
Kochi University of Technology Academic Resource Repository

�

Title

A Study on Non-Linear Machine Learning Technique

s and Its Application to Content Based Image Ann

otation

Author(s) SUN, Liang

Citation 高知工科大学, 博士論文.

Date of issue 2012-03

URL http://hdl.handle.net/10173/898

Rights

Text version author

�

�

Kochi, JAPAN

http://kutarr.lib.kochi-tech.ac.jp/dspace/

School of Information, Kochi University of Technology School of Information, Kochi University of Technology School of Information, Kochi University of Technology School of Information, Kochi University of Technology ----Liang Sun (2012)Liang Sun (2012)Liang Sun (2012)Liang Sun (2012)

I

A Study on Non-Linear Machine Learning

Techniques and Its Application to Content

Based Image Annotation

by

Liang Sun

Supervised

by

Shinichi Yoshida

Submitted in partial fulfillment of the requirements for degree

of the Doctor of Engineering in the Graduate School of

Engineering, Kochi University of Technology

February 2012

Abstract

i

Abstract

The number of image archives on the Internet is growing rapidly with the

proliferation of user contributed images. Thus searching for the images that match a

user query presents a significant challenge. In the real world image systems, many

images are constantly created without direct annotations of semantic content. This

creates the need for content based image retrieval (CBIR), which is conducted based on

the low level features such as color, texture, and shape. However, the CBIR system still

suffers from the “semantic gap problem”, which implies that the low level image

contents are not effective enough to encapsulate the high level semantics. One natural

way to mitigate the “semantic gap problem” is to assign annotations onto images. The

methods that annotate images automatically based on low level visual contents are

referred to as content based image annotation (CBIA). The unceasing progress in the

fields of computer vision and machine learning has provided opportunities to develop

CBIA systems. However, due to the complexity of the real world image systems,

effective and efficient image annotation is still a challenging problem.

This thesis is an exploratory study of non-linear machine learning techniques to

address the problems in CBIA system. It is obvious that there always be a need for

better optimization in the CBIA system, since the CBIA system generally possesses

parameters that can be adjusted to produce more desirable outcomes. Thus one major

component of this thesis is developing a cooperative particle swarm optimizer for large

scale numerical optimization. Firstly, a statistical model is proposed to explore the

interdependence among variables. Secondly, the algorithm partitions large scale

problems into small scale sub-problems based on the prior knowledge with respect to

the variable interdependencies. Finally, a CPSO framework is proposed to optimize the

sub-problems cooperatively. The results of simulated experiments on the benchmark

functions demonstrate the effectiveness of the proposed optimizer, as compared with the

performance of other cooperative optimization algorithms.

Another important problem involved in CBIA system is data clustering, which

Abstract

ii

associates with grouping a set of data into clusters (subsets) so that the data in the

same cluster are analogous in properties that are relevant to data analysis. The second

major component of this thesis is developing a support vector and K-Means based

hybrid data clustering algorithm. Firstly, an empirical study is conducted to guide

better selection of the standard deviation of the Gaussian kernel. Following this, the

outliers which increase problem complexity are identified and removed by training a

global support vector clustering (SVC) model. Finally, several local SVCs are trained for

the clusters and each removed data point is labeled according to the distance from it to

the local SVCs. The results of simulated experiments on 2-D data sets and the UCI

machine learning benchmark datasets demonstrate that the proposed algorithm

compared favorably with other algorithms.

The third major component of this thesis is to develop a support vector based CBIA

system. In the proposed system, clusters of images with manually tagged words are

used as training instances. Images within each cluster are modeled using a kernel

method, where the image vectors are mapped to a higher dimensional space and the

vectors identified as support vectors are used to describe the cluster. To measure the

extent of association between an image and a support vector described model, the

distance from the image to the model is computed. A closer distance indicates a stronger

association. Moreover, the word to word correlations are also considered in the

annotation framework. For an image to be tagged, the system exploits the distance from

the image to the models and the word to word correlations in a probabilistic framework

to predict annotation words. The results of simulated experiments on three benchmark

image sets demonstrate the effectiveness of the proposed system.

Contents

ii

Contents

Acknowledgement .. i

List of figures ... ii

List of tables ... iv

Chapter 1: Introduction .. 1

1.1 Motivation ... 1

1.2 Objectives .. 3

1.3 Methodology .. 3

1.4 Thesis Outline ... 4

Chapter 2: A cooperative particle swarm optimizer ... 6

2.1 Introduction ... 6

2.1 Problem decomposition ... 7

2.2.1 Statistical variable interdependence learning ... 7

2.2.2 Decomposition .. 10

2.3 Cooperative particle swarm optimizer .. 11

2.3.1 PSO and CPSO ... 11

2.3.2 CPSO framework.. 12

2.4 CPSO-SL behavior .. 14

2.4.1 Separable and non-separable problems .. 14

2.4.2 Variable interdependencies and problem decomposition 15

2.4.3 Selection of threshold value r .. 18

2.4.4 Potential search space .. 20

2. 5. Experimental studies ... 20

2.5.1 Test functions ... 20

2.5.2 Experimental settings.. 23

2.5.3 Existing algorithms for comparison .. 23

2.5.4 Simulated results and discussions .. 24

2.6. Conclusion .. 35

Chapter 3: A support vector and K-Means based clustering algorithm 37

3.1 Introduction ... 37

3.2 Review of support vector clustering and K-Means algorithm 39

3.2.1 Support vector clustering algorithm ... 39

3.2.2 K-Means algorithm .. 40

3.3 A novel SVC training method .. 41

3.4 Empirical Study .. 43

Contents

iii

3.4.1 SVC Training and weighted kernel density estimator 43

3.4.2 The selection of parameter σ .. 44
3.5 The proposed hybrid intelligent algorithm ... 46

3.6 Experimental studies.. 50

3.6.1 Experimental setup .. 50

3.6.2 Simulated results ... 53

3.7 Conclusion ... 57

Chapter 4: Support vector description of clusters for content based image annotation 58

4.1 Introduction ... 58

4.2 Related works .. 59

4.2.1 Probabilistic models ... 60

4.2.2 Prevailing methods .. 61

4.3 Support vector description of clusters ... 62

4.3.1 CPAM representation of images ... 63

4.3.2 The support vector described model ... 64

4.3.3 The probabilities of a given image generated by the support vector described

models ... 65

4.4 The annotation method .. 66

4.4.1 The word to word correlations p(wi|wj) ... 66
4.4.2 The probabilistic framework ... 67

4.4.3 Annotation of untagged images .. 68

4.5 Experimental studies.. 69

4.5.1 Image datasets ... 69

4.5.2 Experimental settings.. 70

4.5.3 Existing systems for comparison .. 71

4.5.4 Comparison results .. 74

4.5.5 Discussions ... 80

4.6 Conclusion ... 80

Chapter 5: Conclusions and future perspectives .. 82

5.1 Conclusions.. 82

5.2 Future perspectives .. 83

References ... I

Appendix ... I

List of publications ... II

Acknowledgement

i

Acknowledgement

Firstly, I would like to express my great appreciation to my advisor Prof. Shinichi

Yoshida, for his help, support, advice, assistance and encouragement during the period

when I studied in Kochi University of Technology. The two year and a half study in will

have a far reaching impact on my life.

I would like to thank Prof. Akio Sakamoto, Prof. Shuoyu Wang, Prof. Makoto Iwata,

Prof. Yoshiaki Takata for their constructive suggestions and comments during the

production of this thesis.

I would like to thank Prof. Xiangshi Ren in School of Information, Kochi University

of Technology, Prof. Yanchun Liang in College of Computer Science and Technology, Jilin

University for the promotion of collaboration between Kochi University of Technology

and Jilin University. This collaboration provided me this opportunity to study in Japan.

I also would like to thank the members of Yoshida laboratory for their friendship and

contributions to my work.

Meanwhile, I would like to express my appreciation to my parents for their generous

love and encouragement during my stay in Japan.

List of figures and tables

ii

List of figures

2.1 Illustrative example for the variable interdependencies. (The digit in the

middle of the connection line represents the degree of interdependence

between variables)…...……………………………………………………………… 8

2.2 Pseudo code for the statistical variable interdependence learning model…... 9

2.3 Pseudo code for the decomposition method………………………………………. 10

2.4 Illustrative example for the CPSO-SL framework……………………………… 13

2.5 Probabilities for CPSO-SL obtaining global optimum solutions of six

simulated problems with different threshold r………………………………….. 19

2.6 Surface landscapes of f
, rotated f
, f���� and f����…………………………. 22

2.7 Bands of function values of CPSO-SL and CPSO with 95% confidence

interval for solutions of functions f, f� and f�. The results were obtained
from 30 independent runs of the algorithms. The abscissa is the number of

FEs and the vertical axis is the objective function value………………………. 27

2.8 Bands of function values of CPSO-SL and CPSO with 95% confidence

interval for solutions of rotated functions f, f� and f�. The results were
obtained from 30 independent runs of the algorithms. The abscissa is the

number of FEs and the vertical axis is the objective function value…………. 30

2.9 Bands of function values of CPSO-SL and CPSO with 95% confidence

interval for solutions of functions f�����, f���� and f����. The results were
obtained from 30 independent runs of the algorithms. The abscissa is the

number of FEs and the vertical axis is the objective function value…………. 32

3.1 Illustrative example for the effect of parameter σ on the density estimator. 45

3.2 Illustrative example for the effect of outliers on the cluster boundaries…….. 46

3.3 Results of the kernel-based K-Means algorithm and the standard SVC

algorithm on data set with connecting clusters…………………………………. 47

3.4 CPU time comparison of the proposed SVC training method and the SMO

algorithm………………………………………………………………...................... 52

List of figures and tables

iii

3.5 Illustrative example for the execution process of the HIA on 2D-160 data

set………………………………………………………………………………………. 53

3.6 Illustrative example for the execution process of the HIA on 2D-450 data

set………………………………………………………………………………………. 54

4.1 Generative models for image auto-annotation. (a) The two-layer model.

Words are directly generated from visual features. (b) The three layer

model. Words are generated from a hidden layer of “topics”………………… 60

4.2 The support vector modeling process…………………………………………… 63

4.3 The relationship between ℐ(w�) and ℐ(w�)……………………………………… 66

4.4 Thumbnails of some randomly selected images from the Corel5k, Corel30k,

and Corel 60k datasets……………………………………………………………… 70

4.5 Examples of some annotations generated by the SVIA and human tagging

on the Corel5k dataset………………………………………………………………. 73

4.6 Precision-recall curves for annotation on Corel5k testing dataset using

SVIA and SML………………………………………………………………………... 74

4.7 Precision-recall curves for annotation on Corel30k testing data set using

SVIA and SML………………………………………………………………………... 76

4.8 Comparing annotation results of SVIA, SML and ALIPR. (a)

Precision-recall curves for annotation using SVIA and SML. (b) Comparing

precision rates obtained by SVIA and ALIPR. (c) Comparing recall rates

obtained by SVIA and ALIPR………………………………………………………. 78

List of figures and tables

iv

List of tables

2.1 Classical benchmark functions (n = problem dimension, S = solution space, f(�) = minimum function value)…………………………………………………… 21

2.2 Results of CPSO-SL and Other Algorithms for Classical Benchmark

Functions (to be continued)………………………………………………………… 25

2.2 Results of CPSO-SL and Other Algorithms for Classical Benchmark

Functions (continued)……………………………………………………………….. 26

2.3 Results of CPSO-SL and Other Algorithms for Rotated Classical

Benchmark Functions………………………………………………………………. 29

2.4 Results of CPSO-SL and other algorithms for CEC2005 benchmark

functions………………………………………………………………………………. 31

3.1 Comparison results of the proposed HIA with other algorithms (to be

continued)……………………………………………………………………………... 55

3.1 Comparison results of the proposed HIA with other algorithms (continued).. 56

4.1 Results of SVIA and the compared systems for Corel5k testing dataset……. 75

4.2 Results of SVIA and the compared systems for Corel30k testing dataset…... 77

4.3 Results of SVIA and the compared systems for Corel60k testing dataset…... 79

Chapter 1: Introduction

1

Chapter 1: Introduction

Machine learning is an essential branch of artificial intelligence. It is a scientific

discipline concerned with designing and developing algorithms that allow computers to

mimic human learning activities such as classifying, repeating, recognizing, evolving,

etc. Content based image annotation (CBIA) is a process by which a computer system

automatically generates metadata such as caption, keywords, or filenames based on

visual contents of images.

This thesis is an exploratory study of the non-linear machine learning techniques to

address the problems in CBIA. It has three integral parts. The first part associates with

developing a cooperative optimization algorithm. The second part associates with

developing a support vector based data clustering algorithm. And the third part

associates with developing a content-based image annotation system, which is proposed

based on the basic formulations of support vector clustering algorithm.

1.1 Motivation

The invention of digital camera provides people the opportunities to take pictures in

everyday life, and the development of Internet techniques facilitates people sharing the

pictures conveniently. As a result, the number of image archives on the Internet grows

at a phenomenal rate. Take a report released in 2007 as an example, the flickr.com,

which is an Internet photo sharing system, has about 40 million monthly visitors and

about two billion photos [1]. Due to the large amount of images, browsing, searching

and retrieving images that match a user query presents a significant challenge. Many of

the traditional and common image retrieval systems such as Google and Yahoo! utilize

metadata such as captioning, keywords, or filenames so that the retrieval task can be

performed over the textual descriptions. However, in the real word image systems,

many images are constantly created without direct annotations of semantic content,

which limits the ability of the text based systems. This creates the need for content

based image retrieval (CBIR) [2]-[4]. CBIR is a computer system that performs retrieval

task over the low level visual content of images such as texture, shape and color other

Chapter 1: Introduction

2

than the textural descriptions. Research on CBIR has attracted the attention of

researchers in various fields including computer vision and machine learning. However,

many of the CBIR systems still suffer from the “semantic gap problem”, which implies

that the low-level image contents are not effective enough to encapsulate the high level

semantics [2], [5].

One natural way to mitigate the “semantic gap problem” is to assign tags onto

images. Appropriate tagging can help to increase the retrieval efficiency. However, the

manual tagging is time consuming, labor intensive and expensive. Due to this reason,

there has been a surge of research interest in content based image annotation. However,

as far as CBIA concerned, there are still some problems unsolved. If they are suitably

addressed, more robust and efficient systems can be designed. Thus the basic

motivation of this research is developing effective and efficient methods for the CBIA

system, so that the computers can understand, index, and annotate images

automatically.

Optimization problems arise in a variety of fields, including engineering, science and

business. Effective and effective optimization algorithms are always needed to tackle

the increasingly complex real world optimization problems. It is obvious that there

always be a need for better optimization algorithm in the CBIA system, since the CBIA

system problem generally possesses parameters that can be adjusted to produce more

desirable outcomes. Can we solve large scale optimization problem with 500 or more

dimensions efficiently? This is the motivation of the first part of this research.

Another important problem involved in CBIA system is data clustering, which

associates with grouping a set of data into clusters (subsets) so that the data in the

same cluster are analogous in properties that are relevant to data analysis. Numerous

clustering algorithms have been proposed, with varying degree of success. However,

their effectiveness and advantages usually deteriorate when it is applied to solving

complex real world problems, e.g., those with large proportion of noise data points and

connecting clusters. Thus how to develop an even more effective data clustering

algorithm for the CBIA system is the motivation of the second part of this research.

Chapter 1: Introduction

3

In a CBIA system, substantial machine learning techniques are required to fill the

gap between the low-level image visual contents and the high-level semantics. Among

the machine learning techniques, the support vector cluster (SVC) [6]-[8] is a recently

developed algorithm inspired by the support vector machine (SVM) [9]. The SVC has

many advantages over other data clustering algorithms for its ability to determine the

system topological structure without prior knowledge with respect to the system itself,

to delineate cluster boundaries of irregular shapes, and to deal with outliers by

employing a soft margin constant. Whether the SVC can be used to solve problems in

the CBIA system is still a question unanswered. The motivation of the third part of this

research is to answer this question.

1.2 Objectives

The objectives of this thesis can be summarized as follows:

1. To develop a cooperative particle swarm optimizer for large scale numerical

optimization, which includes developing a statistical model to learn prior

knowledge of a problem with respect to the variable interdependencies,

proposing a decomposition method based on the prior knowledge, and

developing a cooperative particle swarm optimization framework.

2. To develop a support vector and K-Means based hybrid data clustering

algorithm, which includes a SVC training method, an empirical study, and a

support vector and K-Means based hybrid algorithm.

3. To develop a support vector based CBIA system. The objective is to consummate

two major components of the system, i.e., the training process and the

annotating process.

1.3 Methodology

The cooperative particle swarm optimizer developed in this thesis is achieved by

adopting the divide and conquer strategy. Decomposition decision regarding variable

interdependencies often plays a significant role in the algorithm’s performance.

Algorithms that do not consider variable interdependencies often lose their effective and

Chapter 1: Introduction

4

advantage when applied to solve non-separable problems. In this thesis, we propose a

cooperative particle swarm optimizer with statistical variable interdependence learning

(CPSO-SL). A statistical model is proposed to explore the interdependence among

variables. With these interdependencies, the algorithm partitions large scale problems

into overlapping small scale sub-problems. Moreover, a CPSO framework is proposed to

optimize the sub-problems cooperatively. Theoretical analysis is conducted for further

understanding of the proposed CPSO-SL.

In the support vector and K-Means based hybrid data clustering algorithm, an

empirical study is conducted to guide better selection of the standard deviation of the

Gaussian kernel. Following this, the outliers which increase problem complexity are

identified and removed by training a global SVC. The refined data set is then clustered

by a kernel based K-Means algorithm. Finally, several local SVCs are trained for the

clusters and then each removed data point is labeled according to the distance from it to

the local SVCs.

In the support vector based system for CBIA, clusters of images with manually

tagged words are used as training instances. Images within each cluster are modeled

using a kernel method, where the image vectors are mapped to a higher dimensional

space and the vectors identified as support vectors are used to describe the cluster. To

measure the extent of association between an image and a support vector described

model, the distance from the image to the model is computed. A closer distance indicates

a stronger association. Moreover, the word to word correlations are also considered in

the annotation framework. For an image to be tagged, the system exploits the distances

from the image to the models and the word to word correlations in a probabilistic

framework to predict annotation words.

1.4 Thesis Outline

In Chapter 2, for a numerical optimization problem, firstly, a statistical model is

proposed to learn the variable interdependencies. Based on the interdependencies, a

method is then proposed to decompose large scale problem into overlapping small scale

sub-problems. Following this, a cooperative particle swarm optimizer with statistical

Chapter 1: Introduction

5

variable interdependence learning (CPSO-SL) is proposed to optimize the sub-problems

cooperatively. To give deeper insight into the proposed CPSO-SL, further theoretical

analysis is carried out. The performance of the CPSO-SL is examined by means of

experiments on benchmarks with different dimensions and levels of hardness and is

compared with the performance of other recently reported cooperative optimization

algorithms.

In Chapter 3, firstly, a review of the basic concepts of the SVC and K-Means

algorithm is presented. Following this, a new SVC training method is presented. And

then an empirical study is conducted to guide better selection of the standard deviation

of the Gaussian kernel. The details of the SVC and K-Means based hybrid intelligent

data clustering are then presented. Finally, the experimental settings and the

simulated results are then presented for illustration and comparison.

In Chapter 4, firstly, some of the previous work on CBIA, in particular, the

generative modeling methods are reviewed. Following this, the support vector based

modeling method and the probabilistic modeling method for assignment of annotation

words are presented, respectively. And then the simulated results are presented for

illustration and comparison.

Chapter 5 presents a summary of the outcomes of this thesis. And some possible

extensions of current research are also discussed.

Chapter 2: A cooperative particle swarm optimizer

6

Chapter 2: A cooperative particle swarm

optimizer

2.1 Introduction

Optimization problems arise in a variety of fields, including engineering, science,

and business [10]. Effective and efficient optimization algorithms are always needed to

tackle increasingly complex real world optimization problems. Stochastic optimization

algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO),

have been shown to be successful in dealing with many optimization problems [11]-[21].

However, most of these algorithms still suffer from the “curse of dimensionality”, i.e.,

their performance deteriorates rapidly as the dimensionality of the problem increases.

Generally, many of the traditional stochastic algorithms can perform well on moderate

scale problems, but they may have difficulty in optimizing large scale problems with 500

or more dimensions.

One natural way to address the “curse of dimensionality” is to adopt the

divide-and-conquer strategy. The original divide-and-conquer algorithm is the

cooperative co-evolutionary genetic algorithm (CCGA) [22]-[24]. The CCGA operates by

decomposing a large scale problem into small scale sub-problems and optimizing the

sub-problems by means of separate GAs; the solution to the problem is obtained by

combining the sub-solutions found by each of the separate GA. Other

divide-and-conquer algorithms include fast evolutionary programming with cooperative

co-evolution (FEPCC) [25], cooperative particle swarm optimization (CPSO) [26]-[28],

differential evolution with cooperative co-evolution (DECC) [29]-[31], and so on.

