676
Ι	cm ⁴	1386	6776	1652	2637	1946	5764	2270)133	2623	3713	3008	8472	3425	5373	3875	5377	435	9443	4878	3525
Wi	cm ³	321	103	359	922	398	897	44()23	483	300	527	723	572	291	620	003	66	856	718	350
Ws	cm ³	436	506	486	516	537	771	590)67	644	199	70)65	757	764	815	592	87:	550	936	535
M self	kNm	27	2.0	28	1.0	29	0.0	29	9.5	30	8.5	31	8.0	32	7.0	33	6.0	34	5.5	354	4.5
Mdesign	kNm	96	4.6	97	4.1	98	3.7	993	3.2	100	02.7	101	2.2	102	21.7	103	31.1	104	40.5	104	9.9
Msdu	kNm	191	5.0	192	27.1	193	39.1	195	1.1	196	53.0	197	74.8	198	86.6	199	98.3	200)9.9	202	1.4
Pi	kN			21	50	20	00	18	60	17	40	16	40	15	60	14	-80	14	10	13	50
e	cm			36	.63	40	.22	43	.49	46	.82	49	.79	52	.52	55	.50	58	.21	61.	.23
Ар	mm ²			22	40	19	60	18	20	16	80	15	40	15	40	14	-00	14	-00	12	60
n	strands			1	6	1	4	1	3	1	2	1	1	1	1	1	0	1	0	9)
mi	MPa			96	50	10	20	10	22	10	36	10	65	10	13	10	57	10	07	10	71
орг	%			5	7	6	1	6	1	6	2	6	4	6	1	6	i3	6	0	6	4
σlimits	MPa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
0 mmts		24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σ at support	MPa			-6.83	-5.46	-6.52	-5.21	-6.08	-4.87	-5.72	-4.58	-5.33	-4.27	-4.97	-3.98	-4.67	-3.74	-4.37	-3.50	-4.16	-3.33
•				31.30	25.04	28.60	22.88	25.99	20.79	23.77	19.02	21.81	17.45	20.15	16.12	18.64	14.91	17.28	13.82	16.17	12.94
σ at span	MPa			-1.05	14.58	-1.12	13.08	-1.01	11.95	-0.94	10.97	-0.79	10.18	-0.65	9.51	-0.56	8.90	-0.43	8.39	-0.38	7.88
•				23.47	-2.08	21.34	-1.77	19.18	-1.77	17.39	-1.74	15.78	-1.75	14.44	-1.72	13.22	-1.72	12.11	-1.74	11.24	-1.68
Debonded	strands			1	2	1	1	1	0	9)	5	8	8	3	1	7	,	7	6	j.
	X1(m)			7.	.5	7.	.0	6.	.5	6.	.5	6	.0	5	.5	5	.5	5	.0	5.	.0
σ at support	MPa			-1.	71	-1.	.40	-1.	40	-1.	43	-1.	.45	-1.	.36	-1.	.40	-1	.31	-1.	39
				7.	82	6.	13	6.	00	5.	94	5.	95	5.	49	5.	59	5.	18	5.3	39
σ at X1	MPa			-1.	41	-1.	.61	-1.	64	-1.	53	-1.	.52	-1.	.53	-1.	.39	-1.	.41	-1.	32
				23.	.96	21.	.99	20	.02	18	.17	16	.74	15	.59	14	.32	13	.40	12.	.47
Mcr	kNm			97	8.7	99	9.4	100	8.9	101	9.8	102	28.6	103	39.7	104	18.8	105	56.2	106	i9.6
Mu	kNm			200	05.7	200	01.2	204	5.8	204	2.9	200)5.4 5.0	212	20.7	204	19.5	215	54.3	204	.9.4
Cost/girder	USD			58	9.3	55	5.2	54	1.9	52	9.1	51	5.8	52	3.4	51	0.7	51	8.3	505	5.5
Cost	USD			806	52.2	750	02.2	720)4.9	697	3.5	669	94.1	674	3.3	652	23.9	657	79.1	636	5.8

#	unit										G12	f40									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	1	10	11	15	12	20
А	cm ²	22	19	22	94	23	69	24	44	25	19	25	94	26	69	27	44	28	19	28	94
Self-weight	ton	11.	261	11.	633	12.	006	12.	399	12.	772	13.	165	13.	538	13.	910	14.	304	14.6	576
Ι	cm ⁴	1386	6776	1652	2637	1940	5764	2270)133	2623	3713	3008	3472	3425	5373	387:	5377	4359	9443	4878	525
Wi	cm ³	321	103	359	922	398	897	440)23	483	300	527	23	572	291	62	003	668	356	718	350
Ws	cm ³	436	506	486	516	533	771	590)67	644	199	700)65	757	764	81:	592	875	550	936	i35
M self	kNm	27	2.0	28	1.0	29	0.0	29	9.5	30	8.5	31	8.0	32	7.0	33	6.0	34	5.5	354	4.5
Mdesign	kNm	96	4.6	97	4.1	98	3.7	993	3.2	100	2.7	101	2.2	102	21.7	103	31.1	104	0.5	104	9.9
Msdu	kNm	191	5.0	192	27.1	193	9.1	195	1.1	196	53.0	197	4.8	198	86.6	199	98.3	200	9.9	202	1.4
Pi	kN									17	75	16	90	16	00	15	530	14	60	14	00
e	cm									46	.24	49.	.56	52	.52	55	.50	58	.21	60.	90
Ар	mm ²									18	20	16	80	15	40	14	400	14	00	14	00
n	strands									1	3	1	2	1	1	1	0	1	0	10	0
	MPa									97	75	10	06	10	39	10)93	10	43	10	00
օրւ	%									5	8	6	0	6	2	6	55	6	2	6	0
- 1::	MD-	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
o minits	MPa	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σ at	MPa									-5.68	-4.54	-5.44	-4.35	-5.10	-4.08	-4.83	-3.87	-4.53	-3.62	-4.27	-3.41
support	wii a									24.04	19.23	22.40	17.92	20.66	16.53	19.27	15.42	17.89	14.31	16.70	13.36
σ at span	MPa									-0.90	11.00	-0.90	10.10	-0.78	9.41	-0.71	8.77	-0.58	8.26	-0.48	7.80
0 at span	ivii u									17.65	-1.53	16.37	-1.28	14.95	-1.30	13.85	-1.21	12.72	-1.25	11.77	-1.25
Debonded	strands									1	0	1	0	ç)	:	8	8	3	8	3
Debolided	X1(m)									8.	.0	7.	.0	6	.5	6	.5	6	.0	5.	5
σ at	MPa									-1.	31	-0.	91	-0.	.93	-0	.97	-0.	.91	-0.	85
support	WII a									5.:	55	3.	73	3.	76	3.	85	3.	58	3.3	34
σ at X1	MPa									-1.	09	-1.	31	-1.	.31	-1	.22	-1.	.21	-1.	25
										17.	.91	16.	.91	15	.65	14	.52	13	.55	12.	77
Mcr	kNm									100	7.5	102	9.3	103	37.3	105	52.2	105	9.3	106	8.8
Mu	kNm									201	9.7	208	0.6	206	51.1	200	00.2	210	15.1	220	9.9
Cost/girder	USD									53	1.4	51′	7.0	50	3.1	48	9.7	49	6.7	503	3.7
Cost	USD									724	0.2	695	9.7	666	51.1	642	22.5	646	64.5	650	6.5

#	unit										G12	f80									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	11	15	12	:0
А	cm ²	22	19	22	.94	23	69	24	44	25	19	25	94	26	69	27	44	28	19	28	94
Self-weight	ton	11.	261	11.	633	12.	006	12.	399	12.7	772	13.	165	13.	538	13.	910	14.	304	14.0	576
Ι	cm ⁴	1386	5776	1652	2637	1940	6764	2270)133	2623	8713	3008	8472	3425	5373	3875	5377	4359	9443	4878	525
Wi	cm ³	321	103	359	922	398	897	44()23	483	800	527	723	572	291	620	003	668	856	718	50
Ws	cm ³	430	506	480	516	537	771	590)67	644	199	700)65	757	764	815	592	875	550	936	35
M self	kNm	27	2.0	28	1.0	29	0.0	299	9.5	30	8.5	31	8.0	32	7.0	33	6.0	34	5.5	354	4.5
Mdesign	kNm	96	4.6	97	4.1	98	3.7	993	3.2	100	2.7	101	2.2	102	21.7	103	1.1	104	0.5	104	9.9
Msdu	kNm	191	5.0	192	27.1	193	9.1	195	1.1	196	3.0	197	4.8	198	6.6	199	98.3	200	9.9	202	1.4
Pi	kN	23	45	21	30	19	60	18	20	17	00	16	00	15	20	14	40	13	75	13	10
e	cm	32	.90	36	.63	40	.22	43.	.49	46.	.82	49	.79	52	.52	55	.50	58	.21	61.	23
Ар	mm ²	23	80	22	40	19	60	18	20	16	80	15	40	15	40	14	00	14	00	12	50
n	strands	1	7	1	6	1	4	1	3	1	2	1	1	1	1	1	0	1	0	9)
:	MPa	98	85	95	51	10	00	10	00	10	12	10	39	98	37	10	29	98	32	10	40
брі	%	5	9	5	7	6	0	6	0	6	1	6	2	5	9	6	2	5	9	6	2
- 11	MD-	2.26	2.71	2.21	2.65	2.17	2.6	2.13	2.56	2.09	2.52	2.06	2.48	2.03	2.44	2	2.41	1.98	2.38	1.95	2.35
σ limits	MPa	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32
σ at	MPa	-7.12	-5.70	-6.76	-5.41	-6.39	-5.11	-5.95	-4.76	-5.59	-4.47	-5.20	-4.16	-4.84	-3.87	-4.55	-3.64	-4.26	-3.41	-4.04	-3.23
support	Ivii a	34.60	27.68	31.00	24.80	28.03	22.43	25.43	20.34	23.23	18.58	21.28	17.02	19.63	15.70	18.14	14.51	16.85	13.48	15.69	12.55
σ et epen	MPa	-0.89	16.42	-0.98	14.63	-0.99	13.18	-0.88	12.05	-0.81	11.07	-0.66	10.29	-0.53	9.61	-0.43	9.00	-0.32	8.47	-0.25	7.98
0 at span	IVII a	26.13	-2.37	23.18	-2.31	20.76	-2.23	18.62	-2.22	16.84	-2.18	15.25	-2.18	13.92	-2.13	12.72	-2.12	11.68	-2.08	10.76	-2.06
Debonded	strands	1	2	1	1	1	0	ç	Ð	2	3	۲. ۲.	7	(7	6	5	6	5	5	i
Debolided	X1(m)	5	.5	5	.5	5	.5	5.	.5	5.	.0	4	.5	4	.5	4	.0	4	.0	3.	5
σ at	MDo	-2.	.10	-2.	.11	-1.	82	-1.	.83	-1.	86	-1.	89	-1.	76	-1.	82	-1.	71	-1.	80
support	IVIF a	10	.18	9.	69	8.	01	7.5	82	7.	74	7.	74	7.	14	7.	26	6.	74	6.9) 7
σ of V1	MPa	-2.	.15	-2.	.15	-2.	.09	-1.	91	-2.	00	-2.	04	-1.	83	-1.	91	-1.	74	-1.	85
0 at AI	IVII a	27	.84	24	.77	22	.24	20.	.00	18.	.44	17	.07	15	.65	14	.67	13	.54	12.	84
Mcr	kNm	97.	5.6	98	6.3	99	8.6	100	08.2	101	9.1	102	28.2	103	9.7	104	9.1	106	50.2	107	0.7
Mu	kNm	193	35.7	204	6.8	202	.8.5	207	5.5	207	3.2	203	80.8	214	6.1	207	0.5	217	5.3	206	6.5
Cost/girder	USD	62	6.8	61	4.9	58	2.1	570	0.2	55	7.9	54	5.5	55	4.5	54	2.1	55	1.1	538	3.7
Cost	USD	831	3.1	803	38.5	757	9.4	737	0.8	711	4.2	686	59.7	697	7.7	674	5.1	685	3.1	663	2.5

#	unit										G11	f60									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	- 1	15	12	20
А	cm ²	23	45	24	20	24	95	25	70	26	45	27	20	27	95	28	70	29	45	30	20
Self-weight	ton	11.	903	12.	275	12.0	648	13.0	041	13.4	414	13.	786	14.	180	14.	552	14.	945	15.3	318
Ι	cm^4	1452	2052	1730)514	2038	3552	2377	/163	2747	7338	3150	059	3580	5306	4057	7055	456	3274	5105	;933
Wi	cm ³	326	588	365	581	406	535	448	346	492	210	537	26	583	390	632	202	68	160	732	261
Ws	cm ³	474	485	529	930	585	524	642	261	701	137	761	48	822	292	885	566	949	969	101	500
M self	kNm	28	7.5	29	6.5	305	5.5	31:	5.0	324	4.0	333	3.0	34	2.5	35	1.5	36	1.0	370	0.0
Mdesign	kNm	103	37.1	104	6.7	105	6.3	106	5.8	107	5.4	108	4.9	109	4.4	110)3.8	111	3.2	112	2.6
Msdu	kNm	206	53.0	207	5.2	208	37.2	209	9.2	211	1.1	212	3.0	213	4.8	214	6.5	215	58.1	216	9.6
Pi	kN					21	50	19	90	18	60	17	50	16	55	15	80	15	00	14	40
e	cm					41.	.17	44.	44	47.	.75	51.	13	54	15	56	.92	59	.95	62.	70
Ap	mm ²					21	00	19	60	18	20	16	80	15	40	15	40	14	-00	14	00
n	strands					1	5	1	4	1	3	1	2	1	1	1	1	1	0	1	0
σni	MPa					10	24	10	15	10	22	10	42	10	75	10	26	10	071	10	29
opi	%					6	1	6	1	6	1	6	2	6	4	6	1	6	4	6	2
σ limits	MPa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
		24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σ at support	MPa					-6.51	-5.21	-6.02	-4.81	-5.63	-4.50	-5.32	-4.25	-4.97	-3.98	-4.65	-3.72	-4.38	-3.50	-4.13	-3.30
						30.40	24.32	27.46	21.97	25.08	20.06	23.09	18.47	21.27	17.02	19.73	15.79	18.29	14.63	17.09	13.67
σ at span	MPa					-1.29	12.84	-1.12	-1.80	-1.01	-1.79	-0.94	9.99	-0.81	9.32	-0.68	8.74	-0.57	8.22	-0.48	/./6
	strands					1	2	1	1	1	0	()	5	3	5	3	,	7	7	1
Debonded	X1(m)					7.	.5	7.	0	6.	.5	6.	5	6	.0	5.	.5	5	.0	5.	.0
						-1.	30	-1.	29	-1.	30	-1.	33	-1.	36	-1.	.27	-1	.31	-1.	24
σ at support	MPa					6.0	08	5.8	88	5.	79	5.	77	5.	80	5.	38	5.	49	5.	13
or at V1	MPa					-1.	61	-1.	56	-1.	58	-1.	48	-1.	47	-1.	.48	-1	.52	-1.	39
0 at A1	ivii u					23.	.35	21.	.07	19	.30	17.	65	16	.34	15	.30	14	.31	13.	30
Mcr	kNm					107	6.3	108	0.8	109	0.4	110	3.1	111	2.1	112	24.4	113	31.8	114	4.7
Mu	kNm					215	2.2	219	7.3	220	3.2	218	5.8	213	5.1	225	50.4	216	66.2	227	1.0
Cost/girder	USD					590	0.2	570	5.9	56	3.6	55).8	53	7.6	54	5.2	53	1.9	540).0
Cost	USD					739	9.4	711	5.8	684	3.2	663	1.2	637	5.1	642	20.2	618	30.6	626	9.7

