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Abstract 

The number of image archives on the Internet is growing rapidly with the 

proliferation of user contributed images. Thus searching for the images that match a 

user query presents a significant challenge. In the real world image systems, many 

images are constantly created without direct annotations of semantic content. This 

creates the need for content based image retrieval (CBIR), which is conducted based on 

the low level features such as color, texture, and shape. However, the CBIR system still 

suffers from the “semantic gap problem”, which implies that the low level image 

contents are not effective enough to encapsulate the high level semantics. One natural 

way to mitigate the “semantic gap problem” is to assign annotations onto images. The 

methods that annotate images automatically based on low level visual contents are 

referred to as content based image annotation (CBIA). The unceasing progress in the 

fields of computer vision and machine learning has provided opportunities to develop 

CBIA systems. However, due to the complexity of the real world image systems, 

effective and efficient image annotation is still a challenging problem. 

This thesis is an exploratory study of non-linear machine learning techniques to 

address the problems in CBIA system. It is obvious that there always be a need for 

better optimization in the CBIA system, since the CBIA system generally possesses 

parameters that can be adjusted to produce more desirable outcomes. Thus one major 

component of this thesis is developing a cooperative particle swarm optimizer for large 

scale numerical optimization. Firstly, a statistical model is proposed to explore the 

interdependence among variables. Secondly, the algorithm partitions large scale 

problems into small scale sub-problems based on the prior knowledge with respect to 

the variable interdependencies. Finally, a CPSO framework is proposed to optimize the 

sub-problems cooperatively. The results of simulated experiments on the benchmark 

functions demonstrate the effectiveness of the proposed optimizer, as compared with the 

performance of other cooperative optimization algorithms. 

Another important problem involved in CBIA system is data clustering, which 
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associates with grouping a set of data into clusters (subsets) so that the data in the 

same cluster are analogous in properties that are relevant to data analysis. The second 

major component of this thesis is developing a support vector and K-Means based 

hybrid data clustering algorithm. Firstly, an empirical study is conducted to guide 

better selection of the standard deviation of the Gaussian kernel. Following this, the 

outliers which increase problem complexity are identified and removed by training a 

global support vector clustering (SVC) model. Finally, several local SVCs are trained for 

the clusters and each removed data point is labeled according to the distance from it to 

the local SVCs. The results of simulated experiments on 2-D data sets and the UCI 

machine learning benchmark datasets demonstrate that the proposed algorithm 

compared favorably with other algorithms. 

The third major component of this thesis is to develop a support vector based CBIA 

system. In the proposed system, clusters of images with manually tagged words are 

used as training instances. Images within each cluster are modeled using a kernel 

method, where the image vectors are mapped to a higher dimensional space and the 

vectors identified as support vectors are used to describe the cluster. To measure the 

extent of association between an image and a support vector described model, the 

distance from the image to the model is computed. A closer distance indicates a stronger 

association. Moreover, the word to word correlations are also considered in the 

annotation framework. For an image to be tagged, the system exploits the distance from 

the image to the models and the word to word correlations in a probabilistic framework 

to predict annotation words. The results of simulated experiments on three benchmark 

image sets demonstrate the effectiveness of the proposed system. 
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Chapter 1: Introduction 

Machine learning is an essential branch of artificial intelligence. It is a scientific 

discipline concerned with designing and developing algorithms that allow computers to 

mimic human learning activities such as classifying, repeating, recognizing, evolving, 

etc. Content based image annotation (CBIA) is a process by which a computer system 

automatically generates metadata such as caption, keywords, or filenames based on 

visual contents of images. 

This thesis is an exploratory study of the non-linear machine learning techniques to 

address the problems in CBIA. It has three integral parts. The first part associates with 

developing a cooperative optimization algorithm. The second part associates with 

developing a support vector based data clustering algorithm. And the third part 

associates with developing a content-based image annotation system, which is proposed 

based on the basic formulations of support vector clustering algorithm. 

1.1  Motivation 

The invention of digital camera provides people the opportunities to take pictures in 

everyday life, and the development of Internet techniques facilitates people sharing the 

pictures conveniently. As a result, the number of image archives on the Internet grows 

at a phenomenal rate. Take a report released in 2007 as an example, the flickr.com, 

which is an Internet photo sharing system, has about 40 million monthly visitors and 

about two billion photos [1]. Due to the large amount of images, browsing, searching 

and retrieving images that match a user query presents a significant challenge. Many of 

the traditional and common image retrieval systems such as Google and Yahoo! utilize 

metadata such as captioning, keywords, or filenames so that the retrieval task can be 

performed over the textual descriptions. However, in the real word image systems, 

many images are constantly created without direct annotations of semantic content, 

which limits the ability of the text based systems. This creates the need for content 

based image retrieval (CBIR) [2]-[4]. CBIR is a computer system that performs retrieval 

task over the low level visual content of images such as texture, shape and color other 
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than the textural descriptions. Research on CBIR has attracted the attention of 

researchers in various fields including computer vision and machine learning. However, 

many of the CBIR systems still suffer from the “semantic gap problem”, which implies 

that the low-level image contents are not effective enough to encapsulate the high level 

semantics [2], [5]. 

One natural way to mitigate the “semantic gap problem” is to assign tags onto 

images. Appropriate tagging can help to increase the retrieval efficiency. However, the 

manual tagging is time consuming, labor intensive and expensive. Due to this reason, 

there has been a surge of research interest in content based image annotation. However, 

as far as CBIA concerned, there are still some problems unsolved. If they are suitably 

addressed, more robust and efficient systems can be designed. Thus the basic 

motivation of this research is developing effective and efficient methods for the CBIA 

system, so that the computers can understand, index, and annotate images 

automatically. 

Optimization problems arise in a variety of fields, including engineering, science and 

business. Effective and effective optimization algorithms are always needed to tackle 

the increasingly complex real world optimization problems. It is obvious that there 

always be a need for better optimization algorithm in the CBIA system, since the CBIA 

system problem generally possesses parameters that can be adjusted to produce more 

desirable outcomes. Can we solve large scale optimization problem with 500 or more 

dimensions efficiently? This is the motivation of the first part of this research. 

Another important problem involved in CBIA system is data clustering, which 

associates with grouping a set of data into clusters (subsets) so that the data in the 

same cluster are analogous in properties that are relevant to data analysis. Numerous 

clustering algorithms have been proposed, with varying degree of success. However, 

their effectiveness and advantages usually deteriorate when it is applied to solving 

complex real world problems, e.g., those with large proportion of noise data points and 

connecting clusters. Thus how to develop an even more effective data clustering 

algorithm for the CBIA system is the motivation of the second part of this research. 
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In a CBIA system, substantial machine learning techniques are required to fill the 

gap between the low-level image visual contents and the high-level semantics. Among 

the machine learning techniques, the support vector cluster (SVC) [6]-[8] is a recently 

developed algorithm inspired by the support vector machine (SVM) [9]. The SVC has 

many advantages over other data clustering algorithms for its ability to determine the 

system topological structure without prior knowledge with respect to the system itself, 

to delineate cluster boundaries of irregular shapes, and to deal with outliers by 

employing a soft margin constant. Whether the SVC can be used to solve problems in 

the CBIA system is still a question unanswered. The motivation of the third part of this 

research is to answer this question. 

1.2  Objectives 

The objectives of this thesis can be summarized as follows: 

1. To develop a cooperative particle swarm optimizer for large scale numerical 

optimization, which includes developing a statistical model to learn prior 

knowledge of a problem with respect to the variable interdependencies, 

proposing a decomposition method based on the prior knowledge, and 

developing a cooperative particle swarm optimization framework. 

2. To develop a support vector and K-Means based hybrid data clustering 

algorithm, which includes a SVC training method, an empirical study, and a 

support vector and K-Means based hybrid algorithm. 

3. To develop a support vector based CBIA system. The objective is to consummate 

two major components of the system, i.e., the training process and the 

annotating process. 

