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Abstract  
 
The molecules of liquid crystal polymers (LCPs) are consisted of rigid and flexible 

monomers that link to each other. In shear flows, the rigid segments of the molecules 
usually tend to align in the direction of the flow. Once this orientation is formed, their 
direction and structure persist, even when LCP is cooled below the melting temperature. 
As a result of this unique structure, LCPs show many unusual properties, such as: high 
strength, good heat resistance, high impact resistance, and low stretch or elongation. At 
present, commercial uses of LCPs range from fibers for bulletproof vests, to packaging 
for electrical and optical components. Thermotropic LCPs are particularly attractive for 
injection molding, because of their low shrinkage and low viscosity in the nematic melt 
state.  

 
At present, Leslie-Ericksen (L-E) theory and Doi’s theory are the two popular 

constitutive theories for liquid crystals. The L-E theory, which is based on macroscopic 
continuum mechanics, is suitable for describing the rheological properties of low 
molecular weight nematics and polymer nematics at low shear rate. The Doi’s theory, 
derived from microscopic molecular theory, is a kinetic model for rod-like polymers. 
Usually the Doi’s model is too complicated to be used in the simulation of complex 
flows. Marrucci, Kuzuu and Doi have demonstrated that the Doi’s theory could be 
reduced to the L-E theory in the limit of low shear rates. Many researchers have used 
the L-E theory in analyzing flow induced behaviour of LCPs. 

 
The simulation of the LCPs flows during injection moulding in thin-walled moulds, 

which can be simplified by Hele-Shaw approximations, were investigated in this work. 
The Leslie- Ericksen equations of motion in the high viscosity limit were used to model 
the flows. 

 
Space discretization is necessary for solving the governing equations. There are 

several ways to numerically approximate the partial differential equations, such as, 
finite difference method, finite element method, and boundary integral method. Among 
them, the finite difference method is the simplest one and it also has advantages with 
regard to computational time and storage. However, it is difficult for the finite 
difference method to treat flows in domains of complex shaped geometries. The 
numerical grid generation technique can remove the problem of boundary shape from 
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finite difference methods. This scheme has been used successfully in the finite 
difference solution of the equations for flows in irregularly shaped two-dimensional 
bodies by many researchers. However, the grid control is not a simple task for 
complicate geometries. To solve this problem, we developed the so-called “ improved 
boundary-fitted mapping” technique, which is described in section 3.4.  

 
This new scheme is much simpler than the original numerical grid generation 

technique. It frees the computational simulation from restriction to certain boundary 
shapes and allows general codes to be written in which the boundary shape is specified 
simply by input. It can help the finite difference method to overcome its difficulty on 
treating flows in complicated geometries and keep the simplicity and high efficiency of 
the finite difference method at the same time. 

 
The simulation results are described in chapter 4. In section 4.2, we give an analysis 

of the steady director of liquid crystal in Hele-Shaw flows. This result may help to 
explain a widely recognized phenomenon in the molding process of nematic polymers, 
which is that the molecular chains in the skin regions are largely aligned along the 
injection direction while the chain orientation in the central core is more or less random. 
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Chapter 1: Introduction 
 

1.1 Liquid crystals 

1.1.1 Introduction 
 

Liquid crystals are substances that exhibit a phase of matter that has properties 
between those of a conventional liquid and those of a solid crystal. As shown in figure 
1-1, in liquid crystal state, the molecules possess at least some orientational order, but 
lack the full three-dimensional positional order of solid crystals. They were first 
observed by Friedrich Reinitzer, an Austrian botanist, in 1888 and named by Otto 
Lehman, a German physicist. Although for 100 years they had no practical uses, they 
were studied intently by several determined scientists, who learned many of their secrets. 
Since the 1960s, the knowledge they extracted has become very profitable. Now liquid 
crystals find wide uses, such as Liquid Crystal Displays, Liquid Crystal Thermometers, 
Optical Imaging, and many other applications. 

 

 
 

 

  Fig 1-1 liquid crystal state 
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1.1.2 Liquid crystal phases [21] 

Molecules that form liquid crystalline phase are often oblate or prolate in shape, 
because orientational order is possible for them. Crystalline solids made of such 
molecules can melt into isotropic liquids in multiple steps. At intermediate stages of the 
melting, there can be orientational order with no, or only partial positional order. That is, 
the molecules might tend to be aligned in a common direction, but the centers of mass 
of the molecules take on random positions. Such intermediate phases are liquid crystals. 
The various liquid crystal phases (called mesophases) can be characterized by the type 
of ordering that is present. One can distinguish positional order and orientational order, 
and moreover, order can be either short-range or long-range. 

 

        Fig 1-2 Schematic representations of liquid crystal phases 

The ordering of liquid crystalline phases is extensive on the molecular scale. This 
order extends up to the entire domain size, which may be on the order of micrometer, 
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but usually does not extend to the macroscopic scale as often occurs in classical 
crystalline solids. However, some techniques (such as the use of boundaries or an 
applied electric field) can be used to enforce a single ordered domain in a macroscopic 
liquid crystal sample. The ordering in a liquid crystal might extend along only one 
dimension, with the material being essentially disordered in the other two directions. 

Nematic phase 

One of the most common liquid crystal phases is the nematic, which possess 
orientational, but no positional order. The direction of preferred orientation is 
designated by a unit vector called “director”n. As shown in figure 1-2(a), n gives the 
preferred average orientation in the neighbourhood of any point. Most nematics are 
uniaxial: they have one axis that is longer and preferred, with the other two being 
equivalent (can be approximated as cylinders). Some liquid crystals are biaxial nematics, 
meaning that in addition to orienting their long axis, they also orient along a secondary 
axis. 

Cholesteric phases 

Only chiral molecules (i.e.: those that lack inversion symmetry) can give rise to such 
a phase. As show in figure 1-2(b), this phase exhibits a twisting of the molecules along 
the director, with the molecular axis perpendicular to the director. The finite twist angle 
between adjacent molecules is due to their asymmetric packing, which results in 
longer-range chiral order.  

The chiral pitch refers to the distance (along the director) over which the mesogens 
undergo a full 360º twist (but note that the structure repeats itself every half-pitch, since 
the positive and negative directions along the director are equivalent). The pitch may be 
varied by adjusting temperature or adding other molecules to the liquid crystal fluid. For 
many types of liquid crystals, the pitch is on the same order as the wavelength of visible 
light. This causes these systems to exhibit unique optical properties, such as selective 
reflection. These properties are exploited in a number of optical applications. 

Smectic phase 

The smectics are layered materials. They possess both orientational and 
one-dimensional, or layer-like, position order. The simplest smectic is the smectic-A 
phase, in which the molecules point perpendicular to the layer planes, whereas in the 



 4 

smectic C phase, the molecules are tilted with respect to the layer planes, as shown in 
(c) and (d) of figure 1-2. In hexatic phases, the mesogens in a particular layer take on a 
roughly hexagonal close-packed ordering, with typically no registry between adjacent 
smectic layers. It is also possible to find examples of liquid crystals where the registry 
between layers is fairly strong; hence there is three-dimensional positional (and possibly 
even orientational) order. These phases are called crystal mesophases, and are in fact 
nearly as ordered as solid crystals (although they still exhibit fluid-like flow). 