A key issue with regards to divide-and-conquer is the task of problem decomposition,

the process of partitioning a large scale problem into small scale sub-problems so that

the interdependencies among different sub-problems are minimized. Decomposition

decision regarding variable interdependencies plays a significant role in the algorithm’s

performance. Generally, algorithms that do not consider variable interdependencies are

Chapter 2: A cooperative particle swarm optimizer

7

effective for separable problems, but have difficulty solving non-separable problems.

Research on variable interdependencies has already attracted the attention of

researchers and several methods have been proposed. For example, in [32], the authors

presented a preliminary learning process for the recognition of epistemic links in

problems, and in [33], a correlation based variable partitioning scheme was designed to

alleviate the problems associated with selection of a number of sub-problems and

variable partitioning. These methods facilitated research into variable

interdependencies. However, real world optimization problems are far more complex

and there is still no rigorous algorithm for giving deeper insight into the problem itself.

In view of the above, this study will be conducted with the following objectives.

1. To develop a statistical model to learn prior knowledge of a problem with respect

to the variable interdependencies.

2. To propose a decomposition method based on the prior knowledge.

3. To develop a cooperative particle swarm optimizer for global numerical

optimization.

2.1 Problem decomposition

2.2.1 Statistical variable interdependence learning

In this thesis, the following numerical optimization problem is considered:

Find: x,-∗ ∈ E
Such that: ∀x,- ∈ E, f(x,-∗) ≤ f(x,-),

where E = 3b4, b56 × 3b48, b586 ×∙∙∙× 3b4), b5)6 ⊆ R) is the bounded solution space, x,- ∈ E
is the solution vector, and f: E → R is the objective function.

The ideal decomposition method is to partition the problem into sub-problems so

that the variables within each sub-problem are non-separable, and the variables among

different sub-problems are separable. For example, the ideal decomposition strategy for

the problem shown in Fig.2.1(a) is sub-problem 1 = {v, v8, v�} and sub-problem 2 =

{v
, v�}. For many problems, interdependencies occur among most variables. For

example, in the problem shown in Fig.2.1(b) interdependencies occur among all the

variables. As a result, an ideal decomposition strategy is difficult to obtain. An

Chapter 2: A cooperative particle swarm optimizer

8

alternative method is to partition a high dimensional problem into several low

dimensional sub-problems. Within each sub-problem, the variable interdependencies

are maximized, and among different sub-problems, the variable interdependencies are

minimized. In this case, the optimal decomposition strategy is sub-problem 1 = {v, v8, v�} and sub-problem 2 = {v
, v�}. At this point, the issue lies with quantifying
the degree of interdependence between each pair of variables. To address this, a

statistical variable interdependence learning model is proposed. The proposed model

worked as follows.

1. Suppose we have α,,- = (∙∙∙, x�, ∙∙∙, x�, ∙∙∙), β,- = (∙∙∙, x�B, ∙∙∙, x� ∙∙∙), and it is satisfied
that f(α,,-) ≤ f(β,-). If we change the value of x� to x�B, resulting in α,,-B = (∙∙∙, x�, ∙∙∙,x�B, ∙∙∙), and β,-B = (∙∙∙, x�B, ∙∙∙, x�B ∙∙∙), and f(α,,-B) > D(β,-B), then we call that variable x�
is affected by x� under context vector c- = (∙∙∙, x�E, −, x�G, ∙∙∙, x�E, −, x�G)1

2. The extent to which the influence of variable x� can be affected by x� can be

1 In a context vector, the variables marked with ‘-’ have no value.

Fig. 2.1. Illustrative example for the variable interdependencies. (The digit in the

middle of the connection line represents the degree of interdependence between

variables)

Chapter 2: A cooperative particle swarm optimizer

9

estimated by the probability for the inequality change, i.e., P{f(α,,-B) > DJβ,-BK}. We

can estimate the probability P{f(α,,-B) > DJβ,-BK} by a statistical method, i.e.,

selecting a number of context vectors c- as statistical samples, and checking the

effect of variable x� on variable x� under each statistical sample.

Fig.2.2 shows the pseudo code for the interdependence learning model. In the

proposed model, N statistical samples are created. Each sample consists of two solution

vectors α,,- and β,- with inequality PLf(α,,-) ≤ DJβ,-KM. The vectors α,,- and β,- are identical
except x� values. The effect of variable x� on x� is affected by turning x� values; if the
new solution vectors α,,-B and β,-B achieve a change in the inequality, we call x� is
affected by x�. The extent to which the influence of variable x� can be affected by x� is
estimated by the probability for the inequality change. And the probability is estimated

Fig. 2.2. Pseudo code for the statistical variable interdependence learning model.

Chapter 2: A cooperative particle swarm optimizer

10

by the statistical approach, i.e., d�� = �)NO = PP{f(α,,-B) > D(β,-B)}, where cnt is the times of

inequality change.

The main differences among the variable interdependence learning methods in [32],

[33], and the proposed method are as follows. In [32], two variables are considered as

interacted when a new candidate solution where both variables are changed is better

than another candidate solution where only one variable is changed. In [33], a

correlation matrix is computed based on some of the candidate solutions, and the

variable interdependencies are obtained from the correlation matrix. In contrast, the

proposed method captures variable interdependencies by a statistical method.

2.2.2 Decomposition

The next issue lies with decomposing large scale problems into small scale

sub-problems. With a threshold value 0 ≤ r ≤ 1, we want to obtain a partition of
variable set S, which satisfies that S ∪ S8 ∪∙∙∙∪ SS = S and S� ∩ S� = ∅ (i ≠ j). For each
pairs of variables x� and x�, if x� and x� are in the same subset, then d�� ≥ r or d�� ≥ r,
else, d�� < Y or d�� < Y. It is possible, however, that the above partition is difficult to

Fig. 2.3. Pseudo code for the decomposition method.

Chapter 2: A cooperative particle swarm optimizer

11

obtain. For example, in the problem shown in Fig.2.1(c), d8 = 0.8, d8 = d8� = 0.8, d�8 = d�
 = 0.8, d
� = d
� = 0.8, and d�
 = 0.8. Suppose that the threshold value is r = 0.8,, then the variables x, x8, x�, x
, x� should be allocated to the same subset. In

this case, the problem is not decomposed. This is due to the fact that the variables are

interacted with different extents, and the most variables will be allocated to the same

sub-problem due to their direct or indirect interdependencies.

In order to address this issue, we propose a new decomposition method. For an n

dimensional problem, we first create n subsets. They are initialized as S = {x}, S8 = {x8}, ∙∙∙, S) = {x)}, respectively, where x� is called the core of subset S�. And then,
for each subset S�, we select and recruit all the variables which affect x� with a degree
no less than the predefined threshold value r. Fig.2.3 shows the pseudo code for the

proposed decomposition method. Keep in mind that the subsets S, S8, ∙∙∙, S) are
overlapped. To develop cooperative optimization algorithms using subsets S, S8, ∙∙∙, S) ,
the following problems need to be solved.

1. Within each subset, the variables are optimized separately. Since the

optimization algorithm requires an objective function to evaluate its

performance, this introduces the problem of how to calculate the objective

function values.

2. To optimize the variables in subsets S, S8, ∙∙∙, S) , n optimization algorithms

work cooperatively. How to exchange information among the n optimization

algorithms is another problem.

3. Since subsets S, S8, ∙∙∙, S) are overlapped, a variable xS that appears in one
subset S� may appear in another subset S�, i.e., xS ∈ S� ∩ S�. This introduces the
problem of how to construct the composite n dimensional solution with the

optimized variables.

A possible solution to these problems will be presented in Section 2.3.2.

2.3 Cooperative particle swarm optimizer

2.3.1 PSO and CPSO

PSO is a swarm based computation technique which uses the metaphor of the social

Chapter 2: A cooperative particle swarm optimizer

12

behavior of flocks of birds and schools of fish [34], [35]. It has been used to solve many

optimization problems such as neural network training [36] and job shop scheduling

[37]. In a PSO system, particles fly around in solution space. At time t, the position and

velocity of the i-th particle are represented as x,-�(t) and v,-�(t), respectively. The best
previous position of the i-th particle is denoted as p,-�(t), and the best position found by
the whole swarm is denoted as p,-\(t) (Hereafter, without loss of generality, the vectors p,-�(t) and p,-\(t) are abbreviated as p,-� and p,-\, respectively). During a search process,
the i-th particle changes its velocity and position according to the following equations:

v��(t + 1) = w ∙ v��(t) + c ∙ r1�� ∙ ^p�� − x��(t)_ + c8 ∙ r2�� ∙ (p\� − x��(t)) (2.1)

x��(t + 1) = x��(t) + v��(t + 1) (2.2)

where w is the inertia weight, c and c8 are learning rates which are nonnegative
constants, r1�� and r2�� are random numbers in the range [0, 1] [38]. The particle’s

velocity on each dimension is clamped to the range [−v(ab, v(ab] to control excessive
roaming of the particle. The algorithm stops when the p,-\ hits the global optimum with

a predefined accuracy or when the algorithm runs for a maximum number of iterations.

In this thesis, we use the above form of PSO due to its simplicity and efficiency

compared with other PSO variants.

CPSO algorithms have already been proposed by many researchers, with varying

degrees of success. For example, in [36], the authors proposed a CPSO where the input

vector is partitioned into several sequential sub-vectors, with each optimized

cooperatively in its own swarm. In [39], the authors applied the CCGA [22]–[24]

technique to PSO and proposed two CPSO models. One model, namely CPSO-Sc, is a
direct application of CCGA technique to PSO, and the other, namely CPSO-Hc ,
combines the standard PSO with the CPSO-Sc model. In [28], the authors applied the

random grouping adaptive weighting strategies of the DECC algorithm [31] to the

CCPSO and proposed a cooperatively coevolving PSO algorithm.

2.3.2 CPSO framework

We propose a CPSO framework with statistical variable interdependence learning.

Chapter 2: A cooperative particle swarm optimizer

13

Compared with existing CPSO algorithms, the exclusive features of the proposed CPSO

framework include the following.

1. The sub-problems are overlapped, with each having a sub-problem core.

2. Each sub-problem is optimized by means of a separate PSO.

3. A global solution is used as shared memory, where the separate PSOs can take

variables and post optimization results.

Fig.2.4 is an illustrative example of the proposed framework. For the convenience of

illustration, we assume that: S = {x), x, x8}, S8 = {x, x8, x�}, ∙∙∙, S)E = {x)E8, x)E,x)}, S) = {x)E, x), x}. The key steps of the framework can be summarized as follows:

1. Create a global solution c- randomly.

2. Partition the variable set into n overlapping subsets S, S8, ∙∙∙, S) .
3. Set itr = 1 to start a new cycle.
4. Optimize the variables in the subsets by means of separate PSOs; in the i-the

PSO, the variables that do not appear in S� are kept constant (with their value
taken from c-).

5. Construct a new solution c-B by taking and concatenating the optimized

sub-problem cores.

Fig. 2.4. Illustrative example for the CPSO-SL framework.

Chapter 2: A cooperative particle swarm optimizer

14

6. Update the global solution c- by c-B.
7. Output c-B as optimization result and stop if a maximum number of function

evaluations (FEs) is reached, else, set itr = itr + 1, go to Step 4 for the next cycle.
2.4 CPSO-SL behavior

In this section, we conduct theoretical analysis to give deeper insight into the

execution process of CPSO-SL and to guide better parameter selection.

2.4.1 Separable and non-separable problems

One important idea for the optimization problem is variable separability. The

definition of separable and non-separable variables can be presented as follows.

Definition 1.Definition 1.Definition 1.Definition 1. Given an optimization problem f(x,-), variable x� is said to be separable
from variable x�, if for all the context vectors ∀c-=(∙∙∙, x�E, −, x�G,∙∙∙, x�E, −, x�G,∙∙∙)
the following constraint is satisfied: ∀x�, x�B ∈ 3b4�, b5�6, (x� ≠ x�B) and ∀x� ∈ 3b4�, b5�6,

if f(α,,-) ≤ f(β,-)
then ∀x�B ∈ 3b4�, b5�6, f(α,,-B) ≤ f(β,-B)

where α,,- = (∙∙∙, x�,∙∙∙, x�,∙∙∙), β,- = (∙∙∙, x�B,∙∙∙, x�,∙∙∙) α,,-′ = (∙∙∙, x�,∙∙∙, x�B,∙∙∙), β,-B = (∙∙∙, x�B,∙∙∙, x�B,∙∙∙)
if the above constraint is not satisfied, variable x� is said to be non-separable from

variable x�.
Variable x� is separable from variable x� means that x� is independent of x� .

Variable x� is non-separable from variable x� means that the influence of x� on the
objective function is affected by x�. Based on Definition 1, we provide the definition of
separable and non-separable problems.

Definition 2.Definition 2.Definition 2.Definition 2. An optimization problem f(x,-) is called a separable problem if ∀x�, x� ∈{x, x8,∙∙∙, x)}(i ≠ j), and variables x� and x� are separable from each other. Otherwise, f(x,-) is a non-separable problem.

Chapter 2: A cooperative particle swarm optimizer

15

A separable problem is one wherein all of its variables are separable. On the other

hand, a non-separable problem is one wherein some of its variables are interacted.

2.4.2 Variable interdependencies and problem decomposition

In a non-separable problem, interdependencies occur among some of its variables.

The probability q�� for variable x� affected by x� can be defined as follows.
Definition 3.Definition 3.Definition 3.Definition 3. Given an optimization problem f(x,-), the probability q�� for variable x�
affected by x� is defined by:

 q�� = P{f(α,,-B) > D(β,-B)}
where (1) α,,- and β,- are identical solution vectors except for v� values; (2) α,,- and β,-
satisfy that f(α,,-) ≤ f(β,-); (3) α,,-B and β,-B are obtained by turning x� values of α,,- and β,- to x�B.

The CPSO-SL partitions the variable set into overlapping subsets. Each of the

subset is optimized by means of a separate PSO. The following theorem shows the

probability for the separate PSO obtaining the global optimal variable values.

Theorem 1.Theorem 1.Theorem 1.Theorem 1. Given an optimization problem f(x,-) with global optimum solution x,-∗ = (x∗ , x8∗ ∙∙∙, x)∗), suppose:
1. S(= {x(g , x(h ∙∙∙, x(i} is a subset of variable set S;
2. c- = (∙∙∙, x(jE, −, x(jkg ,∙∙∙, x(iE, −, x(iG) is a context vector;
3. y(g∗ , y(h∗ , y(i∗ are local optimal values of variables x(g , x(h ∙∙∙, x(i under context

vector c-,
then the probability for y(j∗ to be equal to the global optimal value x(j∗ is:

 P{y(j∗ = x(j∗ }=∏ (1 − q(jn)n,(bo∉nq)

Proof.Proof.Proof.Proof. Because x,-∗ is the global optimum solution, we have: f(x,-∗) ≤ f(x,-) (2.3)

Form Eq. (2.3), it follows that: PLfJ∙∙∙, x(j∗ ,∙∙∙, xr∗,∙∙∙K ≤ fJ∙∙∙, x(j ,∙∙∙, xr,∙∙∙KM = 1 (2.4)

Suppose xr ∉ S(and change xr∗ to xr whose value is equal to that in c-, we have: PLfJ∙∙∙, x(j∗ ,∙∙∙, xr,∙∙∙K ≤ fJ∙∙∙, x(j ,∙∙∙, xr,∙∙∙KM = 1 − q(jr (2.5)

This process is repeated until all the variables xr(xr ∉ S() are exhausted, then:

Chapter 2: A cooperative particle swarm optimizer

16

PLfJ∙∙∙, x(g∗ ,∙∙∙, x(j∗ ,∙∙∙, x(i∗ ,∙∙∙K ≤ fJ∙∙∙, x(g∗ ,∙∙∙, x(j ,∙∙∙, x(i∗ ,∙∙∙KM = s (1 − q(jr)n,(bo∉nq) (2.6)

Because y(g∗ , y(h∗ , y(i∗ are local optimal values of variables x(g , x(h ∙∙∙, x(i, we have: PLfJ∙∙∙, y(g∗ ,∙∙∙, y(j∗ ,∙∙∙, y(i∗ ,∙∙∙K ≤ fJ∙∙∙, y(g∗ ,∙∙∙, y(j ,∙∙∙, y(i∗ ,∙∙∙KM = 1 (2.7)

Combining Eqs. (2.6) and (2.7), we have:

 P{y(j∗ = x(j∗ }=∏ (1 − q(jn)n,(bo∉nq) ,

This completes the proof.■

Theorem 1 can be explained intuitively as follows. Given a subset S(of the variable
set S, y(g∗ , y(h∗ , y(i∗ are local optimal values of variables x(g , x(h ∙∙∙, x(i . For each
variable x(j , the lower degree it is affected by variables outside S(, the higher

probability y(j∗ equals to the global optimal value x(j∗ . An extreme case is that in a

separable problem, for each pair of variables x� and x�, q�� = 0. If y�∗ is a local optimal

value of variable x�, then P{y�∗ = x�∗} = 1.
Theorem 1 implies that to optimize variable x�, the variables that highly affected x�

should be grouped into one subset S(j so that the probability P{y(j∗ = x(j∗ } is
maximized. The CPSO-SL has been designed according to this principle. It firstly

quantifies the degree of interdependence d�� by the statistical variable interdependence
learning model. The obtained degree of interdependence d�� is a statistical estimator of

probability q��, i.e., d�� = qt ��. Following this, it partitions an n dimensional problem into

n overlapping sub-problems, where each contains variables affecting the sub-problem

core with degree higher than a predefined threshold r. However, it is possible that the

probability P{y�∗ = x�∗} decreases as the problem dimension increases. The CPSP-SL can

still be an effective approach for such a problem, since it performs the optimization task

by iteratively running cooperative PSOs. The following theorem shows the feasibility of

the CPSO-SL framework.

Theorem 2.Theorem 2.Theorem 2.Theorem 2. Given an optimization problem f(x,-) with global optimum solution x,-∗ = {x∗ , x8∗ ,∙∙∙, x)∗ }, let z-∗(t) = (z∗(t), z8∗(t),∙∙∙, z)∗ (t)) be the global solution of the CPSO-SL
at the t-th iteration, let P�(t) = P{z�(t)∗ = x�∗}, if the local optimum solutions of the

sub-problems can always be found by their corresponding PSOs, then:

Chapter 2: A cooperative particle swarm optimizer

17

1. At the 1st iteration, t = 1:
P�(t) = s (1 − q��)�,(bv∉nj)

2. At the t-th iteration, t > 1:
P�(t) = s 31 − q�� + q��P�(t − 1)6�,(bv∉nj)

ProofProofProofProof....

1. At the 1st iteration, in the i-th sub-problem, y�g∗ (1), y�h∗ (1),∙∙∙, y�i∗ (1) are local
optimal values of variables x�g , x�h ,∙∙∙, x�i obtained by PSO, according to Theorem

1, we have:

P{y�∗(1) = x�∗} = s (1 − q��)�,(bv∉nj) , (2.8)

according to Step 5 of CPSO-SL, y�∗(1) = z�∗(1), then:
P�(1) = s (1 − q��)�,(bv∉nj) , (2.9)

2. At the t-th iteration, in the i-th sub-problem: PLfJ⋅⋅⋅, x�∗,⋅⋅⋅, x�∗,⋅⋅⋅K ≤ fJ⋅⋅⋅, x�,⋅⋅⋅, x�∗,⋅⋅⋅KM = 1 (2.10)

the global solution of CPSO-SL is c- = (z∗(t − 1),⋅⋅⋅, z)∗ (t − 1)), suppose x� ∉ S� ,
turning x�∗ to z�∗(t − 1), then the conditional probability satisfies that: PLfJ⋅⋅⋅, x�∗,⋅⋅⋅, z�∗(t − 1),⋅⋅⋅K ≤ fJ⋅⋅⋅, x�,⋅⋅⋅, z�∗(t − 1),⋅⋅⋅K|z�∗(t − 1) = x�∗M = 1 (2.11)

and PLfJ⋅⋅⋅, x�∗,⋅⋅⋅, z�∗(t − 1),⋅⋅⋅K ≤ fJ⋅⋅⋅, x�,⋅⋅⋅, z�∗(t − 1),⋅⋅⋅K|z�∗(t − 1) ≠ x�∗M = 1 − q��. (2.12)

Combining Eqs. (2.11) and (2.12), we have: PLfJ⋅⋅⋅, x�∗,⋅⋅⋅, z�∗(t − 1),⋅⋅⋅K ≤ fJ⋅⋅⋅, x�,⋅⋅⋅, z�∗(t − 1),⋅⋅⋅KM
= P�(t − 1) + J1 − q��K ^1 − P�(t − 1)_ = 1 − q�� + q��P�(t − 1). (2.13)

This process is repeated until all the variables x�, (x� ∉ S�) are exhausted, then: PLfJ⋅⋅⋅, x�g∗ ,⋅⋅⋅, x�∗,⋅⋅⋅, x�i∗ ,⋅⋅⋅K ≤ fJ⋅⋅⋅, x�g∗ ,⋅⋅⋅, x�,⋅⋅⋅, x�i∗ ,⋅⋅⋅KM = s 31 − q�� + q��P�(t − 1)6�,(bv∉nj) (2.14)

3. Because y�g∗ (t), y�h∗ (t),⋅⋅⋅, y�i∗ (t) are local optimal values of variables x�g , x�h ,∙∙∙, x�i obtained by PSO, we have:

Chapter 2: A cooperative particle swarm optimizer

18

fJ⋅⋅⋅, y�g∗ (t),⋅⋅⋅, y�∗(t),⋅⋅⋅, x�i∗ (t),⋅⋅⋅K ≤ fJ⋅⋅⋅, y�g∗ (t),⋅⋅⋅, y�(t),⋅⋅⋅, y�i∗ (t),⋅⋅⋅K (2.15)

Combining Eqs. 2.14 and 2.15, we have;

P{y�∗(t) = x�∗} = s 31 − q�� + q��P�(t − 1)6�,(bv∉nj) . (2.16)

Because the local optimum solutions of the sub-problems can always be found by

their corresponding PSOs, according to Step 5 of CPSO-SL, y�∗(t) = z�∗(t), it
follows that:

P�(t) = s 31 − q�� + q��P�(t − 1)6�,(bv∉nj) . (2.17)

This completes the proof. ■

From Theorem 2, it can be seen that progressions {P(t)}, {P8(t)},⋅⋅⋅, {P)(t)}have
Markov property, and will eventually converge to stable values. The probability for the

CPSO-SL locating the global optimum solution increases as the iteration of algorithm

increases. The prerequisite is that the local optimum solutions of the sub-problems can

always be found by their corresponding PSOs.