#	unit										G11	f40									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	11	15	12	20
А	cm ²	23	45	24	20	24	95	25	70	26	45	27	20	27	95	28	70	29	45	30	20
Self-weight	ton	11.	903	12.	275	12.	648	13.	041	13.4	414	13.	786	14.	180	14.	552	14.	945	15.	318
Ι	cm^4	1452	2052	1730)514	2038	8552	2377	7163	2747	7338	3150	0059	3580	5306	4057	7055	4563	3274	5105	5933
Wi	cm ³	320	588	365	581	406	535	448	846	492	210	537	726	583	390	632	202	68	160	732	261
Ws	cm ³	474	485	529	930	585	524	642	261	701	137	76	148	822	292	885	566	949	969	101	500
M self	kNm	28	7.5	29	6.5	30	5.5	31	5.0	324	4.0	33	3.0	34	2.5	35	1.5	36	1.0	37	0.0
Mdesign	kNm	103	37.1	104	6.7	105	56.3	106	5.8	107	5.4	108	34.9	109	4.4	110	3.8	111	3.2	112	2.6
Msdu	kNm	206	53.0	207	5.2	208	37.2	209	9.2	211	1.1	212	23.0	213	4.8	214	6.5	215	58.1	216	9.6
Pi	kN											17	90	17	00	16	30	15	50	14	85
e	cm											51	.13	53	.92	56	.92	59	.68	62.	.70
Ар	mm ²											16	80	16	80	15	40	15	40	14	00
n	strands											1	2	1	2	1	1	1	1	1	0
	MPa											10	65	10	12	10	58	10	06	10	61
брі	%											6	4	6	1	6	3	6	0	6	4
- 1114-	MDa	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
o limits	MPa	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σ at	MPa											-5.44	-4.35	-5.06	-4.05	-4.80	-3.84	-4.48	-3.58	-4.26	-3.40
support	IVII a											23.62	18.89	21.78	17.42	20.36	16.29	18.83	15.07	17.63	14.10
σ et epen	MBo											-1.07	9.90	-0.89	9.25	-0.83	8.63	-0.68	8.14	-0.61	7.66
o at span	IVIF a											17.42	-1.30	15.92	-1.32	14.80	-1.18	13.54	-1.26	12.58	-1.22
Debonded	strands											1	0	ç)	ç)	8	8	8	3
Debolided	X1(m)											7	.5	7	.0	7.	.0	6	.5	6.	.0
σ at	MDa											-0.	.91	-1.	26	-0.	87	-1.	.22	-0.	85
support	wii a											3.	94	5.	45	3.	70	5.	14	3.	53
σ at X1	MPa											-1.	.34	-1.	27	-1.	18	-1.	14	-1.	19
0 at A1	wir a											17	.81	16	.44	15	.30	14	.19	13.	.38
Mcr	kNm											110)1.1	110	9.5	112	7.6	113	31.4	114	3.8
Mu	kNm											212	22.6	224	8.4	219	7.2	231	2.5	222	7.1
Cost/girder	USD											53	0.1	53	7.1	52	3.7	53	0.7	51	5.8
Cost	USD											657	3.3	652	3.8	637	6.6	633	38.1	614	6.9

#	unit										G11	f80									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	1.	10	11	15	12	20
А	cm^2	23	45	24	20	24	95	25	70	26	45	27	20	27	95	28	70	29	45	30	20
Self-weight	ton	11.	903	12.	275	12.	648	13.	041	13.4	414	13.	786	14.	180	14.	552	14.	945	15.3	318
Ι	cm ⁴	1452	2052	1730)514	2038	8552	2377	7163	2747	338	3150)059	3586	5306	405	7055	4563	3274	5105	;933
Wi	cm ³	320	588	365	581	400	535	448	846	492	210	537	726	583	390	632	202	68	160	732	261
Ws	cm ³	474	485	529	930	585	524	642	261	701	37	761	148	822	292	885	566	949	969	101	500
M self	kNm	28	7.5	29	6.5	30	5.5	31	5.0	324	4.0	33	3.0	34	2.5	35	1.5	36	1.0	370	0.0
Mdesign	kNm	103	7.1	104	6.7	105	6.3	106	5.8	107	5.4	108	34.9	109	4.4	110)3.8	111	3.2	112	2.6
Msdu	kNm	206	53.0	207	5.2	208	37.2	209	9.2	211	1.1	212	3.0	213	4.8	214	6.5	215	58.1	216	9.6
Pi	kN	25	10	22	70	21	00	19	50	18	20	17	10	16	15	15	40	14	60	14	00
e	cm	33	.87	37	.93	41	.17	44.	.44	47.	75	51	.13	54	.15	56	.92	59	.95	62.	70
Ap	mm ²	25	20	22	40	21	00	19	60	18	20	16	80	15	40	15	40	14	00	14	00
n	strands	1	8	1	6	1	5	1	4	1	3	1	2	1	1	1	1	1	0	1	0
C	MPa	- 99	96	10	13	10	00	- 99	95	10	00	10	18	10	49	10	00	10	43	10	00
орг	%	6	0	6	1	6	0	6	0	6	0	6	1	6	3	6	0	6	2	6	0
σ limite	MPa	2.26	2.71	2.21	2.65	2.17	2.6	2.13	2.56	2.09	2.52	2.06	2.48	2.03	2.44	2	2.41	1.98	2.38	1.95	2.35
0 mints	wii a	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32
σ at support	MPa	-7.20	-5.76	-6.89	-5.51	-6.36	-5.08	-5.90	-4.72	-5.51	-4.41	-5.20	-4.16	-4.85	-3.88	-4.53	-3.63	-4.26	-3.41	-4.01	-3.21
		36.71	29.37	32.92	26.33	29.69	23.75	26.91	21.53	24.54	19.63	22.56	18.05	20.76	16.60	19.24	15.39	17.80	14.24	16.62	13.29
σ at span	MPa	-1.14	16.08	-1.29	14.27	-1.14	12.96	-1.00	11.87	-0.89	10.92	-0.82	10.09	-0.69	9.42	-0.56	8.84	-0.46	8.31	-0.37	7.85
1		27.92	-2.36	24.81	-2.28	22.18	-2.24	19.89	-2.24	17.96	-2.22	16.36	-2.14	14.89	-2.14	13.67	-2.08	12.50	-2.09	11.57	-2.03
Debonded	strands	1	3	1	1	1	0	9)	ç)	8	3	2	7		7	(5	6	i
	X1(m)	6	.0	6	.0	6	.0	5.	.5	5.	0	5.	.0	4.	.5	4	.0	4	.0	3.	5
σ at support	MPa	-2.	00	-2.	15	-2.	.12	-2.	11	-1.	70	-1.	73	-1.	76	-1.	.65	-1.	70	-1.	61
		10	.20	10	.29	9.	90	9.0	51	7.	55	7.	52	7.	55	6.	99	7.	12	6.0	55
σ at X1	MPa	-2.	11	-2.	18	-1.	.97	-1.	99	-2.	05	-1.	92	-1.	95	-1.	.99	-1.	.83	-1.	91
		29.	.32	26	.11	23	.38	21.	.31	19.	.60	17.	.91	16	.66	15	.68	14	.41	13.	70
Mcr	kNm	104	8.5	106	60.4	107	1.1	108	0.3	109	0.0	110	2.9	111	2.2	112	24.9	113	2.7	114	6.0
Mu	kNm	206	64.9	210	0.9	217	8.9	223	1.6	223	4.9	221	2.8	215	7.7	227	3.1	218	34.9	228	9.8
Cost/girder	USD	66	3.3	63	0.5	61	8.6	60	6.2	593	3.9	58	2.0	56	9.6	57	8.1	56	6.2	574	4.7
Cost	USD	824	3.8	759	95.5	739	98.8	715	2.6	697	2.4	678	6.7	656	52.5	662	23.0	644	8.3	651	4.3

#	unit										G10	f60									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	1	15	12	20
А	cm ²	24	89	25	64	26	39	27	14	27	89	28	64	29	39	30	14	30)89	31	64
Self-weight	ton	12.	627	13.	000	13.	393	13.7	766	14.	138	14.:	531	14.	904	15.	277	15.	670	16.0	043
Ι	cm ⁴	1518	3994	1810)563	2133	3127	2487	711	2875	5331	3296	5993	3753	3699	4240	5443	477	6212	5343	3990
Wi	cm ³	332	262	372	228	413	360	456	554	501	06	547	715	594	177	643	390	694	453	746	564
Ws	cm ³	517	785	577	725	638	818	700)59	764	141	829	960	896	513	963	397	103	311	110	353
M self	kNm	30	5.0	31	4.0	32	3.5	332	2.5	34	1.5	35	1.0	36	0.0	36	9.0	37	8.5	383	7.5
Mdesign	kNm	112	1.7	113	31.4	114	1.0	115	0.6	116	0.2	116	9.7	117	9.2	118	38.7	119	98.1	120	7.6
Msdu	kNm	223	6.9	224	9.1	226	51.2	227	3.2	228	5.1	229	7.0	230	8.8	232	20.5	233	32.1	234	3.6
Pi	kN					22	96	21	45	20	05	18	85	17	75	16	90	16	510	15	40
e	cm					41	.57	45.	.49	48.	.81	52.	18	55	.61	58	.45	61	.50	64.	.30
Ар	mm ²					22	40	21	00	19	60	18	20	16	80	16	80	15	540	15	40
n	strands					1	6	1	5	1	4	1	3	1	2	1	2	1	1	1	1
gni	MPa					10	25	10	21	10	23	10	36	10	57	10	06	10)45	10	00
орг	%					6	1	6	1	6	1	6	2	6	3	6	0	6	i3	6	0
σ limits	MPa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
0 111110		24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σ at support	MPa					-6.26	-5.00	-6.02	-4.82	-5.61	-4.49	-5.27	-4.22	-4.98	-3.98	-4.64	-3.71	-4.37	-3.50	-4.11	-3.28
						31.78	25.42	29.28	23.42	26.72	21.38	24.56	19.65	22.64	18.11	20.95	16.76	19.47	15.57	18.13	14.50
σ at span	MPa					-1.19	12.87	-1.28	11.60	-1.15	10.69	-1.04	9.88	-0.96	9.18	-0.81	8.62	-0.71	8.10	-0.59	7.66
	- 4					23.96	-2.17	21.99	-1.78	19.90	-1.78	18.14	-1.73	16.58	-1.72	15.22	-1.70	14.02	-1.68	12.94	-1.67
Debonded	strands V1(m)					1	2	1	1	1	0	1	5	, ,	, -	0	0	-	5	5	0
	X1(m)					9	.5	/.	.5	/.	.0	0.	.5 22	0.	.5 24	0	.0	3	.5	5.	0 40
σ at support	MPa					-1.	30 94	-1.	21	-1.	53	-1.	57	-1.	56	-1.	.55	-1	31	-1.	49 50
						1	20	1	57	7.0	55	1	56	3.	15 15	1	12 12	J. 1	31 45	0)9 47
σ at X1	MPa					23	.97	22	45	20.	.52	-1.	.93	17	32	-16	.13	-1	.12	-1.	.24
Mcr	kNm					114	1.1	116	6.5	117	6.0	118	7.7	119	7.8	120	08.0	12	18.9	122	8.5
Mu	kNm					228	0.5	235	0.6	236	5.5	235	7.7	232	7.1	245	53.0	237	78.7	249	4.0
Cost/girder	USD					62	8.6	613	3.8	60	0.5	58	7.3	574	4.5	58	2.1	56	8.8	576	5.4
Cost	USD					733	1.1	688	8.3	663	5.5	645	7.7	626	4.8	624	0.8	607	73.0	606	4.0

#	unit										G10) f40									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	11	15	12	20
А	cm ²	24	89	25	64	26	i39	27	14	27	89	28	64	29	39	30	14	30	89	31	64
Self-weight	ton	12.	627	13.	000	13.	393	13.	766	14.	138	14.	531	14.	904	15.	277	15.	670	16.0	043
Ι	cm ⁴	1518	8994	1810)563	2133	3127	2483	7711	2875	5331	3296	5993	3753	3699	4246	5443	4776	5212	5343	3990
Wi	cm ³	332	262	372	228	413	360	450	554	50	106	547	715	594	477	643	390	694	453	746	564
Ws	cm ³	517	785	577	725	638	818	700)59	764	141	829	960	890	513	963	397	103	311	110	353
M self	kNm	30	5.0	31	4.0	32	3.5	33	2.5	34	1.5	35	1.0	36	0.0	36	9.0	37	8.5	383	7.5
Mdesign	kNm	112	21.7	113	51.4	114	41.0	115	60.6	116	60.2	116	9.7	117	9.2	118	38.7	119	98.1	120	7.6
Msdu	kNm	223	86.9	224	9.1	226	51.2	227	3.2	228	5.1	229	7.0	230	8.8	232	20.5	233	32.1	234	3.6
Pi	kN													18	20	17	35	16	55	15	90
e	cm													55	.04	58	.45	61	.50	64.	.30
Ар	mm ²													18	20	16	80	15	40	15	40
n	strands													1	3	1	2	1	1	1	1
:	MPa													10	00	10	33	10	75	10	32
орі	%													6	0	6	2	6	4	6	2
σlimita	MBa	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
0 mmits	IVIF a	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σ at support	MPa													-4.99	-3.99	-4.76	-3.81	-4.49	-3.60	-4.24	-3.39
														23.03	18.43	21.51	17.20	20.01	16.01	18.72	14.97
σ at span	MPa													-0.97	9.17	-0.94	8.52	-0.83	8.00	-0.73	7.55
•														16.98	-1.40	15.78	-1.26	14.56	-1.24	13.53	-1.20
Debonded	strands													1	0	ç	9	5	3	8	3
	X1(m)													7	.5	7.	.0	6	.5	6.	.5
σ at support	MPa													-1.	15	-1.	.19	-1.	.23	-1.	16
														5.	32	5.	38	5.	46	5.	10
σ at X1	MPa													-1.	22	-1.	.28	-1.	.28	-1.	16
X	1.53													17	.36	16	.29	15	.23	14.	.16
Mcr	KNM													118	9.8	120	07.8	121	8.3	123	0.9
Mu	KNM													242	27.9	239	<i>i</i> 0.6	233	51.4	244	0.7
Cost/girder	USD													57	2.9	55	9.0	54	5.1	552	2.6
Cost	USD													640	3.5	614	9.7	590)5.9	598	0.9

#	unit										G10	f80									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	11	15	12	20
А	cm ²	24	89	25	64	26	i39	27	14	27	89	28	64	29	39	30	14	30	89	31	64
Self-weight	ton	12.	627	13.	000	13.	393	13.	766	14.	138	14.	531	14.	904	15.	277	15.	670	16.0)43
Ι	cm^4	1518	3994	1810	0563	2133	3127	2487	711	2875	5331	3296	5993	3753	3699	4240	5443	4776	5212	5343	990
Wi	cm ³	332	262	372	228	413	360	456	554	501	06	547	715	594	477	643	390	694	453	746	i64
Ws	cm ³	517	785	577	725	638	818	700)59	764	141	829	960	890	513	963	397	103	311	110	353
M self	kNm	30	5.0	31	4.0	32	3.5	332	2.5	34	1.5	35	1.0	36	0.0	36	9.0	37	8.5	38′	7.5
Mdesign	kNm	112	1.7	113	31.4	114	1.0	115	0.6	116	0.2	116	9.7	117	9.2	118	38.7	119	8.1	120	7.6
Msdu	kNm	223	6.9	224	19.1	226	51.2	227	3.2	228	5.1	229	7.0	230	8.8	232	20.5	233	32.1	234	3.6
Pi	kN	28	70	24	-85	22	96	21	05	19	65	18	45	17	35	16	60	15	70	15	00
e	cm	33	.67	38	.08	41	.57	45.	.49	48.	.81	52.	.18	55	.61	58	.45	61	.50	64.	.30
Ар	mm ²	28	00	25	20	22	40	21	00	19	60	18	20	16	80	16	80	15	40	15	40
n	strands	2	0	1	8	1	6	1	5	1	4	1	3	1	2	1	2	1	1	1	1
cni	MPa	10	25	98	18 986		25	10	02	10	03	10	14	10	33	- 98	88	10	19	97	/4
брі	%	6	1	5	9	6	1	6	0	6	0	6	1	6	2	5	9	6	1	5	8
σlimits	MPa	2.26	2.71	2.21	2.65	2.17	2.6	2.13	2.56	2.09	2.52	2.06	2.48	2.03	2.44	2	2.41	1.98	2.38	1.95	2.35
0 mmts	ivii u	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32
σ at support	MPa	-7.13	-5.70	-6.70	-5.36	-6.26	-5.00	-5.91	-4.73	-5.50	-4.40	-5.16	-4.13	-4.86	-3.89	-4.56	-3.65	-4.26	-3.41	-4.00	-3.20
		40.58	32.47	35.11	28.09	31.78	25.42	28.73	22.98	26.19	20.95	24.04	19.23	22.13	17.70	20.58	16.46	18.98	15.19	17.66	14.13
σ at span	MPa	-1.24	15.96	-1.26	14.24	-1.19	12.87	-1.17	11.69	-1.03	10.78	-0.93	9.97	-0.85	9.27	-0.73	8.69	-0.60	8.19	-0.49	7.74
	. 1	31.41	-1.26	26.68	-2.30	23.96	-2.17	21.45	-2.22	19.37	-2.20	17.62	-2.15	16.07	-2.13	14.85	-2.00	13.53	-2.06	12.47	-2.05
Debonded	strands V1(m)	1	4	1	3	1	1	1	5	5	, -	2	s 0	-	/	4	5	4	0	4	,
	A1(III)	2	14	0	.0	0	.0	3.	.5	3.	.5	3.	.0	2	.0	4	.5	4	.0	4.	0 02
σ at support	MPa	-2.	14	-1.	.80	-1.	93	-1.	58	-1.	35	-1. Q	99 75	-2.	.05 22	-1.	.90 57	-1.	.94 63	-1.	62 03
		-2	18	-2	13	-2	00	-2	13	-1	94	-1	99	-1	85	-1	89	-1	92	-1	75
σ at X1	MPa	32	.88	28	.03	25	.21	22.	.92	20.	.75	19	.23	17	.59	16	.58	15	.50	14.	.34
Mcr	kNm	117	0.0	114	4.5	115	59.2	116	6.2	117	5.9	118	7.8	119	98.1	121	5.1	122	20.0	123	0.2
Mu	kNm	224	1.4	231	3.2	231	4.4	238	7.3	239	8.2	238	5.9	235	51.2	247	7.0	239	98.9	251	4.3
Cost/girder	USD	72	2.3	68	9.5	65	6.8	644	4.4	63	2.5	62	0.1	60	8.3	61	6.8	60	4.4	613	3.4
Cost	USD	825	5.0	761	5.4	716	57.8	693	9.0	676	5.1	655	1.3	638	32.5	643	37.5	624	3.7	633	3.7