 

1.2 Liquid Crystal Polymers [13] 

1.2.1 Introduction 

Liquid crystal Polymers (LCPs) are a class of materials that combine the properties of 
polymers with those of liquid crystals. These "hybrids" show the same mesophases 
characteristic of ordinary liquid crystals, yet retain many of the useful and versatile 
properties of polymers. LCPs are commercially interesting because of their following 
properties: 

 Low stretch or elongation  
 Resistance to cutting  
 Excellent thermal properties (esp. heat resistance)  
 Difficult to wear away  
 High strength  
 Low weight  
 High impact resistance  

In addition, the process ability of LCPs is enhanced by the low viscosity they have 
in the nematic melt state, resulting from their chain stiffness and high molecular 
orientation. At present, the commercial uses of LCPs include fibers for bulletproof vests, 
packaging for electrical and optical components, and strong, lightweight aircraft parts, 
where the high cost of LCPs is not an overriding issue. In the future, there may be 
applications in the area of nonlinear optical components and, for side-group LCPs, in 
field-orientation devices (Donald and Windle 1992) 
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The molecules of LCPs are generally semirigid or contain rigid units, called 
mesogens. The distribution of orientations of the molecules, or at least of the mesogens, 
is anisotropic in the liquid crystalline state. The placement of the mesogens plays a large 
role in determining the type of LCPs that is formed. The main-chain LCPs or MC-LCPs 
are formed when the mesogens are themselves part of the main chain of a polymer. 
Conversely, in side chain LCPs or SC-LCPs the mesogens are attached to the backbone 
by flexible spacers. 

 

 

Fig 1-3 Schematic illustration of different kinds of polymers 

 

Other factors influencing the mesomorphic behavior of polymers include the 
presence of long flexible spacers, a low molecular weight, and regular alternation of 
rigid and flexible units along the main chain. 

1.2.2 Temperature Range Problems 

In 1923, Vorlander synthesized long liquid-crystal-forming molecules by connecting 
benzene rings together at their para positions using esther linkages and found that the 
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melting point of these materials increases rapidly with increasing molecular length. This 
work culminated in the synthesis of poly(p-benzamide); its melting point, however, was 
so high that it charred before melting. The problem of achieving a lower melting 
temperature for such materials was finally overcome in 1976 by Jackson and coworkers 
at Eastman Kodak, by using random copolymers of aromatic polyesters. 

The first method of lowering polymer melting temperatures involves the 
arrangement of the monomers in the chain. If the molecules are put together in random 
orientation (head-to-tail, head-to-head, etc.), interactions between successive chains are 
minimized. This allows for a lower melting temperature. 

Another method to bring the temperature down to a useful range involves 
copolymerization. If a random copolymer can be created, the regularity of the chains is 
greatly reduced. This will help to minimize the interactions between the chains by 
breaking up the symmetry, which in turn will lower polymer melting temperature.  

Finally, defects can be introduced into the chain structure which lower the polymer 
melting temperature. This method creates 120 degree "kinks" in the chain which disrupt 
the ability for neighboring polymers to line up. Unfortunately, this also decreases the 
effective persistence length. At same time, too many kinks can destroy any liquid 
crystal behavior. 

 

1.3 Applications of Liquid Crystal Polymers [13] 

At present, commercial applications of LCPs range from the production of 
high-strength materials to optical devices. The following is an introduction to some of 
these applications. 

1.3.1 High-Strength Fibers 

Because of their chain stiffness and high molecular orientation, LCPs show unusual 
bulk properties. Solidified LCP fibers can have tensile moduli in the tens or hundreds of 
gigapascals and can have fracture strengths of order 1-4 GPa [11].. Kevlar, which is 
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used to make such things as helmets and bullet-proof vests, is just one example of the 
use of polymer liquid crystals in applications calling for strong, light weight materials. 

Ordinary polymers have never been able to demonstrate the stiffness necessary to 
compete against traditional materials like steel. It has been observed that polymers with 
long straight chains are significantly stronger than their tangled counterparts. Main 
chain liquid crystal polymers are well-suited to ordering processes. For example, the 
polymer can be oriented in the desired liquid crystal phase and then quenched to create 
a highly ordered, strong solid. As these technologies continue to develop, an increasing 
variety of new materials with strong and light-weight properties will become available. 

1.3.2 Optical Applications 

At present, most liquid crystal displayers are made of traditional liquid crystals. 
However, the use of LCPs in the display industry is an exciting area of research, 
because the manipulation of polymers is often much easier than traditional liquid 
crystals. At this time, the main shortage of liquid crystal polymer displayer is their slow 
“response time” to electrical fields. Researchers are working to overcome this problem.  

In addition, Side chain polymer liquid crystals exhibit good properties for 
applications in optically nonlinear devices including optical waveguides and 
electro-optic modulators in poled polymeric slab waveguides. More devices are 
expected to be fabricated from LCPs in the future: optically-addressed spatial light 
modulators, tunable notch filters, optical amplifiers, and laser beam deflectors. The 
properties of ferroelectric chiral smectic C phases make this material useful for films 
with applications in nonlinear optics. 
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Chapter 2: Constitutive model 
 

The Leslie-Ericksen (L-E) theory (Leslie 1966; de Gennes and Prost 1993) offers a 
general relationship that satisfies the symmetry properties of uniaxial nematics fluids 
with a single director, for which the stress is linear in the local velocity gradient. It can 
be applied to small-molecule nematics and polymeric nematics at low shear rate. 
 

2.1 Ericksen Transversely Isotropic Fluid [11] 

 
The stress tensor for a flowing nematic which neglects elasticity is given as 

(Ericksen 1960, 1961): 

  nn)AA(nnnnnAnAτ  210                          (2-1) 

and the director evolution become: 

nn)Ann(AnWn
 λ

Dt
D                                  (2-2) 

where 

 nvnn






tDt

D                                             (2-3) 

Here n is the director, A is the rate of strain tensor, and W is the vorticity tensor, 

    v)vA
2
( T

                                             (2-4) 

 v)vW
2
( T

                                              (2-5) 

and β0, β1, and β2 are constant viscosities. 
 

The coefficient λ is called the reactive parameter, or tumbling parameter, it controls 
the rotation of the director in a flow field. It is a function of Leslie coefficients. 

   
32

32




                                                 (2-6) 
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Consider a simple shearing flow, and define x to be the flow direction, y to be the 
velocity gradient direction, and z to be the vorticity direction. In a flow like this, 
vy=vz=0, ∂vx/∂z=∂vx/∂x=0. Therefore 
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Then equation (2-2) turn to 
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The director n can be represented in terms of a polar angle θ and an aximuthal angle φ 
as n=(nx,ny,nz)= (cosθcosφ, sinθcosφ, sinφ).  
 

set Dn/Dt=0, we can get the steady-state solution for |λ|>1: 

 nz=sinφ=0                                     (2-11) 

      2/1)
1
1(tan




                                          (2-12) 
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There are four such steady-state solution in the (nx,ny) plane, as depicted in the 
figure 2-1. Since nematics are nonpolar, two of the four solutions shown in figure 2-1 
are redundant; of the remaining two solution, one is unstable and the other stable. For 
λ>1 and a shear rate that is positive, the stable solution is the one with a positive sign in 
equation (2-12).  

 
If |λ|<1, equation (2-10) has no steady-state solutions in the shearing plane. And the 

director rotates endlessly in the deformation plane. When |λ|<1 the nematics is called a 
tumbling nematics, while when |λ|>1, the nematics is flow-aligning. 
 