2.4.3 Selection of threshold value r

The statistical decomposition method partitions the problem into overlapping

sub-problems. Different threshold values yield different decomposition results on the

same problem, and thus yield different optimization results. As can be seen from

Theorem 2, progressions {P(t)}, {P8(t)}, ∙∙∙, {P)(t)} are nondecreasing, and will
converge to stable values. To illustrate the effect of parameter r on these values, in this

subsection, six nonseparable optimization problems are simulated. They are simulated

as follows: the problem dimensions are set to 20, 50, 100, 200, 500, 1000, respectively.

Within each problem, the probability q�� for each pair of variables is simulated by

random numbers in the range [0, 1]. Fig.2.5 plots the average stable values of

progressions against different threshold values. The abscissa is the r values and the

vertical axis is the average value of the stable values of progressions {P(t)}, {P8(t)}, ∙∙∙, {P)(t)}, whose values are computed by the iterative functions in Theorem 2. The stable

Chapter 2: A cooperative particle swarm optimizer

19

values are obtained when |P�(t) − P�(t − 1)| < z. From Fig.2.5, we can observe that r can

influence the probability for CPSO-SL obtaining the global optimal solution. When r is

Fig. 2.5 Probabilities for CPSO-SL obtaining global optimum solutions of six

simulated problems with different threshold r.

Chapter 2: A cooperative particle swarm optimizer

20

less than a turning point, the algorithm can converge to the global optimum solution

with probability one. When r is larger than the turning point, the probability will

decreases as r increases.

The parameter r makes a tradeoff between the single PSOs and probability for

CPSO-SL obtaining the global optimum solution. With a lower r value, more variables

are allocated to each sub-problem, making it more difficult for the single PSOs to obtain

the local optimal solutions. On the other hand, with a higher r value, the probability for

CPSO-SL obtaining the global optimum solution may decrease. In our experiment, we

propose an iterative method to select the parameter r value, which is described as

follows. Firstly, set r = 0, and then calculate average value Pa{\ of the stable points of
progressions {P(t)} , {P8(t)} , ∙∙∙ , {P)(t)} by the iterative function in Theorem 2. If Pa{\ = 1, then set r = r + d, compute Pa{\ again. The r value is set to the last value that
makes Pa{\=1. In the experiment, the parameter d is taken as 0.02.

2.4.4 Potential search space

Consider an optimization problem with solution space E = 3b4, b56 × 3b48, b586 ×∙∙∙×3b4), b5)6, the potential search space is ∏ b5� − b4�)�| . The volume of the solution space

increases exponentially as the number of dimension increases. In the proposed

algorithm, the n-dimensional problem is partitioned into several lower dimensional

sub-problems, in the i-th sub-problem, the potential search space is ∑ (b5� − b4�)�∈nj .

Then the total solution space is ∑ ∏ (b5� − b4�)�∈nj)�| . The above analysis indicates that

the proposed algorithm reduces the volume of the solution from ∏ b5� − b4�)�| to ∑ ∏ (b5� − b4�)�∈nj)�| .

2.5 Experimental studies

2.5.1 Test functions

In this section, we conduct numerical experiments to test the performance of the

proposed CPSO-SL. In the experiment, we select 10 classical benchmark functions [19],

10 rotated classical benchmark functions, and 10 CEC2005 benchmark functions [40].

All functions are tested on 500 and 1000 dimensions. Table 2.1 lists the classical

Chapter 2: A cooperative particle swarm optimizer

21

benchmarks functions and their key properties. Some of these functions are unimodal

functions, which are relatively easy to optimize, and some are multimodal functions,

which have many local optima and are relatively hard to optimize. In order to introduce

variable interactions, thereby making them non-separable, the selected classical

benchmark functions are further rotated. To rotate a function, firstly, an orthogonal

matrix M is created. The input vector x,- is left multiplied by matrix M to produce

rotated vector y,- = M ∗ x,-. Then, the vector y,- is used as an input to calculate the

Table 2.1

Classical benchmark functions (n = problem dimension, S = solution space, f(�) =minimum function value).
Description Test function S f(�)
Sphere f(x) = ∑ x�8)�| 3−100,1006) 0

Schwefel f8(x) = ∑ |x�|)�| + ∏ |x�|)�| 3−10,106) 0

Step f�(x) = ∑ (�x� + 0.5�)8)�| 3−100,1006) 0

Generalized

Rastrigin
f
(x) = ∑ 3x�8 − 10 cos(2πx�) + 106)�| 3−5.12,5.126) 0

Generalized Penalizeda
f�(x) = �) {10sin8(πy) + ∑ (y� − 1)831 + 10sin8(πy�G)6 +)E�|(y)E)8} + ∑ u(x�, 5,100,4))�|

3−50,506) 0

Generalized Penalizeda
f�(x) =�� {10sin8(3πx) + ∑ (x� − 1)831 + 10sin8(3πx�G)6 +)E�|(x) − 1)8 (1 + sin8(2πx)))} + ∑ u(x�, 5,100,4))�|

3−50,506) 0

Quardirc f�(x) = ∑ (∑ x���|)8)�| 3−100,1006) 0

Rosenbrock f�(x) = ∑ 3100Jx�G − x�8K8 + (x� − 1)8)E�|] 3−30,306) 0

Ackley
f�(x) = −20 exp �−0.2�) ∑ x�8)�| � −
exp () ∑ cos (2πx�))�)+20+e 3−32,326) 0

Generalized

Griewank
f�(x) =
��� ∑ x�8)�| − ∏ cos (bj√�))�| + 1 3−600,6006) 0

aDetailed descriptions of these functions are given in the appendix.

Chapter 2: A cooperative particle swarm optimizer

22

objective function. In this thesis, the orthogonal matrix is created by Salomon’s method

[41]. The CEC2005 Special Session has 25 benchmark functions. Many of these

functions are shifted, rotated, expanded, and combined variants of the classical

benchmark functions. The properties and the formulas of these functions can be seen in

[40]. We use 10 representative functions in our experiment, including two unimodal

functions (f����, f����8), four basic multimodal functions (f�����, f�����, f�����, f�����), one
expanded function (f����), and three composition functions (f����, f����, f���8). Among

the ten selected functions, three are separable (f���� , f����8 , f�����) and seven are
non-separable according to Definition 2. As an example, Fig.2.6 shows the two

dimensional surface landscapes of f
, rotated f
, f����, and f����.

Fig. 2.6. Surface landscapes of f
, rotated f
, f���� and f����.

Chapter 2: A cooperative particle swarm optimizer

23

2.5.2 Experimental settings

Parameter settings are crucial for the performance of the CPSO-SL. In the variable

interdependence learning stage, the total number of statistical samples N (Line 3 of

Fig.2.2) is set to 50. In the decomposition stage, the threshold value r for the

decomposition method is set according to the method described in Section 4.3. The next

decision is on the parameters used in the main framework of CPSO-SL. Within each

separate PSO, the parameters are taken as w = 0.7298, c = 1.4961 and c8 = 1.4961
c1 = 1.49618, which are selected through empirical study in [42]; the population size is

taken as 50.

We use the number of function evaluations (FEs) to measure the computational

efforts of the proposed algorithm. In the variable interdependence learning stage, the

number of FEs is fixed. For an n dimensional problem, the number of FEs is n × n ×50 × 4, where 50 is the number of statistical samples and 4 is the number of FEs within

each evaluation. Thus, the computational efforts incurred by the variable

interdependence learning are 5.0e + 07, 2.0e + 08 FEs for 500 and 1000 dimensional

problems, respectively. In the optimization stage, the algorithm stops when a maximum

number of FEs is reached. In our experiment, the maximum numbers of FEs are set to 1.0e + 08, 2.0e+08 for 500 and 1000 dimensional problems, respectively. Thus, the total

numbers of FEs are 1.5e + 08, 4.0e + 08 for 500 and 1000 dimensional problems,

respectively.

In order to test the stability of the CPSO-SL, the experiment on each benchmark

function is repeated 30 times.

2.5.3 Existing algorithms for comparison

For the purpose of comparison, we select the following three algorithms which have

been applied for all or some of the selected test functions.

1. Fast evolutionary programming with cooperative co-evolution (FEPCC) [25]:

FEPCC divides the system into many modules, and then repeatedly evolves each

module separately and combines them to form the whole system.

2. Self adaptive neighborhood search differential evolution with dynamic grouping

Chapter 2: A cooperative particle swarm optimizer

24

cooperative co-evolution (DECC-G) [31]: in DECC-G, a dynamic grouping and

adaptive weighting strategy is proposed, and the proposed strategy is integrated

to differential cooperative co-evolution algorithm for optimization.

3. Cooperatively Coevolving Particle Swarm Optimization (CCPSO) [28]: CCPSO

adopts a similar grouping and weighting strategy of DECC-G, and integrates it

into PSO algorithm.

All of the above three algorithms are cooperative evolutionary algorithms. They

adopt the divide-and-conquer strategy, i.e., decompose the problem into several

sub-problems and optimize the sub-problems cooperatively. These algorithms have been

shown to be successful and can find suitable solutions, especially for large scale

optimization problems. Hence, a comparison with these algorithms will demonstrate the

performance of the proposed CPSO-SL, and will show whether it is better or worse than

other algorithms.

To test whether the statistical decomposition technique can improve the CPSO, the

CPSO that directly applies Potter’s technique [24] is also included for comparison. In

the CPSO, only one variable is optimized at a time. That is, each subcomponent consists

of a single variable. The parameters of CPSO are taken as w = 0.7298, c = 1.4961, c8 = 1.4968, population size pop = 50, and maximum numbers of FEs are taken as 1.0e + 08, 2.0e + 08 for 500 and 1000 dimensional problems, respectively.

2.5.4 Simulated results and discussions

2.5.4.1 Results for classical benchmark functions

This subsection aims to show the results of CPSO-SL for classical benchmark

functions. Table 2.2 presents the results from 30 independent runs of CPSO-SL, CPSO

and the results of studies using FEPCC, DECC-G and CCPSO. “Mean” represents the

average value of the results obtained using the algorithm with respect to the optimum

value of the benchmark functions. “Var” represents the standard deviation of the results.

“FEs-CP” represents the computational effort comparison between the CPSO-SL and

the compared algorithm, whose value is obtained by dividing the number of FEs

incurred by the CPSOSL with the number of FEs incurred by the compared algorithm.

Chapter 2: A cooperative particle swarm optimizer

25

Table 2.2

Results of CPSO-SL and Other Algorithms for Classical Benchmark Functions (to be

continued).

Func Dim
CPSO-SL CPSO FEPCC

Mean Var FEs-CP Mean Var FEs-CP Mean Var

f 500 4.84e-30 4.68e-30 1.5 4.95e-30§ 4.06e-30 60 4.90e-08† 1.20e-07

1000 4.15e-29 1.29e-29 2 3.98e-29§ 2.70e-29 80 5.40e-08† 2.80e-08

f8 500 3.14e-18 9.68e-19 1.5 3.25e-18§ 1.02e-18 60 1.30e-03† 3.00e-03

1000 7.08e-18 1.82e-18 2 7.65e-18§ 1.37e-18 80 2.60e-03† 3.20e-03

f� 500 0.00e-00 0.00e-00 1.5 0.00e-00§ 0.00e-00 60 0.00e-00§ 0.00e-00

1000 0.00e-00 0.00e-00 2 0.00e-00§ 0.00e-00 80 0.00e-00§ 0.00e-00

f
 500 0.00e-00 0.00e-00 1.5 0.00e-00§ 0.00e-00 60 1.43e-01† 2.80e-01

1000 0.00e-00 0.00e-00 2 0.00e-00§ 0.00e-00 80 3.13e-01† 4.00e-01

f� 500 6.49e-25 2.24e-25 1.5 6.89e-25§ 2.58e-25 - - -

1000 6.02e-25 2.43e-25 2 7.13e-25† 2.34e-25 - - -

f� 500 1.00e-22 1.36e-22 1.5 1.52e-22† 2.32e-22 - - -

1000 5.07e-22 2.73e-22 2 4.62e-22‡ 8.08e-22 - - -

f� 500 1.67e-27 2.09e-27 1.5 1.29e-27‡ 1.49e-27 - - -

1000 5.08e-27 2.45e-27 2 6.06e-27† 4.90e-27 - - -

f� 500 2.79e-05 2.01e-05 1.5 1.28e01† 1.60e01 - - -

1000 1.47e-01 9.30e-02 2 1.03e03† 2.06e03 - - -

f� 500 8.46e-16 1.45e-16 1.5 8.06e-16§ 1.26e-16 60 5.70e-04† 3.90e-05

1000 8.03e-16 1.60e-16 2 9.28e-16† 1.86e-16 80 9.50e-04† 3.40e-05

f� 500 7.40e-17 9.06e-17 1.5 9.25e-17† 8.36e-17 60 2.90e-02† 8.50e-02

1000 2.59e-16 6.40e-17 2 1.94e-16‡ 1.06e-16 80 2.50e-02† 1.14e-01

To determine the statistical differences between the results obtained by the CPSO-SL

and the compared algorithms, the t-test results are also provided. ‘†’ indicates that the

Chapter 2: A cooperative particle swarm optimizer

26

Table 2.2

Results of CPSO-SL and Other Algorithms for Classical Benchmark

Functions (continued).

Func Dim
CPSO-SL DECC-G CCPSO

Mean Var FEs-CP Mean FEs-CP Mean Var

f 500 4.84e-30 4.68e-30 60 6.33e-27† - - -

1000 4.15e-29 1.29e-29 80 2.17e-25† - - -

f8 500 3.14e-18 9.68e-19 60 5.95e-15† - - -

1000 7.08e-18 1.82e-18 80 5.37e-14† - - -

f� 500 0.00e-00 0.00e-00 60 0.00e-00§ - - -

1000 0.00e-00 0.00e-00 80 0.00e-00§ - - -

f
 500 0.00e-00 0.00e-00 60 0.00e-00 60 0.00e-00 0.00e-00

1000 0.00e-00 0.00e-00 80 3.55e-16† 80 3.63e-03 1.79e-02

f� 500 6.49e-25 2.24e-25 60 4.29e-21† - - -

1000 6.02e-25 2.43e-25 80 6.89e-25† - - -

f� 500 1.00e-22 1.36e-22 60 5.34e-18† - - -

1000 5.07e-22 2.73e-22 80 2.55e-21† - - -

f� 500 1.67e-27 2.09e-27 60 6.17e-25† 60 5.35e-00 2.41e01

1000 5.08e-27 2.45e-27 80 3.17e-23† 80 3.49e02 1.56e03

f� 500 2.79e-05 2.01e-05 60 4.92e02† 60 4.15e02 1.85e02

1000 1.47e-01 9.30e-02 80 9.87e02† 80 1.16e03 8.52e02

f� 500 8.46e-16 1.45e-16 60 9.13e-14† 60 1.34e-09 6.70e-09

1000 8.03e-16 1.60e-16 80 2.22e-13† 80 1.91e-01 2.60e-01

f� 500 7.40e-17 9.06e-17 60 4.40e-16† 60 3.55e-17 5.29e-17

1000 2.59e-16 6.40e-17 80 1.01e-15† 80 2.80e-16 4.79e-16

results of the two algorithms are statistically different with 95% certainty and that

CPSO-SL is better. ‘‡’ indicates that the results of the two algorithms are statistically

different with 95% certainty and that the compared algorithm is better. ‘§’ indicates

Chapter 2: A cooperative particle swarm optimizer

27

Fig. 2.7. Bands of function values of CPSO-SL and CPSO with 95% confidence

interval for solutions of functions f, f� and f�. The results were obtained from 30

independent runs of the algorithms. The abscissa is the number of FEs and the

vertical axis is the objective function value.

Chapter 2: A cooperative particle swarm optimizer

28

that the results are not statistically different. For the algorithm DECC-G, because no

variances have been reported in the literature, the results are compared with the mean

values. ‘†’ indicates that CPSO-SL is better. ‘‡’ indicates that DECC-G is better. ‘§’

indicates that the two algorithms are the same. For the algorithms compared, not all

results of functions are reported, so for those functions without reported results, their

corresponding comparison values are marked with ‘-’. Fig.2.7 is a plot of the bands of

function values of CPSO-SL and CPSO with 95% confidence interval for solutions of

functions f, f� and f�. The abscissa is the number of function evaluations and the

vertical axis is the objective function value. The confidence intervals of the results

obtained by the two algorithms are computed using the bootstrap based method

described in [43].

From Table 2.2, it can be seen that CPSO-SL can obtain accuracy of 0.1 for all

functions. It also can be seen that CPSO-SL and CPSO can obtain almost the same

results for functions f − f�, f� and f�. For the Rosenbrock function f�, CPSO-SL
obtains accuracy of 0.1, while CPSO obtains accuracy of 10. The computational efforts of

CPSO-SL are 1.5 and 2 times as intensive as those of CPSO for 500 and 1000

dimensional problems, respectively. From Fig.2.7, it can be seen that the curves of the

two algorithms have the same shape for functions f and f�. For function f�, both
algorithms improve the solutions steadily; however, CPSO-SL generally obtains better

results than CPSO. Compared with FEPCC, for all the compared functions, CPSO-SL

obtains accuracy of 10E�, while FEPCC obtains accuracy of 0.1. Among the compared

algorithms, DECC-G yields the best results. CPSO-SL obtains better results than

DECC-G for 17 out of the 20 functions. It is worth noting that CPSO-SL can obtain best

mean values of 2.79 × 10E� and 1.47 × 10E for the 500 and 1000 dimensional

Rosenbrock function f�, respectively, while DECC-G can obtain best mean values of 4.92 × 108 and 9.87 × 108, respectively. Compared with CCPSO, CPSO-SL obtains

accuracy of 10E8� and 10E for functions f� and f�, respectively, while CCPSO obtains
accuracy of 108 and 10�, respectively. The computational efforts of CPSO-SL are 60

and 80 times as intensive as those of FEPCC, DECC-G and CCPSO for 500 and 1000

Chapter 2: A cooperative particle swarm optimizer

29

Table 2.3

Results of CPSO-SL and Other Algorithms for Rotated Classical Benchmark Functions.

Func Dim
CPSO-SL CPSO CCPSO

Mean Var FEs-CP Mean Var FEs-CP Mean Var

f 500 1.11e-29 2.05e-29 1.5 8.52e-30‡ 8.62e-30 - - -

1000 7.58e-30 5.91e-30 2 3.51e-29‡ 7.14e-29 - - -

f8 500 1.12e-06 1.68e-06 1.5 8.90e01† 8.77e01 - - -

1000 4.34e-06 8.33e-05 2 3.50e02† 2.02e02 - - -

f� 500 0.00e-00 0.00e-00 1.5 0.00e-00§ 0.00e-00 - - -

1000 0.00e-00 0.00e-00 2 0.00e-00§ 0.00e-00 - - -

f
 500 4.03e-01 3.46e-00 1.5 2.18e03† 4.29e02 60 0.00e-00‡ 0.00e-00

1000 6.85e-01 1.74e-01 2 5.16e03† 1.28e03 80 5.69e-01‡ 2.65e-00

f� 500 9.41e-15 1.56e-14 1.5 1.09e-00† 3.77e-00 - - -

1000 2.24e-15 1.22e-15 2 1.40e01† 1.67e01 - - -

f� 500 5.87e-12 1.31e-11 1.5 5.83e-00† 6.73e-00 - - -

1000 1.05e-09 1.99e-09 2 6.85e01† 1.74e01 - - -

f� 500 5.73e-06 1.10e-05 1.5 2.18e03† 4.07e03 60 7.66e01† 1.57e02

1000 4.83e-05 1.07e-04 2 1.40e04† 1.67e04 80 3.55e03† 4.80e03

f� 500 1.78e-02 2.69e-02 1.5 1.32e03† 1.40e03 60 4.99e02† 6.11e02

1000 5.06e-02 7.03e-02 2 6.02e03† 6.37e03 80 9.98e02† 6.14e-02

f� 500 2.53e-09 8.47e-10 1.5 2.54e-00† 6.13e-01 60 8.69e-15‡ 3.51e-15

1000 3.16e-09 1.22e-09 2 2.83e-00† 1.01e-00 80 1.49e-10‡ 5.46e-10

f� 500 1.22e-15 7.65e-16 1.5 6.36e-01† 8.71e-01 60 4.44e-18 2.22e-17

1000 1.63e-15 1.28e-15 2 5.37e-01† 1.20e-00 80 7.97e-13† 3.64e-12

dimensional problems, respectively.