#	unit										G09	f60									
h	cm	7	5	8	0	8	5	9	0	9	5	10)0	10)5	1.	10	11	5	12	20
А	cm ²	26	15	26	90	27	65	28	40	29	15	29	90	30	65	31	40	32	15	32	90
Self-weight	ton	13.	269	13.	641	14.	014	14.4	407	14.	780	15.	173	15.	546	15.	918	16.	312	16.	584
Ι	cm ⁴	157	1879	1873	3925	2208	8139	2575	5576	2977	274	3414	4266	3887	7573	439	8208	4947	7177	5535	5481
Wi	cm ³	330	599	377	720	419	911	462	269	507	789	554	470	603	308	65	300	704	146	757	743
Ws	cm ³	554	436	618	806	683	334	750)14	818	338	888	802	959	901	103	132	110	493	117	982
M self	kNm	32	0.5	32	9.5	33	8.5	34	8.0	35	7.0	36	6.5	37.	5.5	38	4.5	394	4.0	40	3.0
Mdesign	kNm	122	7.0	123	6.7	124	6.4	125	6.0	126	5.6	127	5.2	128	34.7	129	94.2	130)3.7	131	3.1
Msdu	kNm	245	0.3	246	52.5	247	4.6	248	6.6	249	8.6	251	0.5	252	22.2	253	33.9	254	5.5	255	7.0
Pi	kN							23	12	21	90	20	60	19	50	18	45	17	50	16	75
e	cm							46.	.29	49.	62	52	.98	55	.89	59	.28	62.	.73	65.	.58
Ар	mm ²							22	40	21	00	19	60	19	60	18	20	16	80	16	80
n	strands							1	6	1	5	1	4	1	4	1	3	1	2	1	2
cni	MPa							10	32	10	43	10	51	99	9 5	10	14	10	42	99) 7
орг	%							6	2	6	2	6	3	6	0	6	1	6	2	6	0
σlimits	MPa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
0 111110		24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σ at support	MPa							-6.13	-4.90	-5.77	-4.61	-5.40	-4.32	-5.00	-4.00	-4.73	-3.78	-4.49	-3.59	-4.22	-3.38
								31.27	25.02	28.91	23.13	26.56	21.25	24.43	19.55	22.62	18.10	21.03	16.82	19.59	15.67
σ at span	MPa							-1.49	11.84	-1.40	10.85	-1.27	10.04	-1.09	9.39	-1.00	8.77	-0.93	8.21	-0.80	7.75
	- ture 11 -							23.75	-2.13	21.88	-1./9	19.96	-1./4	18.21	-1./6	16.74	-1.72	15.43	-1.69	14.27	-1.66
Debonded	Stranus V1(m)							0	5	0	0	1	5	1	5	6	5	6	0	5	, 5
	A1(III)							0.	53	0.	54	1	.5 54	1	.5	1	.5	1	.0 50	1	3 41
σ at support	MPa							-1.	33 82	-1.	71	-1.	59	-1.	98	-1	96	-1.	01	-1.	53
								-1.	59	-1.	58	-1.	.53	-1.	.57	-1	.46	-1.	50	-1.	.50
σ at X1	MPa							23.	.92	22.	16	20	.37	18	.97	17	.46	16	.33	15.	.35
Mcr	kNm							125	6.0	128	0.9	129	3.2	130)1.3	131	2.7	132	4.1	133	5.0
Mu	kNm							250	0.3	252	5.1	252	27.3	267	4.1	264	43.2	258	9.8	271	5.6
Cost/girder	USD							649	9.3	63	5.0	62	2.8	62	9.9	61	7.1	60	3.8	61	1.4
Cost	USD							668	5.3	644	4.3	621	2.3	619	95.2	602	21.7	581	2.1	584	9.0

#	unit										G09	f40									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	11	15	12	0
А	cm ²	26	15	26	90	27	65	28	40	29	15	29	90	30	65	31	40	32	15	32	90
Self-weight	ton	13.	269	13.	641	14.	014	14.	407	14.	780	15.	173	15.	546	15.	918	16.	312	16.6	584
Ι	cm ⁴	1571	1879	1873	3925	2208	8139	2575	5576	2977	7274	3414	1266	3887	7573	4398	8208	4947	7177	5535	481
Wi	cm ³	336	599	377	720	419	911	462	269	507	789	554	470	603	808	653	300	704	146	757	43
Ws	cm ³	554	436	618	806	683	334	750)14	818	838	888	802	959	901	103	132	110	493	1179	982
M self	kNm	320	0.5	32	9.5	33	8.5	34	8.0	35	7.0	36	6.5	37	5.5	384	4.5	39	4.0	403	3.0
Mdesign	kNm	122	27.0	123	6.7	124	46.4	125	6.0	126	5.6	127	5.2	128	4.7	129	94.2	130)3.7	131	3.1
Msdu	kNm	245	50.3	246	52.5	247	4.6	248	86.6	249	98.6	251	0.5	252	2.2	253	33.9	254	5.5	255	7.0
Pi	kN															18	90	18	00	172	20
e	cm															59.	.28	62	.15	65.	58
Ар	mm ²															18	20	18	20	16	80
n	strands															1	3	1	3	12	2
	MPa															10	38	98	39	102	24
орг	%															6	2	5	9	6	1
σ limite	MPa	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
0 mmts	IVII a	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σ at support	MPa															-4.84	-3.88	-4.53	-3.62	-4.33	-3.47
																23.18	18.54	21.48	17.18	20.12	16.10
σ at span	MPa															-1.12	8.67	-0.96	8.18	-0.92	7.66
	- 4															17.29	-1.28	15.89	-1.32	14.80	-1.24
Debonded	Stranus V1(m)															1	0	7	5	7	0
	A1(III)															0.	.0	1	.5	7.	0
σ at support	MPa															-1.	35	-1.	04	-1.	J8
																-1	35 27	-1	18	-1	13 77
σ at X1	MPa															-1.	.52	-1	.24	-1.	28
Mcr	kNm															131	2.2	131	8.4	133	3.7
Mu	kNm															258	32.9	271	9.2	266	4.2
Cost/girder	USD															593	3.5	60	0.5	586	5.6
Cost	USD															598	39.1	601	1.6	578	3.1

#	unit										G09	f80									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	1	15	12	20
А	cm ²	26	15	26	90	27	65	28	40	29	15	29	90	30	65	31	40	32	15	32	90
Self-weight	ton	13.	269	13.	641	14.	014	14.4	407	14.	780	15.	173	15.	546	15.	918	16.	312	16.	584
Ι	cm^4	1571	1879	1873	3925	2208	8139	2575	5576	2977	7274	3414	266	3883	7573	4398	8208	494′	7177	5535	5481
Wi	cm ³	336	599	37	720	419	911	462	269	507	789	554	170	603	808	653	300	704	446	757	743
Ws	cm ³	554	436	618	806	683	334	750)14	818	838	888	802	959	901	103	132	110	493	117	982
M self	kNm	32	0.5	32	9.5	33	8.5	34	8.0	35	7.0	36	5.5	37.	5.5	38	4.5	39	4.0	40	3.0
Mdesign	kNm	122	27.0	123	6.7	124	46.4	125	6.0	126	5.6	127	5.2	128	4.7	129	4.2	130)3.7	131	3.1
Msdu	kNm	245	60.3	246	52.5	247	4.6	248	6.6	249	8.6	251	0.5	252	2.2	253	3.9	254	15.5	255	7.0
Pi	kN	32	50	27	80	25	10	23	02	21	50	20	20	19	00	18	05	17	10	16	30
e	cm	31.	.23	37	.68	42	.13	46	.29	49.	.62	52.	98	56	.39	59	.28	62	.73	65.	.58
Ap	mm ²	33	60	28	00	25	20	22	40	21	00	19	60	18	20	18	20	16	i80	16	80
n	strands	2	4	2	0	1	8	1	6	1	5	1	4	1	3	1	3	1	2	1	2
:	MPa	96	57	99	20 993		96	10	28	10	24	10	31	10	44	99	92	10	18	97	70
орг	%	5	8	5	20 993 59		0	6	2	6	1	6	2	6	3	5	9	6	1	5	8
σlimita	MDo	2.26	2.71	2.21	2.65	2.17	2.6	2.13	2.56	2.09	2.52	2.06	2.48	2.03	2.44	2	2.41	1.98	2.38	1.95	2.35
0 mints	wir a	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32
σ at support	MPa	-5.88	-4.70	-6.61	-5.29	-6.40	-5.12	-6.10	-4.88	-5.66	-4.53	-5.30	-4.24	-4.97	-3.98	-4.63	-3.70	-4.39	-3.51	-4.11	-3.28
		42.55	34.04	38.11	30.48	34.31	27.45	31.14	24.91	28.38	22.70	26.05	20.84	23.96	19.17	22.13	17.71	20.55	16.44	19.07	15.25
σ at span	MPa	-0.10	17.43	-1.28	14.72	-1.44	13.12	-1.46	11.86	-1.30	10.94	-1.17	10.12	-1.06	9.42	-0.90	8.85	-0.82	8.29	-0.69	7.85
		33.04	-2.37	29.37	-2.30	26.23	-2.29	23.61	-2.24	21.35	-2.21	19.44	-2.15	17.74	-2.13	16.25	-2.11	14.95	-2.07	13.75	-2.08
Debonded	strands	1	5	1	4	1	2	1	1	1	0	, ,)	2	-	5	3		/		!
	X1(m)	4.	.5	6	.0	6	.5	6.	.5	6.	.0	5.	5	5	.5	5.	.0	4	.5	4.	.0
σ at support	MPa	-2.	21	-1.	98 42	-2.	.13	-1.	91	-1.	89	-1.	89	-1.	91	-1.	/8 51	-1.	.83	-1.	/1
		15.	.90	11	14	11.	.44	9.	13	9.4	+0	9	50 00	9.	05	8.	02	8.	20	7.5	74 02
σ at X1	MPa	-1.	85 01	-2.	14	-2.	.05	-2.	54	-2.	49	-2.	70	-1.	85	-1.	83 72	-1.	.90	-1.	92 66
Mor	kNm	122	.91	125		125	.22	127	.54	129	1.0	120	2.5	19	2.6	1/.	27	10	.04	13.	2.2
Mu	kNm	245	5.6	250	1.0	256	54.1	252	0.9	255	0.4	255	5.5	252	27	266	3.7	261	11.7	272	5.5
Cost/girder	USD	243	9.4	230	6.4	230	4.2	68	14	66	9.0	65	5.6	233 64	1.8	65	33	64	0.9	6/1	94
Cost	USD	821	2.0	741	9.8	707	70.9	671	7.6	650	7.0 7.1	630	5.0	614	.93	619	9.9 94 3	601	0.8	606	i0 3

#	unit										G08	8 f60									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	11	15	12	20
А	cm ²	28	31	29	06	29	81	30	56	31	31	32	06	32	81	33	56	34	31	35	06
Self-weight	ton	14.	366	14.	738	15.	111	15.:	504	15.	877	16.	250	16.	643	17.	015	17.	409	17.	781
Ι	cm ⁴	1652	2310	1970)466	2322	2665	2710	0013	3133	3598	3594	1497	4093	3771	4632	2472	5211	1642	5832	2313
Wi	cm ³	343	838	384	439	427	717	471	69	517	790	565	577	615	527	660	638	719	908	773	335
Ws	cm ³	614	468	685	567	758	337	832	266	908	846	985	569	106	432	114	429	122	558	130	816
M self	kNm	34′	7.0	35	6.0	36	5.0	374	4.5	38.	3.5	39	2.5	40	2.0	41	1.0	42	0.5	42	9.5
Mdesign	kNm	127	2.3	128	32.1	129	2.0	130	1.7	131	1.5	132	21.2	133	31.0	134	40.6	135	50.3	135	9.9
Msdu	kNm	259	6.5	260	8.9	262	1.2	263	3.5	264	5.7	265	57.8	266	59.9	268	31.8	269	93.7	270	15.5
Pi	kN							24	00	22	50	21	15	19	95	19	00	18	00	17	10
e	cm							47.	16	51.	.13	54	.53	57	.96	60	.95	64	.40	67.	.92
Ар	mm ²							23	80	22	40	21	00	19	60	19	60	18	20	16	80
n	strands							1	7	1	6	1	5	1	4	1	4	1	3	1	2
oni	MPa							10	08	10	04	10	07	10	18	90	69	98	89	10	18
opi	%							6	0	6	0	6	0	6	1	5	8	5	9	6	1
σlimits	MPa	1.76	2.26	1.72	2.21	1.69	2.17	1.66	2.13	1.63	2.09	1.6	2.06	1.58	2.03	1.55	2	1.53	1.98	1.51	1.95
0 111110		24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
σ at support	MPa							-5.74	-4.59	-5.48	-4.38	-5.10	-4.08	-4.78	-3.83	-4.46	-3.57	-4.21	-3.37	-4.00	-3.20
								31.85	25.48	29.40	23.52	26.98	21.59	24.87	19.90	23.04	18.43	21.37	17.09	19.90	15.92
σ at span	MPa							-1.24	11.04	-1.26	10.05	-1.12	9.32	-1.01	8.68	-0.87	8.15	-0.78	7.65	-0.72	7.19
								23.91	-2.12	21.99	-1.80	20.04	-1.77	18.34	-1.73	16.87	-1.69	15.52	-1.68	14.34	-1.67
Debonded	strands							1	3	1	2	1	1	1	0	1	0	9)	5	3
	X1(m)							9.	0	7.	.5	7	.0	6	.5	6	.0	5.	.5	5.	.5
σ at support	MPa							-1.	35	-1.	37	-1.	.36	-1.	.37	-1.	.27	-1.	.30	-1.	33
								1.4	19 20	7.	55	7.	49	7.	11	6.	58	6.	49	6.0	20
σ at X1	MPa							-1. 23	29 99	-1. 22	52 46	-1.	.48 67	-1. 19	14	-1.	.44	-1. 16	.48	-1. 15	38 47
Mcr	kNm							130	0.2	132	6.5	133	37.8	134	193	136	51.7	137	71.2	138	17
Mu	kNm							264	0.4	269	4.7	270)5.8	269	94.5	284	41.2	279		273	30.6
Cost/girder	USD							694	4.0	679	9.7	66	6.5	65	3.2	66	0.8	64	7.5	634	4.7
Cost	USD							641	6.2	609	8.0	589	91.7	569	93.5	571	18.3	553	32.0	538	\$5.8