1.3  Methodology 

The cooperative particle swarm optimizer developed in this thesis is achieved by 

adopting the divide and conquer strategy. Decomposition decision regarding variable 

interdependencies often plays a significant role in the algorithm’s performance. 

Algorithms that do not consider variable interdependencies often lose their effective and 
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advantage when applied to solve non-separable problems. In this thesis, we propose a 

cooperative particle swarm optimizer with statistical variable interdependence learning 

(CPSO-SL). A statistical model is proposed to explore the interdependence among 

variables. With these interdependencies, the algorithm partitions large scale problems 

into overlapping small scale sub-problems. Moreover, a CPSO framework is proposed to 

optimize the sub-problems cooperatively. Theoretical analysis is conducted for further 

understanding of the proposed CPSO-SL. 

In the support vector and K-Means based hybrid data clustering algorithm, an 

empirical study is conducted to guide better selection of the standard deviation of the 

Gaussian kernel. Following this, the outliers which increase problem complexity are 

identified and removed by training a global SVC. The refined data set is then clustered 

by a kernel based K-Means algorithm. Finally, several local SVCs are trained for the 

clusters and then each removed data point is labeled according to the distance from it to 

the local SVCs. 

In the support vector based system for CBIA, clusters of images with manually 

tagged words are used as training instances. Images within each cluster are modeled 

using a kernel method, where the image vectors are mapped to a higher dimensional 

space and the vectors identified as support vectors are used to describe the cluster. To 

measure the extent of association between an image and a support vector described 

model, the distance from the image to the model is computed. A closer distance indicates 

a stronger association. Moreover, the word to word correlations are also considered in 

the annotation framework. For an image to be tagged, the system exploits the distances 

from the image to the models and the word to word correlations in a probabilistic 

framework to predict annotation words. 

1.4  Thesis Outline 

In Chapter 2, for a numerical optimization problem, firstly, a statistical model is 

proposed to learn the variable interdependencies. Based on the interdependencies, a 

method is then proposed to decompose large scale problem into overlapping small scale 

sub-problems. Following this, a cooperative particle swarm optimizer with statistical 
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variable interdependence learning (CPSO-SL) is proposed to optimize the sub-problems 

cooperatively. To give deeper insight into the proposed CPSO-SL, further theoretical 

analysis is carried out. The performance of the CPSO-SL is examined by means of 

experiments on benchmarks with different dimensions and levels of hardness and is 

compared with the performance of other recently reported cooperative optimization 

algorithms. 

In Chapter 3, firstly, a review of the basic concepts of the SVC and K-Means 

algorithm is presented. Following this, a new SVC training method is presented. And 

then an empirical study is conducted to guide better selection of the standard deviation 

of the Gaussian kernel. The details of the SVC and K-Means based hybrid intelligent 

data clustering are then presented. Finally, the experimental settings and the 

simulated results are then presented for illustration and comparison. 

In Chapter 4, firstly, some of the previous work on CBIA, in particular, the 

generative modeling methods are reviewed. Following this, the support vector based 

modeling method and the probabilistic modeling method for assignment of annotation 

words are presented, respectively. And then the simulated results are presented for 

illustration and comparison. 

Chapter 5 presents a summary of the outcomes of this thesis. And some possible 

extensions of current research are also discussed. 
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Chapter 2: A cooperative particle swarm 

optimizer 

2.1  Introduction 

Optimization problems arise in a variety of fields, including engineering, science, 

and business [10]. Effective and efficient optimization algorithms are always needed to 

tackle increasingly complex real world optimization problems. Stochastic optimization 

algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO), 

have been shown to be successful in dealing with many optimization problems [11]-[21]. 

However, most of these algorithms still suffer from the “curse of dimensionality”, i.e., 

their performance deteriorates rapidly as the dimensionality of the problem increases. 

Generally, many of the traditional stochastic algorithms can perform well on moderate 

scale problems, but they may have difficulty in optimizing large scale problems with 500 

or more dimensions. 

One natural way to address the “curse of dimensionality” is to adopt the 

divide-and-conquer strategy. The original divide-and-conquer algorithm is the 

cooperative co-evolutionary genetic algorithm (CCGA) [22]-[24]. The CCGA operates by 

decomposing a large scale problem into small scale sub-problems and optimizing the 

sub-problems by means of separate GAs; the solution to the problem is obtained by 

combining the sub-solutions found by each of the separate GA. Other 

divide-and-conquer algorithms include fast evolutionary programming with cooperative 

co-evolution (FEPCC) [25], cooperative particle swarm optimization (CPSO) [26]-[28], 

differential evolution with cooperative co-evolution (DECC) [29]-[31], and so on. 

A key issue with regards to divide-and-conquer is the task of problem decomposition, 

the process of partitioning a large scale problem into small scale sub-problems so that 

the interdependencies among different sub-problems are minimized. Decomposition 

decision regarding variable interdependencies plays a significant role in the algorithm’s 

performance. Generally, algorithms that do not consider variable interdependencies are 
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effective for separable problems, but have difficulty solving non-separable problems. 

Research on variable interdependencies has already attracted the attention of 

researchers and several methods have been proposed. For example, in [32], the authors 

presented a preliminary learning process for the recognition of epistemic links in 

problems, and in [33], a correlation based variable partitioning scheme was designed to 

alleviate the problems associated with selection of a number of sub-problems and 

variable partitioning. These methods facilitated research into variable 

interdependencies. However, real world optimization problems are far more complex 

and there is still no rigorous algorithm for giving deeper insight into the problem itself. 

In view of the above, this study will be conducted with the following objectives. 

1. To develop a statistical model to learn prior knowledge of a problem with respect 

to the variable interdependencies. 

2. To propose a decomposition method based on the prior knowledge. 

3. To develop a cooperative particle swarm optimizer for global numerical 

optimization. 

2.1  Problem decomposition 

2.2.1  Statistical variable interdependence learning 

In this thesis, the following numerical optimization problem is considered: 

Find: x,-∗ ∈ E 
Such that: ∀x,- ∈ E, f(x,-∗) ≤ f(x,-), 

where E = 3b4
, b5
6 × 3b48, b586 ×∙∙∙× 3b4), b5)6 ⊆ R) is the bounded solution space, x,- ∈ E 
is the solution vector, and f: E → R is the objective function. 

The ideal decomposition method is to partition the problem into sub-problems so 

that the variables within each sub-problem are non-separable, and the variables among 

different sub-problems are separable. For example, the ideal decomposition strategy for 

the problem shown in Fig.2.1(a) is sub-problem 1 = {v
, v8, v�} and sub-problem 2 = 

{v
, v�}. For many problems, interdependencies occur among most variables. For 

example, in the problem shown in Fig.2.1(b) interdependencies occur among all the 

variables. As a result, an ideal decomposition strategy is difficult to obtain. An 
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alternative method is to partition a high dimensional problem into several low 

dimensional sub-problems. Within each sub-problem, the variable interdependencies 

are maximized, and among different sub-problems, the variable interdependencies are 

minimized.  In this case, the optimal decomposition strategy is sub-problem 1 = {v
, v8, v�} and sub-problem 2 = {v
, v�}. At this point, the issue lies with quantifying 
the degree of interdependence between each pair of variables. To address this, a 

statistical variable interdependence learning model is proposed. The proposed model 

worked as follows. 