2.5.4.2 Results for rotated classical benchmark functions

This subsection aims to show the results of CPSO-SL for rotated classical

benchmark functions. The experiments that were conducted on functions f − f� are

Chapter 2: A cooperative particle swarm optimizer

30

Fig. 2.8. Bands of function values of CPSO-SL and CPSO with 95% confidence

interval for solutions of rotated functions f, f� and f�. The results were obtained
from 30 independent runs of the algorithms. The abscissa is the number of FEs and

the vertical axis is the objective function value.

Chapter 2: A cooperative particle swarm optimizer

31

Table 2.4

Results of CPSO-SL and other algorithms for CEC2005 benchmark functions.

Func Dim
CPSO-SL CPSO DECC-G

Mean Var FEs-CP Mean Var FEs-CP Mean

f���� 500 3.67e-12 6.92e-13 1.5 3.22e-12§ 8.52e-13 60 3.71e-13†

1000 9.28e-12 2.29e-12 2 7.41e-12‡ 2.96e-12 80 6.84e-13‡

f����8 500 2.95e-09 8.32e-10 1.5 6.44e-09† 2.98e-09 - -

1000 5.45e-08 3.15e-08 2 5.54e-08§ 5.79e-08 - -

f����� 500 5.28e-02 8.07e-02 1.5 2.26e02† 1.87e02 60 1.56e03†

1000 3.30e-02 8.61e-02 2 2.96e02† 4.43e03 80 2.22e03†

f����� 500 2.96e-13 1.28e-13 1.5 1.38e-01† 3.08e-01 - -

1000 1.06e-12 4.99e-13 2 1.57e-00† 2.35e-00 - -

f����� 500 7.31e-01 8.60e-01 1.5 1.95e01† 5.75e-00 60 2.16e01†

1000 3.42e-00 1.13e-00 2 2.14e01† 3.11e-01 80 2.16e01†

f����� 500 3.64e-12 1.12e-12 1.5 2.94e-12‡ 6.71e-13 60 4.50e02†

1000 6.88e-12 1.55e-12 2 6.94e-12§ 1.82e-12 80 6.32e02†

f���� 500 1.42e-12 8.23e-13 1.5 4.33e02† 1.43e02 60 2.09e02†

1000 1.23e-10 5.36e-10 2 9.43e02† 2.66e02 80 3.56e02†

f���� 500 5.97e-04 1.10e-03 1.5 6.52e-01† 1.24e-01 - -

1000 1.43e-02 1.72e-02 2 6.70e-01† 1.47e-01 - -

f���� 500 5.97e-04 1.10e-03 1.5 7.24e-01† 7.73e-02 - -

1000 4.22e-02 6.01e-01 2 7.78e-01† 8.35e-02 - -

f���8 500 3.06e-02 6.83e-02 1.5 1.18e-01† 8.14e-02 - -

1000 5.03e-02 7.22e-02 2 1.92e-01† 6.53e-02 - -

repeated on rotated functions f − f� Table 2.3 presents the results from 30

independent runs of CPSO-SL, CPSO and the results of studies using CCPSO. The item

abbreviations of Table 2.3 are the same as those in Table 2.2. For the algorithms FEPCC

Chapter 2: A cooperative particle swarm optimizer

32

Fig. 2.9. Bands of function values of CPSO-SL and CPSO with 95% confidence

interval for solutions of functions f�����, f���� and f����. The results were obtained
from 30 independent runs of the algorithms. The abscissa is the number of FEs and

the vertical axis is the objective function value.

Chapter 2: A cooperative particle swarm optimizer

33

and DECC-G, the results are not reported in the literatures, so they are not included in

Table 2.3. Fig.2.8 is a plot of the bands of function values of CPSO-SL and CPSO with

95% confidence interval for solutions of rotated functions f, f� and f�.
From Table 2.3, it can be seen that CPSO-SL can obtain better results than CPSO,

except for the cases of f and f�. For rotated function f, the results seem to be the

same for both algorithms. This is because the rotated f is still a separable function
according to Definition 2. And the decomposition method for CPSO-SL partitions the

solution into single variables, which makes the two algorithms identical. For rotated

function f�, both algorithms can obtain the optimum value. From Fig.2.8, it can be seen

that for rotated function f, no significant difference can be found between CPSO-SL
and CPSO. For rotated functions f� and f�, CPSO-SL can approximate the optimum

solution steadily during the search process; on the other hand, CPSO appeared to

become trapped into pseudo optima. The computational efforts of CPSO-SL are 1.5 and

2 times as intensive as those of CPSO for 500 and 1000 dimensional problems,

respectively. Compared with CCPSO, it can be seen that CPSO-SL can obtain better

results for 5 out of the 10 compared functions. For rotated function f
, CPSO-SL can
obtain accuracy of 0.1, while CCPSO can obtain the optimum value for the 500

dimensional problem, and obtain accuracy of 0.1 for the 1000 dimensional problem.

Although the results of CPSO-SL are not as good as that of CCPSO for rotated functions f� and f�, they are not deteriorated much since they can achieve accuracy of 10E�. The
computational efforts of CPSO-SL are 60 and 80 times as intensive as those of CCPSO

for 500 and 1000 dimensional problems, respectively.

2.5.4.3 Results for CEC2005 benchmark functions

This subsection aims to show the results of CPSO-SL for CEC2005 benchmark

functions. The experiments that were conducted on classical benchmark functions are

repeated on CEC2005 benchmark functions. Table 2.4 presented the results from 30

independent runs of CPSO-SL, CPSO and the results of studies using DECC-G. The

item abbreviations of Table 2.4 are the same as those in Table 2.2. For the algorithms

FEPCC and CCPSO, the results are not reported in literatures, so they are not included

Chapter 2: A cooperative particle swarm optimizer

34

in Table 2.4. Fig.2.9 is a plot of the bands of function values of CPSO-SL and CPSO with

95% confidence interval for solutions of f�����, f����, and f����.
From Table 2.4, it can be seen that CPSO-SL can obtain better results than CPSO for

all functions except for functions f����, f����8 and f�����, for which the results seem to

be the same. From Fig.2.9, it can be seen that CPSO-SL can improve the solutions

steadily for functions f����� and f����. For function f����, CPSO-SL appeared to be
trapped into pseudo optimal solution and escaped with the execution of the algorithm

running. On the other hand, CPSO appeared to be unable to find the optimal solution.

The computational efforts of CPSO-SL are 1.5 and 2 times as intensive as those of

CPSO for 500 and 1000 dimensional problems, respectively. In comparison with

DECC-G, it can be seen that CPSO-SL can obtain better results for 8 out of the 10

compared functions. For function f����, CPSO-SL obtains accuracy of 10E8, while
DECC-G obtains accuracy of 10E�. The computational efforts of CPSO-SL are 60 and

80 times as intensive as those of DECC-G for 500 and 1000 dimensional problems,

respectively.

2.5.4.4 Discussions

The comparison results of CCPSO-SL on classical benchmark functions, rotated

classical benchmark functions and CEC2005 benchmark functions can be summarized

and explained as follows.

1. On all the classical benchmark functions except for the Rosenbrock function f�,
CPSO-SL and the compared algorithm can approximate the optimal values. On

the Rosenbrock function f�, CPSO-SL obtains accuracy of 0.1, while the
compared algorithms appeared to become trapped into pseudo optimum. On

some of the rotated classical benchmark functions (f, f�, f�, f�), CPSO-SL and
the compared algorithms can approximate the optimal values. On some of the

rotated classical benchmark functions (f8, f
 − f�), CPSO-SL can approximate the

optimal solutions, while the compared algorithms appeared to become trapped

into pseudo optimum. On some of the CEC2005 benchmark functions (f����, f����8 , f�����), CPSO-SL and the compared algorithms can approximate the

Chapter 2: A cooperative particle swarm optimizer

35

optimal values. On some of the CEC2005 benchmarks functions (f�����, f�����, f����� , f���� , f���� , f���� , f���8), CPSO-SL can approximate the optimal

solutions, while the compared algorithms appeared to become trapped into

pseudo optimum.

2. The computational efforts of CPSO-SL are 1.5 and 2 times as intensive as those

of CPSO and 60 and 80 times as intensive as those of FEPCC, DECC-G, CCPSO

for 500 and 1000 dimensional problems, respectively.

3. According to Definition 2, classical benchmark functions f − f�, f�, f�, rotated
classical benchmark functions f, f�, and CEC2005 benchmark functions f����, f����8, f����� are separable, while the reminding functions are non-separable.

The simulated results indicate that CPSO-SL may perform well on separable

functions, and that it maintains its stability on non-separable functions. However, the

computational efforts of CPSO-SL are more intensive than those of the compared

algorithms. This outcome can be referred to as the “no free lunch theorems” for

optimization [44], i.e., “any elevated performance over one class of problems is offset by

performance over another class”. There is a cost for CPSO-SL obtaining better results

on non-separable problems, and the cost is the extra computational efforts on separable

problems. The reason that we get such results is that we have no prior knowledge of the

problem. In CPSO-SL, the statistical variable interdependence learning model adds an

extra computational burden to the algorithm. Moreover, due to the nature of the

cooperative optimization framework, the CPSO-SL requires more intensive

computational efforts than the compared algorithms during the optimization stage.

Therefore it can be assumed that it is better to apply CPSO-SL when the problems are

non-separable and the quality of the final results is of more concerned. The experiment

here serves as an illustration of the usefulness of the method and provides a guideline

for researchers when designing related algorithms.

2.6. Conclusion

To tackle large scale optimization problems, one of the most common ways is to adopt

the divide-and-conquer strategy. In this chapter, we aimed at proposing a

Chapter 2: A cooperative particle swarm optimizer

36

divide-and-conquer algorithm. In the empirical and application aspect, we proposed a

statistical model to learn the variable interdependencies among variables. With the

variable interdependencies, a decomposition method was proposed to partition the

problem into sub-problems such that the variable interdependencies in different

sub-problems were minimized. Then the sub-problems were optimized by a CPSO

framework cooperatively by putting and taking information from the global solution

vector. In the theoretical aspect, firstly, we proposed and proved a theorem that explains

the execution process of the proposed algorithm. From the study, we found that the

probability for a local optimum solution of a subset being global optimum values is

associated with degree of interdependencies of its variables with variables outside the

subset. Secondly, we proposed and proved a theorem that explains why and how the

proposed algorithm works. From the theorem, we could design a method that can be

used to select parameter r, which determined the final results of the decomposition

method. The performance of the proposed algorithm was tested on benchmarks from

different data sets. Simulated results showed that CPSO-SL could find the optimal

solution for most of the selected test functions.

The main contributions of this chapter include proposing the variable

interdependence learning model, the problem decomposition method, and the CPSO

framework. The proposed algorithm, i.e., CPSO-SL is provided to illustrate its

practicality and effectiveness for numerical optimization.

Chapter 3: A support vector and K-Means based clustering algorithm

37

Chapter 3: A support vector and K-Means based

clustering algorithm

3.1 Introduction

Data clustering is a problem of grouping a set of data into clusters so that the data in

the same cluster are analogous in properties. It can be found in many fields, such as

engineering, computer sciences, life and medical sciences, earth sciences, social sciences,

and economics [45]. The support vector clustering (SVC) algorithm, proposed by

Ben-Hur et. al [6]-[8], is a recently developed unsupervised learning method inspired by

the support vector machine (SVM) [9]. In SVC, data points are mapped from the original

space to a higher dimensional feature space by means of a Gaussian kernel. In the

feature space, the algorithm seeks the smallest sphere that encloses the images of the

data points. When the sphere is mapped back to the original space, it is separated into

several contours with each enclosing a separate cluster of data points.

As a kernel-based algorithm, the SVC has many advantages. It can determine the

system topological structure without prior knowledge with respect to the system itself,

delineate cluster boundaries of arbitrary shapes other than hyper-ellipsoid and

hyper-sphere, and deal with outliers by employing a soft margin constant which does

not require that the sphere enclose all the data points. Due to these advantages, the

SVC has attracted a high level of interest and many variants have been derived to

improve its performance. In greater detail, the method presented in [46] extended the

SVC to an adaptive cell growing model, which maps data points to a higher dimension

feature space through a desired kernel function. In [47], a spatial chunking algorithm is

proposed to speed up the SVC algorithm for large scale data sets. In [48], a cluster

labeling method for SVC is developed based on some of the invariant topological

properties of a trained kernel radius function. In [49], the authors present a kernel

method for clustering inspired by the classical K-Means algorithm in which each cluster

is iteratively refined using a one-class support vector machine. In [50], a topological and

Chapter 3: A support vector and K-Means based clustering algorithm

38

dynamical characterization of cluster structures described by the support vector

clustering is developed. In [51], the authors developed a cluster validity measure with

outlier detection for the SVC algorithm.

A review of the above literatures suggests that research on the SVC algorithms has

reached a good level of maturation. However, as far as SVC design, there are still some

problems requiring further consideration and investigation. We summarize the main

problems as follows.

1. The most widely used method for the training of SVC is the sequential minimal

optimization (SMO) [52]. Benchmarks reported in [52] show that the time

complexity of SMO is O(N8). This implies that the problem of computational

complexity may become intensive as the number of data points increases under

real-world problems.

2. The standard deviation of the Gaussian kernel σ plays a crucial role in the
clustering results. It controls the shapes of the enclosing contours in the data

space. How to configure it suitably so that the SVC is capable of obtaining a

desired cluster result for a given data set is an open problem for SVC designers.

3. The algorithm is sensitive to outliers although a soft margin constant C is

employed. If an outlier lies close to the cluster boundary, it will distort the cluster

shapes, and make the algorithm fail to obtain the desired results.

4. Since the algorithm is performed by finding connected regions of the data

distribution, its performance may deteriorate when the data set has connecting

clusters.

In view of the above, the study in this chapter is conducted with three integral parts:

a SVC training method, an empirical study, and a support vector and K-Means based

hybrid algorithm. The three integral parts provide solutions to the aforementioned

problems. The SVC training method is proposed based on analysis of the Gaussian

kernel radius function. The empirical study is conducted by formulating the SVC

training procedure as building up weighted kernel density estimator for underlying

distribution of the given data set. The proposed hybrid algorithm works by redefining

Chapter 3: A support vector and K-Means based clustering algorithm

39

the SVC as “one cluster as one sphere” in the feature space. It is achieved in three steps.

In the first step, the outliers are identified and removed by training a global SVC. In the

second step, the refined data set is clustered by a kernel-based K-Means algorithm. In

the final step, several local SVCs are trained for the clusters, and then the removed

data points are labeled according to their distance to the local SVCs. Since the proposed

algorithm can integrate the advantages of the conventional SVC and the K-Means, it

may overcome the difficulties of conventional SVC for its ability to deal data set with

noise and connecting clusters.

3.2 Review of support vector clustering and K-Means algorithm

3.2.1 Support vector clustering algorithm

The mathematical formulation of the SVC algorithm is summarized as follows [8].

Let χ ⊆ ℜ� be a d dimensional data space, {x, x8,∙∙∙, xO} ⊆ χ be a data set. The
algorithm uses a nonlinear transformation Φ to map the data points from χ to a
higher dimensional feature space, and then seeks the smallest enclosing sphere in the

feature space. The optimization problem can be formulated as follows:

minimize R8 + C � ξ�
O

�|

(3.1)

subject to ��ΦJx�K − ���8 ≤ R8 + ξ�, j = 1,∙∙∙, N,
where R is the radius of the enclosing sphere, ξ, ξ8, ∙∙∙, ξO are slack variables, C is the
soft-margin constant, || ∙ || is the Euclidean norm and aaaa is the sphere center. The

problem can be solved by introducing the Lagrangian function:

L = R8 − �(R8 + ξ� − ||ΦJx�K − �||8)β�
O

�| + C � ξ�μ�
O

�| − � ξ�μ�
O

�| , (3.2)

where β� ≥ 0 and μ� ≥ 0 are Lagrange multipliers. The solution to the primal problem

described in Eq. (2) can be obtained by solving the dual problem [53]:

maximize W = � Φ(x�)8β�
O

�| − � � β�β�Φ(x�) ∙ Φ(x�)O
�|

O
�| (3.3)

Chapter 3: A support vector and K-Means based clustering algorithm

40

subject to 0 ≤ β ≤ C�, � β�
O

�| = 1, j = 1,∙∙∙, N
The inner dot products Φ(x�) ∙ Φ(x�) can be replaced by a Mercer kernel K(x�, x�). In this
thesis, the Gaussian kernel is considered:

KJx�, x�K = eE||bjEbv||h8�h , (3.4)

where σ is the standard deviation of the Gaussian kernel. After optimization, the

distance from a given data point x to the sphere center can be computed by:

f(x) = R8(x) = ||Φ(x) − �||8 = K(x, x) − 2 � β�K(x, x�)O
�| + � � β�β�K(x�, x�)O

�| .O
�| (3.5)

Data points can be identified based on the β values. If β� = C, x� is identified as a
bounded support vector (BSV), else if 0 < β� < �, x� is identified as a support vector
(SV), else, x� is identified as an inner point. When mapped back to the original data

space, the BSVs lie outside of the cluster boundaries, SVs lie on the cluster boundaries,

and the inner points lie inside of the cluster boundaries.

The above procedure delineates the contours of the data set. The next problem is the

cluster assignment of each data point. The most widely used method for cluster labeling

is the complete graph based method, which checks the connectivity for each pair of data

points. Other methods include proximity graph based method [54], trained kernel

radius function topology based method [48], [50], etc.

3.2.2 K-Means algorithm

The K-Means algorithm is a squared error based clustering algorithm [55]. Its key

steps can be summarized as follows:

1. Initialize a K-partition randomly or based on some prior knowledge.

2. Based on current partition, calculate the cluster prototype matrix M = 3m, m8,∙∙∙, mc6.
3. Assign each data point x� (j = 1, 2,∙∙∙, N) to the cluster c� with the closest cluster

prototype, i.e., x� ∈ c�, if ��x� − m��� < ��x� − m��� , ∀i = 1,2,∙∙∙, K(i ≠ w).

Chapter 3: A support vector and K-Means based clustering algorithm

41

4. Repeat Steps 2-3 until the cluster prototype matrix becomes stable.

The K-Means algorithm is by far the most widely used data clustering algorithm. It

is simple in concept, easy in implementation, and has good performance on data sets

with compact super sphere distributions.

3.3 A novel SVC training method

The optimization problem described in Eq. 3.3 is a quadratic programming (QP)

problem which associates with finding the optimal values of Lagrange multipliers β, β8, ∙∙∙, βO. The sequential minimal optimization (SMO) algorithm is by far the most

widely used method to solve this problem. The benchmarks reported in [52] show that

the time complexity of SMO is O(N8). This implies that its time complexity becomes

intensive as the number of data points increases. In this thesis, a new SVC training

method is proposed. The equality constraint ∑ β�� is eliminated by introducing

variables a, a8, ∙∙∙, aO. Let β� = a�/ ∑ aSS , then the QP problem described in Eq. 3.3

can be written as:

maximize W = � K(x�, x�) a�∑ aSS
O

�| − � � a�a�(∑ aSS)8 K(x�, x�)O
�|

O
�|

(3.6)

subject to 0 ≤ a�∑ aSS ≤ C�, j = 1,∙∙∙, N.
Eq. 3.6 describes a QP problem which associates with finding the optimal values of

variables a, a8, ∙∙∙, aO. A brief outline of the proposed training method is stated as

follows:

1. Set a, a8, ∙∙∙, aO values randomly. Initially, each of the variable a� satisfies 0 ≤ a�/ ∑ aSS ≤ C.
2. Select a variable a� randomly.

3. Calculate u� = ∑ a�K(x�, x�)O�|,�¡� , v� = ∑ a�O�|,�¡� , a(ab = max a� , cons� = ∑ a�aSK(x�, xS)O�|,S|,�¡�,S¡� .

4. Calculate L = max(0, −v� + a(ab/C), H = Cv�/(1 − C).
5. Calculate a�B = (u�v� − cons�)/(u� − v�).
6. Set the optimized value of variable a�)��, according to:

Chapter 3: A support vector and K-Means based clustering algorithm

42

a�)�� = ¢ L, if a�B ≤ L,a�B, if L < a�B < £,H if a�B ≥ H. ¤ (3.7)

7. Repeat Steps2-6 until a, a8, ∙∙∙, aO turns stable.
8. For each β�, set β� = a�/ ∑ a�� , return β, β8, ∙∙∙, βO as final optimization results.

In the following, we describe the derivation of the above optimization method.