#	unit										G08	6 f40									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	0	11	5	12	20
А	cm ²	28	31	29	06	29	81	30	56	31	31	32	06	32	81	33	56	34	31	35	06
Self-weight	ton	14.	366	14.	738	15.	111	15.	504	15.	877	16.	250	16.	643	17.	015	17.4	409	17.2	781
Ι	cm^4	1652	2310	1970	0466	2322	2665	2710	0013	313	3598	3594	1497	4093	3771	4632	2472	5211	642	5832	2313
Wi	cm ³	343	338	384	439	427	717	471	169	51'	790	565	577	615	527	666	538	719	908	773	335
Ws	cm ³	614	468	68	567	758	337	832	266	90	846	985	569	106	432	114	429	122	558	130	816
M self	kNm	34	7.0	35	6.0	36	5.0	37-	4.5	38	3.5	39	2.5	40	2.0	41	1.0	42	0.5	429	э.5
Mdesign	kNm	127	2.3	128	32.1	129	02.0	130)1.7	131	11.5	132	21.2	133	1.0	134	0.6	135	0.3	135	9.9
Msdu	kNm	259	6.5	260)8.9	262	21.2	263	3.5	264	45.7	265	7.8	266	i9.9	268	31.8	269	3.7	270	5.5
Pi	kN															19	30	18	50	17	70
e	cm															60.	.95	64.	.40	67.	.34
Ар	mm ²															19	60	18	20	18	20
n	strands															1	4	1	3	1	3
:	MPa															98	35	10	16	97	13
орі	%															5	9	6	1	5	8
- limite	MDa	1.48	1.76	1.45	1.72	1.42	1.69	1.39	1.66	1.36	1.63	1.34	1.6	1.32	1.58	1.3	1.55	1.28	1.53	1.26	1.51
0 minus	IVIF a	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16	18	16
σ at support	MPa															-4.53	-3.62	-4.33	-3.46	-4.06	-3.25
																23.40	18.72	21.96	17.57	20.46	16.37
σ at span	MPa															-0.94	8.09	-0.90	7.55	-0.78	7.15
-																17.24	-1.40	16.11	-1.21	14.91	-1.22
Debonded	strands															1	0	1	0	9)
	X1(m)															7.	.0	7.	.0	6.	.5
σ at support	MPa															-1.	29	-1.	00	-1.	25
																6.	69	5.0	07	6.	30
σ at X1	MPa															-1.	26	-1.	21	-1.	18
																17.	.79	16.	.64	15.	.59
Mcr	kNm															135	01.2	137	3.5	138	2.8
Mu	kNm															278	50.4	274	4.6	288	.0.9
Cost/girder	USD															634	4.9	62	1.6	628	3.6
Cost	USD															558	3.5	547	6.4	544	4.4

#	unit										G08	f80									
h	cm	7	5	8	0	8	5	9	0	9	5	10	00	10)5	11	10	1	15	12	20
А	cm ²	28	31	29	06	29	81	30	56	31	31	32	06	32	81	33	56	34	31	35	06
Self-weight	ton	14.	366	14.	738	15.	111	15.	504	15.	877	16.	250	16.	643	17.	015	17.	409	17.3	781
Ι	cm^4	1652	2310	1970)466	2322	2665	2710	0013	3133	3598	3594	1497	4093	3771	4632	2472	521	1642	5832	:313
Wi	cm ³	343	338	384	439	427	717	471	69	517	790	565	577	615	527	666	538	71	908	773	35
Ws	cm ³	614	468	685	567	758	337	832	266	908	846	985	569	106	432	114	429	122	558	130	816
M self	kNm	34	7.0	35	6.0	36	5.0	374	4.5	38	3.5	392	2.5	40	2.0	41	1.0	42	0.5	429	€.5
Mdesign	kNm	127	2.3	128	32.1	129	2.0	130	1.7	131	1.5	132	1.2	133	31.0	134	10.6	135	50.3	135	9.9
Msdu	kNm	259	96.5	260	8.9	262	21.2	263	3.5	264	5.7	265	7.8	266	i9.9	268	31.8	269	93.7	270	5.5
Pi	kN	36	20	29	00	25	70	24	00	22	10	20	75	19	55	18	45	17	55	16	65
e	cm	30	.81	38	.41	43	.82	47.	16	51.	.13	54.	.53	57	.96	61	.44	64	.40	67.	.92
Ар	mm ²	36	40	29	40	25	20	23	80	22	40	21	00	19	60	18	20	18	20	16	80
n	strands	2	6	2	1	1	8	1	7	1	6	1	5	1	4	1	3	1	3	1	2
mi	MPa	99) 5	98	36	10	20	10	08	98	37	98	38	99	€7	10	14	9	54	99	1
брі	%	6	0	5	9	6	1	6	0	5	9	5	9	6	0	6	1	5	8	5	9
σlimits	MPa	2.26	2.71	2.21	2.65	2.17	2.6	2.13	2.56	2.09	2.52	2.06	2.48	2.03	2.44	2	2.41	1.98	2.38	1.95	2.35
0 mmus	iii u	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32	36	32
σ at support	MPa	-5.36	-4.29	-6.27	-5.01	-6.23	-4.98	-5.74	-4.59	-5.38	-4.30	-5.01	-4.01	-4.69	-3.75	-4.41	-3.53	-4.11	-3.29	-3.90	-3.12
• •		45.27	36.21	38.96	31.17	34.98	27.99	31.85	25.48	28.88	23.10	26.47	21.18	24.38	19.50	22.51	18.01	20.83	16.67	19.37	15.50
σ at span	MPa	0.29	16.41	-1.07	13.69	-1.42	12.05	-1.24	11.04	-1.16	10.13	-1.02	9.40	-0.91	8.75	-0.82	8.19	-0.68	7.73	-0.61	7.28
I		35.16	-0.84	29.70	-2.19	26.44	-2.26	23.91	-2.12	21.47	-2.22	19.53	-2.18	17.84	-2.13	16.34	-2.11	14.98	-2.11	13.82	-2.09
Debonded	strands	1	6	1	4	1	2	1	1	1	0	ç)	8	3	8	8	,	7	6	j
	X1(m)	7	.5	5.	.5	6	.5	6.	0	5.	.5	5.	.0	5	.0	4	.5	4	.0	4.	0
σ at support	MPa	-2.	06	-2.	09	-2.	08	-2.	03	-2.	02	-2.	00	-2.	01	-1.	.70	-1	.90	-1.	95
		17	.41	12	.99	11.	.66	11.	24	10.	.83	10.	.59	10	.45	8.	66	9.	62	9.0	59
σ at X1	MPa	-0.	07	-2.	13	-2.	01	-1.	96	-2.	01	-2.	02	-1.	.86	-1.	.90	-1	.91	-1.	79
		35	.79	31	.57	27	.49	25.	18	22.	.97	21.	.27	19	.47	18	.21	17	.09	15.	82
Mcr	kNm	133	6.5	130	0.0	130	6.8	132	2.6	132	6.8	133	8.4	135	60.1	136	50.5	136	59.5	138	0.2
Mu	kNm	259	06.0	263	5.6	262	1.7	267	8.7	272	8.7	273	5.6	272	20.4	268	33.2	281	9.5	274	9.7
Cost/girder	USD	89	0.1	79	2.7	74	0.1	72	7.7	71:	5.3	70	2.9	69	1.1	67	8.7	68	7.2	67:	5.3
Cost	USD	862	21.0	699	0.8	657	0.6	636	7.6	617	3.5	598	8.5	584	8.4	571	7.4	571	7.4	558	6.3

#	unit					G14	4 f60				
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2003	2078	2153	2228	2303	2378	2453	2528	2603	2678
Self-weight	ton	10.164	10.536	10.909	11.302	11.675	12.068	12.441	12.813	13.207	13.579
Total weight	ton	142.292	147.508	152.725	158.231	163.447	168.953	174.170	179.386	184.892	190.109
Ар	mm ²	2100	1820	1680	1540	1400	1400	1260	1260	1120	1120
n	strands	15	13	12	11	10	10	9	9	8	8
Debonded	strands	12	10	9	9	8	7	7	7	6	6
	X1(m)	7.0	6.5	6.5	6.0	5.5	5.5	5.0	5.0	4.5	4.5
	length(m)	126.0	97.5	87.8	81.0	66.0	57.8	52.5	52.5	40.5	40.5
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost	63.000	48.750	43.875	40.500	33.000	28.875	26.250	26.250	20.250	20.250
Vc	m3	4.146	4.301	4.457	4.612	4.767	4.922	5.078	5.233	5.388	5.543
	Unit cost	54	54	54	54	54	54	54	54	54	54
	cost	223.895	232.279	240.662	249.046	257.429	265.813	274.196	282.580	290.963	299.347
Wp	kg	341.240	295.741	272.992	250.242	227.493	227.493	204.744	204.744	181.994	181.994
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	324.178	280.954	259.342	237.730	216.118	216.118	194.507	194.507	172.895	172.895
RC bars	kg	183.778	183.778	183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg	330.089	338.104	346.119	354.134	362.149	370.164	378.179	386.194	394.209	402.224
	total	513.867	521.882	529.897	537.912	545.927	590.697	598.712	606.727	614.742	622.757
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost	231.240	234.847	238.454	242.060	245.667	265.814	269.421	273.027	276.634	280.241
PC slab	strands	33	33	33	33	33	33	33	33	33	33
	wp (kg)	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310
	anchorage	66	66	66	66	66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000
	cost/girder	94.094	94.094	94.094	94.094	94.094	94.094	94.094	94.094	94.094	94.094
Materials cost	Girder	611.073	561.983	543.879	527.276	506.548	510.806	494.953	503.336	484.108	492.492
	Total	936.407	890.923	876.427	863.430	846.308	870.714	858.467	870.457	854.836	866.826
Transversal		66.9	63.6	62.6	61.7	60.5	62.2	61.3	62.2	61.1	61.9
Loss		100.3	95.5	93.9	92.5	90.7	93.3	92.0	93.3	91.6	92.9
Anchorage	general	630.0	570.0	540.0	510.0	480.0	480.0	450.0	450.0	420.0	420.0
	particular	126.0	114.0	108.0	102.0	96.0	96.0	90.0	90.0	84.0	84.0
Formwork		82.9	86.0	89.1	92.2	95.3	98.4	101.6	104.7	107.8	110.9
Labor	concrete	179.1	185.8	192.5	199.2	205.9	212.7	219.4	226.1	232.8	239.5
	steel	706.2	674.5	660.1	645.7	631.3	647.4	633.0	635.9	621.5	624.4
Transportation	USD/girder	40.7	42.1	43.6	45.2	46.7	48.3	49.8	51.3	52.8	54.3
Administration		1258.5	1208.9	1193.3	1178.6	1161.2	1192.4	1178.2	1193.5	1177.1	1192.5
Cost/girder	USD	3497.0	3361.4	3319.6	3280.5	3233.9	3321.4	3283.6	3327.3	3283.5	3327.1
Cost	USD	48958.1	47060.2	46474.1	45927.5	45274.5	46499.7	45971.0	46582.0	45968.4	46579.4
Girder setting	USD	704.58	715.02	725.45	736.46	746.89	757.91	768.34	778.77	789.7848	800.22
Concrete joint	USD	1033.34	1033.34	1033.34	1033.34	1033.34	1033.34	1033.34	1033.34	1033.34	1033.34
Cost	USD	50696.0	48808.6	48232.9	47697.3	47054.7	48290.9	47772.6	48394.1	47791.5	48413.0

#	unit					G1.	3 f60				
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2111	2186	2261	2336	2411	2486	2561	2636	2711	2786
Self-weight	ton	10.702	11.095	11.468	11.840	12.234	12.606	12.979	13.372	13.745	14.138
Total weight	ton	139.125	144.238	149.081	153.925	159.038	163.882	168.726	173.839	178.682	183.795
Ар	mm ²		1960	1820	1680	1540	1400	1400	1400	1260	1260
n	strands		14	13	12	11	10	10	10	9	9
Debonded	strands		11	10	9	8	7	7	7	6	6
	X1(m)		7.0	6.5	6.5	6.0	5.5	5.5	5.0	5.0	4.5
	length(m)		115.5	97.5	87.8	72.0	57.8	57.8	52.5	45.0	40.5
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost	0.000	57.750	48.750	43.875	36.000	28.875	28.875	26.250	22.500	20.250
Vc	m ³	4.370	4.525	4.680	4.836	4.991	5.146	5.301	5.457	5.612	5.767
	Unit cost	54	54	54	54	54	54	54	54	54	54
	cost	235.968	244.351	252.735	261.118	269.502	277.885	286.269	294.652	303.036	311.419
Wp	kg		318.490	295.741	272.992	250.242	227.493	227.493	227.493	204.744	204.744
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	0.000	302.566	280.954	259.342	237.730	216.118	216.118	216.118	194.507	194.507
RC bars	kg	183.778	183.778	183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg	341.686	349.701	357.716	365.731	373.746	381.761	389.776	397.791	405.806	413.821
	total	525.463	533.478	541.493	549.508	557.523	602.294	610.309	618.324	626.339	634.354
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost	236.459	240.065	243.672	247.279	250.885	271.032	274.639	278.246	281.852	285.459
PC slab	strands	33	33	33	33	33	33	33	33	33	33
	wp (kg)	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310
	anchorage	66	66	66	66	66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000
	cost/girder	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332
Materials cost	Girder	235.968	604.667	582.438	564.335	543.232	522.878	531.262	537.020	520.042	526.176
T	Total	5/5./58	946.064	927.442	912.945	895.449	895.242	907.232	916.598	903.220	912.900
Loss		44.1 61.9	101.0	/1.5	08.2	06.9	06.4	09.8	70.3	09.5	08.2
Anchorage	general	180.0	600.0	570.0	540.0	510.0	480.0	480.0	480.0	450.0	450.0
Anenorage	particular	36.0	120.0	114.0	108.0	102.0	96.0	96.0	96.0	90.0	90.0
Formwork	particulai	87.4	90.5	93.6	96.7	99.8	102.9	106.0	109.1	112.2	115.3
Labor	concrete	188.8	195.5	202.2	208.9	215.6	222.3	229.0	235.7	242.4	249.1
Eutoor	steel	451.0	696.0	681.5	667.1	652.7	651.6	654.5	657.3	642.9	645.8
Transportation	USD/girder	42.8	44.4	45.9	47.4	48.9	50.4	51.9	53.5	55.0	56.6
Administration	,, Birder	.2.0	1272.5	1254.1	1238.4	1220.7	1222.1	1237.5	1251.2	1236.2	1250.1
Cost/girder	USD	1485.7	3539.5	3489.9	3448.0	3400.5	3405.9	3449.6	3488.7	3448.7	3488.5
Cost	USD		46013.5	45369.3	44823.4	44207.1	44276.5	44845.3	45352.8	44833.6	45349.9
Girder setting	USD	668.25	678.48	688.16	697.85	708.08	717.76	727.45	737.67	747.36	757.59
Concrete joint	USD	953.86	953.86	953.86	953.86	953.86	953.86	953.86	953.86	953.86	953.86
Cost	USD	1622.1	47645.8	47011.4	46475.1	45869.0	45948.1	46526.6	47044.3	46534.8	47061.4
Cost	USD	1622.1	47645.8	47011.4	46475.1	45869.0	45948.1	46526.6	47044.3	46534.8	47061.4

#	unit					G13	3 f60				
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2111	2186	2261	2336	2411	2486	2561	2636	2711	2786
Self-weight	ton	10.702	11.095	11.468	11.840	12.234	12.606	12.979	13.372	13.745	14.138
Total weight	ton	139.125	144.238	149.081	153.925	159.038	163.882	168.726	173.839	178.682	183.795
Ар	mm ²		1960	1820	1680	1540	1400	1400	1400	1260	1260
n	strands		14	13	12	11	10	10	10	9	9
Debonded	strands		11	10	9	8	7	7	7	6	6
	X1(m)		7.0	6.5	6.5	6.0	5.5	5.5	5.0	5.0	4.5
	length(m)		115.5	97.5	87.8	72.0	57.8	57.8	52.5	45.0	40.5
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost	0.000	57.750	48.750	43.875	36.000	28.875	28.875	26.250	22.500	20.250
Vc	m ³	4.370	4.525	4.680	4.836	4.991	5.146	5.301	5.457	5.612	5.767
	Unit cost	54	54	54	54	54	54	54	54	54	54
	cost	235.968	244.351	252.735	261.118	269.502	277.885	286.269	294.652	303.036	311.419
Wp	kg		318.490	295.741	272.992	250.242	227.493	227.493	227.493	204.744	204.744
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	0.000	302.566	280.954	259.342	237.730	216.118	216.118	216.118	194.507	194.507
RC bars	kg	183.778	183.778	183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg	341.686	349.701	357.716	365.731	373.746	381.761	389.776	397.791	405.806	413.821
	total	525.463	533.478	541.493	549.508	557.523	602.294	610.309	618.324	626.339	634.354
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost	236.459	240.065	243.672	247.279	250.885	271.032	274.639	278.246	281.852	285.459
PC slab	strands	33	33	33	33	33	33	33	33	33	33
	wp (kg)	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310
	anchorage	66	66	66	66	66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000
	cost/girder	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332
Materials cost	Girder	235.968	604.667	582.438	564.335	543.232	522.878	531.262	537.020	520.042	526.176
	Total	573.758	946.064	927.442	912.945	895.449	895.242	907.232	916.598	903.226	912.966
Transversal		44.1	101.0	71.3	70.2	68.9	68.9	69.8	70.5	69.5	70.2
Loss	aan anal	01.8	600.0	99.9 570.0	98.3 540.0	96.4 510.0	96.4	97.7	98.7	97.3	98.3
Alleholage	portioulor	26.0	120.0	114.0	108.0	102.0	460.0	460.0	460.0	430.0	430.0
Formwork	particulai	30.0 87.4	90.5	03.6	06.7	00.8	90.0 102.0	90.0	90.0	90.0	90.0
Labor	concrete	07.4	90.5	202.2	208.0	99.0 215.6	222.3	229.0	235.7	242.4	240.1
Labor	staal	100.0	606.0	681.5	200.9 667.1	213.0 652.7	651.6	654.5	657.2	242.4 642.0	249.1 645.9
Transportation	Steel USD/girdor	431.0	44.4	45.0	47.4	48.0	50.4	51.0	52.5	55.0	043.8 56.6
Administration	USD/girder	42.0	44.4	43.9	47.4	40.9	1222.1	1227.5	1251.2	1226.2	1250.1
Cost/cirder	USD	1105 7	3520.5	3490.0	3/10 0	3400 5	3405.0	3440 4	3/00 7	3/10.2	3499 5
Cost	USD	1403.7	3339.3 46012 F	J407.7	3448.U	3400.5	3403.9	3449.0	3400./	3448.1 11822 C	J400.J
Girder sotting		660 75	40013.3	43309.3	44023.4	709.09	442/0.3	44043.3	43332.8	44033.0	43349.9
Concrete isint		052.94	052.96	052.96	052.06	052.96	052.96	052.96	052.06	052.96	052.04
Concrete joint		1622.1	753.00	955.00 47011 4	755.00	753.00	750.00	755.00	755.00	755.00	47061 4
Cost	03D	1022.1	47045.8	47011.4	404/3.1	43609.0	43948.1	40320.0	47044.3	40334.8	47001.4