 
 Fig 2-1 Ericksen diagram showing directions of rotation and directors of steady state 
 

2.2 Frank-Oseen Theory 
 

The liquid crystal molecules in the nematic phase tend to follow a preferred 
direction of alignment. However, spatial variations in the director field exist in real 
flows. It will disrupt somewhat the molecular packing and thus incur a free-energy 
penalty F, the minimization of which influences the equilibrium or static dependence of 
the director n on position. If the change of the director orientation is small over the 
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length of a molecule, then the excess free energy density F produced by that gradient 
can be obtained from the low-order Frank continuum theory. According to the low-order 
Frank continuum theory, the excess free energy density F produced by that gradient can 
be written as: 

  nnnnn 2
3

2
2

2
1 K)(K)(KF2                     (2-13) 

Here ▽•n and ▽×n are the divergence and curl of n, Ki, i=1,2,3, correspond to 
the splay, twist and bend elasticity constants. The three contributions to F are associated 
with the three independent modes of distortion: splay, twist, and bend. This equation is 
valid when the change of the director orientation is small over the length of a molecule. 
The Frank constants K1, K2, and K3 are of the order u/α, where α is a molecular length 
scale (actually the molecule’s volume divided by its length squared) and u is a nematic 
interaction energy parameter. 

 

2.3 Leslie-Ericksen Theory 
 

In Leslie-Ericksen theory, both the viscous stresses and Frank elastic stresses are 
considered. It consists of two major equations: the stress tensor equation (2-14) and 
director rotate equation (2-17).  

nnAAnnANnnNA:nnnnτ  654321          (2-14) 

Here     621 ,...,,  are the six constant viscosities (the Leslie coefficients). 

  5326                                            (2-15) 

In equation (2-14), N is defined as  
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D   WnnN                                              (2-16) 

N is the rotation rate of n relative to that of the background fluid. 
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Chapter 3: Numerical techniques [15] 
 

3.1 Introduction 
 
Space discretization is necessary for solving the governing equations. It involves the 

approximation of velocities, pressures, and temperatures at prescribed values of x and y 
on a spatial grid. For non-Newtonian flow problems, the required approximation is 
usually generated by using finite difference and finite element methods, both of which 
are well established. 

 
The finite difference approach is the easier of the two to implement and its 

background mathematical analysis is also relatively simple. Further, finite difference 
technique has advantages with regard to computational time and storage. 

 
The development of a finite element code requires a non-negligible amount of 

programming, however, the initial difficulties associated with this approach can be 
compensated to some extent by the ease by which a finite element code, once written, 
can be changed to accommodate new flow situations and geometries. Furthermore, 
finite element method implements natural boundary conditions and complex geometries 
can be handled with relative ease. 

 
In general, the finite difference method is simple and high efficient. However, it is 

difficult for the finite difference method to treat flows in domains of complicated shaped 
geometries. In this study, the finite difference method was selected for space 
discretization, and a new “improved boundary-fitted mapping” technique (described in 
section 3.4) was developed to treat flows in complicated geometries. 
 

3.2 Finite difference Method 

3.2.1 Introduction 
 
The governing equations of liquid crystal polymer flows are a set of partial 

difference equations, which are usually solved numerically. Discretization process, 
which converts the partial difference equations into a set of algebraic equations, is the 
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basic technology for numerically solution of partial difference equations. These algebra 
equations can provide the field variable values at discrete points within the domain. At 
present, finite element, finite difference, and boundary element techniques are the three 
primary approaches for discretization process. Among them, the finite difference 
method is the most common and conceptually straightforward method of discretization 
for field variables defined on grid points. Finite difference methods originated in the 
1930’s for hand calculation; their use expanded rapidly with the development of digital 
computers. Despite their limitations, traditional finite difference techniques still 
represent the most developed and best understood numerical procedure for solving 
partial differential equations. 

A finite difference solution to a field problem involves three steps. First, a grid is 
constructed over the flow domain. Second, the governing partial difference equations 
are converted into a set of algebraic equations, which are algebraic expressions for the 
nodal values of the problem variables. Finally, the algebraic equations obtained in step 
two are solved numerically.  

 

 

Fig 3-1 Construction of a mesh over the problem domain and identification 
 of nodal points using indices 
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3.2.2 Basic formulations 

 
Taylor series expansion is the most basic approach to formulate discrete finite 

difference equations. It can predict truncation errors to compare the accuracy of 
different discretization formulas. Consider a quantity T which is a function of 
independent variables, x and y.  T is defined at equally spaced, discrete grid points 
(xi,yj) on the Cartesian mesh shown in figure 3-1. We look for an approximation to the 
derivative ∂T/∂x at a grid point. The indices i,j identify the nodal locations in x and y 
directions respectively. Assume Ti,j stands for the value of T at a grid point (x0,y0). If 
the function T is continuous over the domain, then the value of Ti+1,j can be expressed in 
term of Ti,j by a Taylor series expansion. 
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From the above equation, we can get the first order derivative of T at the location (x0,y0) 
as: 
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where O(∆x) indicates the order of the additional terms in the series. It means this 
equation has a truncation error of order ∆x. The nature of the Taylor series expansion 
lets higher order terms be truncated because magnitudes of the higher order terms are 
smaller. Dropping these additional terms gives an expression for the first order 
derivative of T at the point (x0,y0): 
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Equation (3-3) is called a forward difference expression for the first order derivative 
because equation (3-1) expanded the function T in the positive x-direction. The 
elimination of higher order terms in the Taylor series introduces a truncation error. 
Equation (3-3) is no longer exact, but contains an error of order ∆x. Similarly, we can 
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get the backward difference expression and central difference expression shown in 
equation (3-4) and equation (3-5). 
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It can be seen that the backward and forward difference expressions have an error of 
order ∆x. However, the central difference expression has a truncation error of order ∆x2. 

 
The Taylor series expansions at two nodes are necessary to approximate the second 

order derivative 22 x/T  at the grid point (x0,y0). 
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Add two above equations together, 
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Then the approximation of 22 x/T  of second order accuracy is: 
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Similarly, we can get approximations of other second order derivative of function T at 
(x0,y0). 
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3.3 Boundary-fitted mapping technique 
 

Numerical grid generation has been used by many researchers in the numerical 
solution of partial differential equations on arbitrarily shaped region. It can remove the 
problem of boundary shape from finite difference methods and serve for the 
construction of finite element meshes.  

Numerical grids can be generated by mapping the irregular shaped geometry to a 
more regular shape in a computational domain. An orthogonal, rectangular mesh can be 
created in the transformed, simpler domain and then mapped back to provide a 
curvilinear mesh in the original irregular shape. The governing equations are similarly 
transformed and solved in the computational domain. The solutions at every node then 
are mapped back onto the original physical domain. 

Here is an example of numerical grid generation. As shown in figure 3-2, first, 
divide the boundary of the physical domain into four segments: ab, bc, cd, and da. Then 
map these four segments onto the four sides of the rectangular a’b’c’d’ in the 
computational domain: ab to a’b’, bc to b’c’, cd to c’d’, and da to d’a’. Build an 
orthogonal rectangular mesh inside the rectangular a’b’c’d’ and map it back into the 
original physical domain. We can get the curvilinear mesh in the physical domain, 
whose coordinate line (surface in 3D) is coincident with each segment of the boundary 
of the irregular shaped geometry. 

   Fig 3-2 Mapping of the irregular physical domain to a regular computational domain 
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The generation of field values of a function from grid values can be done in various 
ways, e.g., by interpolation, etc. 

 
The solutions of a system of partial differential equations are usually taken as the 

mapping function. If the coordinate points are specified on the entire closed boundary of 
the physical region, the equations must be elliptic, while if the specification is on only a 
portion of the boundary the equations could be parabolic or hyperbolic. In this study, we 
treat the general case of a completely specified boundary, which requires an elliptic 
partial differential system. 

 
The elliptic partial differential system has two advantages. One is that the extremum 

principles exhibited by some elliptic systems can serve to guarantee a one-to-one 
mapping between the physical and transformed regions. Another important property in 
regard to coordinate system generation is the inherent smoothness that prevails in the 
solutions of elliptic systems. 