1. Suppose we have α,,- = (∙∙∙, x�, ∙∙∙, x�, ∙∙∙), β,- = (∙∙∙, x�B, ∙∙∙, x� ∙∙∙), and it is satisfied 
that f(α,,-) ≤ f(β,-). If we change the value of x� to x�B, resulting in α,,-B = (∙∙∙, x�, ∙∙∙,x�B, ∙∙∙), and β,-B  = (∙∙∙, x�B, ∙∙∙, x�B ∙∙∙), and f(α,,-B) > D(β,-B), then we call that variable x� 
is affected by x� under context vector c- = (∙∙∙, x�E
, −, x�G
, ∙∙∙, x�E
, −, x�G
 )1  

2. The extent to which the influence of variable x� can be affected by x� can be  
                                                   
1 In a context vector, the variables marked with ‘-’ have no value. 

Fig. 2.1. Illustrative example for the variable interdependencies. (The digit in the 

middle of the connection line represents the degree of interdependence between 

variables) 
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estimated by the probability for the inequality change, i.e., P{f(α,,-B) > DJβ,-BK}. We 

can estimate the probability P{f(α,,-B) > DJβ,-BK}  by a statistical method, i.e., 

selecting a number of context vectors c- as statistical samples, and checking the 

effect of variable x� on variable x� under each statistical sample. 

Fig.2.2 shows the pseudo code for the interdependence learning model. In the 

proposed model, N statistical samples are created. Each sample consists of two solution 

vectors α,,- and β,- with inequality PLf(α,,-) ≤ DJβ,-KM. The vectors α,,- and β,- are identical 
except x� values. The effect of variable x� on x� is affected by turning x� values; if the 
new solution vectors α,,-B and β,-B achieve a change in the inequality, we call x� is 
affected by x�. The extent to which the influence of variable x� can be affected by x� is 
estimated by the probability for the inequality change. And the probability is estimated  

Fig. 2.2. Pseudo code for the statistical variable interdependence learning model. 
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by the statistical approach, i.e., d�� = �)NO = PP{f(α,,-B) > D(β,-B)}, where cnt is the times of 

inequality change. 

The main differences among the variable interdependence learning methods in [32], 

[33], and the proposed method are as follows. In [32], two variables are considered as 

interacted when a new candidate solution where both variables are changed is better 

than another candidate solution where only one variable is changed. In [33], a 

correlation matrix is computed based on some of the candidate solutions, and the 

variable interdependencies are obtained from the correlation matrix. In contrast, the 

proposed method captures variable interdependencies by a statistical method. 

2.2.2  Decomposition 

The next issue lies with decomposing large scale problems into small scale 

sub-problems. With a threshold value 0 ≤ r ≤ 1, we want to obtain a partition of 
variable set S, which satisfies that S
 ∪ S8 ∪∙∙∙∪ SS = S and S� ∩ S� = ∅ (i ≠ j). For each 
pairs of variables x� and x�, if x� and x� are in the same subset, then d�� ≥ r or d�� ≥ r, 
else, d�� < Y or d�� < Y. It is possible, however, that the above partition is difficult to 

Fig. 2.3. Pseudo code for the decomposition method. 
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obtain. For example, in the problem shown in Fig.2.1(c), d
8 = 0.8, d8
 = d8� = 0.8,  d�8 = d�
 = 0.8, d
� = d
� = 0.8, and d�
 = 0.8. Suppose that the threshold value is r = 0.8,, then the variables x
, x8, x�, x
, x� should be allocated to the same subset. In 

this case, the problem is not decomposed. This is due to the fact that the variables are 

interacted with different extents, and the most variables will be allocated to the same 

sub-problem due to their direct or indirect interdependencies. 

In order to address this issue, we propose a new decomposition method. For an n 

dimensional problem, we first create n subsets. They are initialized as S
 = {x
}, S8 = {x8}, ∙∙∙, S) = {x)}, respectively, where x� is called the core of subset S�. And then, 
for each subset S�, we select and recruit all the variables which affect x� with a degree 
no less than the predefined threshold value r. Fig.2.3 shows the pseudo code for the 

proposed decomposition method. Keep in mind that the subsets S
, S8, ∙∙∙, S)  are 
overlapped. To develop cooperative optimization algorithms using subsets S
, S8, ∙∙∙, S) , 
the following problems need to be solved. 

1. Within each subset, the variables are optimized separately. Since the 

optimization algorithm requires an objective function to evaluate its 

performance, this introduces the problem of how to calculate the objective 

function values. 

2. To optimize the variables in subsets S
, S8, ∙∙∙, S) , n optimization algorithms 

work cooperatively. How to exchange information among the n optimization 

algorithms is another problem. 

3. Since subsets S
, S8, ∙∙∙, S)  are overlapped, a variable xS that appears in one 
subset S� may appear in another subset S�, i.e., xS ∈  S� ∩ S�. This introduces the 
problem of how to construct the composite n dimensional solution with the 

optimized variables. 

A possible solution to these problems will be presented in Section 2.3.2. 

2.3  Cooperative particle swarm optimizer 

2.3.1  PSO and CPSO 

PSO is a swarm based computation technique which uses the metaphor of the social 
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behavior of flocks of birds and schools of fish [34], [35]. It has been used to solve many 

optimization problems such as neural network training [36] and job shop scheduling 

[37]. In a PSO system, particles fly around in solution space. At time t, the position and 

velocity of the i-th particle are represented as x,-�(t) and v,-�(t), respectively. The best 
previous position of the i-th particle is denoted as p,-�(t), and the best position found by 
the whole swarm is denoted as p,-\(t) (Hereafter, without loss of generality, the vectors p,-�(t) and  p,-\(t) are abbreviated as p,-� and p,-\, respectively). During a search process, 
the i-th particle changes its velocity and position according to the following equations: 

v��(t + 1) = w ∙ v��(t) + c
 ∙ r1�� ∙ ^p�� − x��(t)_ + c8 ∙ r2�� ∙ (p\� − x��(t)) (2.1) 

x��(t + 1) = x��(t) + v��(t + 1) (2.2) 

where w is the inertia weight, c
 and c8 are learning rates which are nonnegative 
constants, r1�� and r2�� are random numbers in the range [0, 1] [38]. The particle’s 

velocity on each dimension is clamped to the range [−v(ab, v(ab] to control excessive 
roaming of the particle. The algorithm stops when the p,-\ hits the global optimum with 

a predefined accuracy or when the algorithm runs for a maximum number of iterations. 

In this thesis, we use the above form of PSO due to its simplicity and efficiency 

compared with other PSO variants. 

CPSO algorithms have already been proposed by many researchers, with varying 

degrees of success. For example, in [36], the authors proposed a CPSO where the input 

vector is partitioned into several sequential sub-vectors, with each optimized 

cooperatively in its own swarm. In [39], the authors applied the CCGA [22]–[24] 

technique to PSO and proposed two CPSO models. One model, namely CPSO-Sc, is a 
direct application of CCGA technique to PSO, and the other, namely CPSO-Hc , 
combines the standard PSO with the CPSO-Sc model. In [28], the authors applied the 

random grouping adaptive weighting strategies of the DECC algorithm [31] to the 

CCPSO and proposed a cooperatively coevolving PSO algorithm. 

2.3.2  CPSO framework 

We propose a CPSO framework with statistical variable interdependence learning.  
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Compared with existing CPSO algorithms, the exclusive features of the proposed CPSO 

framework include the following. 

1. The sub-problems are overlapped, with each having a sub-problem core. 

2. Each sub-problem is optimized by means of a separate PSO. 

3. A global solution is used as shared memory, where the separate PSOs can take 

variables and post optimization results. 

Fig.2.4 is an illustrative example of the proposed framework. For the convenience of 

illustration, we assume that: S
 = {x), x
, x8}, S8 = {x
, x8, x�}, ∙∙∙, S)E
 = {x)E8, x)E
,x)}, S) = {x)E
, x), x
}. The key steps of the framework can be summarized as follows: 

1. Create a global solution c- randomly. 

2. Partition the variable set into n overlapping subsets S
, S8, ∙∙∙, S) . 
3. Set itr = 1 to start a new cycle. 
4. Optimize the variables in the subsets by means of separate PSOs; in the i-the 

PSO, the variables that do not appear in S� are kept constant (with their value 
taken from c-). 

5. Construct a new solution c-B  by taking and concatenating the optimized 

sub-problem cores. 

