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Abstract

This research focuses on the study of the emission spectrum from microwave 

discharge of N2 /O2 gas mixture in the UV and visible range (from 200 – 800 nm) in a 

cylindrical quartz tube aiming to apply it as a mercury free electrode less UV light 

source which can be used for water purification. N2 /O2 discharge emits intensive UV 

light in the 210 nm to 315 nm region which has germicidal effect. We investigated the 

dependence of gas composition and total pressure on the intensity of the UV emission. 

The experimental results showed that the UV intensity in 2100- 315 nm region varies 

with gas composition and pressure. In the examined condition, the highest was obtained 

at 20% O2 concentration and 500 Pa total pressure. 

In this research, experiments were carried out to study the effect of inert gases 

on the intensity of the emission from N2 /O2 discharge. He, Ne, Ar, Kr and Xe gases 

were used at different percentages of concentration. It was observed that at low 

concentration below 5%, these gases have no effect on the emission intensity whereas 

the emission intensity in both the UV and visible ranges decreased as the rare gas 

concentration was increased. The gases only behave as buffer gases. Buffer gases 

caused collisions with the other co-existing molecules and decreases the emission 

intensity.

Long time operation of microwave excited N2 /O2 gas mixture discharge

without refreshing the enclosed gas was also conducted. To avoid degradation of 

enclosed molecular gases through chemical reactions with electrodes, we used electrode 

less microwave excitation for discharge in closed quartz discharge tubes. It was found 

that the intensity of NO peaks decreased with time due to the decrease of O2
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concentration inside the closed tube with operation time. Within 1 hour of operation, O2

concentration decreased from 20% to 5% and in the following 10 hours, O2

concentration reached to almost 1%. The pressure of N2 also decreased with time. After 

several 10 hours of operation the pressure of N2 dropped to a level which is not enough 

to sustain the plasma. 

In this study, we also estimated UV, germicidal UV and effective germicidal 

power density in comparison with a low pressure commercial mercury lamp (GL10). 

The UV (200 -400 nm) power density was 1100 μW/cm2 from N2/O2 discharge and was 

180 μW/cm2 from GL10 lamp. Power density in the germicidal range (210 nm t0 315 

nm) was 470 μW/cm2 from N2/O2 discharge and was 170 μW/cm2 from GL10 lamp 

whereas the effective germicidal power density was 170 μW/cm2 from N2/O2 discharge

and was 120 μW/cm2 from GL10 lamp. In case of Hg lamp, 95% of the UV light is 

emitted in the germicidal region and 65% of the total UV light is effective in germicidal 

action. On the other hand, in case of N2/O2 discharge 45% of the UV light is emitted in 

the germicidal range and only 15% of it is effective in germicidal action.
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Chapter 1 

Introduction

Energetic UV radiations have found many technical applications in various 

biological, physical and chemical processes. Examples include disinfection of drinking

water [1-8], sterilization of medical equipments [4-8], photochemical synthesis [9], and 

photo-enhanced chemical vapor deposition [10-11]. Recently UV irradiation of water 

has been established as a mature alternative to chlorination for disinfection of drinking 

water [12] . However Hg which is used today as filling element in the UV light source 

is highly toxic. Environmental groups worldwide are calling for limits on the use of 

mercury in electrical and electronic equipment. So the replacement of mercury in 

conventional UV lamps by other components is highly desirable. 

Ultraviolet (UV) light is electromagnetic radiation with a wavelength shorter 

than that of visible light, but longer than X-rays. The range of electromagnetic radiation 

is shown in figure 1.1. Ultraviolet light is not visible to the human eye. UV light is 

typically found as part of the radiation received by the Earth from the Sun. The Sun

emits ultraviolet radiation in the UVA, UVB, and UVC bands, but because of 

absorption in the atmosphere's ozone layer, 98.7% of the ultraviolet radiation that 

reaches the Earth's surface is UVA. The UV spectrum has many effects, including both 

beneficial and damaging changes to human health.  In 1801 the German physicist 

Johann Wilhelm Ritter made the hallmark observation that invisible rays just beyond 
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      Gamma    X-ray      UV       Visible      IR       Radio

           10-2 nm     10 nm    400 nm     750 nm     1 nm

Fig. 1.1: Range of electromagnetic waves

the violet end of the visible spectrum were responsible for darkening silver salts when 

exposed to sunlight [1]. He called them "de-oxidizing rays" to emphasize their chemical 

Table 1.1: Wavelength range of the various subdivisions of UV light

Type Wavelength range

Ultraviolet A (UVA) 400 nm – 315 nm

Near UV (NUV) 400 nm – 300 nm

Ultraviolet B or Medium 

wave (UVB)

315 nm – 280 nm

Middle UV (MUV) 300 nm – 200 nm

Ultraviolet A, short wavr or 

germicidal (UVC)

280 nm – 100 nm

Far UV (FUV) 200 nm – 122 nm

Vacuum UV (VUV) 200 nm – 10 nm

Extreme UV (EUV) 121 nm – 10 nm
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reactivity. The simpler term "chemical rays" was adopted shortly thereafter, and it 

remained popular throughout the 19th century. The term chemical ray was eventually 

dropped in favor of ultraviolet radiation [2]. The electromagnetic spectrum of

ultraviolet light can be subdivided in a number of ways. The draft ISO standard on 

determining solar irradiances (ISO-DIS-21348)[13] describes the following ranges as 

shown in table 1.1.

1.1 Applications of UV 

UV radiations have many applications in different fields. Some of the 

important applications are mentioned here:

1.1.1 Sterilization

UV light is used to sterilize workplaces and biological and medical tools used 

in laboratories and medical facilities [3-7]. Commercially-available low pressure Hg 

lamp that emits  light at 254 nm is widely used for this purpose. The light emitted at 

254 nm has the highest the germicidal effect on the germicidal effectiveness curve (i.e., 

effectiveness for UV absorption by DNA)[1]. 

1.1.2 Disinfection of drinking water

UV radiation can be an effectively used to kill virus and bacteria. UV radiation 

is used for disinfection of drinking water and pool water [8]. Recently UV irradiation of 

water has been established as a mature alternative to chlorination for disinfection of 

drinking water [9] . Many companies use UV disinfection equipment to sterilize spring 

water before bottling. New York City has approved the construction of a 2 billion gallon 

per day ultraviolet drinking water disinfection facility [14]. A process named SODIS [2] 
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has been intensively researched in Switzerland and has proven ideal to treat small 

quantities of water using natural sunlight. 

1.1.3 Spectrophotometry

For analyzing chemical structure of materials, UV/VIS spectroscopy is widely 

used as a powerful technique in chemistry. UV radiation is often used in visible 

spectrophotometry to determine the existence of fluorescence in a given sample.

1.1.4 Photolithography

Photolithography is extensively used in the electronics industry for 

manufacturing semiconductor devices and integrated circuit components [15-17].

Photolithography is a process used to transfer circuit patterns onto a semiconductor 

wafer.Ultraviolet radiation is used for very fine resolution photolithography. 

1.1.5 Analyzing minerals 

Ultraviolet light is also used in analyzing minerals, gems, and in other detective 

work. Under visible light different materials may look the same, but under ultraviolet 

light they fluoresce to different degrees.

1.1.6 Astronomy 

Ultraviolet astronomy uses ultraviolet wavelengths between approximately 100 

and 3200 Å (10 to 320 nm)[18] which is best suited to the study of thermal radiation and 

spectral emission lines from hot blue stars that are very bright in this wave band. Most 

UV observations are made from space as the ozone layer blocks many UV frequencies 
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from reaching telescopes on the surface of the Earth.

1.1.7 Security purpose 

To ensure the security of sensitive documents (e.g. credit cards, driver's 

licenses, passports) many countries include a UV watermark/ stickers on them that are 

invisible to the naked eye under normal lights, but strongly visible under UV 

illumination. Banknotes of various countries have an image, as well as many 

multicolored fibers, that are visible only under ultraviolet light.

1.1.8 Pest control 

Ultraviolet traps are used to eliminate various small flying insects. They are 

attracted to the UV light, and are killed using an electric shock, or trapped once they 

come into contact with the device. Different designs of ultraviolet light traps are also 

used by entomologists for collecting nocturnal insects during faunistic survey studies.

1.1.9 Chemical markers 

UV fluorescent dyes are used in many applications (for example, biochemistry

and forensics). Many substances, such as proteins, have significant light absorption 

bands in the ultraviolet that are of use and interest in biochemistry and related fields. 

1.1.10 Checking of electric insulation

Detection of corona discharge (often simply called "corona") on electrical 

apparatuses is a new application of UV light. Degradation of insulation of electrical 

apparatus or pollution causes corona causing the emission of ultraviolet radiation. 
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1.1.11 Food processing

As the demand for fresh and safe food products increases, the demand for 

nonthermal and improved food processing methods is also increasing. Ultraviolet 

radiation is used in several food processes to remove unwanted microorganism. UV 

light can be used to pasteurize fruit juices by flowing the juice over a high intensity 

ultraviolet light source. 

1.1.12 Curing of inks, adhesives, varnishes and coatings 

UV light is used for polymerization of organic coatings and paints [19-20]. 

Certain inks, coatings and adhesives when exposed to the correct energy and irradiance 

in the required band of UV light, polymerization occurs, and so the adhesives harden or 

cure. Many industries have developed UV lamps for UV curing applictions. 

1.1.13 Photo-enhanced chemical vapor deposition

UV light is also used in semiconductor industries for fabrication. UV light is 

used in Photo-enhanced chemical vapour deposition for fabrication of certain materials 

[21-22] .