A. Laplace system 

The most simple elliptic partial differential system, and one that does exhibit an 
extremum principle and considerable smoothness is the Laplace system: 
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This generation system guarantees a one-to-one mapping for boundary-conforming 
curvilinear coordinate systems on general closed boundaries. 

Because of the strong smoothing effect of the Laplacian, the coordinate lines will 
tend to be equally spaced in the absence of boundary curvature and in the regions away 
from the boundaries. However, they will become more closely spaced over convex 
boundaries, and less so over concave boundaries, as illustrated below. 

At convex boundary, we have ηxx > 0, it follows that ηyy < 0. ηyy < 0 means the 
spacing between the η-lines will increase with y near the convex boundary. Consider the 
fact that the coordinate lines will tend to be equally spaced in the regions away from the 
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boundaries, we can get the conclusion that the η-lines thus will tend to be more closely 
spaced over a convex boundary segment, as shown in the left figure of figure 3-3. For 
concave segments, illustrated in the right figure of figure 3-3, we have ηxx < 0, so that 
ηyy must be positive, and hence the spacing of the η-lines must decrease outward from 
this concave boundary. Therefore, the irregular shaped geometry may cause unevenly 
distribution of the grids in physical domain. 

      Fig 3-3 Coordinate lines near convex boundary and concave boundary 

 

B. Poisson system 

The control of grid distribution inside the flow domain can be solved by Poisson 
equations: 
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in which P and Q are grid distribution control functions. The extremum principles 
may be weakened or lost completely with such a system, but the existence of an 
extremum principle is a sufficient, but not a necessary, condition for a one-to-one 
mapping, so that some latitude can be taken in the form of the control functions. 



 19 

If Poisson equations are used in example shown in figure 3-3, we can use positive Q 
at convex boundary and minus Q at concave boundary to overcome to some extent the 
unevenly distribution caused by irregular shape of the flow domain. 

 
  

 
Fig 3-4  The numerical mapping of the boundary of irregular domain (from the 
physical x,y coordinates) to a more regular computational domain (in the ξ,η 
coordinates). 
 

3.4 Improved Boundary-fitted mapping technique 
 

Usually Poisson type elliptic expressions are used to relate the physical (x,y) 
coordinates to the computational (ξ,η) coordinates due to their inherent “smoothness” 
and ability to handle boundary discontinuities. These relations are shown in equation 
(3-12a) and (3-12b). Here P and Q are grid control functions that can be used to specify 
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mesh concentration in desired areas. 
 

This scheme has been used successfully in the finite difference solution of the flows 
in irregularly shaped two-dimensional bodies by many researchers. However, it has two 
shortcomings. The first one is that it is difficult to determine P and Q. Many researchers 
just set P and Q as zero. It works well for some situations, but grid control is still 
necessary for complicated geometries. Another shortcoming is that it influences the 
simulation accuracy. The mapping cause extra errors. 

 
To solve these two problems, we developed the improved boundary-fitted mapping 

technique. As shown in figure 3-4, only the boundary region of the flow domain (the 
shaded region) takes part in the mapping. There are no grids inside the mapping region, 
the mesh concentration control is not necessary and P and Q can be set equal to zero for 
arbitrarily shaped flow domains. Therefore, this new technique can solve the grid 
control problem of the original boundary-fitted mapping method.  

 
At the grid nodes in the boundary region, the governing equations are transformed 

and solved in the computational domain, and the solutions at every node in the 
boundary region are mapped back into the physical domain. At the grid nodes in the 
flow domain other than the boundary region, the governing equations are solved in the 
physical domain directly. Because only a very small part of flow domain takes part in 
the mapping process, the extra errors caused by the mapping are much smaller than the 
ordinary boundary-fitted mapping technique. Therefore, the new mapping technique can 
also solve the accuracy problem of the ordinary boundary-fitted mapping technique to a 
great extent. 

 
This new mapping technique is the most important result in this study. It is simple 

and easy to implement, its computational cost is low, and its accuracy is high. It frees 
the computational simulation from restriction to certain boundary shapes and allows 
general codes to be written, in which the boundary shape is specified simply by input. It 
can help the finite difference method to overcome its difficulty on treating flows in 
complicated geometries and keep the simplicity and high efficiency of the finite 
difference method at the same time.  
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Chapter 4: Simulation of Hele-Shaw flows 
 

4.1 Hele-Shaw approximations 
 

Most injection molded plastic parts are geometrical configurations of complicated 
shape and the rheological response of polymer melts is generally non-Newtonian and 
non-isothermal. Because of these inherent factors, it is extremely difficult to analyze the 
filling process without simplifications. The Generalized Hele-Shaw(GHS) flow model 
introduced by Hieber and Shen provides simplified governing equations for 
non-isothermal, non-Newtonian and inelastic flow in thin cavities. 

 
Consider the flow of polymer melt through a mold cavity with a high aspect ratio 

cross-section, which varies in dimension along its length. The melt flows in x-y plane, 
the z-direction is perpendicular to the flow field, and h(x,y) is the local separation 
between the mold surfaces. Since the separation between the surfaces is typically much 
smaller than the other dimensions, one would expect that the flow at a given point be 
mostly influenced by the local geometry. Therefore, the lubrication approximation can 
be applied: the velocity component in z-direction can be neglected and the pressure is a 
function of x and y only. Moreover, due to the extremely high viscosity of the polymer 
melt, the flow regions are considered to be fully developed Hele-Shaw flows in which 
inertia and gravitational forces are much smaller than viscous forces. The flow 
kinematics are shear-dominated and the shear viscosity is taken to both temperature and 
shear rate dependent. Because of these approximations, a GHS model cannot predict the 
exact flow field near the advancing flow front or at the edges of the mold. However, 
these regions extend only a thin layer of order h in the horizontal plane.  
 

 

4.2 Analysis of the steady director of liquid crystal in 

Hele-Shaw flow 
 

In this section, the center of a fully developed symmetric expansion Hele-Shaw flow, 
shown in figure 4-1, was considered. In this flow, z is the gapwise direction, and the 
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velocities in x−y plain are symmetric over a centerline, therefore, at the center, the 
following equations are tenable.  
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4.2.1 Governing equations 
 
The Ericksen Transversely Isotropic Fluid equations are used for modeling the motion 
of the director. 
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Figure 4-1. Velocity directions of a symmetric expansion flow 
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Due to vy=0 and vz=0,  
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Equation (4-3) turns to: 
 

m)  
x
v(nλn

z
v

2
λ1

Dt
Dn x

xz
xx 








                      (4-10a) 

m)  
y
v

(nλ
Dt

Dn y
y

y 



                                    (4-10b) 

zx
xz nmλn

z
v

2
1λ

Dt
Dn





                                (4-10c) 

  nn
z

vn
y

v
n

x
vm zx

x2
y

y2
x

x













                         (4-11) 

 

4.2.2 Steady state analysis 

At steady state of a fluid particle, 0
Dt

Dn
Dt

Dn
Dt

Dn zyx  , equation (4-10a)~(4-10c) 
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become: 
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1) When ny≠0 
 
Equation (4-12b) becomes  
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And equation (4-12a) and (4-12c) become: 
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The solution of the above equations is: nx=nz=0. Obviously the point with nx=nz=0 
and ny=1 satisfies equation (4-4) and (4-12a)~(4-12c). Therefore nx=nz=0 and ny=1 is 
a balance point of director. 
 