Fig. 2.4. Illustrative example for the CPSO-SL framework. 

 



Chapter 2: A cooperative particle swarm optimizer 

14 
 

6. Update the global solution c- by c-B. 
7. Output c-B as optimization result and stop if a maximum number of function 

evaluations (FEs) is reached, else, set itr = itr + 1, go to Step 4 for the next cycle. 
2.4  CPSO-SL behavior 

In this section, we conduct theoretical analysis to give deeper insight into the 

execution process of CPSO-SL and to guide better parameter selection. 

2.4.1  Separable and non-separable problems 

One important idea for the optimization problem is variable separability. The 

definition of separable and non-separable variables can be presented as follows. 

Definition 1.Definition 1.Definition 1.Definition 1. Given an optimization problem f(x,-), variable x� is said to be separable 
from variable x�, if for all the context vectors ∀c-=(∙∙∙, x�E
, −, x�G
,∙∙∙, x�E
, −, x�G
,∙∙∙) 
the following constraint is satisfied: ∀x�, x�B ∈ 3b4�, b5�6, (x� ≠ x�B) and ∀x� ∈ 3b4�, b5�6, 

if f(α,,-) ≤ f(β,-) 
then ∀x�B ∈ 3b4�, b5�6, f(α,,-B) ≤ f(β,-B) 

where α,,- = (∙∙∙, x�,∙∙∙, x�,∙∙∙), β,- = (∙∙∙, x�B,∙∙∙, x�,∙∙∙) α,,-′ = (∙∙∙, x�,∙∙∙, x�B,∙∙∙), β,-B = (∙∙∙, x�B,∙∙∙, x�B,∙∙∙) 
if the above constraint is not satisfied, variable x� is said to be non-separable from 

variable x�. 
Variable x�  is separable from variable x�  means that x�  is independent of x� . 

Variable x� is non-separable from variable x� means that the influence of x� on the 
objective function is affected by x�. Based on Definition 1, we provide the definition of 
separable and non-separable problems. 

Definition 2.Definition 2.Definition 2.Definition 2. An optimization problem f(x,-) is called a separable problem if ∀x�, x� ∈{x
, x8,∙∙∙, x)}(i ≠ j), and variables x� and x� are separable from each other. Otherwise, f(x,-) is a non-separable problem. 
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A separable problem is one wherein all of its variables are separable. On the other 

hand, a non-separable problem is one wherein some of its variables are interacted. 

2.4.2  Variable interdependencies and problem decomposition 

In a non-separable problem, interdependencies occur among some of its variables. 

The probability q�� for variable x� affected by x� can be defined as follows. 
Definition 3.Definition 3.Definition 3.Definition 3. Given an optimization problem f(x,-), the probability q�� for variable x� 
affected by x� is defined by: 

 q�� = P{f(α,,-B) > D(β,-B)} 
where (1) α,,- and β,- are identical solution vectors except for v�  values; (2) α,,- and β,- 
satisfy that f(α,,-) ≤ f(β,-); (3) α,,-B and β,-B are obtained by turning x� values of α,,- and β,- to x�B. 

The CPSO-SL partitions the variable set into overlapping subsets. Each of the 

subset is optimized by means of a separate PSO. The following theorem shows the 

probability for the separate PSO obtaining the global optimal variable values. 

Theorem 1.Theorem 1.Theorem 1.Theorem 1. Given an optimization problem f(x,-)  with global optimum solution x,-∗ = (x
∗ , x8∗ ∙∙∙, x)∗ ), suppose: 
1. S( = {x(g , x(h ∙∙∙, x(i} is a subset of variable set S; 
2. c- = (∙∙∙, x(jE
, −, x(jkg ,∙∙∙, x(iE
, −, x(iG
) is a context vector; 
3. y(g∗ , y(h∗ , y(i∗  are local optimal values of variables x(g , x(h ∙∙∙, x(i under context 

vector c-, 
then the probability for y(j∗  to be equal to the global optimal value x(j∗  is: 

   P{y(j∗ = x(j∗ }=∏ (1 − q(jn)n,(bo∉nq)  

Proof.Proof.Proof.Proof. Because x,-∗ is the global optimum solution, we have: f(x,-∗) ≤ f(x,-) (2.3) 

Form Eq. (2.3), it follows that: PLfJ∙∙∙, x(j∗ ,∙∙∙, xr∗,∙∙∙K ≤ fJ∙∙∙, x(j ,∙∙∙, xr,∙∙∙KM = 1 (2.4) 

Suppose xr ∉ S( and change xr∗ to xr whose value is equal to that in c-, we have: PLfJ∙∙∙, x(j∗ ,∙∙∙, xr,∙∙∙K ≤ fJ∙∙∙, x(j ,∙∙∙, xr,∙∙∙KM = 1 − q(jr (2.5) 

This process is repeated until all the variables xr(xr ∉ S() are exhausted, then: 
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PLfJ∙∙∙, x(g∗ ,∙∙∙, x(j∗ ,∙∙∙, x(i∗ ,∙∙∙K ≤ fJ∙∙∙, x(g∗ ,∙∙∙, x(j ,∙∙∙, x(i∗ ,∙∙∙KM = s (1 − q(jr)n,(bo∉nq)  (2.6) 

Because y(g∗ , y(h∗ , y(i∗  are local optimal values of variables x(g , x(h ∙∙∙, x(i, we have: PLfJ∙∙∙, y(g∗ ,∙∙∙, y(j∗ ,∙∙∙, y(i∗ ,∙∙∙K ≤ fJ∙∙∙, y(g∗ ,∙∙∙, y(j ,∙∙∙, y(i∗ ,∙∙∙KM = 1 (2.7) 

Combining Eqs. (2.6) and (2.7), we have: 

   P{y(j∗ = x(j∗ }=∏ (1 − q(jn)n,(bo∉nq) ,  

This completes the proof.■ 

Theorem 1 can be explained intuitively as follows. Given a subset S( of the variable 
set S, y(g∗ , y(h∗ , y(i∗  are local optimal values of variables x(g , x(h ∙∙∙, x(i . For each 
variable x(j , the lower degree it is affected by variables outside S( , the higher 

probability y(j∗  equals to the global optimal value x(j∗ . An extreme case is that in a 

separable problem, for each pair of variables x� and x�, q�� = 0. If y�∗ is a local optimal 

value of variable x�, then P{y�∗ = x�∗} = 1. 
Theorem 1 implies that to optimize variable x�, the variables that highly affected x� 

should be grouped into one subset S(j  so that the probability P{y(j∗ = x(j∗ }  is 
maximized. The CPSO-SL has been designed according to this principle. It firstly 

quantifies the degree of interdependence d�� by the statistical variable interdependence 
learning model. The obtained degree of interdependence d�� is a statistical estimator of 

probability q��, i.e., d�� = qt ��. Following this, it partitions an n dimensional problem into 

n overlapping sub-problems, where each contains variables affecting the sub-problem 

core with degree higher than a predefined threshold r. However, it is possible that the 

probability P{y�∗ = x�∗} decreases as the problem dimension increases. The CPSP-SL can 

still be an effective approach for such a problem, since it performs the optimization task 

by iteratively running cooperative PSOs. The following theorem shows the feasibility of 

the CPSO-SL framework. 

Theorem 2.Theorem 2.Theorem 2.Theorem 2. Given an optimization problem f(x,-)  with global optimum solution x,-∗ = {x
∗ , x8∗ ,∙∙∙, x)∗ }, let z-∗(t) = (z
∗(t), z8∗(t),∙∙∙, z)∗ (t)) be the global solution of the CPSO-SL 
at the t-th iteration, let P�(t) = P{z�(t)∗ = x�∗}, if the local optimum solutions of the 

sub-problems can always be found by their corresponding PSOs, then: 
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1. At the 1st iteration, t = 1: 
P�(t) = s (1 − q��)�,(bv∉nj)  

2. At the t-th iteration, t > 1: 
P�(t) = s 31 − q�� + q��P�(t − 1)6�,(bv∉nj)  

ProofProofProofProof....    