1.2 Disinfection of water by UV light

Bactericidal effect of radiant energy from sunlight was first reported in 1877 

[23]. The technical use of UV light made progress after the discovery of the mercury 

vapor lamp by Hewitt in 1901 and the first disinfection of drinking water was done at 

the city of Marseille in France in 1910. The method of inactivation of water-endurable 

microorganisms and viruses by means of UV irradiation has proved its effectiveness. 
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This method does not spoil taste and smell of water after treatment and does not bring 

any undesirable by-products in water. It is rapidly gaining in popularity as the 

alternative to conventional reagent techniques.

1.2.1 Mechanism of disinfection 

The disinfection of microorganisms with UV light is fundamentally a 

photochemical process. So the effectiveness of disinfection by this process depends on 

the amount of UV light absorbed by the microorganisms. The absorption by cellular 

material results from absorption by protein and by nucleic acids (DNA and RNA). UV 

irradiation photochemically damages or alters the DNA of the microorganisms. Decay 

of microorganism occurs due to the lack of capability of further multiplication of the 

microorganism with damaged nucleic acids. UV light at different wavelengths is not 

equally absorbed by the nucleic acids of the microorganisms.  As for example, UV 

light emitted at 254 nm is mostly absorbed while only small portion of UV light at 290 

nm is absorbed. So the effective germicidal efficiency of UV light at different 

wavelengths is not equal. The effective germicidal efficiency of UV light varies with the 

wavelength of the emitted light having the maximum at 260 nm. The potential 

disinfection efficiency of UV light is presented in figure 1.2.
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Fig.1.2: Germicidal efficiency distribution curve of UV light [1]

1.2.2 Dose of irradiation:

Irradiation dose is the total amount of energy that is transferred to water in the form of 

UV radiation. It is most commonly expressed as D10 value which represents the dose 

required to reduce the population by 90% [24]. 

The irradiation dose depends on three factors, namely:

i) Mean intensity of irradiation applied to water under treatment

  ii) Time of its exposure to UV radiation and

  iii) Water transparent index (T10).

T10 is the percent of UV radiation remaining after its passing through a water 

layer of 10 mm in thickness. The lower T10 value, the larger the amount of energy 

required for disinfection. T10 value depends on the quality and on the potential elements 

present in the water. The dose of irradiation is measured in J/cm2 or J/m2 and is 

calculated by the formula:

D= I×t
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where I is the UV radiation density in W/cm2 or W/m2 and t is the time of exposure in 

second.

1.3 Overview of gas discharge plasmas 

Plasmas are often called a fourth state of matter. A plasma is free charged 

particles moving in random directions that is, on the average, electrically neutral [25]. 

Plasma consists of positive ions, electrons as well as neutral species. The schematic 

view of plasma is shown in figure 1.3. It has been often said that 99% of the matter in 

the universe is in the plasma state [26]. This is certainly a reasonable one in view of the 

fact that stellar interiors and atmospheres, gaseous nebulae and much of the interstellar 

hydrogen are plasmas. Besides the astro-plasmas, we can classify the laboratory plasma 

in to two main groups, i.e. high temperature plasmas, and the low-temperature plasmas 

or gas discharges. Depending on the pressure in the plasma, the gas discharge plasmas 

can also be divided into ‘local thermal equilibrium’ (LTE) and non-LTE plasmas [27]. 

Indeed, a high gas pressure implies many collisions in the plasma (i.e. a short collision 

mean free path, compared to the discharge length), leading to an efficient energy 

exchange between the plasma species, and hence, equal temperatures. LTE discharges, 

which are characterized by rather high temperatures, are typically used for applications 

where heat is required, such as for cutting, spraying, welding or, as in the analytical ICP, 

for the evaporation of an analyte material. A low gas pressure, on the other hand, results 

in only a few collisions in the plasma (i.e. a long collision mean free path compared to 

the discharge length), and consequently, different temperatures of the plasma species 

due to inefficient energy transfer. Non-LTE plasmas, on the other hand, are typically

used for applications where heat is not desirable, such as 
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Fig. 1.3: Schematic view of plasma

for etching or the deposition of thin layers. In recent years, the field of gas discharge 

plasma applications has rapidly expanded. Because of multi-dimensional parameter of 

the plasma conditions, there exists a large variety of gas discharge plasmas, employed in 

a large range of applications. The important gas discharges are:

i) DC discharge

ii) Microwave discharge

iii) Capacitively coupled rf discharge

iv) Dielectric barrier discharges (DBDs)

v) Inductively coupled plasmas (ICPs)

In the following, an overview of two most important kinds of gas discharge plasmas 

will be presented.

1.3.1 DC discharge

The DC discharge is one of the most well studied gas discharges and widely 

applied to the plasma devices. In the simplest case, it is formed by applying a potential 
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difference (of a few 100 V to a few kV) between two electrodes that are inserted in a cell (or 

that form the walls of the cell).  The cell is filled with a gas (an inert gas or a reactive gas) at 

a pressure ranging from a few mTorr to atmospheric pressure. When a sufficiently high 

potential difference is applied between two electrodes placed in a gas, the latter will 

break down into positive ions and electrons, giving rise to a gas discharge. The 

mechanism of the gas breakdown can be explained as follows: a few electrons are 

emitted from the electrodes due to the omnipresent cosmic radiation. Without applying 

a potential difference, the electrons emitted from the cathode are not able to sustain the 

discharge. However, when a potential difference is applied, the electrons are accelerated 

by the electric field in front of the cathode and collide with the gas atoms. The most 

important collisions are the inelastic collisions, leading to excitation and ionization. The 

excitation collisions, followed by de-excitations with the emission of radiation, are 

responsible for the characteristic name of the ‘glow’ discharge. The discharge can 

operate in a rare gas (most often argon or helium) or in a reactive gas (N2, O2, H2, CH4, 

Si H4, SiF4, etc.), as well as in a mixture of these gases [25].

Glow discharges are used in a large number of application fields.  The most 

important application is probably in the microelectronics industry and in materials 

technology, for surface treatment, etching of surfaces (e.g., for the fabrication of integrated 

circuits), deposition of thin protective coatings, plasma polymerisation, plasma modification 

of polymers and other surfaces. This is also used in the light industry (e.g., fluorescence 

lamps, neon advertisements), as gas lasers, and as flat plasma display panels for the new 

generation of flat large area television screens.
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1.3.2 Microwave discharge

MW can provide high power density with compared to other power sources 

and hence can produce high density plasma. In conventional dc discharges, the presence 

of the electrical connections and electrodes through the fused glass gives a limitation on 

the lifetime the plasma source. Microwave energy easily passes through the dielectric 

tube and so, unlike conventional lamps, they do not require electrodes [28]. All plasmas 

that are created by the injection of microwave power, i.e. electromagnetic radiation in 

the frequency range of 300 MHz to 10 GHz, can in principle be called ‘microwave 

induced plasmas’ (MIPs) [29-30]. This is, however, a general term which includes 

several different plasma types, e.g. cavity induced plasmas, free expanding atmospheric 

plasma torches, ECRs, surface wave discharges (SWD), etc. These different plasma 

types can operate over a wide range of conditions, i.e. a pressure ranging from less than 

0.1 Pa to a few atmospheres, a power between a few W and several hundreds of kW. 

They can also sustain in both noble gases and molecular gases [29]. 

1.4 Motivation and aim of the work

 UV radiations have many applications in biological, physical and chemical

and other fields. The method of purification of drinking water by means of UV 

irradiation is rapidly gaining popularity as the alternative to conventional reagent 

techniques.  Exposure of microbiological systems to UV light within the germicidal 

region from 210 to 315 nm results in the inactivation of the microorganisms. Irradiation

with UV light of a wavelength of 254 nm kills or renders bacteria incapable of 

reproduction by photochemically altering the DNA in the cell[28]. S. Iseki et al. 

developed plasma sterilization system using atmospheric pressure plasma. They 
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reported that Penicillium digitatum was successfully sterilized using atmospheric 

pressure plasma [31]. Y. Ohtsu et al. investigated the inactivation of Bacillus subtilis

spores using DBD plasma. They observed that the bacteria subtilis with  610  CFU/ml 

was sterilized within 20 min using He/ O2 gas mixture and 60 W RF power [32]. H. Eto 

et al. carried out sterilization experiment of Geobacillus stearothermophilus spores 

using DBD under air circumstance and pure N2 gas in atmospheric pressure [4]. They 

found that synergetic effect of ozone, UV and OH radicals affected sterilization event. 

N. Hayashi et al. examined the removal of protein from the surface of medical 

quipments using O2 plasma produced by RF plasma. They were able to remove the 

protein from th surface of the equipments within several hours avoiding any damage to 

the equipments [33]. M. K. Singh et al. investigated low pressure plasma sterilization of 

Geobacillus stearothermophilus spores using MW plasma [5]. They reported that UV 

emission along with reactive species in the plasma was the main sterilizing factor. S. 

Kitazaki et al. examined the sterilization of the inner surface of a tube using an AC HV 

glow discharge at low pressure [6]. They found that a tube with length of 500mm and 

diameter 4 mm was successfully sterilized within 10 min using oxygen plasma. Kenji 

Ban et al. investigated the sterilization performance of microwave plasma using 

N2/O2/He gas mixture and they observed a better performance [34]. UV light is also 

used for purification of drinking water. Now-a-days UV irradiation of water has been 

established as a mature alternative to chlorination for disinfection of drinking water. A 

I Al- Shamma et al. developed a low power microwave plasma high intensity UV light. 