#	unit					G12	2 f60				
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2219	2294	2369	2444	2519	2594	2669	2744	2819	2894
Self-weight	ton	11.261	11.633	12.006	12.399	12.772	13.165	13.538	13.910	14.304	14.676
Total weight	ton	135.130	139.601	144.072	148.792	153.263	157.982	162.454	166.925	171.644	176.116
Ар	mm ²		2240	1960	1820	1680	1540	1540	1400	1400	1260
n	strands		16	14	13	12	11	11	10	10	9
Debonded	strands		12	11	10	9	8	8	7	7	6
	X1(m)		7.5	7.0	6.5	6.5	6.0	5.5	5.5	5.0	5.0
	length(m)		135.0	115.5	97.5	87.8	72.0	66.0	57.8	52.5	45.0
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost		67.500	57.750	48.750	43.875	36.000	33.000	28.875	26.250	22.500
Vc	m ³		4.749	4.904	5.059	5.214	5.370	5.525	5.680	5.835	5.991
	Unit cost	54	54	54	54	54	54	54	54	54	54
	cost		256.423	264.807	273.190	281.574	289.957	298.341	306.724	315.108	323.491
Wp	kg		363.989	318.490	295.741	272.992	250.242	250.242	227.493	227.493	204.744
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost		345.789	302.566	280.954	259.342	237.730	237.730	216.118	216.118	194.507
RC bars	kg		183.778	183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg		361.203	369.218	377.233	385.248	393.263	401.278	409.293	417.308	425.323
	total		544.980	552.995	561.010	569.025	613.796	621.811	629.826	637.841	645.856
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost		245.241	248.848	252.455	256.061	276.208	279.815	283.422	287.028	290.635
PC slab	strands		33	33	33	33	33	33	33	33	33
	wp (kg)		344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost		327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310
	anchorage		66	66	66	66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost		990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000
	cost/girder		101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332
Materials cost	Girder		669.713	625.123	602.894	584.791	563.688	569.071	551.718	557.476	540.498
	Total		1016.285	975.302	956.680	942.184	941.227	950.217	936.471	945.836	932.464
Transversal			84.7	81.3	79.7	78.5	78.4	79.2	78.0	78.8	77.7
Loss			110.1	105.7	103.6	102.1	102.0	102.9	101.5	102.5	101.0
Anchorage	general		660.0	600.0	570.0	540.0	510.0	510.0	480.0	480.0	450.0
	particular		132.0	120.0	114.0	108.0	102.0	102.0	96.0	96.0	90.0
Formwork			95.0	98.1	101.2	104.3	107.4	110.5	113.6	116.7	119.8
Labor	concrete		205.1	211.8	218.6	225.3	232.0	238.7	245.4	252.1	258.8
	steel		734.7	703.0	688.6	674.2	673.0	675.9	661.5	664.4	650.0
Transportation	USD/girder		46.5	48.0	49.6	51.1	52.7	54.2	55.6	57.2	58.7
Administration	LIGD		1360.7	1313.7	1295.2	1279.4	1280.4	1293.9	1278.6	1292.3	1277.2
Cost/girder	USD		3785.0	3656.8	3607.2	3565.0	3569.1	3607.4	3566.6	3605.8	3565.7
Cost	USD		45420.5	43882.2	43286.1	42780.3	42828.7	43289.0	42799.7	43269.4	42788.4
Girder setting	USD		639.20	648.14	657.58	666.53	675.96	684.91	693.85	703.29	712.23
Concrete joint	USD		874.37	874.37	874.37	874.37	874.37	874.37	874.37	874.37	874.37
Cost	USD		46934.1	45404.7	44818.1	44321.2	44379.0	44848.3	44368.0	44847.0	44375.0

#	unit	G11 f60									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2345	2420	2495	2570	2645	2720	2795	2870	2945	3020
Self-weight	ton	11.903	12.275	12.648	13.041	13.414	13.786	14.180	14.552	14.945	15.318
Total weight	ton	130.928	135.026	139.125	143.451	147.550	151.648	155.975	160.073	164.399	168.498
Ар	mm ²			2100	1960	1820	1680	1540	1540	1400	1400
n	strands			15	14	13	12	11	11	10	10
Debonded	strands			12	11	10	9	8	8	7	7
	X1(m)			7.5	7.0	6.5	6.5	6.0	5.5	5.0	5.0
	length(m)			135.0	115.5	97.5	87.8	72.0	66.0	52.5	52.5
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost			67.500	57.750	48.750	43.875	36.000	33.000	26.250	26.250
Vc	m ³			5.165	5.320	5.475	5.630	5.786	5.941	6.096	6.251
	Unit cost	54	54	54	54	54	54	54	54	54	54
	cost			278.891	287.275	295.658	304.042	312.425	320.809	329.192	337.576
Wp	kg			341.240	318.490	295.741	272.992	250.242	250.242	227.493	227.493
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost			324.178	302.566	280.954	259.342	237.730	237.730	216.118	216.118
RC bars	kg			183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg			392.514	400.529	408.544	416.559	424.574	432.589	440.604	448.619
	total			576.291	584.306	592.321	637.092	645.107	653.122	661.137	669.152
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost			259.331	262.938	266.545	286.691	290.298	293.905	297.512	301.118
PC slab	strands			33	33	33	33	33	33	33	33
	wp (kg)			344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost			327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310
	anchorage			66	66	66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost			990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000
	cost/girder			101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332
Materials cost	Girder			670.569	647.590	625.362	607.259	586.155	591.539	571.560	579.944
	Total			1031.231	1011.860	993.238	995.281	977.785	986.775	970.403	982.394
Transversal				93.7	92.0	90.3	90.5	88.9	89.7	88.2	89.3
Loss				112.5	110.4	108.4	108.6	106.7	107.6	105.9	107.2
Anchorage	general			630.0	600.0	570.0	540.0	510.0	510.0	480.0	480.0
	particular			126.0	120.0	114.0	108.0	102.0	102.0	96.0	96.0
Formwork				103.3	106.4	109.5	112.6	115.7	118.8	121.9	125.0
Labor	concrete			223.1	229.8	236.5	243.2	249.9	256.6	263.4	270.1
	steel			728.7	714.3	699.8	698.7	684.3	687.2	672.8	675.6
Transportation	USD/girder			50.6	52.2	53.7	55.1	56.7	58.2	59.8	61.3
Administration	1105			1383.6	1364.6	1346.0	1349.0	1331.2	1344.7	1327.6	1343.1
Cost/girder	USD			3852.8	3801.5	3751.5	3761.0	3713.1	3751.6	3705.9	3749.9
Cost	USD			42380.3	41816.0	41266.1	41370.6	40844.6	41267.8	40764.7	41249.2
Girder setting	USD			608.25	616.90	625.10	633.30	641.95	650.15	658.80	667.00
Concrete joint	USD			794.88	794.88	794.88	794.88	794.88	794.88	794.88	794.88
Cost	USD			43783.4	43227.8	42686.1	42798.8	42281.4	42712.9	42218.4	42711.1

#	unit	G10 f60									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2489	2564	2639	2714	2789	2864	2939	3014	3089	3164
Self-weight	ton	12.627	13.000	13.393	13.766	14.138	14.531	14.904	15.277	15.670	16.043
Total weight	ton	126.270	129.996	133.929	137.655	141.381	145.314	149.040	152.766	156.699	160.425
Ар	mm ²			2240	2100	1960	1820	1680	1680	1540	1540
n	strands			16	15	14	13	12	12	11	11
Debonded	strands			12	11	10	10	9	8	8	7
	X1(m)			9.5	7.5	7.0	6.5	6.5	6.0	5.5	5.0
	length(m)			171.0	123.8	105.0	97.5	87.8	72.0	66.0	52.5
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost			85.500	61.875	52.500	48.750	43.875	36.000	33.000	26.250
Vc	m ³			5.463	5.618	5.773	5.928	6.084	6.239	6.394	6.549
	Unit cost	54	54	54	54	54	54	54	54	54	54
	cost			294.987	303.371	311.754	320.138	328.521	336.905	345.288	353.672
Wp	kg			363.989	341.240	318.490	295.741	272.992	272.992	250.242	250.242
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost			345.789	324.178	302.566	280.954	259.342	259.342	237.730	237.730
RC bars	kg			183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg			404.863	412.878	420.893	428.908	436.923	444.938	452.953	460.968
	total			588.641	596.656	604.671	649.441	657.456	665.471	673.486	681.501
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost			264.888	268.495	272.102	292.249	295.855	299.462	303.069	306.676
PC slab	strands			33	33	33	33	33	33	33	33
	wp (kg)			344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost			327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310
	anchorage			66	66	66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost			990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000
	cost/girder			101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332
Materials cost	Girder			726.277	689.423	666.820	649.842	631.738	632.247	616.019	617.652
	Total			1092.497	1059.250	1040.254	1043.422	1028.925	1033.041	1020.419	1025.659
Transversal				109.2	105.9	104.0	104.3	102.9	103.3	102.0	102.6
Loss				120.2	116.5	114.4	114.8	113.2	113.6	112.2	112.8
Anchorage	general			660.0	630.0	600.0	570.0	540.0	540.0	510.0	510.0
D 1	particular			132.0	126.0	120.0	114.0	108.0	108.0	102.0	102.0
Formwork				109.3	112.4	115.5	118.6	121.7	124.8	127.9	131.0
Labor	concrete			236.0	242.7	249.4	256.1	262.8	269.5	276.2	282.9
The second	steel			/50.4	/36.0	721.6	720.4	/06.0	/08.9	694.5	697.4
A durinistration	USD/girder			33.0	55.1 1420.2	30.0	38.1	59.0 1208.2	01.1	02.7	04.2
Cost/girder	USD			1437.0	2092 1	2022.1	20/2.0	2001.2	2020.8	2201.0	2022.4
Cost/girder				40607 4	3983.1	3932.1	3943.9	3901.3	3930.8	28010 2	3923.4
CUSI Cirdor sotting	USD			4000/.0	575 21	59321.5	500 62	509.00	59508.0	50918.3	57254.3
Concrete isint				715.20	715.20	715.20	715.20	715.20	715 20	715.20	715 20
Concrete joint	USD			/15.39	/15.39	/15.39	/15.39	/15.39	/15.39	/15.39	/15.39
Cost	USD			41890.8	41122.0	40019.6	40744.7	40326.5	40629.0	40247.1	405/0.6

#	unit	G09 f60									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2615	2690	2765	2840	2915	2990	3065	3140	3215	3290
Self-weight	ton	13.269	13.641	14.014	14.407	14.780	15.173	15.546	15.918	16.312	16.684
Total weight	ton	119.418	122.772	126.125	129.665	133.018	136.558	139.911	143.265	146.804	150.158
Ap	mm ²				2240	2100	1960	1960	1820	1680	1680
n	strands				16	15	14	14	13	12	12
Debonded	strands				12	11	10	10	9	8	8
	X1(m)				8.5	8.0	7.5	6.5	6.5	6.0	5.5
	length(m)				153.0	132.0	112.5	97.5	87.8	72.0	66.0
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost				76.500	66.000	56.250	48.750	43.875	36.000	33.000
Vc	m ³				5.879	6.034	6.189	6.345	6.500	6.655	6.810
	Unit cost	54	54	54	54	54	54	54	54	54	54
	cost				317.455	325.839	334.222	342.606	350.989	359.373	367.756
Wp	kg				363.989	341.240	318.490	318.490	295.741	272.992	272.992
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost				345.789	324.178	302.566	302.566	280.954	259.342	259.342
RC bars	kg				183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg				475.956	483.971	491.986	500.001	508.016	516.031	524.046
	total				659.733	667.748	712.519	720.534	728.549	736.564	744.579
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost				296.880	300.487	320.633	324.240	327.847	331.454	335.060
PC slab	strands				33	33	33	33	33	33	33
	wp (kg)				344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost				327.310	327.310	327.310	327.310	327.310	327.310	327.310
	anchorage				66	66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost				990.000	990.000	990.000	990.000	990.000	990.000	990.000
	cost/girder				101.332	101.332	101.332	101.332	101.332	101.332	101.332
Materials cost	Girder				739.745	716.016	693.038	693.921	6/5.818	654.715	660.098
	Total				1137.956	1117.834	1115.003	1119.493	1104.996	1087.500	1096.490
Transversal					126.4	124.2	123.9	124.4	122.8	120.8	121.8
Loss					126.4	124.2	123.9	124.4	122.8	120.8	121.8
Anchorage	general				122.0	126.0	120.0	120.0	570.0	108.0	108.0
E	particular				132.0	120.0	120.0	120.0	114.0	108.0	108.0
Formwork	aananata				254.0	120.7	125.8	120.9	280.8	133.1	204.2
Labor	staal				234.0	200.7	207.4	2/4.1	260.8	207.5	294.2
Transportation	steel USD/girdor				57.6	701.0	700.4	62.2	746.9 62.7	734.3 65.2	667
Administration	CSD/gituer				1526.4	1506.6	1506.2	1516.0	1500.0	1/182 8	1/106 5
Cost/girder	USD				1320.4	1300.0	4201.3	1310.9	1300.9	1402.0	4170.1
Cost					38280 0	37807 0	37811.0	38084 5	37602 0	37262 1	37612.2
Girder setting	USD				520 33	536.04	543 12	549.82	556 52	563.61	570 32
Concrete joint					70/ 92	79/ 99	70/ 99	70/ 99	70/ 99	70/ 99	70/ 92
Cost	USD				30613 2	30128 9	301/0 0	30/20 2	30050 2	38671 6	38077 /
COSt	USD				39013.3	37130.8	37149.9	37429.2	39030.3	30021.0	307/1.4