Let q1=nx, q2=nz, then at the above balance point, q1=q2 =0. 
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The condition for local stable of equation (4-15) at q=0 is that all the eigenvalues of 
Q have minus real part. It means all the roots of equation (4-17) should have minus real 
part. That requests all its coefficients are positive. 
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Conclusion 1:At the center of a symmetric expansion Hele-Shaw flow shown in figure 
4-1, the condition for local stable of the director of a fluid particle with nx=nz=0 and 
ny=1 is: 
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2) When ny=0 
 
Equation (4-4) becomes: 
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Obviously nx=nz=0 violates equation (4-19). Then equation (4-20) must be tenable for 
the solutions of equation (4-12a) and (4-12c) other than nx=nz=0. 

   0)1()
z

v(m
x

v4m4 22xx222 







               (4-20) 

The roots are: 
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From equation (4-12c), (4-19), and (4-20), we can get the steady director with ny0=0: 
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It can be proved that this solution also satisfies equation (4-11), (4-12a), and (4-12b). 
Therefore, it is a balance point of the director. 
 
Let q1=nx-nx0, q2=ny-ny0, then at balance point q1=q2=0 
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Then near the balance points, we have: 
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Equation (4-10a) and (4-10b) turn to: 
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The local stable conditions are: 
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Equation (4-25) is unstable for m=m2. When m=m1, the condition for local stable of 
equation (4-25) is: 
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Conclusion 2: At the center of a symmetric expansion Hele-Shaw flow shown in figure 
4-1, the condition for local stable of the director of a fluid particle with ny=0 is equation 
(4-28) 
 
 
4.2.3 Discussion 
 

It can be seen from conclusion 1 and conclusion 2 that, in expansion Hele-Shaw 
flows of nematics, there is a singular point for the steady state of director. If the shear 
rate in z direction is larger than a switch value, which is a function of velocity 
derivatives in x-y plane, the steady director will align with the flow direction; otherwise, 
if the shear rate in z direction is less than the switch value, the director will tend to be 
perpendicular to the flow direction. In Hele-Shaw flows, there exists two this kind 
singular layers near the center. The position changing of the singular layers during the 
injection process will produce irregular director oscillations around the two singular 
layers. This result may help to explain a widely recognized phenomenon in the molding 
process of nematic polymers, which is that the molecular chains in the skin regions are 
largely aligned along the injection direction while the chain orientation in the central 
core is more or less random 

 
In the central core between the two singular layers, there is no strong shear rate to 

keep the director. Therefore, the director orientation will tend to be random due to the 
irregular director oscillations around the two singular layers. In the skin layers, the 
strong shear rate in gapwise direction will guarantee the director aligning along the flow 
directions. 
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4.3 Simulation of isothermal flow 
 

4.3.1 Introduction 
 
At present, Leslie-Ericksen (L-E) theory and Doi’s theory are the two popular 

constitutive theories for liquid crystals [1]. The L-E theory, which is based on 
macroscopic continuum mechanics, is suitable for describing the rheological properties 
of low molecular weight nematics. The Doi’s theory, derived from microscopic 
molecular theory, is a kinetic model for rod-like polymers. Usually the Doi’s model is 
too complicated to be used in the simulation of complex flows. As mentioned by 
Rong-Yen Chang et al in [2], Marrucci, Kuzuu and Doi have demonstrated that the 
Doi’s theory could be reduced to the L-E theory in the limit of low shear rates. Many 
researchers have used the L-E theory in analyzing flow-induced behaviour of LCPs. For 
example, Shigeomi CHONO and Tomohiro TSUJI in [1], Rong-Yen Chang et al in [2], 
Marifi Güler in [3], Baleo et al in [4] and Vanderheyden and Ryskin in [5] 

 

 
 
Fig 4-2. A Hele-Shaw type flow in a mould cavity 
 

This simulation focuses on the LCPs flows during injection moulding in thin-walled 
moulds, as shown in figure 4-2. These flow fields can be approximated as Hele-Shaw 
flows in which one dimension (z direction) is much smaller in comparison with the 
other two. As demonstrated by M. Cengiz Altan et al in [8], this physical feature allows 
for following simplifications: (1) viscous forces are dominant, and inertial forces can be 
neglected in the momentum equations. (2) flow and dynamics forces in the gapwise 
direction can be neglected. (3) shear stresses through the gapwidth are dominant and the 
in-plane stresses can be neglected. It means that the shear rates through the gapwidth are 
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dominant and the in-plane shear rates can be neglected. (4) the fluid is assumed 
incompressible. 

 

4.3.2 Governing equations  
 
As pointed out by W.B. Vanderheyden and G. Ryskin in [5], LCPs exhibit very high 

viscosities and it is reasonable to use the high viscosity approximation in LCPs flows.  
 
The Ericksen-Leslie equations of motion in the high viscosity limit are given by: 

 

Continuity equation: 

0 v                                      (4-29) 

Momentum equation: 

 0τ p                                   (4-30) 

Angular momentum equation: 

nn)Ann(AnWn
 λ

Dt
D                        (4-31) 

The stress tensor: 

  nn)AA(nnnnnAnAτ  210                         (4-32) 

where v is velocity vector, p is pressure, n is the director orientation vector, τ is the 
stress tensor, A is the rate of strain tensor: 

  vvA
2

)( T 
                                            (4-33) 

and W is the vorticity tensor: 

 v)vW
T

2
(

                                            (4-34) 

According to Hele-Shaw approximations, the momentum equation (4-30) can be 
written as: 

 
in x direction:  
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in y direction: 

  
z

)z,y,x(
y

)y,x(p zy









                                   (4-35b) 

and the angular momentum equation (4-31) can be written as: 
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In equation (4-36a)~(4-36c), the partial derivatives of velocities on x and y are 
neglected according to Hele-Shaw approximation. However, these terms are kept in the 
central core due to the fact that the shear rate in z direction is zero in the central plane 
and the director orientations in the central core are mainly determined by the shear rates 
in x-y plane. 

 
From the stress tensor equation (4-32) we can get: 
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By substituting the stress tensor equations into the momentum equations and 
integrating the momentum equations in z direction twice, the velocities in term of 
pressure difference can be derived as: 
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The approximate continuity equation of Hele-Shaw flows can be written as: 
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where vx and vy stand for the averages of velocity vx and vy on gapwidth. 
 
Then we can obtain the final elliptic pressure equation  

0
y
p)

y
G

x
G(

x
p)

y
G

x
G(

y
pG

yx
p)G(G

x
pG

42

31
2

2

4

2

322

2

1





































          (4-43) 

where 

203301311 SESESG                                       (4-44a) 

204302212 SESESG                                           (4-44b)   

103201213 SESESG                                           (4-44c) 

104202114 SESESG                                            (4-44d) 
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The derived pressure equation was solved by finite difference method. And a new 

kind of characteristic line integration method was used in solving the angular 
momentum equations.  

 

 
                 Fig 4-3. A characteristic line 
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Fig 4-4. Three characteristic lines for flow particles a, b, and c which locate at grid 
points at time t=t0 
 
 

4.3.3 Characteristic Line Integration  
 

Characteristic lines are the moving traces of flow particles. The dotted line in figure 
4-3 is a small segment of a characteristic line which starts from a grid point at time t0 
and ends at t0+dt. For small dt, it is reasonable to assume that the small segment of a 
characteristic line is straight. 

 
There are three steps to precede the characteristic line integration on director 

calculation. First, at each time step, the next time step directors of the flow particles 
which locate at grid points at this time step are calculated by integrating the right side of 
the angular momentum equation at every grid points in the flow domain. Second, the 
positions of these flow particles at next time step are obtained by integrating along the 
characteristics lines passing grid points. Finally, the next time step directors of flow 
particles at grid points are calculated by interpolation method. 