They reported that the lamp can be used for water purification and ozone applications

[28]. 

Mercury which is used today as filling element in the UV light source is highly
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toxic and potentially carcinogenic. These dangers, even in very small quantities, can 

eventually lead to neurological system and brain damage in humans. Along with other 

harmful elements, such as lead, cadmium, and hexavalent chromium, environmental 

groups worldwide are calling for limits on the use of mercury in electrical and electronic 

equipment. European Union's RoHS (Restriction of Hazardous Substances) has already 

banned the use of lead, mercury, cadmium, chromium, polybrominated biphenyls and 

polybrominated diphenyl ethers from electronics sold in EU member states beginning

from 1 July 2006. So the replacement of mercury in conventional UV lamps by other 

components is highly desirable for environmental reasons. So now it is high time to find 

out the alternative of mercury as a light source. As reported by Hilbig et al. at LS-10

[35], molecular radiators are also options as mercury free light source. Research on 

molecular radiators is becoming popular with time. C. Fozza et al. investigated theVUV 

to near infrared emissions from molecular gas–noble gas mixtures (H2–Ar and O2–Ar) 

in order to obtain very intense VUV emissions from mixtures of gases, which can be 

useful for the photochemical treatment of polymer surfaces [36]. D Uhrlandt et al.

demonstrated a mercury free plasma light source operating at low pressure below 1 kPa. 

In the experiment, rare gas mixture was used for discharge as a effort to study the 

possibility of replacing conventional mercury-containing lamps by plasma light source 

[37]. A. Kono et al. observed VUV emission from Ar and Xe using microwave 

excitation aiming to apply it as VUV excimer light source [38]. A. Rahman et al. 

measured the optical emission spectra in the 110–400 nm regions from 

radio-frequency-driven (13.56 MHz) hollow slot microplasmas operating in open air at 

atmospheric pressure and they compared the magnitude of light emission from the open

air micro plasmas with values available from commercial UV mercury lamp [39].
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The electrode less discharge lamps operated by MW power has been expected 

as next generation lamps since they are considered to achieve excellent properties such 

as long-life, high efficiency and gas components filled in the lamps are environmentally 

friendly. The presence of the electrical connections and electrodes through the fused 

glass gives a limitation on the lifetime of the source. In conventional gas discharge, the 

electrode also absorbs gas inside the tube and causes chemical reaction with them. 

Microwave energy easily passes through the dielectric tube and so, unlike conventional 

lamps, they do not require electrodes which are not only a weakness for the longevity of 

conventional lamps but, most importantly, limit the amount of power per unit length 

that the lamp can produce. Filling gases in the tube avoid the problems of chemical 

reactivity with electrode to a large extent. Therefore, they have attracted an increasing 

interest in the field of lamp industry. Recently, the novel high intensity discharge lamps 

such as sulfur lamp and cluster lamp [40] have been developed using MW power higher 

than 200 W. Masaya Shido et al. introduced long life and high efficiency electrode less 

mercury-free lamps for industrial application [29]. A low power MW of 2.45 GHz from 

a magnetron was applied for generating plasma. A I Al- Shamma et al. developed a UV 

light source driven by microwave power for water purification [25]. 

In this work, the emission spectrum from microwave discharge of N2 /O2 gas 

mixture in the UV and visible range (from 200 – 800 nm) was studied in a cylindrical 

quartz tube aiming to apply it as a mercury free electrode less UV light source which 

can be used for water purification. In conventional gas discharge, the electrode absorbs 

N2 and O2 gas and causes chemical reaction with them. In this research, the discharge is 

driven by microwave power and there is no electrodes and electrical connection through 
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the fused glass tube which increases life time of the source. As of N2 /O2 gas mixture 

contains no toxic element like mercury, it will not create any environmental problem.

1.5 Organization of the report

This report consists of 6 chapters. The organization of this report is shown in 

figure 1.4. It begins with chapter 1, which includes overview and applications of UV 

light. In addition, the overview of different kinds of gas discharge plasmas is discussed 

in this chapter. After that background and aim of the study are given. 

In chapter 2, the production of microwave excited N2/O2 gas mixture discharge

in a cylindrical quartz tube is described. The effect of gas composition and total gas 

pressure on the emission intensity is discussed in this chapter. Experimental method and 

the causes of variation of emission intensity with gas composition and gas pressure are 

also explained in details.

In chapters 3, the effect of inert gases on the emission intensity from 

microwave excited N2 /O2 gas mixture discharge is discussed. He, Ne, Ar, Kr and Xe 

gases at different percentages of concentration was used in the experiment. It was 

observed that at low concentration below 5%, these gases have no effect on the 

emission intensity whereas the emission intensity in both the UV and visible ranges 

decreased as the rare gas concentration was increased. The causes of the decrease of 

emission intensity in both the UV and visible range are also explained.

Long time operation of microwave excited N2/O2 gas mixture discharge
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without refreshing the enclosed gas is discussed in chapter 4. The experimental method 

and the results obtained from the experiments are explained in the chapter. 

In chapter 5, the measurement technique and the comparison of the of the 

intensity of the emitted radiation ( in the UV and germicidal region) from the N2/O2 gas 

mixture microwave excited discharge and from low pressure commercial Hg lamp 

( MITSUBIHI/ OSRAM GL10) are discussed. In case of Hg lamp, 94% of the UV light 

is emitted in the germicidal region and 65% of the total UV light is effective in 

germicidal action. On the other hand, in case of N2/O2 discharge 45%, of the UV light is 

emitted in the germicidal range and only 15% of it is effective in germicidal action.

Finally, the summary of the study is given in chapter 6.
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Fig. 1.4: Organization of the thesis
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Chapter 2

Production of UV emission from N2 /O2 gas discharge 

The physics of microwave discharges is a rapidly developing field of 

low-temperature physics [1]. Interest in this field is generated by promising applications 

of microwave discharges. The applications include plasma chemistry, gas lasers, light 

sources [2-3], disposal of toxic waste, development of artificial ionized clouds in the 

Earth atmosphere [1], ozone layer recovery, analytical chemistry, sensitive spectrometry 

[4], deposition of carbon materials [5-6] and others. The demand for microwave 

generated plasma is also increasing for many industrial applications as a high power 

source [7-12]. Microwave energy easily passes through the dielectric tube and so, unlike 

conventional lamps, they do not require electrodes which are a weakness for the 

longevity of conventional lamps. In conventional source, the electrode also absorbs gas 

and causes chemical reaction with them which decreases the life time of the source. So 

the demand for microwave plasma light source is increasing day-by-day for many 

applications. Al- Shamma et al. developed a low power microwave plasma Hg UV 

lamp for water purification and ozone applications [13]. Kono et al. produced VUV 

emission from Ar and Xe using microwave excitation aiming to apply it as VUV 

excimer light source [14].  Fozza et al. investigated the VUV to near infrared 

emissions from molecular gas–noble gas mixtures (H2–Ar and O2–Ar) to obtain very 

intense VUV emissions [15]. 

In this chapter, the emission spectrum from microwave gas discharge of N2 /O2

mixture in a cylindrical quartz tube in the UV and visible range (from 200 – 800 nm) is 
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described. The N2 / O2 mixture gas discharge emits intensive UV light in the 200 nm to 

280 nm region which has germicidal effect. The dependence of gas composition on the 

intensity of UV emission is explained. The effect of pressure on the intensity of the UV 

emission is also discussed in this chapter. The experimental results showed that the UV 

intensity in 200- 280 nm region varied with gas composition and was highest at 20% O2 

concentration and 500 Pa. 

2.1 Principle of emission of light

Light can be produced by activating electrons from lower orbital state (ground 

state) to a higher orbital state of an element. When this activated (excited) electron 

undergoes a transition from higher orbital state (excited state) to lower orbital state 

(ground state), it emits a photon. The process is schematically illustrated in figure 2.1. If 

an electron is in the excited state with energy E2, it may sponteneously return to the 

ground state, with energy E1, releasing the difference in energy between the two states 

as a photon. The photon will have frequency ν and energy hν: E2 ─E1 = hν , where h is 

the plank’s constant (6.626×10-34 J sec). This kind of emission is known as 

spontaneous emission which occurs in flames, or discharge lamps. Another kind of 

emission, stimulated emission occurs when matter in an excited state is perturbed by a 

photon of light and gives rise to a further photon of light, typically with the same energy 

and phase as the perturbing photon. This phenomenon is the process which gives rise to 

laser emission where you have many photons at the same wavelength and in phase with 

each other.

Thermal activation of matter also provides a means of production of light. A 

body at a given temperature emits a characteristic spectrum of light called black body 
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radiation.  As for example, let us consider an electric filament as current is applied to it. 

As the electric current supplies energy to the filament and it heats up, it starts to glow 

red, and as it gets hotter it then turns orange and then white. The filament acts like a 

black body and as the filament gains energy from the electrical power it tries to equalize 

its energy with its surroundings by radiating its excess energy. It does this by emitting 

light starting first in the infrared and as the filament gets hotter or has more energy the 

radiation moves more into the visible spectrum. Black body radiation is not a main 

source for generation of UV light. At present, activation of mercury atoms by electrons 

(i.e., electrical discharge) is the most common technology for generating UV light used 

for water disinfection.

Fig.2.1: Schematic representation of emission of radiation by matter
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2.2 Experimental apparatus

Brief description of the experimental apparatuses used in the experiments is 

given below.