#	unit	G08 f60									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2831	2906	2981	3056	3131	3206	3281	3356	3431	3506
Self-weight	ton	14.366	14.738	15.111	15.504	15.877	16.250	16.643	17.015	17.409	17.781
Total weight	ton	114.926	117.907	120.888	124.034	127.015	129.996	133.142	136.123	139.270	142.250
Ap	mm ²				2380	2240	2100	1960	1960	1820	1680
n	strands				17	16	15	14	14	13	12
Debonded	strands				13	12	11	10	10	9	8
	X1(m)				9.0	7.5	7.0	6.5	6.0	5.5	5.5
	length(m)				175.5	135.0	115.5	97.5	90.0	74.3	66.0
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost				87.750	67.500	57.750	48.750	45.000	37.125	33.000
Vc	m ³				6.326	6.481	6.636	6.792	6.947	7.102	7.257
	Unit cost	54	54	54	54	54	54	54	54	54	54
	cost				341.600	349.983	358.367	366.750	375.134	383.517	391.901
Wp	kg				386.738	363.989	341.240	318.490	318.490	295.741	272.992
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost				367.401	345.789	324.178	302.566	302.566	280.954	259.342
RC bars	kg				183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg				504.958	512.973	520.988	529.003	537.018	545.033	553.048
	total				688.735	696.750	741.521	749.536	757.551	765.566	773.581
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost				309.931	313.538	333.684	337.291	340.898	344.505	348.111
PC slab	strands				33	33	33	33	33	33	33
	wp (kg)				344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost				327.310	327.310	327.310	327.310	327.310	327.310	327.310
	anchorage				66	66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost				990.000	990.000	990.000	990.000	990.000	990.000	990.000
	cost/girder				101.332	101.332	101.332	101.332	101.332	101.332	101.332
Materials cost	Girder				796.751	763.273	740.294	718.066	722.699	701.596	684.243
	Total				1208.013	1178.142	1175.310	1156.688	1164.929	1147.432	1133.685
Transversal					151.0	147.3	146.9	144.6	145.6	143.4	141.7
Loss					135.9	132.5	132.2	130.1	131.1	129.1	127.5
Anchorage	general				690.0	660.0	630.0	600.0	600.0	570.0	540.0
	particular				138.0	132.0	126.0	120.0	120.0	114.0	108.0
Formwork					126.5	129.6	132.7	135.8	138.9	142.0	145.1
Labor	concrete				273.3	280.0	286.7	293.4	300.1	306.8	313.5
The second	steel				803.7	789.3	788.1	773.7	776.6	762.2	747.8
Transportation	USD/girder				62.0	63.5	65.0	66.6	68.1	69.6	71.1
Administration	UGD				1620.3	1593.8	1593.5	1574.5	1587.7	1569.6	1553.9
Cost/girder	U2D				4518.8	4446.2	4446.5	4395.5	4433.0	4384.2	4542.5
Cost	U2D				36150.1	35569.4	355/1.8	506.20	512.25	510 54	524.50
Girder setting	USD				488.07	494.03	499.99	506.28	512.25	518.54	524.50
Concrete joint	USD				695.52	695.52	695.52	695.52	695.52	695.52	695.52
Cost	USD				3/333.7	36/58.9	36/6/.3	36365.7	36672.2	36287.8	35959.7

#	unit	G14 f40									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2003	2078	2153	2228	2303	2378	2453	2528	2603	2678
Self-weight	ton	10.164	10.536	10.909	11.302	11.675	12.068	12.441	12.813	13.207	13.579
Total weight	ton	142.292	147.508	152.725	158.231	163.447	168.953	174.170	179.386	184.892	190.109
Ap	mm ²				1680	1540	1400	1260	1260	1260	1120
n	strands				12	11	10	9	9	9	8
Debonded	strands				10	9	8	7	7	7	6
	X1(m)				7.0	6.5	6.0	6.0	5.5	5.5	5.0
	length(m)				105.0	87.8	72.0	63.0	57.8	57.8	45.0
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost				52.500	43.875	36.000	31.500	28.875	28.875	22.500
Vc	m ³				4.612	4.767	4.922	5.078	5.233	5.388	5.543
	Unit cost	50	50	50	50	50	50	50	50	50	50
	cost				230.598	238.361	246.123	253.886	261.648	269.411	277.173
Wp	kg				272.992	250.242	227.493	204.744	204.744	204.744	181.994
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost				259.342	237.730	216.118	194.507	194.507	194.507	172.895
RC bars	kg				183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg				354.134	362.149	370.164	378.179	386.194	394.209	402.224
	total				537.912	545.927	590.697	598.712	606.727	614.742	622.757
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost				242.060	245.667	265.814	269.421	273.027	276.634	280.241
PC slab	strands				33	33	33	33	33	33	33
	wp (kg)				344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost				327.310	327.310	327.310	327.310	327.310	327.310	327.310
	anchorage				66	66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost				990.000	990.000	990.000	990.000	990.000	990.000	990.000
	cost/girder				94.094	94.094	94.094	94.094	94.094	94.094	94.094
Materials cost	Girder				542.440	519.966	498.241	479.892	485.030	492.792	472.568
	Total				878.594	859.726	858.149	843.406	852.150	863.520	846.902
Transversal					62.8	61.4	61.3	60.2	60.9	61.7	60.5
Loss					94.1	92.1	91.9	90.4	91.3	92.5	90.7
Anchorage	general				540.0	510.0	480.0	450.0	450.0	450.0	420.0
	particular				108.0	102.0	96.0	90.0	90.0	90.0	84.0
Formwork					92.2	95.3	98.4	101.6	104.7	107.8	110.9
Labor	concrete				184.5	190.7	196.9	203.1	209.3	215.5	221.7
The second	steel				663.0	648.6	647.4	633.0	635.9	638.8	624.4
A designation	USD/girder				45.2	40.7	48.3	49.8	51.3	52.8	54.3
Administration	UGD				1193.4	1174.6	1174.9	1158.8	11/1./	1186.4	1169.0
Cost/girder	U2D				3321.8	52/1.2	52/5.3	3230.2	3267.1	3309.0	3262.4
Cost	U2D				46505.3	45/96.6	45826.4	45222.9	45/40.1	46325.3	456/4.0
Girder setting	USD				/ 56.46	/46.89	1022.21	/08.34	1/8.//	189.78	800.22
Concrete joint	USD				1033.34	1033.34	1033.34	1033.34	1033.34	1033.34	1033.34
Cost	USD				48275.1	4/5/6.8	4/617.7	47024.6	47552.2	48148.4	4/50/.6

#	unit	G13 f40									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2111	2186	2261	2336	2411	2486	2561	2636	2711	2786
Self-weight	ton	10.702	11.095	11.468	11.840	12.234	12.606	12.979	13.372	13.745	14.138
Total weight	ton	139.125	144.238	149.081	153.925	159.038	163.882	168.726	173.839	178.682	183.795
Ap	mm ²					1680	1540	1400	1400	1260	1260
n	strands					12	11	10	10	9	9
Debonded	strands					10	9	8	8	7	7
	X1(m)					7.0	6.5	6.5	6.0	6.0	5.5
	length(m)					105.0	87.8	78.0	72.0	63.0	57.8
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost					52.500	43.875	39.000	36.000	31.500	28.875
Vc	m ³					4.991	5.146	5.301	5.457	5.612	5.767
	Unit cost	50	50	50	50	50	50	50	50	50	50
	cost					249.539	257.301	265.064	272.826	280.589	288.351
Wp	kg					272.992	250.242	227.493	227.493	204.744	204.744
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost					259.342	237.730	216.118	216.118	194.507	194.507
RC bars	kg					183.778	220.533	220.533	220.533	220.533	220.533
	kg					373.746	381.761	389.776	397.791	405.806	413.821
	total					557.523	602.294	610.309	618.324	626.339	634.354
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost					250.885	271.032	274.639	278.246	281.852	285.459
PC slab	strands					33	33	33	33	33	33
	wp (kg)					344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost					327.310	327.310	327.310	327.310	327.310	327.310
	anchorage					66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost					990.000	990.000	990.000	990.000	990.000	990.000
AF - AA	cost/girder					101.332	101.332	101.332	101.332	101.332	101.332
Materials cost	Girder					561.381	538.906	520.182	524.944	506.595	511.733
T 1	Total					913.598	911.270	896.152	904.522	889.779	898.523
Transversal						70.3	70.1	68.9	69.6	68.4	69.1
Loss						98.4	98.1	96.5	97.4	95.8	96.8
Anchorage	general					108.0	102.0	480.0	460.0	430.0	430.0
Formwork	particular					108.0	102.0	106.0	90.0	90.0	90.0
Labor	aonarata					99.0 100.6	205.8	212.1	218.2	224.5	220.7
Labor	staal					670.0	668.0	654.5	657.2	642.0	645.9
Transportation	Steel USD/girder					48.0	50.4	51.0	53.5	55.0	56.6
Administration	55D/gituel					1236.8	1236.6	1220.2	1232.0	12167	1229.7
Cost/girder	USD					3445.5	3446.1	3402.2	3/38.6	3395 /	3/32.5
Cost	USD					44791 3	44799.8	44228 7	44702.2	44140.0	44622.3
Girder setting	USD					708.08	717 76	727 45	737 68	747 36	757 59
Concrete joint	USD					953.86	953.86	953.86	953.86	953.86	953.86
Cost	USD					46453.2	46471 4	45910 1	46393 7	45841 2	46333.8
CUSI	000					TUTJJ.2	+0+/1.4	-5710.1	T0375.7	-50+1.2	-05555.0

#	unit	G12 f40									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2219	2294	2369	2444	2519	2594	2669	2744	2819	2894
Self-weight	ton	11.261	11.633	12.006	12.399	12.772	13.165	13.538	13.910	14.304	14.676
Total weight	ton	135.130	139.601	144.072	148.792	153.263	157.982	162.454	166.925	171.644	176.116
Ap	mm ²					1820	1680	1540	1400	1400	1400
n	strands					13	12	11	10	10	10
Debonded	strands					10	10	9	8	8	8
	X1(m)					8.0	7.0	6.5	6.5	6.0	5.5
	length(m)					120.0	105.0	87.8	78.0	72.0	66.0
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost					60.000	52.500	43.875	39.000	36.000	33.000
Vc	m ³					5.214	5.370	5.525	5.680	5.835	5.991
	Unit cost	50	50	50	50	50	50	50	50	50	50
	cost					260.717	268.479	276.242	284.004	291.767	299.529
Wp	kg					295.741	272.992	250.242	227.493	227.493	227.493
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost					280.954	259.342	237.730	216.118	216.118	216.118
RC bars	kg					183.778	220.533	220.533	220.533	220.533	220.533
	kg					385.248	393.263	401.278	409.293	417.308	425.323
	total					569.025	613.796	621.811	629.826	637.841	645.856
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost					256.061	276.208	279.815	283.422	287.028	290.635
PC slab	strands					33	33	33	33	33	33
	wp (kg)					344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost					327.310	327.310	327.310	327.310	327.310	327.310
	anchorage					66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost					990.000	990.000	990.000	990.000	990.000	990.000
	cost/girder					101.332	101.332	101.332	101.332	101.332	101.332
Materials cost	Girder					601.670	580.321	557.847	539.122	543.885	548.647
	Total					959.063	957.861	938.993	923.875	932.245	940.614
Transversal						79.9	79.8	78.2	77.0	77.7	78.4
Loss						103.9	103.8	101.7	100.1	101.0	101.9
Anchorage	general					570.0	540.0	510.0	480.0	480.0	480.0
	particular					114.0	108.0	102.0	96.0	96.0	96.0
Formwork						104.3	107.4	110.5	113.6	116.7	119.8
Labor	concrete					208.6	214.8	221.0	227.2	233.4	239.6
	steel					691.5	690.3	675.9	661.5	664.4	667.3
Transportation	USD/girder					51.1	52.7	54.2	55.6	57.2	58.7
Administration						1294.4	1294.9	1276.0	1259.5	1272.2	1285.0
Cost/girder	USD					3606.7	3609.5	3558.5	3514.4	3550.9	3587.3
Cost	USD					43280.1	43313.5	42701.5	42172.4	42610.5	43047.6
Girder setting	USD					666.53	675.96	684.91	693.85	703.29	712.23
Concrete joint	USD					874.37	874.37	874.37	874.37	874.37	874.37
Cost	USD					44821.0	44863.9	44260.8	43740.6	44188.2	44634.2

#	unit	G11 f40									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2345	2420	2495	2570	2645	2720	2795	2870	2945	3020
Self-weight	ton	11.903	12.275	12.648	13.041	13.414	13.786	14.180	14.552	14.945	15.318
Total weight	ton	130.928	135.026	139.125	143.451	147.550	151.648	155.975	160.073	164.399	168.498
Ap	mm ²						1680	1680	1540	1540	1400
n	strands						12	12	11	11	10
Debonded	strands						10	9	9	8	8
	X1(m)						7.5	7.0	7.0	6.5	6.0
	length(m)						112.5	94.5	94.5	78.0	72.0
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost						56.250	47.250	47.250	39.000	36.000
Vc	m ³						5.630	5.786	5.941	6.096	6.251
	Unit cost	50	50	50	50	50	50	50	50	50	50
	cost						281.520	289.283	297.045	304.808	312.570
Wp	kg						272.992	272.992	250.242	250.242	227.493
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost						259.342	259.342	237.730	237.730	216.118
RC bars	kg						220.533	220.533	220.533	220.533	220.533
	kg						416.559	424.574	432.589	440.604	448.619
	total						637.092	645.107	653.122	661.137	669.152
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost						286.691	290.298	293.905	297.512	301.118
PC slab	strands						33	33	33	33	33
	wp (kg)						344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost						327.310	327.310	327.310	327.310	327.310
	anchorage						66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost						990.000	990.000	990.000	990.000	990.000
	cost/girder						101.332	101.332	101.332	101.332	101.332
Materials cost	Girder						597.112	595.875	582.025	581.538	564.688
	Total						985.135	987.504	977.261	980.381	967.138
Transversal							89.6	89.8	88.8	89.1	87.9
Loss							107.5	107.7	106.6	107.0	105.5
Anchorage	general						540.0	540.0	510.0	510.0	480.0
	particular						108.0	108.0	102.0	102.0	96.0
Formwork							112.6	115.7	118.8	121.9	125.0
Labor	concrete						225.2	231.4	237.6	243.8	250.1
	steel						698.7	701.6	687.2	690.0	675.6
Transportation	USD/girder						55.1	56.7	58.2	59.8	61.3
Administration							1331.5	1340.4	1327.0	1336.4	1321.1
Cost/girder	USD						3713.3	3738.8	3703.6	3730.4	3689.6
Cost	USD						40846.5	41126.9	40739.2	41034.8	40585.9
Girder setting	USD						633.30	641.95	650.15	658.80	667.00
Concrete joint	USD						794.88	794.88	794.88	794.88	794.88
Cost	USD						42274.7	42563.7	42184.2	42488.5	42047.8

#	unit	G10 f40									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2489	2564	2639	2714	2789	2864	2939	3014	3089	3164
Self-weight	ton	12.627	13.000	13.393	13.766	14.138	14.531	14.904	15.277	15.670	16.043
Total weight	ton	126.270	129.996	133.929	137.655	141.381	145.314	149.040	152.766	156.699	160.425
Ар	mm ²							1820	1680	1540	1540
n	strands							13	12	11	11
Debonded	strands							10	9	8	8
	X1(m)							7.5	7.0	6.5	6.5
	length(m)							112.5	94.5	78.0	78.0
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost							56.250	47.250	39.000	39.000
Vc	m ³							6.084	6.239	6.394	6.549
	Unit cost	50	50	50	50	50	50	50	50	50	50
	cost							304.187	311.949	319.712	327.474
Wp	kg							295.741	272.992	250.242	250.242
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost							280.954	259.342	237.730	237.730
RC bars	kg							220.533	220.533	220.533	220.533
	kg							436.923	444.938	452.953	460.968
	total							657.456	665.471	673.486	681.501
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost							295.855	299.462	303.069	306.676
PC slab	strands							33	33	33	33
	wp (kg)							344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost							327.310	327.310	327.310	327.310
	anchorage							66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost							990.000	990.000	990.000	990.000
	cost/girder							101.332	101.332	101.332	101.332
Materials cost	Girder							641.390	618.541	596.442	604.204
	Total							1038.577	1019.335	1000.842	1012.211
Transversal								103.9	101.9	100.1	101.2
Loss								114.2	112.1	110.1	111.3
Anchorage	general							570.0	540.0	510.0	510.0
	particular							114.0	108.0	102.0	102.0
Formwork								121.7	124.8	127.9	131.0
Labor	concrete							243.3	249.6	255.8	262.0
The second	steel							723.3	708.9	694.5	697.4
A dministration	USD/girder							59.6 1406.0	01.1	02.7	04.2
Cost/girder	USD							2025 5	1307.3	1308.0	1303.3
Cost/girder								3923.3	38/3.2	3822.3	3804.8
Cust Girder sotting								508 00	50752.5 605 52	50224.8 613.40	50047.5 620.95
Concrete isint								715 20	715 20	715.20	020.85
Concrete joint								113.39	/15.39	113.39	/13.39
Cost	02D							40308.1	40055.2	39333.0	39983.8