1. At the 1st iteration, in the i-th sub-problem, y�g∗ (1), y�h∗ (1),∙∙∙, y�i∗ (1) are local 
optimal values of variables x�g , x�h ,∙∙∙, x�i obtained by PSO, according to Theorem 

1, we have: 

P{y�∗(1) = x�∗} = s (1 − q��)�,(bv∉nj) , (2.8) 

according to Step 5 of CPSO-SL, y�∗(1) = z�∗(1), then: 
P�(1) = s (1 − q��)�,(bv∉nj) , (2.9) 

2. At the t-th iteration, in the i-th sub-problem: PLfJ⋅⋅⋅, x�∗,⋅⋅⋅, x�∗,⋅⋅⋅K ≤ fJ⋅⋅⋅, x�,⋅⋅⋅, x�∗,⋅⋅⋅KM = 1 (2.10) 

the global solution of CPSO-SL is c- = (z
∗(t − 1),⋅⋅⋅, z)∗ (t − 1)), suppose x� ∉ S� , 
turning x�∗ to z�∗(t − 1), then the conditional probability satisfies that: PLfJ⋅⋅⋅, x�∗,⋅⋅⋅, z�∗(t − 1),⋅⋅⋅K ≤ fJ⋅⋅⋅, x�,⋅⋅⋅, z�∗(t − 1),⋅⋅⋅K|z�∗(t − 1) = x�∗M = 1 (2.11) 

and PLfJ⋅⋅⋅, x�∗,⋅⋅⋅, z�∗(t − 1),⋅⋅⋅K ≤ fJ⋅⋅⋅, x�,⋅⋅⋅, z�∗(t − 1),⋅⋅⋅K|z�∗(t − 1) ≠ x�∗M = 1 − q��. (2.12) 

Combining Eqs. (2.11) and (2.12), we have: PLfJ⋅⋅⋅, x�∗,⋅⋅⋅, z�∗(t − 1),⋅⋅⋅K ≤ fJ⋅⋅⋅, x�,⋅⋅⋅, z�∗(t − 1),⋅⋅⋅KM
= P�(t − 1) + J1 − q��K ^1 − P�(t − 1)_ = 1 − q�� + q��P�(t − 1). (2.13) 

This process is repeated until all the variables x�, (x� ∉ S�) are exhausted, then: PLfJ⋅⋅⋅, x�g∗ ,⋅⋅⋅, x�∗,⋅⋅⋅, x�i∗ ,⋅⋅⋅K ≤ fJ⋅⋅⋅, x�g∗ ,⋅⋅⋅, x�,⋅⋅⋅, x�i∗ ,⋅⋅⋅KM = s 31 − q�� + q��P�(t − 1)6�,(bv∉nj)  (2.14) 

3. Because y�g∗ (t), y�h∗ (t),⋅⋅⋅, y�i∗ (t)  are local optimal values of variables x�g , x�h ,∙∙∙, x�i  obtained by PSO, we have: 
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fJ⋅⋅⋅, y�g∗ (t),⋅⋅⋅, y�∗(t),⋅⋅⋅, x�i∗ (t),⋅⋅⋅K ≤ fJ⋅⋅⋅, y�g∗ (t),⋅⋅⋅, y�(t),⋅⋅⋅, y�i∗ (t),⋅⋅⋅K (2.15) 

Combining Eqs. 2.14 and 2.15, we have; 

P{y�∗(t) = x�∗} = s 31 − q�� + q��P�(t − 1)6�,(bv∉nj) . (2.16) 

Because the local optimum solutions of the sub-problems can always be found by 

their corresponding PSOs, according to Step 5 of CPSO-SL, y�∗(t) = z�∗(t), it 
follows that: 

P�(t) = s 31 − q�� + q��P�(t − 1)6�,(bv∉nj) . (2.17) 

This completes the proof. ■ 

From Theorem 2, it can be seen that progressions {P
(t)}, {P8(t)},⋅⋅⋅, {P)(t)}have 
Markov property, and will eventually converge to stable values. The probability for the 

CPSO-SL locating the global optimum solution increases as the iteration of algorithm 

increases. The prerequisite is that the local optimum solutions of the sub-problems can 

always be found by their corresponding PSOs. 

2.4.3  Selection of threshold value r 

The statistical decomposition method partitions the problem into overlapping 

sub-problems. Different threshold values yield different decomposition results on the 

same problem, and thus yield different optimization results. As can be seen from 

Theorem 2, progressions {P
(t)}, {P8(t)}, ∙∙∙, {P)(t)} are nondecreasing, and will 
converge to stable values. To illustrate the effect of parameter r on these values, in this 

subsection, six nonseparable optimization problems are simulated. They are simulated 

as follows: the problem dimensions are set to 20, 50, 100, 200, 500, 1000, respectively. 

Within each problem, the probability q�� for each pair of variables is simulated by 

random numbers in the range [0, 1]. Fig.2.5 plots the average stable values of 

progressions against different threshold values. The abscissa is the r values and the 

vertical axis is the average value of the stable values of progressions {P
(t)}, {P8(t)}, ∙∙∙, {P)(t)}, whose values are computed by the iterative functions in Theorem 2. The stable  
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values are obtained when |P�(t) − P�(t − 1)| < z. From Fig.2.5, we can observe that r can 

influence the probability for CPSO-SL obtaining the global optimal solution. When r is 

Fig. 2.5 Probabilities for CPSO-SL obtaining global optimum solutions of six 

simulated problems with different threshold r. 
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less than a turning point, the algorithm can converge to the global optimum solution 

with probability one. When r is larger than the turning point, the probability will 

decreases as r increases.  

The parameter r makes a tradeoff between the single PSOs and probability for 

CPSO-SL obtaining the global optimum solution. With a lower r value, more variables 

are allocated to each sub-problem, making it more difficult for the single PSOs to obtain 

the local optimal solutions. On the other hand, with a higher r value, the probability for 

CPSO-SL obtaining the global optimum solution may decrease. In our experiment, we 

propose an iterative method to select the parameter r value, which is described as 

follows. Firstly, set r = 0, and then calculate average value Pa{\ of the stable points of 
progressions {P
(t)} , {P8(t)} , ∙∙∙ , {P)(t)}  by the iterative function in Theorem 2. If Pa{\ = 1, then set r = r + d, compute Pa{\ again. The r value is set to the last value that 
makes Pa{\=1. In the experiment, the parameter d is taken as 0.02. 

2.4.4 Potential search space 

Consider an optimization problem with solution space E = 3b4
, b5
6 × 3b48, b586 ×∙∙∙×3b4), b5)6, the potential search space is ∏ b5� − b4�)�|
 . The volume of the solution space 

increases exponentially as the number of dimension increases. In the proposed 

algorithm, the n-dimensional problem is partitioned into several lower dimensional 

sub-problems, in the i-th sub-problem, the potential search space is ∑ (b5� − b4�)�∈nj . 

Then the total solution space is ∑ ∏ (b5� − b4�)�∈nj)�|
 . The above analysis indicates that 

the proposed algorithm reduces the volume of the solution from ∏ b5� − b4�)�|
  to ∑ ∏ (b5� − b4�)�∈nj)�|
 . 

2.5  Experimental studies 

2.5.1  Test functions 

In this section, we conduct numerical experiments to test the performance of the 

proposed CPSO-SL. In the experiment, we select 10 classical benchmark functions [19], 

10 rotated classical benchmark functions, and 10 CEC2005 benchmark functions [40]. 