2.2.1 Microwave generator and microwave applicator

The schematic view of microwave generator and microwave applicator is 

shown in figure 2.2. The microwave source used in the experiment was a magnetron 

power source operating at 2.45 GHz with power rating of up to 1.5 k W. 

Fig. 2.2: Schematic diagram of microwave generator and microwave applicator

The isolator isolates the reflected power send it to a dummy load. Forward power and 

reflected power can be monitored through two power monitor ports. Power meters are 

connected to the monitor ports for the measurement of power. Separate meters are used 

to monitor forward and reflected power. The total applied power is the difference of the 

forward and reflected power. Tuner is used to minimize the reflected power. By 

adjusting the tuner position the amount of reflected power can be controlled. Reducer is 
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used to couple the microwave applicator to the microwave generator. As the dimension 

of the waveguide connected to the microwave generator and the dimension of the 

microwave applicator is not same, reducer is used.

A microwave applicator constructed from aluminum alloy was used in the 

experiment. The applicator has the dimension of 260 mm length, 100 mm width and 30 

mm height. The power from the generator to the microwave applicator was fed through 

rectangular waveguide. The schematic view of the applicator is shown in figure 2.3.

Fig.2.3: Microwave applicator used in the experiment

2.2.2 Spectrometers

A spectrometer is an optical instrument used to measure properties of light over 

a specific portion of the electromagnetic spectrum. The variable measured is most often 

the light's intensity. The independent variable is usually the wavelength of the light, 

normally expressed as some fraction of a meter, but sometimes expressed as some unit 
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directly proportional to the photon energy, such as wavenumber or electron volts, which 

has a reciprocal relationship to wavelength. A spectrometer is used in spectroscopy for 

producing spectral lines and measuring their wavelengths and intensities. The 

spectroscope was invented by both Gustav Robert Georg Kirchhoff and Robert Wilhelm 

Bunsen. In the original spectroscope design in the early 19th century, light entered a slit 

and a collimating lens transformed the light into a thin beam of parallel rays. The light 

was then passed through a prism (in hand-held spectroscopes, usually an Amici prism) 

that refracted the beam into a spectrum because different wavelengths were refracted 

different amounts due to dispersion. This image was then viewed through a tube with a 

scale that was transposed upon the spectral image, enabling its direct measurement. 

Modern spectrometers, generally use a diffraction grating, a movable slit, and some 

kind of photodetector, all automated and controlled by a computer. The schematic  

diagram of a Grating spectrometer is shown in figure 2.4. Two types of spectrometer, 

USB4000 and HR4000 were used in experiments. USB4000 was used for measuring the 

spectrum in the visible region whereas HR4000 was used to measure the spectrum in 

the UV range.

Fig.2.4: Grating spectrometer schematic
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2.2.2.1 USB4000 spectrometer

The specification of USB4000 spectrometer [16] is listed in table 2.1.

Table2.1: specification of USB4000 spectrometer

Detector

Detector: Toshiba TCD1304AP Linear CCD array

Detector range: 200-1100 nm

Pixels: 3648 pixels

Pixel size: 8 μm x 200 μm

Pixel well depth: 100,000 electrons

Signal-to-noise ratio: 300:1 (at full signal)

A/D resolution: 16 bit

Dark noise: 50 RMS counts

Corrected linearity: >99.8%

Sensitivity: 130 photons/count at 400 nm; 60 

photons/count at 600 nm

Spectroscopic

Wavelength range: 200-850 nm

Optical resolution: ~1.5 nm FWHM

Signal-to-noise ratio: 300:1 (at full signal)

A/D resolution: 16 bit

Dark noise: 50 RMS counts

Integration time: 3.8 ms to 10 seconds

Stray light: <0.05% at 600 nm; 0.10% at 435 nm

Optical bench

Focal length: 42 mm input; 68 mm output

Grating: 600 lines (blazed at 300 nm)

Fiber optic connector: SMA 905 to 0.22 numerical aperture 

single-strand optical fiber
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2.2.2.2 HR4000 spectrometer

The specification of HR4000 spectrometer [17] is listed in table 2.2.

Table2.2: specification of HR4000 spectrometer

Detector

Detector: Toshiba TCD1304AP linear CCD array

Detector range: 200-1100 nm

Pixels: 3648 pixels

Pixel size: 8 μm x 200 μm

Pixel well depth: ~100,000 electrons

Sensitivity: 130 photons/count at 400 nm; 60 

photons/count at 600 nm

Spectroscopic

Wavelength range: 200- 400 nm

Optical resolution: ~0.02-8.4 nm FWHM 

Signal-to-noise ratio: 300:1 (at full signal)

A/D resolution: 14 bit

Dark noise: 12 RMS counts

Integration time: 3.8 ms to 10 seconds

Stray light: <0.05% at 600 nm; <0.10% at 435 nm

Corrected linearity: >99.8%

Optical bench

Focal length: 101.6 mm input and output

Grating: 1200 Lines Holographic UV

Fiber optic connector: SMA 905 to 0.22 numerical aperture 

single-strand optical fiber
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2.2.3 Discharge tube

Quartz tube with 15 mm outer diameter, 13 cm inner diameter and 500 mm 

length was used in the experiment as the discharge tube. One end open and one end 

closed tube  as shown in figure 2.5 was used as discharge tube to study the effect of 

gas composition, total pressure and rare gases on the emission intensity of UV light. 

                                                                      

Fig. 2.5: Schematic view of quartz tube 

2.3 Experimental procedure

The schematic diagram of the experimental setup for N2 / O2 gas discharge is shown in 

figure 2.6. A quartz tube with 15 mm outer diameter and 500 mm length was used in the

Fig.2.6: Schematic diagram of the experimental set-up
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was connected to a vacuum system. Rotary pump was used to evacuate the system. The 

quartz tube was filled with different concentration of N2 and O2 gas (both N2 and O2

were 99.99995% pure) at various pressure. After filling the tube with gases, microwave 

power of 100 W was supplied to the applicator. Tesla coil was used for ignition.

Optical emission spectroscopy was carried out using 2 sets of fiber coupled 

spectrometer, for UV (HR- 4000) and for visible light (USB- 4000) through an

observation port consisting of a metal tube with 10 mm inner diameter and 40 mm 

length on the side wall of the microwave applicator. The optical fiber was set at the end 

of the port which was 10 cm away from the center of the discharge tube.

2.4 Results and discussion

Figures 2.7(a) and (b) show the emission spectra from pure N2 microwave 

plasma in the UV and visible range, respectively. Second positive system existing from 

300 to 400 nm is dominant in the UV regions. Peaks in the 2nd positive systems are 
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Fig. 2.7: Emission spectra from N2 (a) in the UV range  and (b) in the visible range  
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Fig. 2.8: Energy level diagram of N2 molecule

attributed to the C3Πu
 _ B3Πg transition as shown in figure 2.8. The pure N2 plasma 

looked bright due to intensive emission in the visible range. These bands are attributed 

to the 1st positive system through B3Πg 
_ A3Σ+

u transition which is also shown in figure 

2.8.

Figures 2.9(a) and (b) shows the emission spectra from from N2 /O2 in the UV range

and in the visible range. From figures 2.7(a) and 2.9(a), it is observed that by the 
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appeared at 215, 226, 237 and 247 nm. These intensively appeared peaks are from NO 
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Fig. 2.9: Emission spectra from N2 /O2 (a) in the UV range and (b) in the visible 

range
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Fig. 2.10: Energy level diagram of NO molecule

γ(A2Σ+ _ X2 Π) system (shown in figure 2.10), which is degraded to the shorter 

wavelength [18]. As seen from figures 2.7(b) and 2.9(b), the visible emission by 1st

positive system dramatically decreased and atomic oxygen peak (777 nm) appeared by 

O2 addition.

In N2/O2 discharge the dissociation mechanism of nitrogen and oxygen 

molecules is dominated by electron impact reactions. When nitrogen is mixed with 

oxygen, dissociation reactions between the ground state oxygen molecules O2(X
3Σg) 

and the excited nitrogen molecules, particularly, N2(A
3Σu) state, increases the 

dissociation of oxygen through the following reaction [19];

O2(X) + N2(A, B, C,a`) → 2O2(
3P) + N2(X) ………………………. (1)

The oxygen molecules dissociate due to collision with nitrogen molecules.

Concerning nitrogen dissociation, the loss of atomic nitrogen due to collision 

with oxygen molecules becomes the dominant process for the kinetics of atomic 

nitrogen. The following reaction is predominant process for the loss of nitrogen atoms 

and formation of NO molecules [19];

N(4S) + O2(X) → NO + O(3P) ……………………………………. (2)

The admixture of oxygen molecules into nitrogen discharge makes the quenching of 

nitrogen atoms by reaction (2). The dissociation degree of nitrogen becomes small with 

the increase of oxygen concentration in the discharge. The dissociation degree of both 

nitrogen and oxygen increases with nitrogen concentration. The dissociation of oxygen 

is enhanced by nitrogen admixture due to collisions with the excited nitrogen molecules, 

particularly with N2(A
3Σu) state. In case of nitrogen dissociation, the dissociated 
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nitrogen atoms are frequently lost by collisions with oxygen molecules and form NO 

molecules.