Without loss of generality, let the variable to be optimized at each iteration be a�, Since
KJx�, x�K = eE��bvEbv��h/(8�h) = e�, then KJx�, x�K = 1 is satisfied. Let u� = ∑ a�K(x�, x�)O�|,�¡� ,

v� = ∑ a�O�|,�¡� , a(ab = max a� , cons� = ∑ a�aSK(x�, xS)O�|,S|,�¡�,S¡� , then Eq. 3.6 can be

written as:

maximize W = 1 − a�8 + 2a�u� + cons�(a� + v�)8

(3.8) subject to 0 ≤ a�a� + v� ≤ C, 0 ≤ a(aba� + v� ≤ C.
The extremum of the objective function W is at:

 ∂W∂a� = 2a�(u� − v�) − 2(u�v� − cons�)(a� + v�)� = 0 (3.9)

Following Eq. 3.9, we have:

 a� = u�v� − cons�u� − v� . (3.10)

Following the inequality constraint 0 ≤ β� ≤ C, we have:
0 ≤ a�a� + v� ≤ C and 0 ≤ a�a� + v� ≤ C (j ≠ i). (3.11)

Following Eq. 3.11, we have: a(ab − Cv�C ≤ a� ≤ Cv�1 − C. (3.12)

Considering both Eq. 3.10 and Eq. 3.12, we can calculate the new value of variable a�
according to Eq. 3.7.

Remarks.Remarks.Remarks.Remarks.

1. Both the proposed algorithm and the SMO decompose the QP problem into

sub-problems. The theorem reported in [56] indicates that the QP problem can be

Chapter 3: A support vector and K-Means based clustering algorithm

43

broken into a series of sub-problems. Thus, both algorithms can guarantee to

converge to the global optimum of the QP problem.

2. Both the proposed algorithm and the SMO can optimize the variables

analytically, instead of using numerical QP optimization steps.

3. The SMO performs optimization by repeatedly executing two steps: 1) select two

variables by heuristic; 2) optimize the two variables analytically. To select the

two variables, the algorithm scans the entire data set, and then the data points

having the highest probability for violating the KKT conditions are selected.

Similar to the SMO, the proposed algorithm performs optimization by repeatedly

executing two steps: 1) select one variable randomly; 2) optimize the variable

analytically. Since the proposed algorithm is performed without scanning the

entire data set, it has the potential to obtain a higher speed than the SMO.

3.4 Empirical Study

3.4.1 SVC Training and weighted kernel density estimator

Let {x, x8,∙∙∙, xO} ⊆ χ be a data set taken from an univariate distribution with

unknown density p, the weighted kernel density estimator [57] approximates p by

function pt:
pt(x) = � w�φ(x, x�)O

�| , (3.13)

where φ(x, x�) is the window function, 0 ≤ w� ≤ 1 is the weight of the j-th kernel, and w, w8,∙∙∙, w) satisfy ∑ w�� = 1. Without loss of generality, we consider the Gaussian

kernel window function:

φJx�, x�K = 1√2πσ8 KJx�, x�K. (3.14)

The trained kernel support function of SVC described in Eq. (3.5) can be defined by

the squared radial distance from a data point x to the sphere center. Given a data point

x, if x is a BSV, then:

Chapter 3: A support vector and K-Means based clustering algorithm

44

f(x) = K(x, x) − 2 � β�K(x, x�)O
�| + � � β�β�K(x�, x�)O

�|
O

�| > R8. (3.15)

Since K(x, x) = eE||§¨§||hh©h = e� = 1 is satisfied, then:
� β�K(x, x�)O
�| < 12 ª1 + � � β�β�KJx�, x�KO

�|
O

�| − R8«. (3.16)

Similarly, if x lies on the boundary of the sphere, then:

� β�K(x, x�)O
�| = 12 ª1 + � � β�β�KJx�, x�KO

�|
O

�| − R8«, (3.17)

and if x lies inside of the sphere, then:

� β�K(x, x�)O
�| > 12 ª1 + � � β�β�KJx�, x�KO

�|
O

�| − R8«. (3.18)

Combining Eqs. 3.13 and 3.14 with the term ∑ β�K(x, x�)� , we have:

� β�K(x, x�)O
�| = ¬2πσ8 ∙ pt(x). (3.19)

Let
8 (1 + ∑ β�β�KJx�, x�K�,� − R8) = √2πσ8 ∙ d, we have the following relations:
1. If x is a BSV, then pt(x) < .
2. If x is a SV, then pt(x) = d.
3. If x is a inner point, then pt(x) > .
The above derivation can be explained intuitively as follows. The trained kernel

support function of SVC describes a weighted kernel density estimator for the

underlying data set. The objective of the SVC training procedure is to find the optimal

weights β, β8, ∙∙∙, βO such that the lower bound of the density function values of the
given data points is maximized.

3.4.2 The selection of parameter σ

The derivations in Section 3.4.1 indicate that the SVC training can be formulated as

the procedure of building up weighted kernel density estimator for underlying

Chapter 3: A support vector and K-Means based clustering algorithm

45

distribution of the given data set. Fig.3.1 shows an illustrative example of the effect of

parameter σ on the estimator, where Fig.3.1(a) is the original data set, Fig.3.1(b) is the

estimator with σ = 0.2, and Fig.3.1(c) is the estimator withσ = 0.2. It can be seen from

Fig.3.1 that the parameterσ has effect on the resulting estimator pt(x). Moreover, the

SVC also specifies the contours that enclose the peaks of the probability distribution. As σ decreases, the estimator processes more peaks, and the SVC delineates more clusters.

Thus the selecting of parameter σ is equivalent to selecting a proper bandwidth
parameter for the density estimator. The density estimator simulated the true density

so that the mean square error (MSE) is minimized. Let the true density be p(x) and the

Fig. 3.1. Illustrative example for the effect of parameter σ on the density estimator.

Chapter 3: A support vector and K-Means based clustering algorithm

46

estimated density be pt(x), then the MSE is defined by: MSE(pt(x)) = E((pt(x) − p(x))86 = (E3pt(x) − p(x)6)8 + VarJpt(x)K, (3.20)

where E3∙6is the mathematical expectation, (E3pt(x) − p(x)6)8 represents the squared
bias of the estimator, and VarJpt(x)K represents the variance of the estimator. Generally,

a large bandwidth will reduce the variance and increase the bias. On the other hand, a

small bandwidth will reduce the bias and increase the variance. In [58], the author

proposed to compute the bandwidth of the Gaussian kernel according to some practical

heuristic. That is:

σ = �4σ̄�3N �E� ≈ 1.06σ̄NE�, (3.21)

where N is the number of data points, and σ̄ is the standard deviation of the samples,

which is defined by:

σ̄ = ±1N � ||x�||8O
�| − || 1N � x�

O
�| ||8. (3.22)

In view of this, we select the parameter σ according to Eq. 3.21 as a compromise

between the bias and the variance.

3.5 The proposed hybrid intelligent algorithm

The SVC algorithm as reviewed in Section 3.2 has many advantages over other

algorithms for its ability to delineate cluster boundaries of arbitrary shape and to deal

Fig. 3.2. Illustrative example for the effect of outliers on the cluster boundaries.

Chapter 3: A support vector and K-Means based clustering algorithm

47

with outliers by the soft margin constant. However, there are two major difficulties

encountered when it is applied to solving real-life data. Firstly, the algorithm is

sensitive to outliers although the soft margin constant is employed. The outliers will

distort the cluster boundaries, and make the algorithm fail to obtain the desired

clustering results. Fig.3.2 shows an illustrative example of this problem. In Fig.3.2(a),

no outliers exist in the data set. It can be seen that the SVC can delineate the cluster

boundaries correctly. However, in Fig.3.2(b), when the data set contains outliers, the

cluster boundaries are distorted. This makes the SVC algorithm delineate undesired

cluster boundaries. Secondly, the SVC algorithm is performed by identifying clusters by

finding connected components among data points, thus it may have difficulty in dealing

Fig. 3.3. Results of the kernel-based K-Means algorithm and the standard SVC

algorithm on data set with connecting clusters.

Chapter 3: A support vector and K-Means based clustering algorithm

48

with data sets with connecting clusters. Fig.3.3 shows an illustrative example of this

problem. The simulation is conducted on the last two dimensions of IRIS data set.

Fig.3.3(a) shows the original data set. As can be seen from Fig.3.3(a), cluster 1 is

linearly separable from clusters 2 and 3, and clusters 2 and 3 are connected. In the

simulation, we firstly remove the outliers by the data set refining method, which will be

described in the rest of this section. Following this, we run the SVC algorithm on the

refined data set. Fig.3.3(b) shows the clustering results. As can be seen from Fig.3.3(b),

the SVC algorithm cannot distinguish clusters 2 and 3.

To overcome the above difficulties, we propose a support vector and K-Means based

hybrid intelligent algorithm (HIA). The key steps of the HIA are as follows:

1. Data set refining: identify and remove the outliers by building a global SVC.

2. Clustering: cluster the refined data set by a kernel-based K-Means algorithm.

3. Local SVC modeling: build local SVCs for each of the clusters.

4. Relabeling: label each removed data point according to the distance from it to the

local SVCs.

We now describe and explain the detailed procedure for the above steps.

1. Data set refining: the main objective of this step is to identify and remove the

outliers. A global SVC is trained to perform this task. In the global SVC, the BSVs are

considered as outliers. The constant C plays a crucial role in the identifying results. It

can be seen from Eq. 3.3 that 0 ≤ β� ≤ C and ∑ β�� = 1. The lower bound of C is O, since
the constraint ∑ β�� = 1 cannot be satisfied if C < O. The upper bound of C is 1, since ∑ β�� = 1, the constraint β� ≤ C has no effect if C > 1. We propose to select the constant

C value by training SVC iteratively: starting with C = O, and increasing it by δ, to
count the number of outliers. The final C value is selected when the number of outliers

exceeds a pre-specified threshold n.

2. Clustering: the SVC algorithm may have difficulty clustering data sets with

connecting clusters. One natural way to solve this problem is to use the K-Means

algorithm, since the K-Means algorithm can work well for compact clusters. However,

the K-Means algorithms that use geometric representation are often limited to

Chapter 3: A support vector and K-Means based clustering algorithm

49

hyper-ellipsoids. In view of the above, we propose a novel kernel-based K-Means

algorithm. The proposed algorithm works as follows. Firstly, the algorithm maps the

data points from the original space to a higher dimensional feature space by a nonlinear

transformation Φ. Secondly, in the feature space, the K-Means algorithm is used to

cluster the mapped data points. The key steps of the algorithm are as follows:

1. Initialize a K-partition randomly.

2. For each partition, train a one class SVC, i.e., enlarge the SVC by redefining “one

cluster as one sphere” in the feature space.

3. Assign each data point x� (j = 1,∙∙∙, N) to the sphere with the closest sphere
center. The distance from the data point to the sphere center is computed by

Eq.-3.5.

4. Repeat Steps 2-3 until the partition becomes stable.

In order to verify the validity of the clustering results, we use separation as the

criteria for clustering evaluation. The basic idea of separation is to keep the clusters

obtained by clustering algorithm as far apart as possible [51]. In statistics, the

Bhattacharyya distance [59] measures the similarity of two discrete or continuous

probability distributions, and is often used to measure the separability of clusters. Thus

we adopt the Bhattacharyya distance as a separability function to define the degree of

separability for each pair of clusters. For a pair of clusters (e.g., cluster c� and c�), the
Bhattacharyya distance is defined as follows:

BJc�, c�K = 18 (μ(c�) − μ(c�))´ µ∑ c� + ∑ c�2 ¶E ∙ ^μ(c�) − μJc�K_ + 12 ln · | ∑ c� + ∑ c�2 || ∑ c� |8| ∑ c� |8¸, (3.23)

where μ(c�) and ∑ c� are the mean vector and the covariance matrix associated with

cluster c�. The separability function is then calculated according to: B(c, c8,∙∙∙, cS) = min�,� �¡� B(c�, c�). (3.24)

Due to the random nature of the initialization step of the K-Means, the clustering

results may vary in different runs. In our study, we run the kernel-based K-Means for a

predefined number of times, and the cluster results that yield the biggest separability

function value are adopted.

Chapter 3: A support vector and K-Means based clustering algorithm

50

The kernel-based K-Means is performed by finding the prototypes (centers) of the

clusters, while the standard SVC is performed by finding connected components among

data points. Thus the kernel-based K-Means may has the advantage over the standard

SVC for its ability to deal with connecting clusters. As a comparison, Fig.3.3(c) shows

the clustering results of the kernel-based K-Means algorithm on the refined IRIS data

set. As can be seen from Fig.3.3(c), the kernel-based algorithm can distinguish clusters

2 and 3, even though they are connected.

3. Local SVC modeling: in this step, we build local SVCs for the clusters obtained by

the K-Means. Each of the cluster is described by a one class local SVC. In the local SVC,

the parameter σ is determined by the method presented in Section. 3.4.2.

4. Relabeling: the main objective of this step is to label the removed data points. Let

set SV� contains the support vectors of cluster c�. Given a removed data point x�, we
define the distance from it to cluster c� as follows:

d(xS, c�) = minbv∈n¹j ||xS − x�||8. (3.25)

The data point x� is then assigned to the cluster with the minimum distance.

3.6 Experimental studies

3.6.1 Experimental setup

We have conducted three sets of experiments to test the performance of the proposed

algorithm. The experiments are performed on a PC with Pentium IV 3.0GHz Processor

and 4GB memory. The first set of experiments is conducted to test the time complexity

of the proposed SVC training method. In the experiments, 100 data sets are simulated.

They are simulated as follows: the dimension of the data space is set to 4. In the data

space, the data set is generated based on mixture models with size ranging from 50 to

1000. For the experiments, the parameter σ is set by the method described in

Section-3.4.2, and the soft margin constant C is set to 1. The CPU time is used to

evaluate the performance of the method. The SMO algorithm is used for comparison.

The second set of experiments is conducted to illustrate the execution process of the

proposed HIA. In the experiments, two 2D data sets, namely 2D-N160 and 2D-N450,

Chapter 3: A support vector and K-Means based clustering algorithm

51

are generated. The 2D-160 is generated based on the same mixture model as used in [8],

and 2D-450 is generated based on the same mixture model as used in [49]. In order to

add complexity to the problem, noise data points are also included in the data set.

Parameter settings are crucial for the performance of the HIA. Throughout the

experiments, the parameter σ in the kernel function is selected by the method

described in Section 3.4.2. In the data set refining step, the soft margin constant C is

selected by training SVC repeatedly, and the parameters δ and n are taken as follows: δ = O, n = 0.1N, where N is the total number of data points in the data set. In the

clustering step, we run the kernel-based K-Means algorithm for five times, and the

cluster results that yield the biggest separability function value are adopted. In the

local SVC modeling step, since the outliers are removed in Step 1, the constant C is set

to 1. In our experiments, we set the parameters as above and find that they are proper

for all the cases.

The third set of experiments is conducted to test the performance of the HIA on

benchmarks. In the experiments, three data sets taken from the UCI machine learning

repository are selected. The three data sets include: the IRIS data set, the Wisconsin's

breast cancer data set, and the Spam data set. Their key properties are as follows.

1. The IRIS data set: The IRIS data set contains three classes, where each class

contains 50 instances and refers to one type of IRIS plant. Each instance is

composed of 4 measurements of an IRIS flower. One class is linearly separable

from the other two. The remaining two classes have significant overlap and are

not linearly separable from each other.

2. The Wisconsin's breast cancer data set: the Wisconsin's breast cancer data set

contains 699 cases of diagnostic samples. After the removal of the 16 samples

with missing values, the data set consists of 683 diagnostic samples. The

diagnostic samples are partitioned into two classes, benign and malignant

tumors. Each sample is composed of 9 measurements of the clinical attributes.

The benign tumors take about 65.5% of the data set, while the malignant tumors

take about 34.5% of the data set.

Chapter 3: A support vector and K-Means based clustering algorithm

52

3. The Spam data set: The Spam data set is a 57 dimension data set formed by 4601

instances. Each instance represents a spam email or a non-spam email. The

spam emails came from a postmaster and individuals who had filed spam, and

the non-spam ones came from filed work and personal emails.

The parameter settings are the same as those in the second set of experiments. The

CPU time and the cluster labeling error rate are used to evaluate the performance of

the HIA. Here, the cluster labeling error rate is the percentage of the miss-labeled data

points with respect to the total data set. For the purpose of comparison, we select the

following algorithms which have been applied to all or some of the selected benchmarks:

1) the support vector clustering algorithm (SVC) [8], the kernel method (Kernel) as

described in [49], the SVC described topological and dynamical characterization of

cluster structures (TDSVC) [50], and the SVC with cluster validity (CVSVC) [51]. All of

the above algorithms are kernel methods. They are able to separate a set of complex and

nonlinear data points by transforming them to a higher dimensional feature space.

These algorithms have been shown to be successful and can find good enough solutions.

Hence, a comparison with these algorithms will demonstrate the performance of the

proposed HIA, and will show if it is better or worse than other algorithms. Since the

selected benchmarks are labeled data, the conventional SVM is also included for

Fig. 3.4. CPU time comparison of the proposed SVC training method and the SMO

algorithm.

Chapter 3: A support vector and K-Means based clustering algorithm

53

comparison. In the experiment, the SVM tool available in [60] is used. For each data set,

40% percent of the data points are used for training, 20% percent of the data points are

used for validating, i.e., selecting optimal values for the parameters of SVM, and 40%

percent of the data points are used for testing.

3.6.2 Simulated results

3.6.2.1 Results on data sets with different size

Fig.3.4 shows the CPU time comparison of the proposed SVC training method and

the SMO, where the abscissa is the size of data set and the vertical axis is the SVC

training time. It can be seen from Fig.3.4 that the two algorithms perform almost the

Fig. 3.5. Illustrative example for the execution process of the HIA on 2D-160 data set.

Chapter 3: A support vector and K-Means based clustering algorithm

54

same when the size of data set is smaller than 200. However, when the data set is larger

than 200, the proposed algorithm performs much better than the SMO. The results

demonstrate that the proposed SVC training method is fast compared to the SMO.

3.6.2.2 Results on generated 2D data sets based on mixture models

1) Results on 2D-N160 data set: The 2D-N160 data set comprises 160 data points in

a 2D space and consists of four clusters with noise. Fig.3.5 shows an illustrative

example for the execution process of the HIA on the 2D-160 data set. In Fig.3.5(a), the

outliers are identified by a global SVC. The data points marked with circle are

considered as outliers, and the data points marked with plus are considered as support

vectors or inner points. After the removal of the identified outliers, the kernel-based

Fig. 3.6. Illustrative example for the execution process of the HIA on 2D-450 data set.

Chapter 3: A support vector and K-Means based clustering algorithm

55

Table 3.1

Comparison results of the proposed HIA with other algorithms (to be continued).

Data

Set
Size Dim

Proposed HIA SVC Kernel TDSVC

Time Error (%) Error (%) Error (%) Time Error (%)

IRIS 150 4 0.17 0.00 14.00 5.30 9.38 0.00

Breast 683 9 4.12 0.15 - 3.07 - -

Spam 4601 57 301.45 2.43 - 18.71 544.96 1.70

K-Means algorithm operates on the refined data set. Fig.3.5(b) shows the kernel-based

K-Means clustering results, the data points in the four clusters are marked with cross,

star, circle, and plus, respectively. Following this, four local SVCs are built for each of

the clusters. Fig.3.5(c) shows the cluster contours delineated by the local SVCs. In

Fig.3.5(d), the removed data points are labeled according to the distance from them to

the local SVCs, resulting in labeling the whole data set.

2) Results on 2D-450 data set: The 2D-450 data set comprises 450 data points in a

2D space and consists of two clusters with noise. The two clusters are not linearly

separable from each other. The experiments conducted on 2D-160 are repeated on

2D-450. Fig.3.6 shows an illustrative example for the execution process of the HIA on

the 2D-450.

The results on the 2D-160 data set and the 2D-450 data set demonstrate that the

proposed HIA can perform well when the data set contains nonlinearly separable

classes and are polluted by noise.

3.6.2.3 Results on data sets taken from the UCI machine learning

repository

Table 3.1 summarizes the results of the experiments on data sets taken from the

UCI machine learning repository. The contents of the table include the name of each

data set (Data set), the scale of the data set (Size), the dimension of the data set (Dim),

the CPU time used for the proposed algorithm (Time), the cluster labeling error rate

(Error%) of the HIA, and the results reported in literatures using other kernel-based

Chapter 3: A support vector and K-Means based clustering algorithm

56

Table 3.1

Comparison results of the proposed HIA with other algorithms (continued).

Data

Set
Size Dim

Proposed HIA CVSVC SVM

Time Error (%) Error (%) Time Error (%)

IRIS 150 4 0.17 0.00 3.33 0.02 0.00

Breast 683 9 4.12 0.15 2.93 3.98 2.64

Spam 4601 57 301.45 2.43 - 429.88 2.15

algorithms [8], [49]-[51] and the results of SVM. For the algorithm compared, not all

results of selected benchmarks are reported in literature, so for those benchmarks

without reported results, their corresponding comparison values are marked with ‘-’.

For the SVM, the CPU time includes the training time and the testing time, and the

cluster labeling error rate is the percentage of the miss-labeled testing data points with

respect to the total testing data points.