All functions are tested on 500 and 1000 dimensions. Table 2.1 lists the classical 
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benchmarks functions and their key properties. Some of these functions are unimodal 

functions, which are relatively easy to optimize, and some are multimodal functions, 

which have many local optima and are relatively hard to optimize. In order to introduce 

variable interactions, thereby making them non-separable, the selected classical 

benchmark functions are further rotated. To rotate a function, firstly, an orthogonal 

matrix M is created. The input vector x,- is left multiplied by matrix M to produce 

rotated vector y,- = M ∗ x,-. Then, the vector y,- is used as an input to calculate the  

Table 2.1  

Classical benchmark functions ( n = problem dimension,  S = solution space,  f(�) =minimum function value). 
Description Test function S f(�) 
Sphere f
(x) = ∑ x�8)�|
   3−100,1006) 0 

Schwefel f8(x) = ∑ |x�|)�|
 + ∏ |x�|)�|
   3−10,106) 0 

Step f�(x) = ∑ (�x� + 0.5�)8)�|
   3−100,1006) 0 

Generalized 

Rastrigin 
f
(x) = ∑ 3x�8 − 10 cos(2πx�) + 106)�|
   3−5.12,5.126) 0 

Generalized Penalizeda 
f�(x) = �) {10sin8(πy
) + ∑ (y� − 1)831 + 10sin8(πy�G
)6 +)E
�|
(y)E
)8} + ∑ u(x�, 5,100,4))�|
   

3−50,506) 0 

Generalized Penalizeda 
f�(x) =�
� {10sin8(3πx
) + ∑ (x� − 1)831 + 10sin8(3πx�G
)6 +)E
�|
(x) − 1)8 (1 + sin8(2πx)))} + ∑ u(x�, 5,100,4))�|
   

3−50,506) 0 

Quardirc f�(x) = ∑ (∑ x���|
 )8)�|
   3−100,1006) 0 

Rosenbrock f�(x) = ∑ 3100Jx�G
 − x�8K8 + (x� − 1)8)E
�|
 ] 3−30,306) 0 

Ackley 
f�(x) = −20 exp �−0.2�
) ∑ x�8)�|
 � −
exp (
) ∑ cos (2πx�))� )+20+e 3−32,326) 0 

Generalized 

Griewank 
f
�(x) = 

��� ∑ x�8)�|
 − ∏ cos (bj√�))�|
 + 1  3−600,6006) 0 

aDetailed descriptions of these functions are given in the appendix. 
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objective function. In this thesis, the orthogonal matrix is created by Salomon’s method 

[41]. The CEC2005 Special Session has 25 benchmark functions. Many of these 

functions are shifted, rotated, expanded, and combined variants of the classical 

benchmark functions. The properties and the formulas of these functions can be seen in 

[40]. We use 10 representative functions in our experiment, including two unimodal 

functions (f����
, f����8), four basic multimodal functions (f�����, f�����, f�����, f�����), one 
expanded function (f���
�), and three composition functions (f���
�, f���
�, f���8
). Among 

the ten selected functions, three are separable (f����
 , f����8 , f����� ) and seven are 
non-separable according to Definition 2. As an example, Fig.2.6 shows the two 

dimensional surface landscapes of f
, rotated f
, f���
�, and f���
�. 

Fig. 2.6. Surface landscapes of f
, rotated f
, f���
� and f���
�. 
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2.5.2  Experimental settings 

Parameter settings are crucial for the performance of the CPSO-SL. In the variable 

interdependence learning stage, the total number of statistical samples N (Line 3 of 

Fig.2.2) is set to 50. In the decomposition stage, the threshold value r for the 

decomposition method is set according to the method described in Section 4.3. The next 

decision is on the parameters used in the main framework of CPSO-SL. Within each 

separate PSO, the parameters are taken as w = 0.7298, c
 = 1.4961 and c8 = 1.4961 
c1 = 1.49618, which are selected through empirical study in [42]; the population size is 

taken as 50. 

We use the number of function evaluations (FEs) to measure the computational 

efforts of the proposed algorithm. In the variable interdependence learning stage, the 

number of FEs is fixed. For an n dimensional problem, the number of FEs is n × n ×50 × 4, where 50 is the number of statistical samples and 4 is the number of FEs within 

each evaluation. Thus, the computational efforts incurred by the variable 

interdependence learning are 5.0e + 07, 2.0e + 08 FEs for 500 and 1000 dimensional 

problems, respectively. In the optimization stage, the algorithm stops when a maximum 

number of FEs is reached. In our experiment, the maximum numbers of FEs are set to 1.0e + 08, 2.0e+08 for 500 and 1000 dimensional problems, respectively. Thus, the total 

numbers of FEs are 1.5e + 08, 4.0e + 08  for 500 and 1000 dimensional problems, 

respectively. 

In order to test the stability of the CPSO-SL, the experiment on each benchmark 

function is repeated 30 times. 

2.5.3  Existing algorithms for comparison 

For the purpose of comparison, we select the following three algorithms which have 

been applied for all or some of the selected test functions. 

1. Fast evolutionary programming with cooperative co-evolution (FEPCC) [25]: 

FEPCC divides the system into many modules, and then repeatedly evolves each 

module separately and combines them to form the whole system. 

2. Self adaptive neighborhood search differential evolution with dynamic grouping 
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cooperative co-evolution (DECC-G) [31]: in DECC-G, a dynamic grouping and 

adaptive weighting strategy is proposed, and the proposed strategy is integrated 

to differential cooperative co-evolution algorithm for optimization. 

3. Cooperatively Coevolving Particle Swarm Optimization (CCPSO) [28]: CCPSO 

adopts a similar grouping and weighting strategy of DECC-G, and integrates it 

into PSO algorithm. 

All of the above three algorithms are cooperative evolutionary algorithms. They 

adopt the divide-and-conquer strategy, i.e., decompose the problem into several 

sub-problems and optimize the sub-problems cooperatively. These algorithms have been 

shown to be successful and can find suitable solutions, especially for large scale 

optimization problems. Hence, a comparison with these algorithms will demonstrate the 

performance of the proposed CPSO-SL, and will show whether it is better or worse than 

other algorithms. 

To test whether the statistical decomposition technique can improve the CPSO, the 

CPSO that directly applies Potter’s technique [24] is also included for comparison. In 

the CPSO, only one variable is optimized at a time. That is, each subcomponent consists 

of a single variable. The parameters of CPSO are taken as w = 0.7298, c
 = 1.4961, c8 = 1.4968, population size pop = 50, and maximum numbers of FEs are taken as 1.0e + 08, 2.0e + 08 for 500 and 1000 dimensional problems, respectively. 

2.5.4  Simulated results and discussions 

2.5.4.1  Results for classical benchmark functions 

This subsection aims to show the results of CPSO-SL for classical benchmark 

functions. Table 2.2 presents the results from 30 independent runs of CPSO-SL, CPSO 

and the results of studies using FEPCC, DECC-G and CCPSO. “Mean” represents the 

average value of the results obtained using the algorithm with respect to the optimum 

value of the benchmark functions. “Var” represents the standard deviation of the results. 

“FEs-CP” represents the computational effort comparison between the CPSO-SL and 

the compared algorithm, whose value is obtained by dividing the number of FEs 

incurred by the CPSOSL with the number of FEs incurred by the compared algorithm.  
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Table 2.2 

Results of CPSO-SL and Other Algorithms for Classical Benchmark Functions (to be 

continued). 