2.4.1 Optimization of pressure and gas composition

Discharge was produced at different concentration of O2 and N2 gas and at 

different total pressure. Figure 2.11 shows the variation of intensity of 247 nm peak 

with total pressure and gas composition.  From the figure, it can be seen that, at 100 Pa 

pressure the intensities of 247 nm peak was lowest for all different gas composition 

except 50% O2 and 50% N2. On the other hand, at 500 Pa pressure, the intensities were 

highest for all the gas composition. The intensities at 1 kPa and 2 kPa and at different

gas composition were in between intensities produced at 100 Pa and 500Pa. 
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Fig. 2.11: Variation of Emission intensity with total pressure and gas composition.

It is clear from the figure that the intensity is highest at 500 Pa and 20% O2. 
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The reason for the enhancement at this composition and pressure is that the dissociation 

degree of nitrogen is maximum at this composition and pressure [19]. This dissociated 

nitrogen atoms form NO molecules by collision with oxygen through the following 

reaction

N(4S) + O2(X) → NO + O(3P) …………… (3)

2.4.2 Optimization of power

The variation of intensity of 247 nm peak with applied power is shown in 

figure 2.12. From the figure it is clear that the intensity increased sharply when applied 
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Fig. 2.12: Dependence of emission intensity on applied power.

power is increased from 50 W to 100 W. When the power is increased further up to 

300W, the intensity is slightly increased. At 50 W applied power, it was difficult to start 

the discharge. On the other hand, when the applied power was 150 W and above that, 

the MW applicator became very hot within short time after the starting of discharge. So 

applied power of 100 W was used as the optimized power in the experiment to avoid 

heating problem and to start the discharge easily.
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2.5 Emission spectra from NO discharge

Emission spectra from NO discharge in the UV range at different pressure is 

presented in figure 2.13. Many high intensity emission lines in the 200 to 300 nm region 

of the plasma originated from nitrogen monoxide (NO). The emission system was 

identified as the γ band (A2Σ+ _ X2 Π) of NO. Some other high intensity emission lines 

appeared at 295, 316, 337 and 357 nm. These peaks are from 2nd positive band (C3Πu
 _ 

B3Πg ) system of N2. 
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Fig. 2.13: Emission spectra in the UV range from NO discharge at different pressure.

Figure 2.14 shows the emission spectra fro NO discharge in the visible region. 
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The emission spectra in the visible region was identified as 1st positive band (B3Πg 
_ 

A3Σ+
u) of N2. A high intensity emission line from atomic oxygen was also observed at 

777 nm. During NO discharge, NO decomposes into N2 and O2 as follows

NO → N2 + O2 ………………. (4)

The emission lines from 1st and 2nd positive bands of N2 are due to the decomposed N2.  

Similarly the atomic oxygen line is also produced from the decomposed O2.
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Fig. 2.14: Emission spectra in the visible range from NO discharge at different pressure.

2.6 Summary

N2 /O2 mixture microwave discharge emits intensive UV light in the 200 to 280 
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nm region through NO )( 22  XA  system.

Emission intensity in the UV region varies with gas composition. The highest 

intensity was obtained at 80% N2 and 20% O2 concentration.

UV emission intensity also changes with total pressure. The intensity was 

highest at 500 Pa total pressure.
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Chapter 3

Effect of rare gas admixture and pulse operation on N2 /O2 gas mixture 

discharge

Introduction

In gas discharge, admixture of rare gases with other gases is a common 

technique for realizing the desired condition for application. Sakamoto et al.  examined 

the effect of  rare gas admixture with oxygen discharge on the vibrational and 

rotational temperatures of the OH radical by optical emission spectroscopy (OES). They 

used helium, neon, argon, krypton and xenon as admixture components with oxygen [1].

S. Gortchakov and  D. Uhrlandt studied glow discharges in mixtures of xenon with 

other rare gases aiming to use it for mercury free UV light source to replace the mercury 

UV lamp [2]. N. D. Smith measured the intensity distribution of continuous spectrum of 

hydrogen by admixture of rare gases (He and Ne). The effect of these gases was to shift 

the maximum of intensity to longer wavelength [3]. Fozza et al. investigated the VUV 

to near infrared emissions from molecular gas–noble gas mixtures (H2–Ar and O2–Ar) 

to obtain very intense VUV emissions to apply it for the photochemical treatment of 

polymer surface [4]. The effect of gas composition on spore mortality has been 

investigated by Lerouge et al. using gases such as pure O2, O2/CF4 and O2/Ar [5].  S 

Kitsinelis et al. studied of spectral output with a range of different buffer gases (neon, 

argon, krypton and mixtures of these gases) [6]. It was observed that near-UV output is 

maximized when argon is used.
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In this chapter, the effect of rare gas admixture with N2/O2 gas has been 

discussed. Experiment to study the effect of inert gases on the intensity of the emission 

was carried out. He, Ne, Ar, Kr and Xe gases were used at different percentages of 

concentration. It was observed that at low concentration below 5%, these gases have no 

effect on the emission intensity whereas the emission intensity in both the UV and 

visible ranges decreased as the rare gas concentration was increased. The gases behave 

as buffer gases. Buffer gases caused collisions with the other co-existing molecules and 

decreases the emission intensity.

The effect of pulse operation on N2 /O2 discharge has also been discussed in 

this chapter.

3.1 Experimental method

The schematic diagram for the experiment is shown in figure 3.1. A quartz tube 

with 13 mm inner diameter and 500 mm length was used in the experiment as the

Fig. 3.1: Schematic diagram of the experiment 
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tube was closed and the other side was connected to a vacuum system. Rotary pump 

was used to evacuate the system. The total pressure in the tube was measured by 

Baratron pressure gauge (Type 626).

The quartz tube was filled with different concentration of N2, O2 and rare gases (He, 

Ne, Ar, Kr and Xe) at various pressure. After filling the tube with gases MW power of 

100 W was applied to produce discharge. Tesla coil was used for ignition. Reflected 

power was adjusted to 0 W by means of tuner. Emission spectroscopy was carried out 

using 2 sets of fiber coupled spectrometer, through an observation port on the side wall 

of the microwave applicator. The optical fiber was set at the end of the port which was 

10 cm away from the center of the discharge tube.

During the pulse operation the interval and width of the pulse were varied. Emission 

spectroscopy was carried out as the same way discussed above.

3.2 Effect of Ar admixture 

N2/O2/Ar discharge was produced at different concentration of O2, N2 and Ar 

gas to investigate the effect of Ar admixture on the UV intensity emitted from N2/O2 

discharge. Figure 3.2 and 3.3 show the emission intensity at different gas composition 

in the UV and visible range respectively. It can be seen from figure 3.2 that UV 

emission intensity changes with Ar concentration. However the shape and peak position 

remain same in the UV region up to 50% of Ar concentration. At 2% O2, and 90% Ar, 

no emission was observed in the UV region. From figure 3.3, it is seen that emission 

intensity in the visible range also changes with Ar concentration. In the visible region, 

some additional peaks (at 698, 708, 739, 752 and 764 nm) from Ar were observed at 
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high concentration of Ar. As the concentration of Ar increased the peaks also increased.
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Fig. 3.2: Emission spectra from N2/O2 /Ar microwave discharge 

at various Ar concentration

It was observed from both figure 3.2 and figure 3.3 that at low concentration 

below 5%, Ar gas has no effect on the emission intensity. However the emission 

intensity in both the UV and visible ranges decreased as Ar gas concentration was 
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Fig. 3.3: Emission spectra from N2/O2 /Ar microwave discharge in the 

visible range at various concentration of Ar
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following. As mentiond in chapter 2, the UV intensity emitted from NO molecule is 

maximum at 80% N2 and 20% O2 [7]. Below this concentration of N2, the intensity 

decreased. When we increased Ar concentration, N2 concentration decreased in the gas 

mixture and so the emission intensity also decreased with increasing Ar concentration. 

Emission in the 300- 400 nm range is from 2nd positive system of N2. In previous 

chapter (chapter 2) it was also observed that the intensity in this range decreased with 

decreased concentration of N2. In case of N2 /O2 /Ar discharge, as the concentration of 

N2 decreased with the increase of Ar concentration, the emission intensity within this 

region also decreased. The emission intensity in the visible region which is from 1st

positive system of N2 also decreased when N2 concentration is decreased. So in N2 /O2 

/Ar discharge the intensity of emission also decreased for the same reason as mentioned 

earlier. The other reason for the decrease of intensity in both UV and visible range is 

that Ar gas behaves as buffer gas in the mixture. Buffer gases caused collisions with the 

other co-existing molecules and decreases the emission intensity.

3.3 Effect of Kr admixture

Figure 3.4 and 3.5 show the emission intensity from N2/O2/Kr discharge at 

different gas composition in the UV and visible range respectively. From figure 3.4 it 

was observed that the shape and peak position remained same in the UV region 

although emission intensity in this range changed with Kr concentration. In the visible 

region (as shown in figure 3.5), emission intensity also changed with Kr concentration 

and some additional peaks from Kr appeared at high concentration of Kr. 
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Fig. 3.4: Emission spectra from N2/O2 /Kr microwave discharge 

at various Kr concentration

The admixture of Kr showed almost the same effect as of Ar. Below 5% concentration, 

Kr has also no effect on the emission intensity. However above 5% of concentration, the 

emission intensity in both the UV and visible ranges decreased. The reasons for the 
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decrease of intensity are same as mentioned in case of Ar admixture. 
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Fig. 3.5: Emission spectra from N2/O2 /Kr microwave discharge in the 

visible range at different concentration of Kr

3.4 Effect of Xe admixture

The effect of Xe admixture on the emission intensity emitted from N2/O2
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discharge in the UV and visible range is shown in figure 3.6 and 3.7 respectively. From 

figures 3.6 and 3.7, it has been observed that admixture of 1% xe has no effect on the 
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Fig. 3.6: Emission spectra from N2/O2 /Xe microwave discharge 

at various Xe concentration

emission intensity in both UV and visible region. However at 5% and above this 

concentration the intensity gradually decreased.  It is also observed that (from figure 
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3.7) at higher concentration of Xe some additional peaks from Xe at 467, 492 and 713 

nm appeared in the spectrum.