From the table, it can be seen that the proposed algorithm yields a significant

improvement in terms of cluster labeling error rate with respect to the listed results,

except for the results obtained by TDSVC algorithm. Compared with TDSVC, it can be

seen that both algorithms can obtain the same results for the IRIS data set, and the

TDSVC algorithm has a better performance for the Spam data set. Concerning about

the time complexity, the TDSVC follows the key steps of the standard SVC, i.e., solving

the quadratic programming of SVC, and then labeling each data point. Generally,

cluster labeling task is more computationally intensive than the SVC training task, and

may become highly intensive as the scale of the data set increase. On the other hand, in

the proposed algorithm, the kernel-based K-Means algorithm yields labeled data points

for most data points, and each removed data point is labeled according to the distance

from it to the clusters. By using this strategy, the cluster labeling step as used in the

standard SVC is unneeded. Thus, compared with TDSVC, the proposed algorithm has

the potential to obtain a faster computing time with a moderate labeling error rate. The

results shown in Table 3.1 validate the above analysis although it cannot provide a

Chapter 3: A support vector and K-Means based clustering algorithm

57

completely fair comparison since the CPU and memory specifications are different. In

summary, the above results indicate the successful incorporation of the SVC algorithm

and the K-Means.

3.7 Conclusion

The SVC algorithm has been successfully applied to solving many real-life data

clustering problems. In this chapter, we aimed at proposing a new kernel-based

clustering algorithm to improve the performance of SVC. A SVC training method was

proposed based on theoretical analysis of the Gaussian kernel radius function. An

empirical study was conducted to guide better selection of the standard deviation of the

Gaussian kernel. A new data clustering algorithm, i.e., the support vector and K-Means

based hybrid intelligent algorithm, was developed by integrating the merits of both SVC

and K-Means algorithm. The effectiveness of the proposed algorithm was validated by

three sets of experiments on generated data sets with different sizes, generated 2D data

sets, and data sets taken from the UCI machine learning repository. The results

demonstrated that the proposed hybrid intelligent algorithm compared favorably with

existing kernel-based clustering algorithms. The current research can be further

extended to study the theoretical properties of the algorithm (in particular, convergence

analysis of the hybrid clustering algorithm) and to apply the algorithm to the solving of

real-life problems such as image processing and computer vision.

Chapter 4: Support vector description of clusters for content based image annotation

58

Chapter 4: Support vector description of clusters

for content based image annotation

4.1 Introduction

There has been a surge of research interest in image automatic or semi-automatic

annotation based on the low-level image visual contents. These methods are referred to

as content based image annotation (CBIA). In greater detail, the methods presented in

[61]-[65] are based on multiple classifiers. They partition the images into different

classes, and assign each class a distinct topic of interest and a set of descriptive words.

For an untagged image, the system treat annotation as a classification problem and

select the relevant annotation words based on the classification results. The methods

presented in [1], [66]-[73] are probabilistic modeling methods, which are also referred to

as generative modeling methods. They try to learn the correlations between images and

annotation words by statistical tools so that the joint probability for an untagged image

being labeled with each word can be computed. In the annotating process, the relevant

annotation words are selected by graph based techniques [71], [72] or some other data

fusion and aggregation techniques [1], [66]-[70], [73]. More recently, the development of

image platform on the Internet, e.g., Flickr [74], Alipr [67], and PhotoStuff [75], has

enabled users to annotate images and give feedbacks to the annotating results. This

provides opportunities to develop automatic annotating methods using the user

provided information and the existing search results. Methods presented in [61], [76],

[77] fall into this category.

Many of the above methods require substantial machine learning techniques to fill

the gap between the low-level image visual contents and the high-level semantics.

Among the machine learning techniques, the support vector clustering (SVC), which

was described in Section 4, has many advantages over other algorithms for its ability to

determine the system topological structure without prior knowledge with respect to the

system itself, to delineate cluster boundaries of irregular shapes, and to deal with

Chapter 4: Support vector description of clusters for content based image annotation

59

outliers by employing a soft margin constant [48], [50]. In the real world image systems,

many images described by the same words often have a wide range of variety. For

example, if an image is tagged with “historical building”, then it can be a picture taken

in the desert, near the beach or in the city. These images are organized irregularly in

the image system. Since the SVC exhibits its ability to delineate cluster boundaries of

irregular shapes, it will provide opportunities to develop unified models to describe the

irregularly organized images.

In view of the above, in this chapter, we present a novel algorithm for content based

image annotation. In this work, images are represented by colored pattern appearance

models (CPAM) [78]. The system has two major components, the training process and

the tagging process. In the training process, clusters of images with manually tagged

words are used as training instances. For each cluster, the image vectors are mapped to

a higher dimensional space and the vectors identified as support vectors are used to

describe the cluster. Since the mapping process is the same as that in SVC and its

objective is to build support vector described models for image clusters, we term the

system as support vector based method for image annotation (SVIA). In the tagging

process, for an image to be tagged, the distances from it to the support vector described

models are computed. A closer distance indicates a stronger association between the

image and the model. Moreover, the word to word correlations contain rich information

about the semantic meanings of the images. For example, if an image is tagged with

``France", then it will have a higher probability to be tagged with ``Europe", and if an

image is tagged with ``indoor", then it will have a lower probability to be tagged with

``grass". Therefore, the word to word correlations are also considered in the annotation

framework. For an image to be tagged, the system exploits the distances from the image

to the models and the word to word correlations in a probabilistic framework to predict

annotation words.

4.2 Related works

This work is related to the probabilistic modeling methods. In this section, we review

the basic concepts and some prevailing methods of the probabilistic modeling

Chapter 4: Support vector description of clusters for content based image annotation

60

approaches to CBIA.

4.2.1 Probabilistic models

The probabilistic modeling method tries to compute the joint probability for an

untagged image being labeled with each annotation word. Given an untagged image I»,
the main objective is to find a group of words w∗ in a given vocabulary ¼, such that

the conditional distributions p(w|I») are maximized as follows: w∗ = arg max�⊂¼ p(w|I»). (4.1)

One type of probabilistic modeling method operates by generating words directly from

the visual content of the given image. The formulation can be described as:

w∗ = arg max�⊂¼ � p(w|I�)pJI»�I�Kp(I�)¿j∈À , (4.2)

where À is the training image set, p(w|I�) is the probability that the word w can be
generated by training image I�, p(I»|I�) is the probability that I� is relevant (or similar)

Fig. 4.1 Generative models for image auto-annotation. (a) The two-layer model. Words

are directly generated from visual features. (b) The three layer model. Words are

generated from a hidden layer of “topics”.

Chapter 4: Support vector description of clusters for content based image annotation

61

to I», and p(I�) is the prior probability of I�. This is corresponds to the generative model

shown in Fig.4.1(a), in which annotations are generated directly given the images.

Another type of probabilistic modeling method operates by introducing a set of “topics”.

The training images are distributed to the topics. Then the words are generated from

the topics. The formulation can be described as:

w∗ = arg max�⊂¼ � ¢ª� pJw�t�Kp(t�|I�)Nv∈n « × pJI»�I�KP(I�)Á¿j∈À , (4.3)

where S is a set of topics, p(w|t�) is the probability that the word w can be generated by
topic t�, p(t�|I�) is the probability that I� is correlated with t�. This is corresponds to
the generative model shown in Fig.4.1(b), where there is a hidden layer of “topics” so

that images are represented as a mixture of them. It is from these topics that words are

generated. In addition, the word to word relation p(w�|w�) can also be used in the
probabilistic modeling formulation to maintain the semantic consistence.

4.2.2 Prevailing methods

Some of the methods are based on the formulation described in Eq. 4.2 or its variants.

For instance, Duygulu et al. [66] proposed an object recognition model to translate the

image regions into words. Firstly, images are segmented into regions, which are

classified into region types based on the visual contents. Then a mapping between the

region types and the words is learned using an expectation-maximization based

algorithm. Tang et al. [72] explored a unified learning framework that combines the

multiple instance and single instance of image features for annotation. An integrated

graph based semi-supervised learning framework is proposed to utilize the multiple

instances and single instance simultaneously. And three strategies are explored to

convert from multiple instance representation into a single instance one. Lu et al. [70]

proposed a discriminative stochastic method for image categorization and annotation.

Images are divided into blocks. Visual keywords are generated by quantizing the

features of the image blocks. A spatial Markov chain model that uses the visual

keywords as input is proposed to perform categorization and annotation.

Chapter 4: Support vector description of clusters for content based image annotation

62

On the other hand, some of the methods are based on the formulation described in

Eq. 4.3 or its variants. For instance, Li et al. [67] proposed a statistical modeling

approach to CBIA. Categorized images are used to train a set of statistical models, with

each representing a topic. Images of each topic are regarded as instances of stochastic

process that characterizes the topic. The association between an untagged image and

each topic is measured by the probability of the image generated by the stochastic

process of the topic. Carneiro et al. [68] proposed a probabilistic formulation for image

annotation and retrieval. Annotation and retrieval are posed as classification problems.

Each class is defined as a group of training images labeled with a set of labels. Then a

minimum probability of error annotation and retrieval is computed by establishing the

one-to-one correspondence between labels and the image classes. Li et al. [1] proposed

an automatic linguistic indexing of pictures-real time system. In the proposed system,

the discrete distribution clustering is developed to group objects by bags of weighted

vectors. A generalized mixture modeling technique is developed using the concept of

hypothetical local mapping.

More recently, some of the methods use the user provided information and the

existing search results to perform annotation tasks, i.e., the word to word relation p(w�|w�) is used in the probabilistic modeling formulation. For instance, Wang et al.

[76] proposed an attempt at model-free image annotation, which is a data-driven

approach that annotates images by mining their search results. Wong et al. [77]

proposed a semantic annotation technique based on the use of image parametric

dimensions and meta-data. Zhou et al. [61] proposed a hybrid probabilistic model which

integrates low-level image features and high-level user provided tags to automatically

tag images.

4.3 Support vector description of clusters

In this section, we describe the training process of the proposed SVIA system. Firstly,

the colored pattern appearance model (CPAM) representation of images [78], which is

used to represent the color and texture visual contents of the images, is reviewed.

Following this, the details of the support vector modeling process is presented. Finally,

Chapter 4: Support vector description of clusters for content based image annotation

63

the method of estimating the probability of a given image generated by the support

vector described model is presented.

4.3.1 CPAM representation of images

In this work, the visual content of images are represented by CPAM2. The CPAM

captures the statistically representative chromatic and achromatic spatial image

patterns. And the distributions of these patterns are used to characterize the color and

texture information of the visual content. The application of our system is to tag images

taken in daily life other than special fields such as medical or geography. Since the

CPAM can capture both the features around salient points and the features included in

the entire image [61], it is therefore suitable for our application.

To represent an image using CPAM, firstly, the image is partitioned into a set of 4 × 4 blocks. Each block is then represented by CPAM appearance prototypes, which

are comprised of the achromatic spatial pattern histograms (ASPH) and the chromatic

spatial pattern histograms (CSPH). The CPAM appearance prototypes of the 4 × 4
blocks are then concatenated to construct a feature vector x of the entire image. In the

experiment, a feature vector with 64 achromatic prototypes and 64 chromatic

2 In the experiment, the software developed by Zhou et al [61] was used. The Matlab

codes of the software were downloaded from:

http://www.viplab.cs.nott.ac.uk/download/CPAM.html

Fig. 4.2. The support vector modeling process.

Chapter 4: Support vector description of clusters for content based image annotation

64

prototypes is selected. Thus, each image is represented by a 128-dimensional vector.

Given two images, their CPAM based feature vectors are represented by x and x8,
respectively. Then the distance between x and x8 can be defined as:

d(x, x8) = � |ASPH(i) − ASPH8(i)|1 + ASPH(i) + ASPH8(i)∀� + � |CSPH(j) − CSPH8(j)|1 + CSPH(j) + CSPH8(j) ,∀� (4.4)

where | ∙ | is the absolute value, ASPH(i) is the i-th ASPH component, and CSPH(j) is
the j-th CSPH component.

4.3.2 The support vector described model

Let the set of distinct annotation words be ¼＝{w, w8,∙∙∙, wc}. Given a word w�, let
the set of images tagged with w� be ℐ(w�). Fig.4.2 illustrates the support vector
modeling process. Firstly, the CPAM based feature vectors are extracted for the images.

Following this, a support vector described model is trained for each image set ℐ(w�).
The training method maps the CPAM based feature vectors to a higher dimensional

space by a nonlinear transformation, and then seeks the smallest enclosing sphere in

the higher dimensional space. Each sphere represents a support vector described model.

This process follows closely to the derivations of Eqs. 3.1, 3.2 and 3.3, which are

described in Section 3.2.1. In Fig.4.2, for the convenience of illustration, we assume that

the CPAM-based feature vectors are mapped to a three dimensional space. The spheres

are referred to as the support vector described models, which are stored in the form of

the parameters of the trained kernel radius functions.

The Gaussian kernel described in Eq. 3.4 of Section 3.2.1 cannot be directly applied

to the CPAM based features. In this thesis, we define the kernel function as:

KJx�, x�K = eE�(bj,bv)Ã , (4.5)

where d(x�, x�) is the distance between the CPAM based feature vectors x� and x�,
which is described in Eq. 4.4. The Gaussian bandwidth parameter h plays a crucial role

in the support vector described model. It controls the shape of the enclosing contour in

the data space, and affects the width of the kernel function. The problem of selection of

the parameter h can be referred to as balancing the empirical risk and the confidence

risk [79] of the support vector described model. In this thesis, the parameter h is chosen

Chapter 4: Support vector description of clusters for content based image annotation

65

using a trial and test method. The trial and test method operates by adjusting the h

value and calculating the system score iteratively. The h value that yields the highest

system score is then adopted. For a set of training images and a set of validating images,

the system score can be calculated as follows. Firstly, the system score is set to 1, and

then a support vector described model is trained for each image set ℐ(w�) using the
current h value. Following this, for each validating image, the distance from it to the

support vector described models is calculated using the trained kernel radius function

as described in Eq. 3.5 of Section 3.2.1. Suppose the model that yields the shortest

distance be mr, and suppose the set of models that actually generate the validating

image be M\. If mr ∈ M\, then the system score is increased by 1, else, it remains

unchanged. The system score is obtained when all the images in the validating set are

evaluated. Since the experiment on all the training images of the system is

computational intensive, thus, in the experiment, for trial and test, we randomly select

10% images of the system for training and select 5% images of the system for validating.

The main computational cost in the support vector modeling comes from the solving

of the quadratic programming (QP) problem described in Eq. 3.3 of Section 3.2.1. In this

thesis, we use the algorithm described in Section 3.3 as a tool for the training of the

support vector described models.

4.3.3 The probabilities of a given image generated by the support vector

described models

The derivation described in Section 3.4.1 indicates that the trained kernel radius

function of the support vector described model delineates a weighted density estimator

for underlying distribution of the data set. Thus, in this thesis, we use this density

estimator to compute the probability of a given image being generated by the support

vector described models. Given a CPAM based feature vector x of image I, and a trained

kernel radius function of model m, the probability of x being generated by m is

computed by:

p(x|m) = 1h � β�K(x, x�))
�| . (4.6)

Chapter 4: Support vector description of clusters for content based image annotation

66

4.4 The annotation method

In this section, we describe the tagging process of the proposed SVIA system. A

unified probabilistic framework which generates words from the support vector

described models and the word to word correlations is proposed.

4.4.1 The word to word correlations p(w�|w�)

The word to word correlations contain rich information about the semantic meanings

of the images. For instance, if an image is tagged with “France”, then it will have a

higher probability to be tagged with “Europe”. If an image is tagged with “indoor”, then

it will have a lower probability to be tagged with “grass”. If the system uses only the

visual contents of images to generate tagging words, the information contained in the

word to word correlations will be lost. Therefore, the word to word correlations are

considered in the probabilistic framework. Let À = {I, I8,∙∙∙, IO} be a set of images in the

Fig. 4.3 The relationship between ℐ(w�) and ℐ(w�).

(a) ℐ(w�) ∩ ℐ(w�) ≠ ϕ (b) ℐ(w�) ∩ ℐ(w�)

(c) ℐ(w�) ⊃ ℐ(w�) (d) ℐ(w�) ∩ ℐJw�K = ϕ

Chapter 4: Support vector description of clusters for content based image annotation

67

training set and ¼＝{w, w8,∙∙∙, wÆ} be a given vocabulary. Each image I� ∈ À is

manually tagged with a set of M� words {w�, w�8,∙∙∙, w�Æj}. Denote the set of images that

contain word w� in their annotations by ℐ(w�). Given a pair of words w� and w�, we
use the following formulations to estimate the word to word correlations:

pJw��w�K = |ℐ(w�) ∩ ℐ(w�)||ℐ(w�)| , (4.7)

pJw��w�K = |ℐ(w�) ∩ ℐ(w�)||ℐ(w�)| , (4.8)

where | ∙ | is the number of images in the set. Generally, the relationship between ℐ(w�)
and ℐ(w�) falls into four categories, which correspond to the illustrative figures shown
in Fig.4.3 and can be summarized as follows:

1. If ℐ(w�) ∩ ℐ(w�) ≠ ϕ, then pJw��w�K > 0 and pJw��w�K > 0;
2. If ℐ(w�) ⊆ ℐ(w�), then 0<pJw��w�K ≤ 1 and pJw��w�K = 1;
3. If ℐ(w�) ⊃ ℐ(w�), then pJw��w�K = 1 and 0 < ÇJw��w�K < 1;
4. If ℐ(w�) ∩ ℐJw�K = ϕ, then pJw��w�K = 0 and pJw��w�K = 0;

4.4.2 The probabilistic framework

Given an untagged image I», if the system has not selected any word as annotation,

then the conditional probability that I» being tagged with w� can be represented by p(w�|I»), which can be computed by applying the Bayesian rule:

pJw��I»K = p(w�)p(I»|w�)p(I») (4.9)

where p(I»|w�) is the probability of I» being generated by w�, p(I») is the probability
of the image I», and p(w�) is the probability of the word w�. If the system has selected w», w»8,∙∙∙, w»ÆÈ as annotations, taking into account the word to word correlations
among the new word w� and the selected words w» , w»8 , ∙∙∙ , w»ÆÈ , then the
conditional probability that I» being tagged with w� can be represented by p(w�|I», w», w»8,∙∙∙, w»ÆÈ), which can be computed by applying the Bayesian rule:

p ^w��I», w», w»8,∙∙∙, w»ÆÈ_ = p(w�)p(I», w», w»8,∙∙∙, w»ÆÈ|w�)p ^w», w»8,∙∙∙, w»ÆÈ�I»_ p(I») . (4.10)

For a new word w�, we can assume that I», w», w»8, ∙∙∙, w»ÆÈ are independent of

Chapter 4: Support vector description of clusters for content based image annotation

68

each other, thus:

p ^I», w», w»8,∙∙∙, w»ÆÈ�w�_ = pJI»�w�K s pJw»N�w�KÆÈ
N| . (4.11)

Then Eq. 4.10 can be written as:

p ^w��I», w», w»8,∙∙∙, w»ÆÈ_ = p(w�)pJI»�w�K ∏ pJw»N�w�KÆÈN|p ^w», w»8,∙∙∙, w»ÆÈ�I»_ p(I»). (4.12)

p(w�) can be estimated using the training set. Suppose the total number of annotations

on the training images is n, and the number of annotations using word w� is n�, then p(w�) can be estimated by:

p(w�) = n�n . (4.13)

Suppose the CPAM based feature vector of I» is x», and the support vector described
model that corresponds to w� is m�, then the probability p(I»|w�) can be computed by

the formulation described in Eq. 4.6, i.e., pJI»�w�K = p(x»|m�). For w», w»8, ∙∙∙, w»ÆÈ,
the word to word correlations can be computed by Eqs. 4.7 and 4.8. In our

implementation, we assume that p ^w», w»8,∙∙∙, w»ÆÈ�I»_ and p(I») are kept constant
across different new words.

4.4.3 Annotation of untagged images

Let the set of distinct annotation words be ¼ = {w, w8,∙∙∙, wc}. Given an untagged
image I», let the set of words that have been selected as annotations by the system be É = {w», w»8,∙∙∙, w»ÆÈ}, where M» is the number of words in É. To annotate I», its
CPAM based feature vector is extracted first. For each w� ∈ ¼ − É, the conditional
probability that I» being tagged with w� is then computed. If É = ϕ, i.e., M» = 0, then
the conditional probability is computed by Eq. 4.9, else if É ≠ ϕ, i.e., the system has

selected a set of words as annotations, then the conditional probability is computed by

Eq. 4.12. By computing the conditional probability for the words in the set ¼ − É, the
words can be sorted in descending order, and the top ranked word is selected as next

annotation. Suppose the top ranked word be w∗ , then we set É = É ∪ {w∗} and

Chapter 4: Support vector description of clusters for content based image annotation

69

M» = M» + 1. This process is repeated until the number of selected words reaches a

predefined number k.

4.5 Experimental studies

In this section, we conduct experiments to evaluate the performance of the proposed

SVIA. The experiments were performed on a PC with pentium IV 3.0GHz processor and

4GB memory.