 
The step one is straightforward. Here is an example for step two and step three. As 

shown in figure 4-4, a, b, and c are three flow particles which locate at grid points at 
time t=t0. Assume the coordinate of grid point (i,j) is (0,0), then at t= t0+Δt, the position 
of flow particle a is (uaΔt, vaΔt); the position of flow particle b is (ubΔt−Δx, vbΔt); the 
position of flow particle c is (ucΔt, vcΔt−Δy), where Δx and Δy are grid sizes. Then by 
linear interpolation, the director of the flow particle at grid point (i,j) at t= t0+Δt can be 
written as: 
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4.3.4 Results and discussion 
 
In this section, the simulation results for two mould cavities with constant inlet 

pressure, which are shown in figure 4-5, are presented. The Leslie viscosities used in the 
simulations are a set of parameters for poly (1,4-phenylene-2, 6-benzobisthiazole) 
estimated by Se and Berry, which are shown in table 1 (cited from [9]). 

 
 

 

 

Table 1. Parameters used in the simulations 

Leslie viscosities (poise) 

α1 -5052 

α2 -2636 

α3 -439 

α4 1889 

α5 2725 

α6 -350 
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The coefficients used in the governing equations are given by: 
 

23

56




                                              (4-47a) 

40                                                            (4-47b) 

)( 3211                                                (4-47c) 

252                                                      (4-47d) 

The shape of the first mould cavity is approximately 7 cm wide, 8 cm long and has a 
gapwidth of 1 mm. Figure 4-6 shows the locations of the free surface at various times 
during the filling operations of the first mould cavity. The filling time is approximately 
70.72 seconds. The pressure distribution near the completion of the filling stage is 
shown in figure 4-7. Figure 4-8 shows the flow directions near the completion of the 
filling stage. The director orientation distributions in the skin layers and the central core 
are displayed in figure 4-9 and figure 4-10.  

 
The shape of the second mould cavity is approximately 7 cm wide, 10 cm long and 

has a gapwidth of 1 mm. The results of simulation for the second mould cavity are 
shown in figure 4-11 to figure 4-15. The filling time is approximately 108.23 seconds. It 
can be seen that the director orientation distributions in the central core plane and the 
plane near the mould wall are quite different. The director orientations in the skin 
regions are largely aligned along the injection directions while the director orientations 
in the core centre are more complicated. The high molecule orientation in the skin layer 
is induced by the large shear rate in gapwise direction near the wall, which tend to keep 
the director of LCPs align along the flow direction. In Hele-Shaw flow, this effect 
dominates in the skin layers. In the core centre, the shear rate in gapwise direction is 
zero, and the director orientations are determined by shear rates in x-y plane. Therefore, 
in the core centre, the injection flows are two-dimension flows in x-y plane. In case of 
contraction flows, the director orientations tend to be parallel to the flow directions. And 
in case of expansion flows, the director orientations tend to be perpendicular to the flow 
directions. These tendencies are disturbed by the convective term in the momentum 
equations and produced rather complicated results which are shown in figure 4-10 and 
figure 4-14.  
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The relations between filling time and inlet pressure for the two moulds are shown in 
figure 4-16.  It seems that this relation can be described by equation (4-48). 

c tp f                                                    (4-48) 

where p is inlet pressure, tf is filling time, and c is a constant. 
 
Similarly, as show in figure 4-17, the relations between filling time and gap size fit 

equation (4-49) very well. 

c   th f
2                                                  (4-49) 

where h is the gap size. 
 
 

4.3.5 Conclusion 
 

In this section, a numeric simulation approach of injection moulding process of 
LCPs is presented. This technique can predict the locations of melt front at selected time 
steps during the injection and the director orientations distributions at various time steps. 
The LCPs flows are modelled by Leslie-Ericken equations of motion in high viscosity 
limit．An elliptic pressure equation are derived under Hele-Shaw approximations. The 
Angular Momentum Equation was solved by a new kind of characteristic integration 
method. 
 

According to Choy et al ([10]), it is widely recognized that injection-moulded 
plaques of liquid crystalline polymers consist mainly of two skin layers and a central 
core in between. The molecular chains in the skin regions are largely aligned along the 
injection direction while the chain orientation in the central core is more or less random. 
The simulation results presented in this section are consisted with this conclusion very 
well. 

 
According the simulation results, the filling time is in reverse proportion to inlet 

pressure and in reverse proportion to the square of gap size. Further work is necessary 
to verify this result. 
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                 (a) geometry one 
 

 
   
                 (b) geometry two 
 

Fig 4-5 Simulation geometries 
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Fig 4-6 Geometry one: development of free surface, time interval= 1.5 second 
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Fig 4-7. Geometry one: pressure distribution (Pa) 
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Fig 4-8. Geometry one: flow directions  
 
 

 
 

 

 



 41 

 
 

 

Fig 4-9. Geometry one: director orientations in skin layers 
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Fig 4-10 Geometry one: director orientations in central core 
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Fig 4-11. Geometry two: pressure distribution (Pa) 
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Fig 4-12. Geometry two: development of free surface, time interval= 1.5 sec 
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Fig 4-13. Geometry two: flow directions 
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Fig 4-14. Geometry two: director orientations in central core 
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Fig 4-15. Geometry two: director orientations in skin layers  
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(b) geometry two 

 

Fig 4-16. Relations between filling time and inlet pressure 
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(a) geometry one 
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(b) geometry two 

 

Fig 4-17. Relations between filling time and gapsize 
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4.4 Simulation of non-isothermal flows 
 

 
Non-isothermal flows of liquid crystalline polymers into two-dimensional thin cavity 

moulds of regular shape are simulated in this section. The flows are modelled by the 
governing equations obtained in section 4.3. The non-isothermal natures of the flow are 
modelled by the energy equation shown in section 4.4.2. 
 

 

4.4.1 Viscosities 
In non-isothermal flows of LCPs, the six Leslie viscosities are functions of 

temperature. They are given by R.G. Larson in [11] as: 
 

 4
2
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where η is the characteristic viscosity, S2 and S4 are the second and fourth moments of 
the molecule distribution function, R(p) is a parameter that depends on the effective 
aspect ratio p of the rigid molecules. 
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The term α0 was added to the theory by Larson and Archer(1995) to account 
phenomenologically for contribution to momentum transport other than those due to 
rotational motions. It is expected to be negligible for polymeric nematics. 

 
The second and fourth moments S2 and S4, whose Maier-Saupe values are shown in 

table 2, can be predicted by the simple Maier-Saupe theory ([11]). 
 
 



 51 

 
T/TNI S２ S４ 

0.999 0.441 0.127 
0.990 0.471 0.145 
0.985 0.485 0.154 
0.975 0.509 0.171 
0.965 0.530 0.186 
0.955 0.549 0.200 
0.945 0.566 0.213 
0.930 0.588 0.232 
0.920 0.602 0.244 
0.910 0.615 0.256 
0.900 0.627 0.268 
0.880 0.649 0.290 
0.860 0.669 0.311 
0.840 0.687 0.331 
0.800 0.719 0.370 
0.715 0.772 0.446 
0.505 0.864 0.619 
0.303 0.926 0.775 

 
Table 2. S2 and S4 from the Maier-Saupe Theory  

 
The tumbling parameter λ can be obtained by the following simple approximation 

form (Stepanov 1983; Kroger and Sellers 1995; Archer and Larson 1995) ([11]): 
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The characteristic viscosity η can be obtained from fits to the viscosity data of the 
liquid at temperature above TNI, at which the liquid is in the isotropic state and has no 
orientational order, so that S2=S4=0. Then the Newtonian viscosity ηiso of this isotropic 
liquid is given by: 

   
52

4
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Shenoy and Saint measured the viscosity of liquid crystalline melts of copolymers of 
ethylene terephthalate (ETP) and p-hydroxy benzoic acid (HBA) in a range of shear 
rates and temperatures and at different polymer compositions. Their data for the 60 
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mol% HBA : 40 mol% ETP composition have been fitted by C. Lekakou in [6]. The 
result of C. Lekahou which is shown in equation (4-54) was used as ηiso in this study. 