0

5000

10000

15000

a) N2/O2/Xe , O2-20%, 
 Xe 0%,   500 Pa, 100 W

0

5000

10000

15000

c) N2/O2/Xe , O2-20%, 
 Xe 5%,   500 Pa, 100 W

0

5000

10000

15000

d) N2/O2/Xe , O2-20%, 
 Xe 10%,   500 Pa, 100 W

0

5000

10000

15000

e) N2/O2/Xe , O2-20%, 
 Xe 30%,   500 Pa, 100 W

0

5000

10000

15000

f) N2/O2/Xe , O2-20%, 
 Xe 50%,   500 Pa, 100 W

400 500 600 700 800
0

5000

10000

15000

g) N 2/O2/Xe , O2-2%, 
 Xe 90%,   500 Pa, 100 W

Wavelength [nm]

In
te

ns
ity

 [
au

]

0

5000

10000

15000

b) N2/O2/Xer , O2-20%, 
Xe 1%,   500 Pa, 100 W

Fig. 3.7: Emission spectra from N2/O2 /Xe microwave discharge in the 

visible range at different Xe concentration
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3.5 Effect of He admixture 

Figures 3.8 and 3.9 show the effect of He admixture on the emission intensity emitted 

from N2/O2 discharge in the UV and visible range respectively. Figure 3.8 shows that 

the emission intensity changed with He concentration but the peaks position remained 

same in the UV range. In the visible region, the intensity gradually decreased with 

increased He concentration an at 90% He and 2% O2 concentration, He peaks at 487 and 

747 nm were observed.
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Fig. 3.8: Emission spectra from N2/O2 /He microwave discharge 

at various concentration of He
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The one reason for the decrease of intensity is the decrease of N2 concentration 

with the increase of rare gas concentration in the mixture and the other reason is the 

behavior of He gas in the mixture as buffer gas. Buffer gases caused collisions with the 

other co-existing molecules and decreases the emission intensity. 
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Fig. 3.9: Emission spectra from N2/O2 /He microwave discharge in the 

visible range at different He concentration
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3.6 Effect of Ne admixture

Figure 3.10 shows the effect of Ne admixture on the emission intensity in the 

UV region and  figure 3.11 shows the effect of Ne admixture on the emission intensity 

in the UV region emitted from N2/O2 discharge. 
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Fig. 3.10: Emission spectra from N2/O2 /Ne microwave discharge 

at various concentration of Ne
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It is seen from figures 3.10 and 3.11 that admixture of 1% Ne has no effect on the 

emission intensity in both UV and visible region. However at 5% and above this 

concentration the intensity gradually decreased.  From figure 3.11, it is also observed 

that at 90% Ne and 2% O2 concentration, Ne peaks appeared at 488, 585 and 659 nm.
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Fig. 3.11: Emission spectra from N2/O2 /Ne microwave discharge in the 

visible range at different Ne concentration

659
488 585



56

3.7 Effect of pulse operation

The dependence of pulse width and pulse interval on the intensity of the UV 

emission emitted from N2/O2 discharge was studied. 
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Fig.3.12: Dependence of pulse interval on emission intensity of N2 /O2 discharge

(a) interval ~ intensity and (b) interval ~intensity [normalized with power]

The dependence of pulse interval on emission intensity is shown in Fig. 3.12. From Fig. 

3.12(a), it can be seen that intensity decreases with the increase of interval. This 

happens because with the increase of pulse interval, the duty decreases and hence the

applied power. From Fig. 3.12(b) it is clear that emission intensity does not depend on 

pulse interval but depends on power.

Figure 3.13 shows the effect of pulse width on emission intensity. It is observed from 

Fig. 3.13(a) that intensity increases when pulse width is increased. This happens 

because duty increases with the increase of pulse width and so the power. It can be seen 



57

from Fig. 3.13(b) that the emission intensity completely depends on average applied 

power but not on pulse width.
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Fig.3.13: Dependence of pulse width on emission intensity of N2 /O2 discharge (a) 

pulse width ~ intensity and (b) pulse width ~intensity [normalized with power]

Pulse interval from 30 ms to 1 ms was used in the experiment. Figure 3.12(b) shows 

that there is no variation of intensity due to the variation of pulse interval. This indicates 

that there is no accumulation of NO molecules from the duration of one pulse interval to 

the next pulse interval. Therefore, it can be concluded that the life time of NO molecule 

is shorter than 1 ms. 

3.8 Summary

He, Ne, Ar, Kr and Xe gases at different percentages of concentration was used 

in the experiment to examine the effect of theses gases on the emission intensity emitted 

from N2 /O2 discharge. It was observed that at low concentration below 5%, these gases 
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have no effect on the emission intensity whereas the emission intensity in both the UV 

and visible ranges decreased as the rare gas concentration was increased. The gases 

behave as buffer gases. Buffer gases caused collisions with the other co-existing 

molecules and decreases the emission intensity. The other reason for the decrease of 

intensity is the decrease of N2 concentration with the increase of rare gas concentration 

in the mixture.

UV intensity in 200- 400 nm region does not vary with pulse width and pulse 

interval but depends on average power. The life time of NO molecules is shorter 

than 1 ms.
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Chapter 4

Long time operation of microwave excited N2/O2 gas mixture discharge 

Long time operation of microwave excited N2 /O2 gas mixture discharge

without refreshing the enclosed gas is discussed in this chapter. After a few hours of 

operation, the spectrum emitted from N2 /O2 discharge changed not due to chemical 

reaction but due to increased pressure through leakage of the system. So separate closed 

tube was prepared to examine life time. Microwave power was used for excitation of 

discharge to avoid degradation of molecular gases through chemical reactions with 

electrodes. The result showed that the concentration of O2 decreased with time and so 

the UV intensity from NO also decreased. It was also observed that after several 10 

hours of operation, the partial pressure of N2 decreased and eventually the discharge

stopped.

4.1 Experimental method

Two sets of experiment were carried out. One was “closed tube” experiment 

and the other was “gas controlled tube” experiment.  The schematic view of the 

“closed tube” experiment is presented in figure 4.1. The microwave source used in the 

experiment was a magnetron power source operating at 2.45 GHz. The power to the 

applicator was fed through a rectangular waveguide from the microwave source. 
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Fig. 4.1: Schematic view of the “closed tube” experiment

A closed quartz tube with 13 mm inner diameter and 500 mm length was used 

in the experiment. The quartz tube was evacuated in an oven to eliminate out gasing and

filled with N2 and O2 gas (both N2 and O2 were 99.99995% pure). The partial pressure 

of N2 was 400 Pa and the partial pressure of O2 was 100 Pa, resulting in oxygen 

concentration 20%. After filling the gas, the quartz tube was closed using a burner. 

In the "gas controlled tube” experiment (as shown in figure 4.2), a quartz tube 

with same inner diameter (13 mm) and length (500 mm) as the closed tube was used. 

One side of the tube was closed and the other side was connected to a vacuum system 

and gas line. Rotary pump was used to evacuate the system. The quartz tube was filled 

with different concentration of N2 and O2 gas (both N2 and O2 were 99.99995% pure) at 

various pressure. The pressure in the tube was measured by Baratron pressure gauge 

(Type 626). The same microwave power source was used in both the experiment. 

2.45 GHz 

magnetron 

power

Power 

monitor

IsolatorTunerReducer

Short plunger
Observation 

port

Quartz tube

Applicator



62

Fig. 4.2: Schematic view of the "gas controlled tube” experiment

Emission spectroscopy was carried out using 2 sets of fiber coupled 

spectrometer, for UV (HR4000) and for visible light (USB4000) through an observation 

port on the side wall of the microwave applicator. The optical emission from the central 

part of the discharge tube was monitored. In closed tube experiment, emission 

spectroscopy was carried out at every 30 minutes whereas in gas controlled experiment, 

emission spectroscopy was carried out shortly after the starting of discharge.

4.2 Results and discussion

Figures 4.3(a) and (b) show the emission spectra from N2/O2 microwave (100 

W) discharge plasma produced in the "closed tube” in UV and visible range,

respectively. Emission from 2nd positive system of N2 is dominant in the 300- 400nm
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Fig. 4.3: Emission spectra from N2 + 20% O2 (a) in the UV range and  (b) in the visible

 range. 

region whereas the emission in the 200- 300 nm range is from NO  system. Peaks in 

the 2nd positive systems (of N2) are attributed to the gu BC  33  transition. In the 

200- 300 nm range, intensive peaks appeared at 214, 225, 236 and 247 nm. These 

intensively appeared peaks are from NO )( 22  XA  system, which is degraded 

to the shorter wavelength [1]. The emission bands in the visible region are attributed to 

the 1st positive system of N2 through  ug AB 33 transition.

Figure 4.4 shows the emission spectra in the visible range emitted from N2/O2 gas 

mixture microwave discharge at different O2 concentration in the “gas controlled tube”

experiment. It is observed from these figures that intensity of O2 peak increases with the 

increase of O2 concentration in the gas mixture.
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Fig. 4.4: Emission spectra from N2/O2 microwave discharge at various O2

concentration.
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The time dependence emission spectrum in the visible range from the “closed tube”

experiment is shown in figure 4.5. It can be seen from the figures that, intensity of O2

peak decreases with operation time indicating that O2 concentration in the discharge 

tube decreases with time.