4.5.1 Image datasets

In the experiment, we select the Corel5k dataset [66], the Corel30k dataset [68], and

the Corel60k dataset [1] as benchmarks. These three datasets are originated from the

Corel stock photograph collection and are widely used in evaluating the image

annotation methods. The Corel5k dataset contains 5000 images that are stored with

size 192 × 128 or 128 × 192. There are 371 distinct words in the vocabulary. Each
image is tagged with 1-5 words, and the average number of words per image is 3.5.

According to Ref. [66], the data set is divided into two parts. Out of the 5000 images,

4500 images are used for training and 500 images are used for testing. The testing set

vocabulary contains 260 distinct words out of the entire vocabulary. The Corel30k

dataset is of similar property as the Corel5k dataset except that it is substantially

larger. It contains 31695 images that are stored with size 384 × 256 or 256 × 384.
There are 5587 distinct words in the vocabulary. Each image is tagged with 1-5 words,

and the average number of words per image is 3.6. In the experiments of Refs. [66] and

[61], the dataset is divided into training and testing set with a ratio of 9:1. In the

training set, only the words that are used as annotations by at least 10 images are

considered. Therefore, the total number of words in the training set vocabulary is 1035.

In the testing set, the vocabulary contains 950 words out of the entire vocabulary. The

Corel60k dataset contains about 60000 images that are stored with size 384 × 256 or 256 × 384. There are 417 distinct words in the vocabulary. The images are assigned to

600 categories, where each category has about 100 images and represents a distinct

topic of interest. Each category is tagged with 1-7 words, which describe the category as

Chapter 4: Support vector description of clusters for content based image annotation

70

a whole, but not accurately describe each individual image. In our experiment, for each

image, the ground truth tagging words are taken as the words that describe its category.

As an example, Fig.4.4 shows the thumbnails of some randomly selected images from

the Corel5k, Corel30k, and Corel60k dataset, respectively. As can be seen from Fig.4.4,

the datasets contain a wide variety of images, ranging from nature sceneries to

historical buildings or people activities, which reflect the diversity of the datasets. Since

the application of the proposed SVIA is to tag images taken in daily life other than

special fields such as medical or geography, thus the selected datasets are suitable for

our performance evaluation.

4.5.2 Experimental settings

Experimental settings are crucial for the performance evaluation. The first decision

is on the selection of the training images and the testing images. For the Corel5k and

Corel30k datasets, to make a fair comparison, we use the same training and testing sets

as that used in [66] and [68], i.e., 90% of the images are used for training and 10% of the

images are used for testing. For the Corel60k datasets, we randomly select 90% of the

images for training and 10% of the images for testing. In the experiment, to fix the

Gaussian bandwidth parameter h described in Eq. 4.5, 15% images of the entire dataset

Fig. 4.4. Thumbnails of some randomly selected images from the Corel5k, Corel30k,

and Corel 60k datasets.

Chapter 4: Support vector description of clusters for content based image annotation

71

are further randomly selected from the training dataset. Among the selected images,

10% images of the entire dataset are used for training and 5% images of the entire

dataset are used for validating. After the h value is fixed, the entire training image set

is then used as a whole to train the support vector described models.

Basically, we use the precision and recall rate on the testing image set to assess the

performance of the proposed SVIA. For each word w, denote the number of images

tagged by the system by nr, denote the number of ground truth related images in the

testing set by nN, and denote the number of images correctly annotated by the system by n�, then the precision and recall rate can be computed by:

precision(w) = n�nr , and recall(w) = n�nN . (4.14)

We then compute the average precision and recall rates over all the words in the testing

set vocabulary to evaluate the performance of the system. Generally, there is a trade-off

between precision and recall rate. For the testing images, when the number of words

provided by the system increase, the recall rate will usually increase, whereas the

precision rate will usually decrease. In the experiment, to compare the precision rates

at different levels of recall rates, we change the parameter k (The number of word

provided by the system, which was described in Section 4.4.3 from 1 to 15. Moreover, we

use the coverage rate to show the generalization ability of the system. The coverage rate

is calculated as follows. Denote the number of words with positive recall rate by nG,
denote the number words in the testing set by n, then the coverage rate can be

computed by:

coverge = nGn . (4.15)

4.5.3 Existing systems for comparison

For the purpose of comparison, we select the following systems which have been

evaluated for all or some of the selected benchmark datasets.

1. Supervised multiclass labeling (SML) [68]: the SML poses annotation and

retrieval as classification problems where each class is defined as the group of

database images labeled with a common semantic label. A minimum probability

Chapter 4: Support vector description of clusters for content based image annotation

72

of error annotation and retrieval is computed by establishing a one-to-one

correspondence between semantic labels and semantic classes. Then the images

are labeled based on the probabilities.

2. Automatic Linguistic Indexing of Pictures-Real Time (ALIPR) [1]: in ALIPR, the

Discrete Distribution (D2-) Clustering method, which is in the same spirit as

K-Means for vectors, is developed to group objects represented as bags of

weighted vectors. And a generalized mixture modeling technique for non-vector

data is developed using the concept of Hypothetical Local Mapping (HLM).

3. Graph Learning Model (GLM) [71]: in GLM, firstly, the image-based graph

learning is performed to obtain the candidate annotations for each image. To

capture the complex distribution of image data, a nearest spanning chain

method is proposed to construct the image based graph. Secondly, the word based

graph learning is developed to refine the relationships between images and

words to get final annotations for each image. Moreover, two types of word

correlations based on web search results are designed.

4. Hybrid Probabilistic Model (HPM) [61]: the HPM integrates low level image

features and high level user provided tags to automatically tag images. For

images without any tags, HPM predicts new tags based solely on the low level

image features. For images with user provided tags, HPM jointly exploits both

the image features and the tags in a unified probabilistic framework to

recommend additional tags to label the images. Moreover, a collaborative

filtering method based on the nonnegative matrix factorization is developed for

tackling the data sparsity issue.

The SML, ALIPR, and HPM are probabilistic modeling methods. They perform

labeling tasks by computing the joint probabilities for an untagged image being labeled

with the annotation words. The GLM is performed by propagating the keywords from

the tagged images to the untagged images by visual similarities. These systems have

been shown to be successful and can obtain suitable annotation results. Hence, a

comparison with them will demonstrate the performance of the proposed SVIA, and will

Chapter 4: Support vector description of clusters for content based image annotation

73

SVIA

Tagging

jet, plane, clouds,

runway, sky

beach, sand, tree,

valley, sky

tree, cat, tiger, forest,

bengal

Human

Tagging
jet, plane, sky

beach, palm, tree,

people

bengal, cat, forest,

tiger

SVIA

Tagging

sky, water, street,

buildings, mountain

sky, tree, water,

buildings, street

reefs, coral, ocean,

fish, water

Human

Tagging

buildings, harbor,

water, shore

tree, scalpture, street,

buildings

coral, fan, ocean, reefs,

sea

SVIA

Tagging
plants, lawn, garden, house, petals foals, mare, horses, fence, field

Human

Tagging
garden, house, lawn, tree horse, mare, meadow

SVIA

Tagging
plants, leaf, stems, petals, flowers

turn, formula, tracks, straight,

prototype

Human

Tagging
flowers, grass, petals cars, formula, tracks, wall

Fig. 4.5. Examples of some annotations generated by the SVIA and human tagging on

the Corel5k dataset.

Chapter 4: Support vector description of clusters for content based image annotation

74

show whether it is better or worse than other systems.

4.5.4 Comparison results

4.5.4.1 Results for the Corel5k data set

This subsection aims to show the results of SVIA for Corel5k dataset. In the training

process, on average, the computing time involved in selecting the Gaussian width

parameter h was 55.1 seconds, the computing time involved in training the support

vector described models was 214.6 seconds. In the tagging process, on average, the

computing time was as high as 0.16 seconds for tagging one image. We note that these

times are not definitive since the computing time varies when the computer

configurations are different. The reason why we show them here is to roughly illustrate

the time complexity of the SVIA. Since the images in the Corel5k dataset is tagged with

1-5 words, we basically show the results of the SVIA when the system provides 5 words

for each image. Fig.4.5 presents the examples of some annotations generated by the

SVIA. The images were randomly selected from the testing image set. Fig.4.6 is a plot of

precision-recall curves for annotation on Corel5k testing dataset using SVIA and SML.

The curve generated by SML is taken from Ref. [68]. In the experiment, the Gaussian

Mixture Model mixed with Discrete Cosine Transform representation, i.e., the

Fig. 4.6. Precision-recall curves for annotation on Corel5k testing dataset using SVIA

and SML.

Chapter 4: Support vector description of clusters for content based image annotation

75

Table 4.1

Results of SVIA and the compared systems for Corel5k testing dataset.

 n�(a\� n�ÊË� precise (%) recall (%) coverage (%)

SVIA

500 260

25.5 31.3 51.2

SML 23.0 29.0 52.7

GLM 25.3 29.1 50.4

HPM 25.0 28.0 52.3

GMM-DCT representation is adopted. The curve is generated when the dimension of

the DCT feature space is 63. Table 4.1 presents the results of SVIA when the system

provides 5 words for each images, and the results of studies using SML, GLM, and HPM,

respectively. The contents of the table include the number images in the testing set n�(a\�, the number of words in the testing set vocabulary n�ÊË�, the average precision
and recall rates over the entire testing set vocabulary (precision %, recall %), and the

coverage rate of the system (coverage %). As far as HPM concerned, the system uses

user provided tags to enhance the tagging accuracy. In order to present a fair

comparison, we list the results of HPM under the Given 0 protocol, i.e., the result of

HPM that didn't use any user provided tags as hints. For the ALIPR, the results on

Corel5k dataset are not reported in the literature, so they are not included in this

subsection.

As can be seen from Fig.4.5, though the SVIA tagging doesn't match the human

tagging exactly, it is usually more plausible. Take the second image in the top row as an

example, the SVIA provided words are “beach, sand, tree, valley, sky”, and the human

provided words are “beach, palm, tree, people”. From the contents of the image, it can be

seen that the words “sand, sky” are more plausible than the human provided words.

From Fig.4.6, it can be seen that the SVIA curve has the best precision at 0.371, and its

precision is superior to that of SML when the recall rate is below 0.352. There are also

some levels of recall rates where the SML obtain a better precision, especially when the

recall rate is between 0.4 and 0.6. This is due to the fact that the system has to provide

Chapter 4: Support vector description of clusters for content based image annotation

76

more words to obtain a higher recall rate, and the number of correct annotations doesn't

increase as the number of system pamrovided word increase. From Table 4.1, it can be

seen that the SVIA obtains the best results in terms of recall, precision rates. More

specifically, when compared with the previous best results (GLM), the SVIA obtains

recall rate 31.3% and precision rate 25.5%, while the GLM obtains recall rate 29.1% and

precision rate 25.3%. The coverage rate of SVIA is lower than those of SML and HPM,

and higher than that of GLM. Although the result is worse than those of SML and HPM,

it is not deteriorated much since i t can obtain coverage rate 51.2%.

4.5.4.2 Results for the Corel30k data set

This subsection aims to show the results of SVIA for Corel30k dataset. The

experiments that were conducted on Corel5k dataset are repeated on Corel30k dataset.

In the training process, on average, the computing time involved in selecting the

Gaussian width parameter h was 443.1 seconds, the computing time involved in

training the support vector described models was 2167.6 seconds. In the tagging process,

on average, the computing time was as high as 0.18 seconds for tagging one image.

Fig.4.7 is a plot of precision-recall curves for annotation on Corel30k testing dataset

using SVIA and SML. The curve generated by SML is taken from Ref. [68]. In the

experiment, similar to the experiments on Corel5k dataset, the GMM-DCT

Fig. 4.7. Precision-recall curves for annotation on Corel30k testing data set using

SVIA and SML.

Chapter 4: Support vector description of clusters for content based image annotation

77

Table 4.2

Results of SVIA and the compared systems for Corel30k testing dataset.

 n�(a\� n�ÊË� precise (%) recall (%) coverage (%)

SVIA

500 260

27.5 28.1 41.1

SML 12.0 21.0 44.6

HPM 10.0 19.0 46.2

representation is adopted. The curve is generated when the dimension of the DCT

feature space is 128 and the Gaussian mixture model is learned with 3-level hierarchy.

Table 4.2 presents the results of SVIA when the system provides 5 words for each

images, and the results of studies using SML and HPM, respectively. The item

meanings of Table 4.2 are the same as those in Table 4.1. As far as HPM concerned, the

same as the experiments on the Corel5k dataset, we list the results of HPM under the

Given 0 protocol. Similar to the experiments on Corel5k dataset, the results of ALIPR

and GLM are not reported in the literature, so they are not included in this subsection.

It can be seen from Fig.4.7 that the SVIA curve has the best precision at 0.359, and

its precision and recall rates are superior to that of SML significantly. From Table 4.2, it

can be seen that the SVIA obtains the best results in terms of recall and precision rate.

When compared with SML and HPM, the SVIA obtains recall rate 28.1%, and precision

rate 27.5%, while the SML obtains recall rate 12.0%, precision rate 21.0% and HPM

obtains recall rate 19.0%, precision rate 10.0%. As far as coverage rate concerned, the

SVIA obtains coverage rate 41.1%, while the SML and HPM obtain coverage rate 44.6%

and 46.2%, respectively. The results demonstrate that the SVIA maintains its

scalability as the size of the dataset increases.

4.5.4.3 Results for the Corel60k data set

This subsection aims to show the results of SVIA for Corel60k dataset. The

experiments that were conducted on Corel5k and Corel30k datasets were repeated on

Corel60k dataset. In the training process, on average, the computing time involved in

selecting the Gaussian width parameter h was 1439.2 seconds, the computing time

Chapter 4: Support vector description of clusters for content based image annotation

78

involved in training the support vector described models was 6972.7 seconds. In the

tagging process, on average, the computing time was as high as 0.22 seconds for tagging

one image. Fig.4.8 presents the comparing annotation results of SVIA, SML and ALIPR

for annotation on Corel testing dataset. Fig.4.8(a) is a plot of precision-recall curves

using SVIA and SML. In the experiment of SML, the GMM-DCT representation is

adopted. The SML classifiers were learned using 3-level hierarchies. Fig.4.8(b) and (c)

compare the results of SVIA and ALIPR in terms of precision and recall rates,

Fig. 4.8. Comparing annotation results of SVIA, SML and ALIPR. (a) Precision-recall

curves for annotation using SVIA and SML. (b) Comparing precision rates obtained by

SVIA and ALIPR. (c) Comparing recall rates obtained by SVIA and ALIPR.

Chapter 4: Support vector description of clusters for content based image annotation

79

Table 4.3

Results of SVIA and the compared systems for Corel60k testing dataset

 n�(a\� n�ÊË� precise (%) recall (%)

SVIA

60000 417

24.9 26.6

SML 23.6 15.3

ALIPR 22.4 28.7

respectively, where precision and recall rates are shown with the number of words

provided by the system ranging from 1 to 15. Table 4.3 presents the results of SVIA

when the system provides 5 words for each images, and the results of studies using SML

and ALIPR, respectively. The item meanings of Table 4.3 are the same as those in

Tables 4.1 and 4.2. The coverage rate of SVIA is 42.6% when the system provides 5

words for each image. Since the coverage rates of SML and ALIPR are not reported in

the cited literatures Refs. [68]} and [1], they are not included in Table 4.3. For the GLM

and HPM, the results on Corel60k dataset are not reported in the literature, so they are

not included in this subsection.

It can be seen from Fig.4.8(a) that the SVIA curve has the best precision at 0.398,

and its precision and recall rates are superior to that of SML significantly. From

Fig.4.8(b), it can be seen that the curves of SVIA and ALIPR have the same shape, and

the SVIA has a higher precision rate. From Fig.4.8(c), it can be seen that the curves of

SVIA and ALIPR have the same shape. When the systems provide less than 3 words,

the ALIPR has a higher recall rate, and when the system provides more than 3 words,

the SVIA has a higher recall rate. From Table 4.3, it can be seen that the SVIA obtains

the best results in terms precision rate. The SVIA obtains precision rate 24.9%, while

the SML obtains precision rate 23.6%, and ALIPR obtains precision rate 22.4%. As far

as recall rate concerned, the SVIA obtains recall rate 26.6%, the SML obtains recall rate

15.3%, and ALIPR obtains recall rate 28.7%. The results demonstrate that SVIA mains

it scalability on the Corel60k datasets.

Chapter 4: Support vector description of clusters for content based image annotation

80

4.5.5 Discussions

The comparison results of SVIA on Corel5k, Corel30k and Corel60k datasets can be

summarized and explained as follows.

1. When compared with SML, SVIA obtains a better precision and recall rates on

all the Corel5k, Corel30k and Corel60k datasets. The precision-recall curves of

Fig.4.6, Fig.4.7 and Fig.4.8(a) show that SVIA has a higher precision rate at most

levels of recall rates. The coverage rates of SVIA are lower than those of SML on

the Corel5k and Corel30k datasets.

2. When compared with ALIPR on the Corel60k dataset, SVIA obtains a better

precision rate as the number of words provided by the system increasing from 1

to 15. ALIPR has a higher recall rate when the system provides less than 3 words,

and SVIA has a higher recall rate when the system provides more than 3 words.

3. When compared with GLM on the Corel5k dataset, SVIA obtains a better result

in terms of precision, recall and coverage rates.

4. When compared with HPM on the Corel5k and Corel30k datasets, SVIA obtains

a better result in terms of precision and recall rates. And the coverage rates of

SVIA are lower than those of HPM.

The simulated results indicate that the SVIA may obtain a better result in terms of

precision and recall rates, and maintains its stability as the size of the dataset increases.

However, the coverage rates are not as high as the compared systems in most cases.

This is due to the fact that in the SVIA, the support vector description of cluster is

adopted, and its most important advantages is to describe clusters of arbitrary shape.

When the cluster in the training dataset contains a large amount of images, the

advantage of the SVIA will be exhibited. On the other hand, when the cluster in the

training dataset contains less images, the SVIA will lose its advantage, thus obtain a

lower coverage rate.

4.6 Conclusion

In this chapter, we aims at proposing an image annotation algorithm based on

support vector descriptions of clusters. The main novelty of this chapter is in the

Chapter 4: Support vector description of clusters for content based image annotation

81

proposed SVC-based approach, which aims at describing the clusters of training images

that manually annotated by semantic words. The fact that it can exploit the advantage

of SVC for its ability to delineate cluster boundaries of arbitrary shape makes it

particularly useful when the training images are not regularly organized. The

performance of the proposed algorithm is tested on Corel5k, Corel30k and Corel60k

data set. The simulated results validate the effectiveness of the proposed algorithm.

Chapter 5: Conclusions and future perspectives

82

Chapter 5: Conclusions and future perspectives

5.1 Conclusions

Images are major media on the Internet. To mitigate the “semantic gap problem”

between the low level images and the high level semantic of documents, image

automatic annotation is an imperative but highly challenging task. In this thesis, we

aimed at developing non-linear machine learning techniques to address the problems in

the CBIA system.

Referring to the parameters in the CBIA system, we proposed a cooperative

optimization algorithm. A statistical model is proposed to learn the variable

interdependencies among variables. With the variable interdependencies, a

decomposition method was proposed to partition the problem into sub-problems so that

the variable interdependencies in different sub-problems are minimized. Then the

sub-problems were optimized by a cooperative particle swarm optimization framework.

We further proposed and proved a theorem that explains the execution process of the

proposed algorithm. From the study, we found that the probability for a local optimum

solution of a subset being global optimum values is associated with degree of

interdependencies of its variables with variables outside the subset. Then another

theorem that explains why and how the proposed algorithm works is proposed and

proved. The performance of the proposed algorithm was tested on benchmarks from

different data sets. Simulated results showed that the proposed algorithm could find the

optimal solution for most of the selected test functions. This work has shown that large

scale optimization problem can be partitioned into small scale sub-problems and can be

optimized cooperatively.

Referring to the data clustering problems in the CBIA system, we proposed a support

vector and K-Means hybrid clustering algorithm. A SVC training method was proposed

based on theoretical analysis of the Gaussian kernel radius function. An empirical study

was conducted to guide better selection of the standard deviation of the Gaussian kernel.

A new data clustering algorithm was developed by integrating the merits of both SVC

Chapter 5: Conclusions and future perspectives

83

and K-Means algorithm. The performance of the proposed algorithm was tested on

generated data sets with different sizes, generated 2D data set, and data sets taken

from the UCI machine learning repository. The results shown that the proposed

algorithm compared favorably with existing kernel based clustering algorithms.

We further proposed a support vector based CBIA system. The system contains two

major components, the training process and the annotating process. In the training

process, clusters of images that manually annotated by semantic words are used as

training instances. Images within each cluster are modeled using a support vector

based method. The fact that it can exploit the advantage of SVC for its ability to

delineate cluster boundaries of arbitrary shape makes it particularly useful when the

training images are not regularly organized. In the annotating process, the system

exploits the distance from the image to the support vector described models and the

word to word correlations in a probabilistic framework to predict annotation words. The

performance of the proposed algorithm is tested on Corel5k, Corel30k, and Corel60k

data sets. The simulated results show the performance of the proposed system.