Func Dim 
CPSO-SL CPSO FEPCC 

Mean Var FEs-CP Mean Var FEs-CP Mean Var 

f
 500 4.84e-30 4.68e-30 1.5 4.95e-30§ 4.06e-30 60 4.90e-08† 1.20e-07 

1000 4.15e-29 1.29e-29 2 3.98e-29§ 2.70e-29 80 5.40e-08† 2.80e-08 

f8 500 3.14e-18 9.68e-19 1.5 3.25e-18§ 1.02e-18 60 1.30e-03† 3.00e-03 

1000 7.08e-18 1.82e-18 2 7.65e-18§ 1.37e-18 80 2.60e-03† 3.20e-03 

f� 500 0.00e-00 0.00e-00 1.5 0.00e-00§ 0.00e-00 60 0.00e-00§ 0.00e-00 

1000 0.00e-00 0.00e-00 2 0.00e-00§ 0.00e-00 80 0.00e-00§ 0.00e-00 

f
 500 0.00e-00 0.00e-00 1.5 0.00e-00§ 0.00e-00 60 1.43e-01† 2.80e-01 

1000 0.00e-00 0.00e-00 2 0.00e-00§ 0.00e-00 80 3.13e-01† 4.00e-01 

f� 500 6.49e-25 2.24e-25 1.5 6.89e-25§ 2.58e-25 - - - 

1000 6.02e-25 2.43e-25 2 7.13e-25† 2.34e-25 - - - 

f� 500 1.00e-22 1.36e-22 1.5 1.52e-22† 2.32e-22 - - - 

1000 5.07e-22 2.73e-22 2 4.62e-22‡ 8.08e-22 - - - 

f� 500 1.67e-27 2.09e-27 1.5 1.29e-27‡ 1.49e-27 - - - 

1000 5.08e-27 2.45e-27 2 6.06e-27† 4.90e-27 - - - 

f� 500 2.79e-05 2.01e-05 1.5 1.28e01† 1.60e01 - - - 

1000 1.47e-01 9.30e-02 2 1.03e03† 2.06e03 - - - 

f� 500 8.46e-16 1.45e-16 1.5 8.06e-16§ 1.26e-16 60 5.70e-04† 3.90e-05 

1000 8.03e-16 1.60e-16 2 9.28e-16† 1.86e-16 80 9.50e-04† 3.40e-05 

f
� 500 7.40e-17 9.06e-17 1.5 9.25e-17† 8.36e-17 60 2.90e-02† 8.50e-02 

1000 2.59e-16 6.40e-17 2 1.94e-16‡ 1.06e-16 80 2.50e-02† 1.14e-01 

 

To determine the statistical differences between the results obtained by the CPSO-SL 

and the compared algorithms, the t-test results are also provided. ‘†’ indicates that the  
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Table 2.2 

Results of CPSO-SL and Other Algorithms for Classical Benchmark 

Functions (continued). 

Func Dim 
CPSO-SL DECC-G CCPSO 

Mean Var FEs-CP Mean FEs-CP Mean Var 

f
 500 4.84e-30 4.68e-30 60 6.33e-27† - - - 

1000 4.15e-29 1.29e-29 80 2.17e-25† - - - 

f8 500 3.14e-18 9.68e-19 60 5.95e-15† - - - 

1000 7.08e-18 1.82e-18 80 5.37e-14† - - - 

f� 500 0.00e-00 0.00e-00 60 0.00e-00§ - - - 

1000 0.00e-00 0.00e-00 80 0.00e-00§ - - - 

f
 500 0.00e-00 0.00e-00 60 0.00e-00 60 0.00e-00 0.00e-00 

1000 0.00e-00 0.00e-00 80 3.55e-16† 80 3.63e-03 1.79e-02 

f� 500 6.49e-25 2.24e-25 60 4.29e-21† - - - 

1000 6.02e-25 2.43e-25 80 6.89e-25† - - - 

f� 500 1.00e-22 1.36e-22 60 5.34e-18† - - - 

1000 5.07e-22 2.73e-22 80 2.55e-21† - - - 

f� 500 1.67e-27 2.09e-27 60 6.17e-25† 60 5.35e-00 2.41e01 

1000 5.08e-27 2.45e-27 80 3.17e-23† 80 3.49e02 1.56e03 

f� 500 2.79e-05 2.01e-05 60 4.92e02† 60 4.15e02 1.85e02 

1000 1.47e-01 9.30e-02 80 9.87e02† 80 1.16e03 8.52e02 

f� 500 8.46e-16 1.45e-16 60 9.13e-14† 60 1.34e-09 6.70e-09 

1000 8.03e-16 1.60e-16 80 2.22e-13† 80 1.91e-01 2.60e-01 

f
� 500 7.40e-17 9.06e-17 60 4.40e-16† 60 3.55e-17 5.29e-17 

1000 2.59e-16 6.40e-17 80 1.01e-15† 80 2.80e-16 4.79e-16 

 

results of the two algorithms are statistically different with 95% certainty and that 

CPSO-SL is better. ‘‡’ indicates that the results of the two algorithms are statistically 

different with 95% certainty and that the compared algorithm is better. ‘§’ indicates  
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Fig. 2.7. Bands of function values of CPSO-SL and CPSO with 95% confidence 

interval for solutions of functions f
, f� and f�. The results were obtained from 30 

independent runs of the algorithms. The abscissa is the number of FEs and the 

vertical axis is the objective function value. 
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that the results are not statistically different. For the algorithm DECC-G, because no 

variances have been reported in the literature, the results are compared with the mean 

values. ‘†’ indicates that CPSO-SL is better. ‘‡’ indicates that DECC-G is better. ‘§’ 

indicates that the two algorithms are the same. For the algorithms compared, not all 

results of functions are reported, so for those functions without reported results, their 

corresponding comparison values are marked with ‘-’. Fig.2.7 is a plot of the bands of 

function values of CPSO-SL and CPSO with 95% confidence interval for solutions of 

functions f
, f� and f�. The abscissa is the number of function evaluations and the 

vertical axis is the objective function value. The confidence intervals of the results 

obtained by the two algorithms are computed using the bootstrap based method 

described in [43]. 

From Table 2.2, it can be seen that CPSO-SL can obtain accuracy of 0.1 for all 

functions. It also can be seen that CPSO-SL and CPSO can obtain almost the same 

results for functions f
 − f�, f� and f
�. For the Rosenbrock function f�, CPSO-SL 
obtains accuracy of 0.1, while CPSO obtains accuracy of 10. The computational efforts of 

CPSO-SL are 1.5 and 2 times as intensive as those of CPSO for 500 and 1000 

dimensional problems, respectively. From Fig.2.7, it can be seen that the curves of the 

two algorithms have the same shape for functions f
 and f�. For function f�, both 
algorithms improve the solutions steadily; however, CPSO-SL generally obtains better 

results than CPSO. Compared with FEPCC, for all the compared functions, CPSO-SL 

obtains accuracy of 10E
�, while FEPCC obtains accuracy of 0.1. Among the compared 

algorithms, DECC-G yields the best results. CPSO-SL obtains better results than 

DECC-G for 17 out of the 20 functions. It is worth noting that CPSO-SL can obtain best 

mean values of 2.79 × 10E� and 1.47 × 10E
 for the 500 and 1000 dimensional 

Rosenbrock function f�, respectively, while DECC-G can obtain best mean values of 4.92 × 108 and 9.87 × 108, respectively. Compared with CCPSO, CPSO-SL obtains 

accuracy of 10E8� and 10E
 for functions f� and f�, respectively, while CCPSO obtains 
accuracy of 108 and 10�, respectively. The computational efforts of CPSO-SL are 60 

and 80 times as intensive as those of FEPCC, DECC-G and CCPSO for 500 and 1000  
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Table 2.3 

Results of CPSO-SL and Other Algorithms for Rotated Classical Benchmark Functions. 