#	unit	G09 f40									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2615	2690	2765	2840	2915	2990	3065	3140	3215	3290
Self-weight	ton	13.269	13.641	14.014	14.407	14.780	15.173	15.546	15.918	16.312	16.684
Total weight	ton	119.418	122.772	126.125	129.665	133.018	136.558	139.911	143.265	146.804	150.158
Ар	mm ²								1820	1820	1680
n	strands								13	13	12
Debonded	strands								10	10	9
	X1(m)								8.0	7.5	7.0
	length(m)								120.0	112.5	94.5
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost								60.000	56.250	47.250
Vc	m ³								6.500	6.655	6.810
	Unit cost	50	50	50	50	50	50	50	50	50	50
	cost								324.990	332.753	340.515
Wp	kg								295.741	295.741	272.992
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost								280.954	280.954	259.342
RC bars	kg								220.533	220.533	220.533
	kg								508.016	516.031	524.046
	total								728.549	736.564	744.579
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost								327.847	331.454	335.060
PC slab	strands								33	33	33
	wp (kg)								344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost								327.310	327.310	327.310
	anchorage								66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost								990.000	990.000	990.000
	cost/girder								101.332	101.332	101.332
Materials cost	Girder								665.944	669.956	647.107
	Total								1095.122	102.742	1083.499
Transversal									121.7	122.5	120.4
Loss									121.7	122.5	120.4
Anchorage	general								570.0	570.0	540.0
	particular								114.0	114.0	108.0
Formwork									130.0	133.1	136.2
Labor	concrete								260.0	266.2	272.4
	steel								748.9	751.8	737.4
Transportation	USD/girder								63.7	65.2	66.7
Administration	LIGD								1481.8	1494.2	14/4.7
Cost/girder	USD								4136.8	4172.3	4119.7
Cost	USD								5/231.6	57550.9	57077.5
Girder setting	USD								556.53	563.61	570.32
Concrete joint	USD								794.88	794.88	794.88
Cost	USD								38583.0	38909.4	38442.7

#	unit	G08 f40										
h	cm	75	80	85	90	95	100	105	110	115	120	
А	cm ²	2831	2906	2981	3056	3131	3206	3281	3356	3431	3506	
Self-weight	ton	14.366	14.738	15.111	15.504	15.877	16.250	16.643	17.015	17.409	17.781	
Total weight	ton	114.926	117.907	120.888	124.034	127.015	129.996	133.142	136.123	139.270	142.250	
Ар	mm ²								1960	1820	1820	
n	strands								14	13	13	
Debonded	strands								10	10	9	
	X1(m)								7.0	7.0	6.5	
	length(m)								105.0	105.0	87.8	
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
	cost								52.500	52.500	43.875	
Vc	m ³								6.947	7.102	7.257	
	Unit cost	50	50	50	50	50	50	50	50	50	50	
	cost								347.346	355.109	362.871	
Wp	kg								318.490	295.741	295.741	
	Unit cost	950	950	950	950	950	950	950	950	950	950	
	cost								302.566	280.954	280.954	
RC bars	kg								220.533	220.533	220.533	
	kg								537.018	545.033	553.048	
	total								757.551	765.566	773.581	
	Unit cost	450	450	450	450	450	450	450	450	450	450	
	cost								340.898	344.505	348.111	
PC slab	strands								33	33	33	
	wp (kg)								344.5	344.5	344.5	
	Unit cost	950	950	950	950	950	950	950	950	950	950	
	cost								327.310	327.310	327.310	
	anchorage								66	66	66	
	Unit cost	15	15	15	15	15	15	15	15	15	15	
	cost								990.000	990.000	990.000	
	cost/girder								101.332	101.332	101.332	
Materials cost	Girder								702.412	688.562	687.700	
	Total								1144.641	1134.398	1137.143	
Transversal									143.1	141.8	142.1	
Loss									128.8	127.6	127.9	
Anchorage	general								600.0	570.0	570.0	
	particular								120.0	114.0	114.0	
Formwork									138.9	142.0	145.1	
Labor	concrete								277.9	284.1	290.3	
-	steel								776.6	762.2	765.1	
I ransportation	USD/girder								68.1	69.6	/1.1	
Administration	LICD								1560.7	1547.1	1556.3	
Cost/girder	USD								4358.7	4322.9	4349.2	
Cost	USD								54869.5	54583.4	54/93.5	
Girder setting	USD								512.25	518.54	524.50	
Concrete joint	USD								695.52	695.52	695.52	
Cost	USD								36077.2	35797.4	36013.5	
#	unit		G14 f80									
----------------	-----------------	-----------------	-----------------	--------------------	--------------------	--------------------	---------	---------	--------------------	--------------------	---------------------	--
h	cm	75	80	85	90	95	100	105	110	115	120	
А	cm ²	2003	2078	2153	2228	2303	2378	2453	2528	2603	2678	
Self-weight	ton	10.164	10.536	10.909	11.302	11.675	12.068	12.441	12.813	13.207	13.579	
Total weight	ton	142.292	147.508	152.725	158.231	163.447	168.953	174.170	179.386	184.892	190.109	
Ар	mm ²	1960	1820	1680	1540	1400	1260	1260	1260	1120	1120	
n	strands	14	13	12	11	10	9	9	9	8	8	
Debonded	strands	10	9	8	8	7	6	6	6	5	5	
	X1(m)	5.5	5.5	5.0	5.0	4.5	4.0	4.0	3.5	3.5	3.5	
	length(m)	82.5	74.3	60.0	60.0	47.3	36.0	36.0	31.5	26.3	26.3	
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
	cost	41.250	37.125	30.000	30.000	23.625	18.000	18.000	15.750	13.125	13.125	
Vc	m ³	4.146	4.301	4.457	4.612	4.767	4.922	5.078	5.233	5.388	5.543	
	Unit cost	60	60	60	60	60	60	60	60	60	60	
	cost	248.773	258.088	267.403	276.718	286.033	295.348	304.663	313.978	323.293	332.608	
Wp	kg	318.490	295.741	272.992	250.242	227.493	204.744	204.744	204.744	181.994	181.994	
	Unit cost	950	950	950	950	950	950	950	950	950	950	
	cost	302.566	280.954	259.342	237.730	216.118	194.507	194.507	194.507	172.895	172.895	
RC bars	kg	183.778	183.778	183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533	
	kg	330.089	338.104	346.119	354.134	362.149	370.164	378.179	386.194	394.209	402.224	
	total	513.867	521.882	529.897	537.912	545.927	590.697	598.712	606.727	614.742	622.757	
	Unit cost	450	450	450	450	450	450	450	450	450	450	
	cost	231.240	234.847	238.454	242.060	245.667	265.814	269.421	273.027	276.634	280.241	
PC slab	strands	33	33	33	33	33	33	33	33	33	33	
	wp (kg)	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	
	Unit cost	950	950	950	950	950	950	950	950	950	950	
	cost	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	
	anchorage	66	66	66	66	66	66	66	66	66	66	
	Unit cost	15	15	15	15	15	15	15	15	15	15	
	cost	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	
	cost/girder	94.094	94.094	94.094	94.094	94.094	94.094	94.094	94.094	94.094	94.094	
Materials cost	Total	017.022	5/0.100	220.745 220.202	244.448 880.602	525.770 965 527	207.854	217.109	524.234 901.255	509.312 880.040	\$18.027 802.062	
Tronguercal	Total	917.922 65.6	903.107 64.7	62.5	62.0	61.9	62.0	62.0	62.7	62.0	62.902	
Loss		98.3	97.0	95.3	94.4	01.8	93.0	94.4	95.5	94.3	95.7	
Anchorage	general	600.0	570.0	540.0	510.0	480.0	450.0	450.0	450.0	420.0	420.0	
Thioholuge	particular	120.0	114.0	108.0	102.0	96.0	90.0	90.0	90.0	84.0	84.0	
Formwork	purticului	82.9	86.0	89.1	92.2	95.3	98.4	101.6	104.7	107.8	110.9	
Labor	concrete	199.0	206.5	213.9	221.4	228.8	236.3	243.7	251.2	258.6	266.1	
2	steel	688.9	674.5	660.1	645.7	631.3	630.1	633.0	635.9	621.5	624.4	
Transportation	USD/girder	40.7	42.1	43.6	45.2	46.7	48.3	49.8	51.3	52.8	54.3	
Administration	8	1244.6	1230.4	1214.4	1202.9	1187.3	1190.7	1207.1	1222.0	1208.9	1225.2	
Cost/girder	USD	3457.9	3420.3	3377.2	3347.2	3305.5	3316.6	3363.1	3405.5	3370.7	3417.3	
Cost	USD	48410.9	47884.4	47281.4	46861.2	46277.4	46432.0	47083.4	47677.5	47190.5	47841.9	
Girder setting	USD	704.58	715.02	725.45	736.46	746.89	757.91	768.34	778.77	789.78	800.22	
Concrete joint	USD	1033.34	1033.34	1033.34	1033.34	1033.34	1033.34	1033.34	1033.34	1033.34	1033.34	
Cost	USD	50148.8	49632.7	49040.2	48631.0	48057.6	48223.2	48885.1	49489.7	49013.6	49675.5	

#	unit		G13 f80									
h	cm	75	80	85	90	95	100	105	110	115	120	
А	cm ²	2111	2186	2261	2336	2411	2486	2561	2636	2711	2786	
Self-weight	ton	10.702	11.095	11.468	11.840	12.234	12.606	12.979	13.372	13.745	14.138	
Total weight	ton	139.125	144.238	149.081	153.925	159.038	163.882	168.726	173.839	178.682	183.795	
Ap	mm ²	2240	1960	1820	1680	1540	1400	1400	1260	1260	1260	
n	strands	16	14	13	12	11	10	10	9	9	9	
Debonded	strands	12	10	9	8	7	7	6	6	5	5	
	X1(m)	5.5	5.5	5.5	5.0	5.0	4.5	4.0	4.0	3.5	3.5	
	length(m)	99.0	82.5	74.3	60.0	52.5	47.3	36.0	36.0	26.3	26.3	
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
	cost	49.500	41.250	37.125	30.000	26.250	23.625	18.000	18.000	13.125	13.125	
Vc	m ³	4.370	4.525	4.680	4.836	4.991	5.146	5.301	5.457	5.612	5.767	
	Unit cost	60	60	60	60	60	60	60	60	60	60	
	cost	262.186	271.501	280.816	290.131	299.446	308.761	318.076	327.391	336.706	346.021	
Wp	kg	363.989	318.490	295.741	272.992	250.242	227.493	227.493	204.744	204.744	204.744	
	Unit cost	950	950	950	950	950	950	950	950	950	950	
	cost	345.789	302.566	280.954	259.342	237.730	216.118	216.118	194.507	194.507	194.507	
RC bars	kg	183.778	183.778	183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533	
	kg	341.686	349.701	357.716	365.731	373.746	381.761	389.776	397.791	405.806	413.821	
	total	525.463	533.478	541.493	549.508	557.523	602.294	610.309	618.324	626.339	634.354	
	Unit cost	450	450	450	450	450	450	450	450	450	450	
	cost	236.459	240.065	243.672	247.279	250.885	271.032	274.639	278.246	281.852	285.459	
PC slab	strands	33	33	33	33	33	33	33	33	33	33	
	wp (kg)	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	
	Unit cost	950	950	950	950	950	950	950	950	950	950	
	cost	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	
	anchorage	66	66	66	66	66	66	66	66	66	66	
	Unit cost	15	15	15	15	15	15	15	15	15	15	
	cost	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	
	cost/girder	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332	
Materials cost	Girder	657.476	615.317	598.895	579.473	563.426	548.505	552.195	539.898	544.338	553.653	
	Total	995.266	956.714	943.899	928.083	915.643	920.868	928.165	919.475	927.522	940.443	
Transversal		76.6	73.6	72.6	71.4	70.4	70.8	71.4	70.7	71.3	72.3	
Loss		107.2	103.0	101.7	99.9	98.6	99.2	100.0	99.0	99.9	101.3	
Anchorage	general	660.0	600.0	570.0	540.0	510.0	480.0	480.0	450.0	450.0	450.0	
	particular	132.0	120.0	114.0	108.0	102.0	96.0	96.0	90.0	90.0	90.0	
Formwork		87.4	90.5	93.6	96.7	99.8	102.9	106.0	109.1	112.2	115.3	
Labor	concrete	209.7	217.2	224.7	232.1	239.6	247.0	254.5	261.9	269.4	276.8	
	steel	727.6	696.0	681.5	667.1	652.7	651.6	654.5	640.0	642.9	645.8	
Transportation	USD/girder	42.8	44.4	45.9	47.4	48.9	50.4	51.9	53.5	55.0	56.6	
Administration		1337.2	1292.4	1278.2	1262.1	1248.1	1253.5	1266.3	1254.8	1268.0	1284.5	
Cost/girder	USD	3715.8	3593.7	3556.0	3512.8	3475.8	3492.3	3528.7	3498.6	3536.3	3583.1	
Cost	USD	48305.1	46718.7	46228.3	45666.4	45186.0	45400.1	45872.8	45481.6	45972.1	46579.7	
Girder setting	USD	668.25	678.48	688.16	697.85	708.08	717.76	727.45	737.68	747.36	757.59	
Concrete joint	USD	953.86	953.86	953.86	953.86	953.86	953.86	953.86	953.86	953.86	953.86	
Cost	USD	49927.2	48351.1	47870.3	47318.2	46847.9	47071.8	47554.1	47173.1	47673.3	48291.1	

#	unit	G12 f80									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2219	2294	2369	2444	2519	2594	2669	2744	2819	2894
Self-weight	ton	11.261	11.633	12.006	12.399	12.772	13.165	13.538	13.910	14.304	14.676
Total weight	ton	135.130	139.601	144.072	148.792	153.263	157.982	162.454	166.925	171.644	176.116
Ap	mm ²	2380	2240	1960	1820	1680	1540	1540	1400	1400	1260
n	strands	17	16	14	13	12	11	11	10	10	9
Debonded	strands	12	11	10	9	8	7	7	6	6	5
	X1(m)	5.5	5.5	5.5	5.5	5.0	4.5	4.5	4.0	4.0	3.5
	length(m)	99.0	90.8	82.5	74.3	60.0	47.3	47.3	36.0	36.0	26.3
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost	49.500	45.375	41.250	37.125	30.000	23.625	23.625	18.000	18.000	13.125
Vc	m ³	4.593	4.749	4.904	5.059	5.214	5.370	5.525	5.680	5.835	5.991
	Unit cost	60	60	60	60	60	60	60	60	60	60
	cost	275.600	284.915	294.230	303.545	312.860	322.175	331.490	340.805	350.120	359.435
Wp	kg	386.738	363.989	318.490	295.741	272.992	250.242	250.242	227.493	227.493	204.744
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	367.401	345.789	302.566	280.954	259.342	237.730	237.730	216.118	216.118	194.507
RC bars	kg	183.778	183.778	183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg	353.188	361.203	369.218	377.233	385.248	393.263	401.278	409.293	417.308	425.323
	total	536.965	544.980	552.995	561.010	569.025	613.796	621.811	629.826	637.841	645.856
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost	241.634	245.241	248.848	252.455	256.061	276.208	279.815	283.422	287.028	290.635
PC slab	strands	33	33	33	33	33	33	33	33	33	33
	wp (kg)	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310
	anchorage	66	66	66	66	66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000
	cost/girder	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332
Materials cost	Girder	692.501	676.079	638.045	621.624	602.202	583.530	592.845	574.923	584.238	567.066
	Total	1035.467	1022.652	988.225	975.410	959.595	961.070	973.991	959.676	972.598	959.033
Transversal		86.3	85.2	82.4	81.3	80.0	80.1	81.2	80.0	81.0	79.9
Loss		112.2	110.8	107.1	105.7	104.0	104.1	105.5	104.0	105.4	103.9
Anchorage	general	690.0	660.0	600.0	570.0	540.0	510.0	510.0	480.0	480.0	450.0
	particular	138.0	132.0	120.0	114.0	108.0	102.0	102.0	96.0	96.0	90.0
Formwork		91.9	95.0	98.1	101.2	104.3	107.4	110.5	113.6	116.7	119.8
Labor	concrete	220.5	227.9	235.4	242.8	250.3	257.7	265.2	272.6	280.1	287.5
	steel	749.1	734.7	703.0	688.6	674.2	673.0	675.9	661.5	664.4	650.0
Transportation	USD/girder	45.0	46.5	48.0	49.6	51.1	52.7	54.2	55.6	57.2	58.7
Administration		1392.7	1378.5	1336.2	1322.0	1305.8	1308.8	1325.2	1310.0	1326.5	1311.8
Cost/girder	USD	3871.1	3833.2	3718.3	3680.5	3637.1	3646.8	3693.6	3653.0	3699.9	3660.6
Cost	USD	46453.3	45998.9	44619.7	44166.3	43645.6	43762.1	44323.6	43836.1	44398.6	43927.6
Girder setting	USD	630.26	639.20	648.14	657.58	666.53	675.96	684.91	693.85	703.29	712.23
Concrete joint	USD	874.37	874.37	874.37	874.37	874.37	874.37	874.37	874.37	874.37	874.37
Cost	USD	47957.9	47512.4	46142.2	45698.2	45186.5	45312.4	45882.9	45404.3	45976.3	45514.2