0
2000
4000
6000
8000

10000

 a) 0 hour

0
2000
4000
6000
8000

10000

c) 3 hour

0
2000
4000
6000
8000

10000

 b) 1 hour

0
2000
4000
6000
8000

10000

d) 5 hour

0
2000
4000
6000
8000

10000

e) 10 hour

0
2000
4000
6000
8000

10000

f) 20 hour

400 500 600 700 800
0

2000
4000
6000
8000

10000
g) 30 hour

In
te

ns
ity

 [
au

]

Wavelength [nm]

Fig. 4.5: Time dependent emission spectra from N2/O2 microwave discharge in 

“closed tube” experiment.

Figure 4.6(a) shows the emission intensity of oxygen atomic peak (777 nm) from 
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"gas controlled tube” with variation of O2 concentration and figure 4.6(b) presents the 

emission intensity of oxygen atomic peak from "closed tube” with continuous operation. 

From figure 4.6(a), it can be seen that the intensity of oxygen atomic peak increased 

with the increase of O2 concentration. On the other hand, figure 4.6(b) shows that the 

emission intensity of oxygen atomic peak rapidly decreased for first 1 
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Fig. 4.6: Variation of intensity of atomic O2 peak (777 nm) with (a) O2 concentration 

(pressure 500 Pa) and  (b) Time. Microwave power was 100 W in both cases.

hour then gradually decreased for 10 hours. It indicates that O2 concentration decreased 

with time. During the 1st hour O2 concentration decreased from 20% to 5%, in the 

following 10 hours from 5% to almost 1%.

Figure 4.7 shows the variation of intensity of the spectrum in the UV region with 
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the variation of O2 concentration in the “gas controlled tube” experiment whereas figure 

4.8 shows the change of intensity in the UV region with operation time in the “closed 

tube” experiment. 
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Fig. 4.7: Emission spectra from N2/O2 microwave discharge in the UV range at 

different O2 concentration.
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Figure 4.9(a) presents the effect of O2 concentration on intensity ratio of 316nm N2

(2nd positive) peak to 247 nm NO peak from "gas controlled tube” and figure 4.9(b) 

presents the variation of intensity ratio of 316nm N2 (2
nd positive) peak to 247 nm NO 

peak from "closed tube”. It is observed from figure 4.9(a) that the intensity ratio 

decreases with increased O2 concentration. The value of the ratio was almost 10 with 

20% O2 and it was almost 13 with 5% O2. From figure 4.9(b), it can be found that the 

O2 concentration decreases with time. Within 1 hour the intensity ratio decreased to 

almost 13 which 
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Fig. 4.9: Dependence of intensity ratio (316 nm peak /247 nm peak) with (a) O2

concentration (pressure 500 Pa) and (b) Time.  

means that within 1 hour the amount of O2 decreased from 20% to about 5% and within 
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10 hours of operation O2 concentration decreases to almost 1%. So from figures 4.6 and 

4.9, we can conclude that O2 concentration in the closed tube decreased with time.
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Fig. 4.10: Emission spectra from N2/O2 microwave discharge in the visible range at 

different pressure.

The dependence of the spectra in the visible region on the total pressure in the “gas 
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controlled tube” is shown in figure 4.10. The dependence of intensity ratio (750nm peak 

from 1st positive of N2 to 540nm peak from 1st positive of N2) on O2 concentration and 

total pressure is shown in figures 4.11(a) and (b), respectively. From figure 4.11(a) it is 

found that the intensity ratio did not vary but remained almost same at different O2
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Fig. 4.11: Variation of intensity ratio (750 nm peak/540 nm peak) with (a) O2

concentration (pressure 500 Pa), (b) Pressure (1% O2 con.) and (c) Time.

concentration under same total pressure. On the other hand, figure 4.11(b) indicates that 
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the intensity ratio varied with total pressure at the same O2 concentration. With the 

increase of pressure, the ratio also increased. The possible reason of the increase of the 

intensity ratio with pressure is that the two peaks have different upper energy states. The

750nm N2 peak has lower energy state whereas the 540 nm N2 peak has higher 

energy state. The electron temperature Te increases with the decrease of pressure mostly 

due to increase of electron mean free path but Te is not seriously affected by oxygen 

addition. Figure 4.11(c) shows the variation of intensity ratio with operation time of the 

closed tube. It is seen from this figure that, the ratio decreased with time and reached 

below 2 after 30 hours of operation. It can be estimated that pressure dropped below 

100 Pa after 30 hours of operation and then the discharge stopped. In the "gas controlled 

tube”, the minimum pressure was 100 Pa to sustain the plasma.

4.3 Conclusions

The N2 /O2 discharge emits UV light in the 210 nm to 300 nm region from NO 

molecules as the products in the plasma. The intensity of NO peaks decreased with time 

due to the decrease O2 concentration inside the closed tube with operation time. Within 

1 hour of operation, O2 concentration decreased from 20% to 5% and in the following 

10 hours O2 concentration reached to almost 1%. The pressure of N2 also decreased 

with time and after several 10 hours of operation the pressure dropped to a level which 

is not enough to sustain the plasma. 
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Chapter 5

Estimation of effective germicidal UV power density emitted from N2 /O2

microwave plasma

In this chapter, the measurement technique and the comparison of the of the 

intensity of the emitted radiation in the UV region from the N2/O2 gas mixture 

microwave excited discharge and from low pressure commercial Hg lamp 

( MITSUBIHI/ OSRAM GL10) are discussed. UV light ranges from 200 to 400 nm

however the whole range does not have germicidal effect. Only the radiation emitted

between 210 and 315 nm has germicidal effect. The germicidal efficiency of the 

radiation emitted at different wavelength within this range is also not same. The 

potential germicidal efficiency coefficients at different wavelengths are different having 

the maximum at 260 nm. The estimation and comparison of the UV power density and 

effective germicidal power density emitted from N2/O2 gas mixture discharge and from 

low pressure commercial Hg lamp are also discussed in this chapter. 

5.1 Experimental method

The schematic diagram of the experimental set-up for N2/O2 gas mixture 

microwave discharge is shown in Fig. 5.1. A one side closed quartz tube with 500 mm

length, 15 mm outer diameter and 13 mm inner diameter was used for discharge. The 

tube was inserted into a discharge applicator with dimensions of 260 mm length, 100 

mm width and 30 mm height. The open side of the quartz tube was connected to a gas 

supplying line for evacuating by using a oil rotary pump and for filling with different
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concentration of N2 and O2 gas (both N2 and O2 were 99.99995% pure) at various 

pressure.  The same magnetron power source which was used in the previous 

experiments was used in the experiment. After filling the discharge tube with gases,

Fig. 5.1: Schematic diagram of the experimental set-up for N2/O2 discharge

microwave power of 100 W was supplied to the applicator and discharge was produced 

with the help of Tesla coil. Reflected power was adjusted to 0 W by using the tuner. 

Optical emission spectroscopy was carried out using 2 sets of fiber coupled 

spectrometer, for UV (HR4000) and for visible light (USB4000) through a observation 

port consisting of a metal tube with 10 mm inner diameter and 40 mm length on the side 

wall of the microwave applicator. The optical fiber was set at the end of the port which 

was 10 cm away from the center of the discharge tube. The spectrometers with optical 

fibers were calibrated with standard Xe lamp (L7810-02, Hamamatsu Photonics, K.K) 

to confirm the absolute power.
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Fig. 5.2: Experimental set-up for power density measurement from mercury lamp

The UV power from a commercial low pressure mercury lamp 

(Mitsubishi/Osram GL10) was measured for comparison. The mercury lamp was 

operated by AC 100V (60 Hz) using a conventional lighting circuit. The measurement 

was carried out in the same configuration as in the case of N2/O2 microwave discharge.

As shown in Fig. 5.2 the mercury lamp was inserted into the applicator for measuring 

the absolute power density.

5.2 Estimation of power density

5.2.1 Estimation of total UV power density

The emitted UV power density from N2/O2 microwave discharge was evaluated 

using the following equation

  )(II , ------------------------------------ 5.1

where

I = emitted power density in 200- 400 nm wavelength range (μW /cm2)
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I(λ) = emitted power density at particular wavelength within a wavelength width λ

(μW/cm2-nm)

 λ = wavelength width (nm).

I(λ) is obtained from the measured spectra

 λ is obtained from the interval of wavelength of the spectra measured by 

spectrometer.

5.2.2 Estimation of power density in the germicidal region

Although UV light ranges from 200 to 400 nm, the whole range does not have 

germicidal effect. Only the range between 210 and 315 nm has germicidal effect. The 

energetic UV radiation in this region destroys microorganisms by killing or altering the 

structure of the DNA of the microorganisms [1]. The emitted power density in the 

germicidal region was estimated using the following equation

  )(II , --------------------------------------- 5.2

where

I = emitted power density in the 210- 315 nm range (μW /cm2)

I(λ) = emitted power density at particular wavelength within a wavelength width λ

(μW/cm2-nm)

 λ = wavelength width (nm).