 T/6752182.04
iso e1018.8                                      (4-54) 

 
 

4.4.2 Energy equation 
 

The energy equation for uncompressible LCPs can be written as: 

   vτq ):()(
Dt
DTC v                                    (4-55) 

where ρ is density, Cv is heat capacity per unit mass, q is the heat flow, T is temperature, 
and τ is stress tensor. 
 
The heat flow q for LCPs is given by: 

  nnq T)T( 2t1t                                       (4-56) 

where βt1 and βt2 are thermal conductivity coefficients with βt1 expressing the anisotropy 
([12]). 
 

In Hele-Shaw flow, we can assume that the heat conductions in gapwise direction 
are dominant and the in-plane heat conductions can be neglected. The energy equation 
can be simplified as 
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Fig 4-18. The relation between tumbling parameter λ and T/TIN 

 

4.4.3 Results and discussion 
 
In this section, the simulation results of the injection moulding of LCPs with 

constant inlet pressure are presented. The melt was considered to enter the cavity at an 
inlet temperature of 300°C. A constant inlet pressure of 60 atmospheric pressures was 
assumed during the filling stage.  

 
The shape of the first mould cavity is approximately 7 cm wide, 8 cm long and has a 

gapwidth of 3 mm. 
 
The simulation results when the mould wall was held at a constant temperature of 

150oC were displayed in figure 4-19 to figure 4-22. Figure 4-19 shows the locations of 
the free surface at various times during the filling operations. The filling time is 
approximately 2.87 seconds. The simulation results near the completion of the filling 
stage are given in figure 4-20 to figure 4-22. Figure 4-21 shows the director orientation 
distributions in the x-y plane for three different heights in the mould gap width. The 
temperature distributions are displayed in figure 4-22. 

 
The simulation results when mould temperature equals to 100oC are shown in figure 

4-23 to figure 4-26. Figure 4-23 shows the locations of the free surface at various times 
during the filling operations. The filling time is approximately 4.98 seconds. The 
simulation results near the completion of the filling stage are given in figure 4-24 to 
figure 4-26. Figure 4-25 shows the director orientation distributions in the x-y plane for 
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three different heights in the mould gap width. The temperature distributions are 
displayed in figure 4-26. 

 
It can be seen that, except in the center, the director orientations align the flowing 

directions when the mould temperature is 150oC and are irregular when the mold 
temperature is 100oC. 

 
The shape of the second mould cavity is approximately 7 cm wide, 10 cm long and 

has a gapwidth of 3 mm. 
 
The simulation results for the second geometry are shown in figure 4-27 to figure 

4-30. The mould temperature equals to 200oC. Figure 4-27 shows the locations of the 
free surface at various times during the filling operations. The filling time is 
approximately 6.43 seconds. The simulation results near the completion of the filling 
stage are given in figure 4-28 to figure 4-30. Figure 4-29 shows the director orientation 
distributions in the x-y plane for three different heights in the mould gap width. The 
temperature distributions are displayed in figure 4-30. 

 
Except in the central core, Hele-Shaw flows can be treated as simple shear flow. 

Therefore, the director orientations show phenomenon of aligning when tumbling 
parameter λ is larger than 1 and tumbling when λ is less than 1. According to table 2 and 
equation (4-52), λ is a function of temperature, as shown in figure 4-18. Therefore, 
when the mould temperature is high, the flow near wall is aligning., and the 
phenomenon of tumbling appears as the mould temperature decreases. 

 

4.4.4 Conclusion 
 

In this section, a numeric simulation approach of injection moulding process of 
LCPs is presented. This technique can predict the locations of melt front at selected time 
steps during the injection and the director orientations distributions at various time steps. 
The LCPs flows are modelled by Leslie-Ericken equations of motion in high viscosity 
limit．An elliptic pressure equation are derived under Hele-Shaw approximations. The 
Angular Momentum Equation was solved by a new kind of characteristic integration 
method. The non-isothermal natures of the flow are modelled by the energy equation 
shown in section 4.4.2. 
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Because of the influence of temperature on tumbling parameter λ, the flows of LCPs 
in skin layers are aligning when the mould temperature is high, and the phenomenon of 
tumbling appears as the mould temperature decreases. 
 

 

 

 
Fig 4-19 Development of free surface, time interval= 0.2 second, 

 mould temperature=150oC 
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Fig 4-20 Pressure distribution (Pa), when mould temperature=150oC 
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(a) z=0.1 gap size 
 

Fig 4-21 Director orientations at different layers, mould temperature=150oC 
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(b) z=0.25 gap size 
 

Fig 4-21 continued 
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(c) z=0.5 gap size (center) 
 

Fig 4-21 continued 

 

 

 



 60 

 
(a) z=0.1 gap size 

 
             (b) z=0.1 gap size 

Fig 4-22 temperature distribution at different layers, mould temperature=150oC 
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(c) z=0.3 gap size 

 
Fig 4-22 continued        (d) z=0.4 gap size 
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 (e) z=0.5 gap size (center) 

 
Fig 4-22 continued       
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Fig 4-23 Development of free surface, time interval= 0.2 sec,  
mould temperature=100oC 
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Fig 4-24 Pressure distribution (Pa), when mould temperature=100oC 
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                          (a) z=0.1 gap size 
 

Fig 4-25 Director orientations at different layers, mould temperature=100oC 
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(b) z=0.25 gap size 

 
                            Fig 4-25 continued 
 

 

 

 

 



 67 

 

 

 (c) z=0.5 gap size (center) 
 
                            Fig 4-25 continued 
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(a) z=0.1 gap size 

 
                      (b) z=0.2 gap size 

Fig 4-26 temperature distribution at different layers, mould temperature=100oC 
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                      (c) z=0.3 gap size 

 
Fig 4-26 continued         (d) z=0.4 gap size 
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(e) z=0.5 gap size 

 

Fig 4-26 continued 
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Fig 4-27 Development of free surface, time interval= 0.2 sec,  
mould temperature=200oC 
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Fig 4-28 Pressure distribution (Pa), when mould temperature=200oC 
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                        (a) z=0.1 gap size 
 
Fig 4-29 Director orientations at different layers, mould temperature=200oC 
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(b) z=0.25 gap size 
 
                  Fig 4-29 continued 
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(c) z=0.5 gap size 
 
                  Fig 4-29 continued 
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 (a) z=0.1 gap size 

 
Fig 4-30 temperature distribution at different layers, mould temperature=200oC 
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(b) z=0.2 gap size 
 

Fig 4-30 continued 
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(c) z=0.3 gap size 
 

Fig 4-30 continued 
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(d) z=0.4 gap size 
 

Fig 4-30 continued 
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(e) z=0.5 gap size 
 
Fig 4-30 continued 
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4.5 Simulation of non-isothermal flows into moulds of 

irregular geometries 
 

Non-isothermal flows of liquid crystalline polymers into two-dimensional thin 
cavity moulds of irregular shape are simulated in this section. The flows are modelled 
by the governing equations obtained in section 4.3 and section 4.4. The equations are 
solved using the finite-difference technique. An improved boundary-fitted mapping 
technique was developed in this study to solve the difficulty of finite difference 
treatment of arbitrarily shaped boundaries, which possess no natural coordinate system.  