#	unit	G11 f80									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2345	2420	2495	2570	2645	2720	2795	2870	2945	3020
Self-weight	ton	11.903	12.275	12.648	13.041	13.414	13.786	14.180	14.552	14.945	15.318
Total weight	ton	130.928	135.026	139.125	143.451	147.550	151.648	155.975	160.073	164.399	168.498
Ap	mm ²	2520	2240	2100	1960	1820	1680	1540	1540	1400	1400
n	strands	18	16	15	14	13	12	11	11	10	10
Debonded	strands	13	11	10	9	9	8	7	7	6	6
	X1(m)	6.0	6.0	6.0	5.5	5.0	5.0	4.5	4.0	4.0	3.5
	length(m)	117.0	99.0	90.0	74.3	67.5	60.0	47.3	42.0	36.0	31.5
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost	58.500	49.500	45.000	37.125	33.750	30.000	23.625	21.000	18.000	15.750
Vc	m ³	4.854	5.009	5.165	5.320	5.475	5.630	5.786	5.941	6.096	6.251
	Unit cost	60	60	60	60	60	60	60	60	60	60
	cost	291.249	300.564	309.879	319.194	328.509	337.824	347.139	356.454	365.769	375.084
Wp	kg	409.487	363.989	341.240	318.490	295.741	272.992	250.242	250.242	227.493	227.493
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	389.013	345.789	324.178	302.566	280.954	259.342	237.730	237.730	216.118	216.118
RC bars	kg	183.778	183.778	183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg	376.484	384.499	392.514	400.529	408.544	416.559	424.574	432.589	440.604	448.619
	total	560.261	568.276	576.291	584.306	592.321	637.092	645.107	653.122	661.137	669.152
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost	252.118	255.724	259.331	262.938	266.545	286.691	290.298	293.905	297.512	301.118
PC slab	strands	33	33	33	33	33	33	33	33	33	33
	wp (kg)	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310
	Inchorage	15	15	15	15	00	15	00	00	00	00
	cost	13	13	13	13	13	13	13	13	13	15
	cost/girder	101 222	101 222	101 222	101 222	101 222	101 222	101 222	101 222	101 222	101 222
Materials cost	Girder	738 762	695 853	679.057	658 885	643 213	627 166	608 494	615 184	500 887	606.952
Wateriais cost	Total	1092 211	1052 909	1039 719	1023 154	1011 089	1015 189	1000 124	1010 420	998 730	1009 402
Transversal	Total	99.3	95.7	94.5	93.0	91.9	92.3	90.9	91.9	90.8	91.8
Loss		119.2	114.9	113.4	111.6	110.3	110.7	109.1	110.2	109.0	110.1
Anchorage	general	720.0	660.0	630.0	600.0	570.0	540.0	510.0	510.0	480.0	480.0
	particular	144.0	132.0	126.0	120.0	114.0	108.0	102.0	102.0	96.0	96.0
Formwork	1	97.1	100.2	103.3	106.4	109.5	112.6	115.7	118.8	121.9	125.0
Labor	concrete	233.0	240.5	247.9	255.4	262.8	270.3	277.7	285.2	292.6	300.1
	steel	774.8	743.1	728.7	714.3	699.8	698.7	684.3	687.2	672.8	675.6
Transportation	USD/girder	47.6	49.1	50.6	52.2	53.7	55.1	56.7	58.2	59.8	61.3
Administration		1464.2	1418.6	1404.1	1387.3	1373.5	1378.2	1362.4	1377.2	1363.7	1378.7
Cost/girder	USD	4071.3	3946.9	3908.2	3863.3	3826.6	3841.1	3799.0	3841.1	3805.2	3848.0
Cost	USD	44784.3	43415.7	42989.7	42495.8	42092.8	42252.4	41789.0	42252.1	41857.6	42328.3
Girder setting	USD	591.86	600.05	608.25	616.90	625.10	633.30	641.95	650.15	658.80	667.00
Concrete joint	USD	794.88	794.88	794.88	794.88	794.88	794.88	794.88	794.88	794.88	794.88
Cost	USD	46171.0	44810.7	44392.9	43907.6	43512.7	43680.6	43225.9	43697.1	43311.3	43790.2

#	unit		G10 f80									
h	cm	75	80	85	90	95	100	105	110	115	120	
А	cm ²	2489	2564	2639	2714	2789	2864	2939	3014	3089	3164	
Self-weight	ton	12.627	13.000	13.393	13.766	14.138	14.531	14.904	15.277	15.670	16.043	
Total weight	ton	126.270	129.996	133.929	137.655	141.381	145.314	149.040	152.766	156.699	160.425	
Ap	mm ²	2800	2520	2240	2100	1960	1820	1680	1680	1540	1540	
n	strands	20	18	16	15	14	13	12	12	11	11	
Debonded	strands	14	13	11	10	9	8	7	7	6	6	
	X1(m)	6.0	6.0	6.0	5.5	5.5	5.0	5.0	4.5	4.0	4.0	
	length(m)	126.0	117.0	99.0	82.5	74.3	60.0	52.5	47.3	36.0	36.0	
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
	cost	63.000	58.500	49.500	41.250	37.125	30.000	26.250	23.625	18.000	18.000	
Vc	m ³	5.152	5.307	5.463	5.618	5.773	5.928	6.084	6.239	6.394	6.549	
	Unit cost	60	60	60	60	60	60	60	60	60	60	
	cost	309.134	318.449	327.764	337.079	346.394	355.709	365.024	374.339	383.654	392.969	
Wp	kg	454.986	409.487	363.989	341.240	318.490	295.741	272.992	272.992	250.242	250.242	
	Unit cost	950	950	950	950	950	950	950	950	950	950	
	cost	432.237	389.013	345.789	324.178	302.566	280.954	259.342	259.342	237.730	237.730	
RC bars	kg	183.778	183.778	183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533	
	kg	388.833	396.848	404.863	412.878	420.893	428.908	436.923	444.938	452.953	460.968	
	total	572.611	580.626	588.641	596.656	604.671	649.441	657.456	665.471	673.486	681.501	
	Unit cost	450	450	450	450	450	450	450	450	450	450	
	cost	257.675	261.282	264.888	268.495	272.102	292.249	295.855	299.462	303.069	306.676	
PC slab	strands	33	33	33	33	33	33	33	33	33	33	
	wp (kg)	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	
	Unit cost	950	950	950	950	950	950	950	950	950	950	
	cost	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	
	anchorage	15	15	15	15	00	15	15	00	00	15	
	cost	13	13	13	13	15	13	15	13	13	13	
	cost/girder	101 222	101 222	101 222	101 222	101 222	101 222	101 222	101 222	101 222	101 222	
Materials cost	Girder	804 371	765.062	723.053	702 506	686.084	666 663	650.616	657 306	630 384	648 600	
Wateriais cost	Total	1163 377	1128 575	1089 273	1072 333	1059 518	1060 243	1047 803	1058.099	1043 784	1056 706	
Transversal	Total	116.3	1120.575	108.9	107.2	1059.510	106.0	104 8	1050.077	104.4	1050.700	
Loss		128.0	124.1	119.8	118.0	116.5	116.6	115.3	116.4	114.8	116.2	
Anchorage	general	780.0	720.0	660.0	630.0	600.0	570.0	540.0	540.0	510.0	510.0	
	particular	156.0	144.0	132.0	126.0	120.0	114.0	108.0	108.0	102.0	102.0	
Formwork	r	103.0	106.1	109.3	112.4	115.5	118.6	121.7	124.8	127.9	131.0	
Labor	concrete	247.3	254.8	262.2	269.7	277.1	284.6	292.0	299.5	306.9	314.4	
	steel	813.8	782.1	750.4	736.0	721.6	720.4	706.0	708.9	694.5	697.4	
Transportation	USD/girder	50.5	52.0	53.6	55.1	56.6	58.1	59.6	61.1	62.7	64.2	
Administration		1559.9	1517.1	1471.2	1454.1	1439.8	1442.3	1428.2	1443.0	1427.7	1444.3	
Cost/girder	USD	4338.2	4221.6	4096.7	4050.7	4012.5	4020.9	3983.3	4025.6	3984.6	4031.8	
Cost	USD	43382.3	42216.2	40966.8	40507.4	40125.1	40208.5	39833.3	40255.8	39846.3	40317.9	
Girder setting	USD	552.54	559.99	567.86	575.31	582.76	590.63	598.08	605.53	613.40	620.85	
Concrete joint	USD	715.39	715.39	715.39	715.39	715.39	715.39	715.39	715.39	715.39	715.39	
Cost	USD	44650.2	43491.6	42250.1	41798.1	41423.2	41514.6	41146.7	41576.7	41175.1	41654.1	

#	unit	G09 f80									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2615	2690	2765	2840	2915	2990	3065	3140	3215	3290
Self-weight	ton	13.269	13.641	14.014	14.407	14.780	15.173	15.546	15.918	16.312	16.684
Total weight	ton	119.418	122.772	126.125	129.665	133.018	136.558	139.911	143.265	146.804	150.158
Ap	mm ²	3360	2800	2520	2240	2100	1960	1820	1820	1680	1680
n	strands	24	20	18	16	15	14	13	13	12	12
Debonded	strands	15	14	12	11	10	9	8	8	7	7
	X1(m)	4.5	6.0	6.5	6.5	6.0	5.5	5.5	5.0	4.5	4.0
	length(m)	101.3	126.0	117.0	107.3	90.0	74.3	66.0	60.0	47.3	42.0
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost	50.625	63.000	58.500	53.625	45.000	37.125	33.000	30.000	23.625	21.000
Vc	m ³	5.413	5.568	5.724	5.879	6.034	6.189	6.345	6.500	6.655	6.810
	Unit cost	60	60	60	60	60	60	60	60	60	60
	cost	324.783	334.098	343.413	352.728	362.043	371.358	380.673	389.988	399.303	408.618
Wp	kg	545.983	454.986	409.487	363.989	341.240	318.490	295.741	295.741	272.992	272.992
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	518.684	432.237	389.013	345.789	324.178	302.566	280.954	280.954	259.342	259.342
RC bars	kg	183.778	183.778	183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg	451.911	459.926	467.941	475.956	483.971	491.986	500.001	508.016	516.031	524.046
	total	635.688	643.703	651.718	659.733	667.748	712.519	720.534	728.549	736.564	744.579
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost	286.060	289.666	293.273	296.880	300.487	320.633	324.240	327.847	331.454	335.060
PC slab	strands	33	33	33	33	33	33	33	33	33	33
	wp (kg)	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310
	anchorage	66	66	66	66	66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000
Matariala agat	Circler	101.332	101.332	700.026	101.332	721.221	711.040	101.332	700.042	101.332	101.332
Waterials cost	Total	094.092	029.333 1220.333	1185 531	1150 354	1133 030	1133 014	1120 100	1130 120	1115.055	1125 352
Transversal	Total	142.4	135.6	131.7	127.8	125.0	125.014	120.177	125.6	123.0	125.0
Loss		142.4	135.6	131.7	127.8	125.9	125.9	124.5	125.6	123.9	125.0
Anchorage	general	900.0	780.0	720.0	660.0	630.0	600.0	570.0	570.0	540.0	540.0
	particular	180.0	156.0	144.0	132.0	126.0	120.0	114.0	114.0	108.0	108.0
Formwork	1	108.3	111.4	114.5	117.6	120.7	123.8	126.9	130.0	133.1	136.2
Labor	concrete	259.8	267.3	274.7	282.2	289.6	297.1	304.5	312.0	319.4	326.9
	steel	905.6	839.4	807.7	776.0	761.6	760.4	746.0	748.9	734.5	737.4
Transportation	USD/girder	53.1	54.6	56.1	57.6	59.1	60.7	62.2	63.7	65.2	66.7
Administration		1726.6	1638.0	1594.9	1551.5	1534.1	1536.1	1521.7	1536.3	1520.4	1535.3
Cost/girder	USD	4799.6	4558.1	4440.8	4322.9	4275.9	4282.9	4244.4	4286.1	4243.5	4286.0
Cost	USD	43196.6	41022.6	39967.2	38906.2	38483.4	38545.9	38199.6	38575.3	38191.6	38573.6
Girder setting	USD	508.84	515.54	522.25	529.33	536.04	543.12	549.82	556.53	563.61	570.32
Concrete joint	USD	794.88	794.88	794.88	794.88	794.88	794.88	794.88	794.88	794.88	794.88
Cost	USD	44500.3	42333.0	41284.3	40230.4	39814.3	39883.9	39544.3	39926.7	39550.0	39938.8

#	unit	G08 f80									
h	cm	75	80	85	90	95	100	105	110	115	120
А	cm ²	2831	2906	2981	3056	3131	3206	3281	3356	3431	3506
Self-weight	ton	14.366	14.738	15.111	15.504	15.877	16.250	16.643	17.015	17.409	17.781
Total weight	ton	114.926	117.907	120.888	124.034	127.015	129.996	133.142	136.123	139.270	142.250
Ap	mm ²	3640	2940	2520	2380	2240	2100	1960	1820	1820	1680
n	strands	26	21	18	17	16	15	14	13	13	12
Debonded	strands	16	14	12	11	10	9	8	8	7	6
	X1(m)	7.5	5.5	6.5	6.0	5.5	5.0	5.0	4.5	4.0	4.0
	length(m)	180.0	115.5	117.0	99.0	82.5	67.5	60.0	54.0	42.0	36.0
	Unit cost	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	cost	90.000	57.750	58.500	49.500	41.250	33.750	30.000	27.000	21.000	18.000
Vc	m ³	5.860	6.015	6.171	6.326	6.481	6.636	6.792	6.947	7.102	7.257
	Unit cost	60	60	60	60	60	60	60	60	60	60
	cost	351.610	360.925	370.240	379.555	388.870	398.185	407.500	416.815	426.130	435.445
Wp	kg	591.482	477.735	409.487	386.738	363.989	341.240	318.490	295.741	295.741	272.992
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	561.908	453.849	389.013	367.401	345.789	324.178	302.566	280.954	280.954	259.342
RC bars	kg	183.778	183.778	183.778	183.778	183.778	220.533	220.533	220.533	220.533	220.533
	kg	480.913	488.928	496.943	504.958	512.973	520.988	529.003	537.018	545.033	553.048
	total	664.690	672.705	680.720	688.735	696.750	741.521	749.536	757.551	765.566	773.581
	Unit cost	450	450	450	450	450	450	450	450	450	450
	cost	299.111	302.717	306.324	309.931	313.538	333.684	337.291	340.898	344.505	348.111
PC slab	strands	33	33	33	33	33	33	33	33	33	33
	wp (kg)	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5	344.5
	Unit cost	950	950	950	950	950	950	950	950	950	950
	cost	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310	327.310
	anchorage	66	66	66	66	66	66	66	66	66	66
	Unit cost	15	15	15	15	15	15	15	15	15	15
	cost	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000	990.000
	cost/girder	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332	101.332
Materials cost	Girder	1003.518	872.524	817.753	796.456	775.910	756.113	740.066	724.769	728.084	712.787
	Total	1403.960	1276.573	1225.409	1207.719	1190.779	1191.129	1178.688	1166.998	1173.920	1162.230
Transversal		175.5	159.6	153.2	151.0	148.8	148.9	147.3	145.9	146.7	145.3
Loss		157.9	143.6	137.9	135.9	134.0	134.0	132.6	131.3	132.1	130.8
Anchorage	general	960.0	810.0	720.0	690.0	660.0	630.0	600.0	570.0	570.0	540.0
-	particular	192.0	162.0	144.0	138.0	132.0	126.0	120.0	114.0	114.0	108.0
Formwork		117.2	120.3	123.4	126.5	129.6	132.7	135.8	138.9	142.0	145.1
Labor	concrete	281.3	288.7	296.2	303.6	311.1	318.5	326.0	333.5	340.9	348.4
	steel	950.7	867.1	818.1	803.7	789.3	788.1	773.7	759.3	762.2	747.8
Transportation	USD/girder	57.5	59.0	60.4	62.0	63.5	65.0	66.6	68.1	69.6	71.1
Administration		1872.4	1724.6	1656.2	1638.3	1621.0	1623.3	1609.0	1595.2	1607.9	1594.1
Cost/girder	USD	5208.4	4801.4	4614.8	4566.8	4520.1	4527.7	4489.7	4453.1	4489.4	4452.8
Cost	USD	41667.1	38411.5	36918.4	36534.2	36160.9	36221.5	35917.8	35624.8	35915.3	35622.4
Girder setting	USD	469.85	475.81	481.78	488.07	494.03	499.99	506.28	512.25	518.54	524.50
Concrete joint	USD	695.52	695.52	695.52	695.52	695.52	695.52	695.52	695.52	695.52	695.52
Cost	USD	42832.4	39582.8	38095.7	37717.8	37350.5	37417.1	37119.6	36832.5	37129.4	36842.4