I(λ) is obtained from the measured spectra

 λ is obtained from the interval of wavelength of the spectra measured by 

spectrometer.
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5.2.3 Estimation of effective germicidal power density

The germicidal efficiency of the emitted radiation at different wavelength is 

also not same over the whole germicidal region (210 to 315 nm). Numerical value for 

the potential germicidal efficiency coefficients at different wavelengths is different 

having the maximum at 260 nm. Numerical value for the potential germicidal efficiency 

coefficients at different wavelengths is listed in table 5.1 [2]. The effective germicidal 

power density was calculated ted using the following equation [2]

   )()( SII , ----------------------------------- 5.3

where

I = effective germicidal power density in the 210 to 315 nm range (μW/ cm2),

I(λ) = emitted power density at particular wavelength within a wavelength width λ

(μW/cm2-nm)

S(λ) = germicidal efficiency coefficient of wavelength width λ and

 λ = wavelength width (nm).

I(λ) is obtained from the measured spectra

 λ is obtained from the interval of wavelength of the spectra measured by 

spectrometer.

S(λ) was obtained from data published by Meulemans [3] which is given in table 5.1.

Table 5.1: Numerical value for the potential germicidal

 efficiency coefficients at different wavelengths

Wavelength Efficiency 

Coefficient S(λ)
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210 0.02

215 0.06

220 0.12

225 0.18

230 0.26

235 0.36

240 0.47

245 0.61

250 0.75

255 0.88

260 0.97

265 1.00

270 0.93

275 0.83

280 0.72

285 0.58

290 0.45

295 0.31

300 0.18

305 0.10

310 0.05

315 0

5.3 Results and discussion

Figure 5.3(a), shows the UV emission spectra from N2/O2 discharge at 20% O2

concentration and 500 Pa total pressure. The peaks at 214, 225, 236 and 246 nm are 

from NO )( 22  XA   system, which is degraded to the shorter wavelength [4].

The emission spectrum from a commercial low pressure Hg lamp (Mitsubishi/Osram 

GL10) is shown in figure 5.3(b). The spectrum was measured with same measurement 

configuration as that of N2/O2 microwave discharge. Single peak at 254 nm was 
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observed in the 210 to 315 nm region.
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Fig. 5.3: Emission spectra in the UV range from (a) N2 + 20% O2 and (b): Emission 

spectra from commercial low pressure Hg lamp

The emitted power density in the UV region was calculated using equation 5.1. In 

the case of N2/O2 discharge, the UV (200- 400 nm) power density was 1100μW/cm2. On 

the other hand, the UV (200- 400 nm) power density was 180μW/cm2  from Hg lamp.

Figure 5.4(a), shows the spectra in the germicidal region from N2/O2 discharge at 

20% O2 concentration and 500 Pa total pressure. The spectra in the germicidal region 

emitted from a commercial low pressure mercury lamp are shown in figure 5.4(b). The 

emitted power density in the germicidal region was calculated using equation 5.2. The 

emitted power density in the germicidal region was 470 μW/cm2 from N2/O2 discharge

5

1

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whereas emitted power density in the germicidal region was 170 μW/cm2 from Hg 

lamp.

0

20

40

60

80

100

(a) N 2O2, O2 20%
500 Pa, 100 W

P
ow

er
 d

en
si

ty
 [
μ

W
/c

m
2 -n

m
]

Wavelength [nm]

220 240 260 280 300
0

20

40

60

80

100

(b) GL10l Hg lamp

Fig. 5.4. Emission spectra in the germicidal region from (a) N2/O2 discharge and (b) a 

commercial low pressure mercury lamp.
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Figures 5.5(a) and (b) show the emission spectra from N2 /O2 gas mixture (20% 

O2) at 500 Pa and from commercial mercury lamp. The density of the effective 

germicidal power was estimated using equation 5.3. The effective germicidal power 

density was 170 μW/cm2  from N2/O2 discharge and whereas effective germicidal 

power density was 120 μW/cm2 from GL10 lamp.

The findings of the above study are summarized in table 5.2.

Table 5.2: The findings of the study

Items Hg lamp N2/O2 discharge

UV (200-400 nm) density 180 μW/cm2 1100 μW/cm2

UV (210-315 nm) density 170 μW/cm2 470 μW/cm2

Effective germicidal power 

density

120 μW/cm2 170 μW/cm2

Most effective peak 254 nm 247 nm

Input power 10 W 100 W

5.4 Summary

N2 /O2 discharge emits intensive UV light in the 200 nm to 400 nm region. The 

maximum effective germicidal power density from N2/O2 discharge was obtained at 

total pressure 500 Pa, and at 80% N2 and 20% O2 concentration.  The UV (200 -400 

nm) power density was 1100 μW/cm2 from N2/O2 discharge and was 180 μW/cm2 from 

GL10 lamp. Power density in the germicidal range (210 nm t0 315 nm) was 470
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μW/cm2 from N2/O2 discharge and was 170 μW/cm2 from GL10 lamp whereas the 

effective germicidal power density was 170 μW/cm2 from N2/O2 discharge and was

120 μW/cm2 from GL10 lamp.

In case of Hg lamp, 95% of the UV light is emitted in the germicidal region and 65% of 

the total UV light is effective in germicidal action. On the other hand, in case of N2/O2

discharge 45% of the UV light is emitted in the germicidal range and only 15% of it is 

effective in germicidal action.
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Chapter 6

Conclusions

UV radiations have many applications in biological, physical and chemical 

processes; such as disinfection of drinking water, sterilization of medical equipments, 

photochemical synthesis and photo-enhanced chemical vapor deposition. Mercury 

which is used today as filling element in the UV light source is highly toxic and 

potentially carcinogenic. Environmental groups worldwide are calling for limits on the 

use of mercury in electrical and electronic equipment. So the replacement of mercury in 

conventional UV lamps by other components is highly desirable for environmental 

reasons. Now it is high time to find out the alternative of mercury as a light source. As 

mentioned in chapter 1, molecular radiators can be new options as mercury free light 

source.

This research focuses on the study of the emission spectrum from N2 /O2 gas 

mixture discharge in the UV and visible range (from 200 – 800 nm) aiming to apply it 

as a mercury free UV light source which can be used for water purification. Discharge 

was produced in a quartz tube with 500 mm length and 15 mm outer diameter by 

applying microwave power. Microwave power was used for excitation of discharge to 

avoid degradation of molecular gases through chemical reactions with electrodes.  The 

dependence of emission intensity emitted from microwave excited N2 /O2 discharge on 

gas composition and total pressure was examined. The effect of inert gases on the 

intensity of the emission was also investigated. Long time operation was also carried 

out to investigate the life time of the source. Power density in the UV and germicidal 
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region from N2/O2 discharge was measured in comparison with a low pressure 

commercial mercury lamp (GL10).. The effective germicidal power emitted from both 

mercury lamp and N2/O2 discharge was also estimated.

The main conclusions of this study are summarized as follows.

Chapter 2 Production UV emission from N2/O2 gas discharge

UV emission was produced from microwave excited N2/O2 gas mixture

discharge in a cylindrical quartz tube. It was investigated that gas composition and the 

total pressure were critical factors influencing the intensity of UV emission emitted 

from NO molecules. The intensity of UV emission varied with gas composition and 

pressure, and was highest at 20% O2 concentration and 500 Pa total pressure.

Chapter 3 Effect of rare gases and pulse operation

The effect of inert gases on the emission intensity was examined. He, Ne, Ar, 

Kr and Xe gases at different percentages of concentration was used in the experiment. It 

was observed that at low concentration below 5%, these gases have no effect on the 

emission intensity whereas the emission intensity in both the UV and visible ranges 

decreased as the rare gas concentration was increased. The gases only behave as buffer 

gases. Buffer gases caused collisions with the other co-existing molecules and decreases 

the emission intensity.

UV intensity in 200- 400 nm region does not vary with pulse width and pulse

interval but depends on average power. The life time of NO molecules is shorter than 1 

ms.
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Chapter 4 Long time operation of N2/O2 discharge

The long time operation of microwave excited N2 /O2 gas mixture discharge

without refreshing the enclosed gas was performed. It was observed that the UV

intensity emitted from NO molecules decreased with time due to the decrease of O2

concentration inside the closed tube with operation time. Within 1 hour of operation, O2

concentration decreased from 20% to 5% and in the following 10 hours O2

concentration reached to almost 1%. The pressure of N2 also decreased with time. After 

several 10 hours of operation the pressure of N2 dropped to a level which was not 

enough to sustain the plasma.

Chapter 5 Estimation of UV power density

Power density in the UV (200- 400 nm) and germicidal (210- 315 nm) region 

emitted from the N2/O2 discharge and from low pressure commercial Hg lamp 

( MITSUBIHI/ OSRAM GL10) was measured and compared. The UV (200 -400 nm) 

power density was 1100 μW/cm2 from N2/O2 discharge and was 180 μW/cm2 from 

GL10 lamp. Power density in the germicidal range was 470 μW/ cm2 from N2/O2

discharge on the other hand power density in the germicidal range was 170 μW/ cm2

from GL10. The effective germicidal power density emitted from both N2/O2 discharge

and mercury lamp was also estimated. The effective germicidal power density was 170 

μW/ cm2 from N2/O2 discharge whereas effective germicidal power density was 120 μ

W/ cm2 from GL10 lamp. In case of Hg lamp, 95% of the UV light is emitted in the 

germicidal region and 65% of the total UV light is effective in germicidal action. On the 

other hand, in case of N2/O2 discharge, 45% of the UV light is emitted in the germicidal 

range and only 15% of it is effective in germicidal action.
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As N2/O2 discharge produces effective germicidal power density of 120 μ W/

cm2, this can be used for water purification purpose. However further research should 

be carried out to increase the efficiency and the life time of the source.

  