 

4.5.1 Numerical grid generation 

The finite difference treatment of arbitrarily shaped boundaries which possess no 
natural coordinate system proves more difficult. In general, a body-fitted curvilinear 
mesh can be generated over any irregular body by essentially mapping the boundaries of 
the irregular shape from the physical domain to a more regular, prescribe shape in a 
computational domain. An orthogonal, rectangular mesh can be created on the 
transformed, simpler domain and then mapped back to provide a curvilinear mesh on 
the original irregular shape. The governing equations similarly can be transformed and 
solved on the computational domain, using the well-established finite difference 
techniques, and the solutions at every node mapped back onto the physical domain. 

Usually Poisson type elliptic expressions are used to relate the physical (x,y) 
coordinates to the computational (ξ,η) coordinates due to their inherent “smoothness” 
and ability to handle boundary discontinuities. These relations are shown in equation 
(3-12a) and (3-12b). P and Q are grid control functions that can be used to specify mesh 
concentration in desired areas. 

This scheme has been used successfully in the finite difference solution of the 
equations for flow about irregularly shaped two-dimensional bodies by many 
researchers. However, the selection of P and Q is not an easy task, most researchers set 
them equal to zero. This simplification works well for some situations, but the selection 
of P and Q is still necessary for flow domains of complicated shapes. To solve this 
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problem, we developed the so-called “boundary-fitted mapping” technique. As shown in 
fig 3-4, only the boundaries of flow domain take part in the mapping process. Obviously 
the mesh concentration control is not necessary and P and Q can be set equal to zero for 
arbitrarily shaped flow domain. At the grid points on the boundary, the governing 
equations are transformed and solved on the computational domain, and the solutions at 
every boundary node were mapped back onto the physical domain. At the grid points 
inside boundaries, the governing equations are solved on the physical domain directly. 
 

4.5.2 Transformation of the governing equations 
 

In order to compute the finite-difference solutions to the governing equations over 
the transformed domain, they need to be expressed in terms of the transformed 
coordinates ξ, η, and z. Based on the coordinate transformation described above, the 
elliptic pressure equation (4-43) can be expressed as: 
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The expressions for ξ and η components of velocity can be obtained as: 
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Boundary condition for equation (4-59) is: 

0v                                                     (4-63) 

 

4.5.3 Results and discussion 
 
In this section, the simulation results of the injection moulding of LCPs with 

constant inlet pressure are presented. The shape of the mould cavity is approximately 7 
cm wide, 10 cm long and has a gap width of 3 mm. The melt was considered to enter 
the cavity at an inlet temperature of 300°C. A constant inlet pressure of 60 atmospheric 
pressures was assumed during the filling stage.  

 
The simulation results when the mould wall was held at a constant temperature of 

250oC were displayed in figure 4-31 to figure 4-33. Figure 4-31 shows the locations of 
the free surface at various times during the filling operations. The filling time is 
approximately 9.35 seconds. The simulation results near the completion of the filling 
stage are given in figure 4-32 and figure 4-33. Figure 4-32 shows the director 
orientation distributions in the x-y plane for three different heights in the mould gap 
width. The temperature distributions are displayed in figure 4-33. 

 
The simulation results when mould temperature equals to 200oc are shown in figure 
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4-34 to figure 4-36. Figure 4-34 shows the locations of the free surface at various times 
during the filling operations. The filling time is approximately 19.2 seconds. The 
simulation results near the completion of the filling stage are given in figure 4-35 and 
figure 4-36. Figure 4-35 shows the director orientation distributions in the x-y plane for 
three different heights in the mould gap width. The temperature distributions are 
displayed in figure 4-36. 

 
It can be seen that the director orientations in the skin layers align along the flowing 

directions when the mould temperature is 250oC and the phenomenon of tumbling 
appears when the mould temperature decreases to 200oC. 

 
 

4.5.4 Conclusion 
In this section, a numeric simulation approach of injection moulding process of 

LCPs is presented. This technique can predict the locations of melt front at selected time 
steps during the injection and the director orientations distributions at various time steps. 
The LCPs flows are modelled by Ericken-Leslie equations of motion in high viscosity 
limit．An elliptic pressure equation are derived under Hele-Shaw approximations which 
was solved by finite difference method. And a new boundary-fitted mapping technique 
was developed to solve the difficulty of finite difference treatment of arbitrarily shaped 
boundaries. It can be seen from the simulation results that the new boundary-mapping 
technique works well.  
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Fig 4-31. free surface locations at varies time, time interval= 0.5 second,  
mould temperature =250oC 
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(a) z=0.5 gap size (center)        
 

 

Fig 4-32. Director orientations at different layers, mould temperature=250oC 
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(b) z=0.25 gap size 
 

Fig 4-32 continued 
 
 
 
 
 
 



 88 

 
 

    

 
(c) z=0.1 gap size 

 
Fig 4-32 continued 

 
 
 

                 

 

 



 89 

 

  

(a) z=0.5 gap size (center)                   (b) z=0.25 gap size 

  

 
(c) z=0.1 gap size 

 

Fig 4-33 Temperature distributions at different layers, mould temperature=250oC 
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Fig 4-34 The free surface locations at varies time, time interval= 1.5 second, 
       mould temperature =200oC 
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(a) z=0.5 gap size (center) 
 

Fig 4-35 Director orientations at different layers, mould temperature=200oC 
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(b) z=0.25 gap size    
 

Fig 4-35 continued 
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(c) z=0.1 gap size    
 

Fig 4-35 continued 
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(a) z=0.5 gap size (center)                 (b) z=0.25 gap size 

 

    
(c) z=0.1 gap size 

 

Fig 4-36 Temperature distributions at different layers, mould temperature=200oC 
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Chapter 5: Conclusion 
 
 

This dissertation gave a detail presentation of three simulations of LCPs flows 
into two-dimensional thin cavity moulds. They are: 
 
1. simulation of isothermal flows into mould of regular shape (section 4.3). 
2. simulation of non-isothermal flows into mould of regular shape (section 4.4). 
3. simulation of non-isothermal flows into mould of irregular shape (section 4.5) 
 

These flows are modelled by Leslie-Ericken equations of motion in high viscosity 
limit．An elliptic pressure equation are derived under Hele-Shaw approximations in 
section 4.3. The non-isothermal natures of the flow are modelled by the energy equation 
shown in section 4.4.2.  

 
In section 4.2, we give an analysis of the steady director of liquid crystal in 

Hele-Shaw flows. This result may help to explain a widely recognized phenomenon in 
the moulding process of nematic polymers, which is that the molecular chains in the 
skin regions are largely aligned along the injection directions while the chain 
orientations in the central core is more or less random.  

 
The finite difference method was used to solve the governing equations, because of 

its simplicity and high efficiency. Numerical grid generation technique can remove the 
problem of boundary shape from finite difference methods. However, the grid control is 
a difficult task for the numerical grid generation technique in geometries of complicated 
shape. In section 3.4, we developed the so-called “ improved boundary-fitted mapping” 
technique. This new scheme is much simpler than the original numerical grid generation 
technique. It frees the computational simulation from restriction to certain boundary 
shapes and allows general codes to be written in which the boundary shape is specified 
simply by input. It can help the finite difference method to overcome its difficulty on 
treating flows in complicated geometries and keep the simplicity and high efficiency of 
the finite difference method at the same time. It can be seen from the simulation results 
in section 4.5 that the new boundary-fitted mapping technique work well 
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