5.2 Future perspectives

Future work of this thesis can take many directions. Firstly, the parameters used in

the CBIA system described in Chapter 4 are selected empirically. The incorporation of

the CPSO-SL described in Chapter 2 to the CBIA system may produce more desirable

results. Thus one direction of future is to integrate the CPSL-SL with CBIA system so

that better parameter settings can be obtained. This includes the problems of how to

formulate the optimization problems, how to design the PSO operators, and how to

define the objective functions, etc. Secondly, the support vector and K-Means data

clustering algorithm described in Chapter 3 is effective for data sets with less than

10000 data points. However, whether it can deal with large scale data sets is still a

question to be answered. On the other hand, in the CBIA system described in Chapter 4,

the training images are annotated manually, which is known to be tedious and labor

intensive. Thus, one direction of future work is to develop data clustering algorithm for

large scale data sets so that the training images of the CBIA system can be generated

Chapter 5: Conclusions and future perspectives

84

automatically by computer. Finally, a review of literatures suggests that the accuracies

of CBIA systems are less than 50% in most case. Obviously, it is not enough for the user

demand. Thus, the third direction of current research is to improve the accuracy of the

system. The orientations are multi-fold. Shape information can be utilized to improve

the training and annotating process. Better and larger amounts of training images may

produce more robust models. Contextual information may also help in the modeling

process. And the system can be integrated with other retrieval methods to improve

usability.

References

I

References

[1] J. Li and J. Wang, “Real-Time Computerized Annotation of Pictures,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 6,

pp.-985-1002, 2008.

[2] A. Smeulders, M. Worring, S. Santini, A. Gupta and R. Jain, “Content-Based

Image Retrieval at the End of the Early Years,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 22, no. 12, pp. 1349-1380, 2000.

[3] N. Vasconcelos and M. Kunt, “Content-Based Retrieval from Image Databases:

Current Solutions and Future Directions,” Procedings 2001 International

Conference on Image Processing, vol. 3, pp. 6-9, 2001.

[4] R. Datta, D. Joshi, J. Li and J.Z. Wang, “Image Retrieval: Ideas, Influences, and

Trends of the New Age,” ACM Transactions on Computing Surveys, vol. 40, no. 2, pp.

1-60, 2008.

[5] C. Dorai and S. Venkatesh, “Bridging the Semantic Gap with Computational Media

Aesthetics,” IEEE Multimedia, vol. 10, no. 2, pp. 15-17, 2003.

[6] A. Ben-Hur, D. Horn, H. Siegelmann and V. Vapnik, “A Support Vector Clustering

Method,” Proceedings of 15th International Conference on Pattern Recognition,

Barcelona, Spain, vol. 2, pp. 724-727, 2000.

[7] A. Ben-Hur, D. Horn, H. Siegelmann and V. Vapnik, “A support Vector Method for

Clustering,” Advances in Neural Information Processing Systems, vol. 13, pp.

367-373, 2001.

[8] A. Ben-Hur, D. Horn, H. Siegelmann and V. Vapnik, “Support Vector Clustering,”

Journal of Machine Learning Research, vol. 2, pp. 125-137, 2001.

[9] V. Vapnik, “An Overview of Statistical Learning Theory,” IEEE Transactions on

Neural Networks, vol. 10, no. 5, pp. 1191-1199, 1999.

[10] A. Torn and A. Zilinskas, Global Optimization, Springer-Verlag, New York, 1989.

[11] W. Chu, X. Gao and S. Sorooshian, “A new evolutionary search strategy for global

optimization of high-dimensional problems,” Information Sciences, vol. 181, no. 22,

References

II

pp. 4909-4927, 2011.

[12] A. Ghosha, S. Das, A. Chowdhurya, and R. Giria, “A improved diferential evolution

algorithm with fitness-based adaption of the control parameters,” Information

Sciences, vol. 181, no. 18, pp. 3749-3765, 2011.

[13] D. Jia, G. Zheng, and M. Khan, “An effective memetic differential evolution

algorithm based on chaotic local search,” Information Sciences, vol. 181, no. 16, pp.

3175-3187, 2011.

[14] C. Lee, X. Yao, “Evolutionary programming using mutations based on the Letvy
probability distribution,” IEEE Transactions on Evolutionary computation, vol. 8,

no. 1, pp. 1-13, 2004.

[15] J. Liang, A. Qin, P. Suganthan, S. Baskar, “Comprehensive learning particle swarm

optimizer for global optimization of multimodal functions,” IEEE Transactions on

Evolutionary Computation, vol. 10, no. 3, pp. 281-295, 2006.

[16] E. Mezura-Montes, M Miranda-Verela, R. Gomez-ramon, “Differential evolution in

constrained numerical optimization: an empirical study,” Information Sciences, vol.

180, no. 22, pp. 4223-4262, 2010.

[17] Y. Ong, A. Keane, “Meta-Lamarckian learning in memetic algorithms,” IEEE

Transactions on Evolutionary Computation, vol. 8, no. 2, pp. 99-110, 2008.

[18] Z. Tu, Y. Lu, “A robust stochastic genetic algorithm (StGA) for global numerical

optimization,” IEEE Transactions on Evolutionary Computation, vol. 2, no. 3, pp.

456-470, 2004.

[19] X. Yao, Y. Liu, G.M. Lin, “Evolutionary programming made faster,” IEEE

Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–102, 1999.

[20] Q. Yuan, F. Qian, W. Du, “A hybrid genetic algorithm with the Baldwin effect,”

Information Sciences, vol. 180, no. 5, pp. 640–652, 2010.

[21] C. Zhang, Y. Zhang, “Scale-free fully informed particle swarm optimization

algorithm,” Information Sciences, vol. 180, no. 20, pp. 4550–4568, 2011.

[22] M. Potter, The design and analysis of a computational model of cooperative

coevolution, Ph. D Thesis, George Mason University, 1997.

References

III

[23] M. Potter and K. De Jong, “A cooperative coevolutionary approach to function

optimization,” in: Proceedings of the Third Conference on Parallel Problem Solving

from Nature, Jerusalem, Israel, vol. 2, 1994, pp. 249–257.

[24] M. Potter and K. De Jong, “Cooperative coevolution: an architecture for evolving

coadapted subcomponents”, Evolutionary Computation, vol. 8, no. 1, pp. 1–29, 2000.

[25] Y. Liu, X. Yao, Q. Zhao, T. Higuchi, “Scaling up fast evolutionary programming with

cooperative coevolution,” in: Proceedings of the 2001 Congress on Evolutionary

Computation, Piscataway, NJ, USA, 2001, pp. 1101–1108.

[26] F.V.D. Bergh, A.P. Engelbrecht, “Cooperative learning in neural networks using

particle swarm optimizers”, South African Computer Journal, vol. 26, pp. 84–90,

2000.

[27] F.V.D. Bergh, A.P. Engelbrecht, “A cooperative approach to particle swarm

optimization,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp.

225–239, 2004.

[28] X. Li, X. Yao, “Tackling high dimensional nonseparable optimization problems by

cooperatively coevolving particle swarms,” in: Proceedings of the 2009 IEEE

Congress on Evolutionary Computation, Trondheim, Norway, 2009, pp. 1546-1553.

[29] Z. Yang, K. Tang, X. Yao, “Differential evolution for high dimensional function

optimization,” in: Proceedings of the 2007 Congress on Evolutionary Computation,

Singapore, 2007, pp. 3523–3530.

[30] Z. Yang, K. Tang, X. Yao, “Multilevel cooperative coevolution for large scale

optimization,” in: Proceedings of the 2008 Congress on Evolutionary Computation,

Hong Kong, 2008, pp. 1663–1670.

[31] Z. Yang, K. Tang, X. Yao, “Large scale evolutionary optimization using cooperative

coevolution,” Information Sciences, vol. 178, no. 15, pp. 2985–2999, 2008.

[32] K. Weicker, N. Weicker, “On the improvement of coevolutionary optimizers by

learning variable interdependencies,” in: Proceedings of the 1999 Congress on

Evolutionary Computation, Washington, D.C. USA, 1999, pp. 1627–1632.

[33] T. Ray, X. Yao, “A cooperative coevolutionary algorithm with correlation based

References

IV

adaptive variable partitioning,” in: Proceedings of the 2009 Congress on

Evolutionary Computation, Trondheim, Norway, 2009, pp. 983–989.

[34] R. Eberhart, Y. Shi, “Particle swarm optimization: developments, applications and

resources,” in: Proceedings of the Congress on Evolutionary Computation, Seoul,

Korea, 2001, pp. 81–86.

[35] J. Kennedy, R. Eberhart, “Particle swarm optimization,” in: Proceedings of the

IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, 1995,

pp. 1942–1948.

[36] F.V.D. Bergh, A.P. Engelbrecht, “Cooperative learning in neural networks using

particle swarm optimizers,” South African Computer Journal, vo. 26, pp. 84–90,

2000.

[37] H. Ge, L. Sun, Y. Liang, F. Qian, “An effective PSO and AIS-Based hybrid

intelligent algorithm for job shop scheduling,” IEEE Transactions on Systems, Man,

and Cybernetics. Part A: Systems and Humans, vol. 38, no. 2, pp. 358–368, 2008.

[38] Y. Shi, R. Eberhart, “A modified particle swarm optimizer,” in: Proceedings of the

IEEE Congress on Evolutionary Computation, Piscataway, USA, 1998, pp. 69–73.

[39] F.V.D. Bergh, A.P. Engelbrecht, “A cooperative approach to particle swarm

optimization,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp.

225–239, 2004.

[40] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, S. Tiwari, “Problem

definitions and evaluation criteria for the CEC 2005 special session on real

parameter optimization,” Technical Report, Nanyang Technological University,

Singapore, 2005. <http://www.ntu.edu.sg/home/EPNSugan>.

[41] S. Salomon, “Reevaluating genetic algorithm performance under coordinate

rotation of benchmark functions,” Biosystems, vol. 39, pp. 263–278, 1996.

[42] R. Eberhart, Y. Shi, “Comparing inertia weights and constriction factors in particle

swarm optimization,” in: Proceedings of the IEEE Congress on Evolutionary

Computation, San Diego, USA, 2000, pp. 84–88.

[43] E.D. Taillard, “Few guidelines for analyzing methods," in: The Sixth Metaheuristics

References

V

International Conference, Vienna, Austria, 2005.

[44] D.H. Wolpert, W.G. Macready, “No free lunch theorems for optimization,” IEEE

Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[45] R. Xu and D. Wunsch I, “Survey of clustering algorithms,” IEEE Transactions on

Neural Networks, vol. 16, no. 3, pp. 645-678, 2005.

[46] J.H. Chiang and P.Y. Hao, “A new kernel-based fuzzy clustering approach: support

vector clustering with cell growing,” IEEE Transactions on Fuzzy System, vol. 11,

no. 4, pp. 518-527, 1999.

[47] T. Ban and S. Abe, “Spatially chunking support vector clustering algorithm,” in:

Proceedings of 2004 International Joint Conference on Neural Networks, vol. 1, pp.

413-418, 2004.

[48] J. Lee and D. Lee, “An improved cluster labeling method for support vector

clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

27, no. 3, pp. 461-464, 2005.

[49] F. Camastra and A. Verri, “A novel kernel method for clustering,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 5, pp.

801-805, 2005.

[50] J. Lee, and D. Lee, “Dynamic characterization of cluster structures for robust and

inductive support vector clustering,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 28, no.11, pp. 1869-1874, 2006.

[51] J.S. Wang and J.C. Chiang, “A cluster validity measure with outlier detection for

support vector clustering,” IEEE Transactions on System, Man and Cybernetics,

Part B: Cybernetics, vol. 38, no.1 ,pp. 78-89.

[52] J. Platt, “Fast training of support vector machines using sequential minimal

optimization,” In Advances in Kernel Methods-Support Vector Learning, B.

SchoÌ lkopf, C.J.C. Burges, and J.J. Smola, editors, 1999.

[53] R. Fletcher, Practical methods of optimization, Wiley-Interscience, Chichester,

1987.

[54] J. Yang, V. Estivill-Castro, and S.K. Chalup, “Support vector clustering through

References

VI

proximity graph modeling,” in: Proceedings of the 9th International conference on

Neural Information Processing, pp. 898-903, 2002.

[55] J.A. Hartigan and M.A. Wong, “A K-Means clustering algorithm,” Applied Statistics,

vol. 28, pp. 100-108, 1979.

[56] E. Osunna, R. Freund and F. Girosi, “An improved training algorithm for support

vector machines,” Neural Networks for Signal Processing VII. Proceedings of the

1997 Workshop, pp. 276-285, 1997.

[57] P. Hall and B.A. Turlach, “Reducing bias in curve estimation by use of weights,”

Computational Statistics & Data Analysis, vol. 30, no. 1, pp. 67-86, 1999.

[58] B.W. Silverman, Density estimation for statistics and data analysis, Monographs on

statistics and applied probability, London: Champman and Hall, 1986.

[59] A. Bhattacharyya, “On the measure of divergence between two statistical

populations defined by probability distributions,” Bulletin of the Calcutta

Mathematical Society, vol. 35, pp. 99-109, 1943.

[60] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” 2001,

Software Available at: http://www.csie.ntu.edu.tw/cjlin/libsvm.

[61] N. Zhou, W.K. Cheung, G. Qiu, and X. Xue, “A hybrid probabilistic model for unified

collaborative and content based image tagging,” IEEE Transactions on pattern

analysis and machine intelligence, vol. 33, no. 7, pp. 1281-1294, 2011.

[62] J. Luo, A. Savakis, and A. Signhal, “A bayesian network based framework for

semantic image understanding,” Pattern Recognition, vol. 38, no. 6, pp. 1331-1338,

2005.

[63] J. Fan , Y. Gao, and H. Luo, “Integrating concept ontology and multitask learning to

achieve more effective classifier training for multilevel image annotation,” IEEE

Transactions on Image Processing, vol. 17, no. 3, pp. 407-426, 2008.

[64] J. Fan, Y. Shen, C. Yang, and N. Zhou, “Structured max-margin learning for

inter-related classifier training and multi-label image annotation,” IEEE

Transactions on Image Processing, vol. 20, no. 3,pp. 837-854, 2011.

[65] J. Su, C. Chou, C. Lin, and V. Tseng, “Effective semantic annotation by

References

VII

image-to-concept distribution model,” IEEE Transactions on Multimedia, vol. 13,

no.-3, pp. 530-538, 2011.

[66] P. Duygulu, K. Barnard, J.F.G. de Freitas, and D.A. Forsyth, “Object recognition as

machine translation: learning a lexicon for a fixed image vocabulary,” Proceedings

of Seventh European Conference on Computer Vision, pp. 349-354, 2002.

[67] J. Li and J. Wang, “Automatic linguistic indexing of pictures by a statistical

modeling approach,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 25, no. 9, pp. 1075-1088, 2003.

[68] G. Carneiro, A. Chan, P. Moreno, and N. Vasconcelos, “Supervised learning of

semantic classes for image annotation and retrieval,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 394-410, 2007.

[69] S. Zhu and Y. Liu, “Semi-supervised learning model based efficient image

annotation,” IEEE Signal Processing Letters, vol. 16, no. 11, pp. 989-992, 2009.

[70] Z. Lu and H. Ip, “Spatial Markov kernels for image categorization and annotation,”

IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 41,

no. 4, pp. 976-989, 2011.

[71] J. Liu, M. Li, Q. Liu, H. Lu, and S. Ma, “Image annotation via graph learning,”

Pattern Recognition, vol. 42, no. 2, pp. 218-228, 2009.

[72] J. Tang, H. Li, G. Qi, and T. Chu, “Image annotation by graph based inference with

integrated multiple/single instance representations,” IEEE Transactions on

Multimedia, vol. 12, no. 2, pp. 131-141, 2010.

[73] F. Yu and H. Ip, “Semantic content analysis and annotation of histological images,”

Computers in Biology and Medicine, vol. 38, no. 6, pp. 635-649.

[74] Flickr, http://www.flickr.com

[75] C. Halaschek-Wiener, J. Golbeck, A. Schain, M. Grove, B. Parsia, and J.-Hendler,

“Photostuff- an image annotation tool for the semantic web,” Proceedings of the

Fourth International Semantic Web Conference, 2005.

[76] X.J. Wang, L. Zhang, X. Li, and W.Y. Ma, “Annotating images by mining image

search results,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

References

VIII

vol. 30, no. 11, pp. 1919-1932, 2008.

[77] R. Wong and C. Leung, “Automatic semantic annotation of real-world web images,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 11. pp.

1933-1944, 2008.

[78] G. Qiu, “Indexing chromatic and achromatic patterns for content-based color image

retrieval,” Pattern Recognition, vol. 35, pp. 1675-1685, 2002.

[79] V. Vapnik, Statistical learning theory, Wiley, New York, 1998.

Appendix

I

Appendix

Detailed descriptions of Generalized penalized

functions

f�(x) = πn Í10sin8(πy) + �(y� − 1)8 ∙ 31 + 10sin8(πy�G)6)E
�| + (y) − 1)8Î + � u(y�, 10,100,4))

�|

f�(x) = 110 Ísin8(3πx) + �(x� − 1)8 ∙ 31 + 10sin8(3πx�G)6)E
�| + (x) − 1)831 + sin8(2πx))6Î

+ � u(x�, 5,100,4))
�|

where

u(x�, a, k, m) = ¢ k(x� − a)(x� > Ð0 −a ≤ x� ≤ ak(−x� − a)(x� < −Ð ¤

y� = 1 + 14 (x� + 1)

List of publications

II

List of publications

B.1 Papers in referred journals

[1] L. Sun, S. Yoshida, X. Cheng, and Y. Liang, “A Cooperative Particle Swarm

Optimizer with Statistical Variable Interdependence Learning”, Information

Sciences, vol.186, no.1, pp.20-39.

[2] L. Sun, S. Yoshida, and Y. Liang, “A Support Vector and K-Means Based Hybrid

Intelligent Data Clustering Algorithm”, IEICE Transactions on Information and

Systems, vol.E94-D, no.11, pp.2234-2243, 2011.

[3] L. Sun, S. Yoshida, H. Ge, and Y. Liang, “Support Vector Description of Clusters

for Content-Based Image Annotation”, IEEE Transactions on Pattern Analysis

and Machine Intelligence. (will be submitted)

B.2 Paper in referred conferences

[4] L. Sun, S. Yoshida, and Y. Liang, “A Novel Support Vector and K-Means Based

Hybrid Clustering Algorithm”, Proceedings of the 2010 IEEE International

Conference on Information and Automation, Haerbin, China, pp.126-130, 2010.

[5] L. Sun, S. Yoshida, and Y. Liang, “Cooperative Particle Swarm Optimizer for

Large Scale Numerical Optimization”, Joint 5th International Conference on Soft

Computing and Intelligent Systems and 11th International Symposium on

Advanced Intelligent Systems, Okayama, Japan, 2010.

[6] L. Sun, S. Yoshida, and Y. Liang, “Support Vector Description of Clusters for

Image Annotation”, International Workshop on Advanced Computational

Intelligence and Intelligent Informatics, Suzhou, China, 2011. (Session Best

Presentation Award)

B.3 Paper in other journals

[7] H. Ge, L. Sun, Y. Liang, and F. Qian, “An Effective PSO and AIS-Based Hybrid

Intelligent Algorithm for Job-Shop Scheduling”, IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans, vol.38, no.2, pp.358-368,

2008.

[8] J. Yang, L. Sun, H. P. Lee, Y. Qian, and Y. Liang, “Clonal Selection Based Memetic

Algorithm for Job Shop Scheduling Problems”, Journal of Bionic Engineering,

List of publications

III

vol.5, no.2, pp.111-119, 2008.

[9] J. Tang, S. Le, L. Sun, X. Yan, M. Zhang, J. Macleod, B. Leroy, N. Northrup, A.

Ellis, T. Yeatman, Y. Liang, M. Zwick, and S. Zhao, “Copy number abnormalities in

sporadic canine colorectal cancers”, Genome Research, vol.20, no.3, pp.341-350,

2010.

[10] L. Sun, X. Cheng, and Y. Liang, “Solving Job Shop Scheduling Problem Using

Genetic Algorithm with Penalty Function”, International Journal of Intelligent

Information Processing, vol.1, no.2, pp.65-77, 2010

[11] L. Sun, X. Cheng, and Y. Liang, “A Cooperative Lamarckian Evolutionary

Algorithm for Numerical Optimization”, International Journal of Computational

Intelligence Systems. (Under Review)

B.4 Paper in other conferences

[12] H. Ge, L. Sun, and Y. Liang, “Solving Job-Shop Scheduling Problems by a Novel

Artificial Immune System”, AI2005: Advances in Artificial Intelligence, Lecture

Notes in Computer Sciences, Sydney, Australia, vol.3809, pp.839-842, 2005.

[13] L. Sun, F. Melgani, S. Yoshida, and Y. Liang, “Application of GA and SVM Based

Hybrid Algorithm to the Classification of Power-Quality Disturbances”, 3rd

International Conference on Power Electronics and Intelligent Transportation

System, Shenzhen, China, pp.207-212, 2010.

[14] L. Sun, S. Yoshida, Y. Liang, “A Particle Swarm Optimizer for the Training of

Support Vector Clustering,”, International Workshop on Information Technology,

Kochi, Japan, 2010.