Func Dim 
CPSO-SL CPSO CCPSO 

Mean Var FEs-CP Mean Var FEs-CP Mean Var 

f
 500 1.11e-29 2.05e-29 1.5 8.52e-30‡ 8.62e-30 - - - 

1000 7.58e-30 5.91e-30 2 3.51e-29‡ 7.14e-29 - - - 

f8 500 1.12e-06 1.68e-06 1.5 8.90e01† 8.77e01 - - - 

1000 4.34e-06 8.33e-05 2 3.50e02† 2.02e02 - - - 

f� 500 0.00e-00 0.00e-00 1.5 0.00e-00§ 0.00e-00 - - - 

1000 0.00e-00 0.00e-00 2 0.00e-00§ 0.00e-00 - - - 

f
 500 4.03e-01 3.46e-00 1.5 2.18e03† 4.29e02 60 0.00e-00‡ 0.00e-00 

1000 6.85e-01 1.74e-01 2 5.16e03† 1.28e03 80 5.69e-01‡ 2.65e-00 

f� 500 9.41e-15 1.56e-14 1.5 1.09e-00† 3.77e-00 - - - 

1000 2.24e-15 1.22e-15 2 1.40e01† 1.67e01 - - - 

f� 500 5.87e-12 1.31e-11 1.5 5.83e-00† 6.73e-00 - - - 

1000 1.05e-09 1.99e-09 2 6.85e01† 1.74e01 - - - 

f� 500 5.73e-06 1.10e-05 1.5 2.18e03† 4.07e03 60 7.66e01† 1.57e02 

1000 4.83e-05 1.07e-04 2 1.40e04† 1.67e04 80 3.55e03† 4.80e03 

f� 500 1.78e-02 2.69e-02 1.5 1.32e03† 1.40e03 60 4.99e02† 6.11e02 

1000 5.06e-02 7.03e-02 2 6.02e03† 6.37e03 80 9.98e02† 6.14e-02 

f� 500 2.53e-09 8.47e-10 1.5 2.54e-00† 6.13e-01 60 8.69e-15‡ 3.51e-15 

1000 3.16e-09 1.22e-09 2 2.83e-00† 1.01e-00 80 1.49e-10‡ 5.46e-10 

f
� 500 1.22e-15 7.65e-16 1.5 6.36e-01† 8.71e-01 60 4.44e-18 2.22e-17 

1000 1.63e-15 1.28e-15 2 5.37e-01† 1.20e-00 80 7.97e-13† 3.64e-12 

 

dimensional problems, respectively. 

2.5.4.2  Results for rotated classical benchmark functions 

This subsection aims to show the results of CPSO-SL for rotated classical 

benchmark functions. The experiments that were conducted on functions f
 − f
� are  
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Fig. 2.8. Bands of function values of CPSO-SL and CPSO with 95% confidence 

interval for solutions of rotated functions f
, f� and f�. The results were obtained 
from 30 independent runs of the algorithms. The abscissa is the number of FEs and 

the vertical axis is the objective function value. 
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Table 2.4 

Results of CPSO-SL and other algorithms for CEC2005 benchmark functions. 

Func Dim 
CPSO-SL CPSO DECC-G 

Mean Var FEs-CP Mean Var FEs-CP Mean 

f����
 500 3.67e-12 6.92e-13 1.5 3.22e-12§ 8.52e-13 60 3.71e-13† 

1000 9.28e-12 2.29e-12 2 7.41e-12‡ 2.96e-12 80 6.84e-13‡ 

f����8 500 2.95e-09 8.32e-10 1.5 6.44e-09† 2.98e-09 - - 

1000 5.45e-08 3.15e-08 2 5.54e-08§ 5.79e-08 - - 

f����� 500 5.28e-02 8.07e-02 1.5 2.26e02† 1.87e02 60 1.56e03† 

1000 3.30e-02 8.61e-02 2 2.96e02† 4.43e03 80 2.22e03† 

f����� 500 2.96e-13 1.28e-13 1.5 1.38e-01† 3.08e-01 - - 

1000 1.06e-12 4.99e-13 2 1.57e-00† 2.35e-00 - - 

f����� 500 7.31e-01 8.60e-01 1.5 1.95e01† 5.75e-00 60 2.16e01† 

1000 3.42e-00 1.13e-00 2 2.14e01† 3.11e-01 80 2.16e01† 

f����� 500 3.64e-12 1.12e-12 1.5 2.94e-12‡ 6.71e-13 60 4.50e02† 

1000 6.88e-12 1.55e-12 2 6.94e-12§ 1.82e-12 80 6.32e02† 

f���
� 500 1.42e-12 8.23e-13 1.5 4.33e02† 1.43e02 60 2.09e02† 

1000 1.23e-10 5.36e-10 2 9.43e02† 2.66e02 80 3.56e02† 

f���
� 500 5.97e-04 1.10e-03 1.5 6.52e-01† 1.24e-01 - - 

1000 1.43e-02 1.72e-02 2 6.70e-01† 1.47e-01 - - 

f���
� 500 5.97e-04 1.10e-03 1.5 7.24e-01† 7.73e-02 - - 

1000 4.22e-02 6.01e-01 2 7.78e-01† 8.35e-02 - - 

f���8
 500 3.06e-02 6.83e-02 1.5 1.18e-01† 8.14e-02 - - 

1000 5.03e-02 7.22e-02 2 1.92e-01† 6.53e-02 - - 

 

repeated on rotated functions f
 − f
�  Table 2.3 presents the results from 30 

independent runs of CPSO-SL, CPSO and the results of studies using CCPSO. The item 

abbreviations of Table 2.3 are the same as those in Table 2.2. For the algorithms FEPCC  
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Fig. 2.9. Bands of function values of CPSO-SL and CPSO with 95% confidence 

interval for solutions of functions f�����, f���
� and f���
�. The results were obtained 
from 30 independent runs of the algorithms. The abscissa is the number of FEs and 

the vertical axis is the objective function value. 
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and DECC-G, the results are not reported in the literatures, so they are not included in 

Table 2.3. Fig.2.8 is a plot of the bands of function values of CPSO-SL and CPSO with 

95% confidence interval for solutions of rotated functions f
, f� and f�. 
From Table 2.3, it can be seen that CPSO-SL can obtain better results than CPSO, 

except for the cases of f
 and f�. For rotated function f
, the results seem to be the 

same for both algorithms. This is because the rotated f
 is still a separable function 
according to Definition 2. And the decomposition method for CPSO-SL partitions the 

solution into single variables, which makes the two algorithms identical. For rotated 

function f�, both algorithms can obtain the optimum value. From Fig.2.8, it can be seen 

that for rotated function f
, no significant difference can be found between CPSO-SL 
and CPSO. For rotated functions f� and f�, CPSO-SL can approximate the optimum 

solution steadily during the search process; on the other hand, CPSO appeared to 

become trapped into pseudo optima. The computational efforts of CPSO-SL are 1.5 and 

2 times as intensive as those of CPSO for 500 and 1000 dimensional problems, 

respectively. Compared with CCPSO, it can be seen that CPSO-SL can obtain better 

results for 5 out of the 10 compared functions. For rotated function f
, CPSO-SL can 
obtain accuracy of 0.1, while CCPSO can obtain the optimum value for the 500 

dimensional problem, and obtain accuracy of 0.1 for the 1000 dimensional problem. 

Although the results of CPSO-SL are not as good as that of CCPSO for rotated functions f� and f
�, they are not deteriorated much since they can achieve accuracy of 10E�. The 
computational efforts of CPSO-SL are 60 and 80 times as intensive as those of CCPSO 

for 500 and 1000 dimensional problems, respectively. 

2.5.4.3  Results for CEC2005 benchmark functions 

This subsection aims to show the results of CPSO-SL for CEC2005 benchmark 

functions. The experiments that were conducted on classical benchmark functions are 

repeated on CEC2005 benchmark functions. Table 2.4 presented the results from 30 

independent runs of CPSO-SL, CPSO and the results of studies using DECC-G. The 

item abbreviations of Table 2.4 are the same as those in Table 2.2. For the algorithms 

FEPCC and CCPSO, the results are not reported in literatures, so they are not included 
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in Table 2.4. Fig.2.9 is a plot of the bands of function values of CPSO-SL and CPSO with 

95% confidence interval for solutions of f�����, f���
�, and f���
�. 
From Table 2.4, it can be seen that CPSO-SL can obtain better results than CPSO for 

all functions except for functions f����
, f����8 and f�����, for which the results seem to 

be the same. From Fig.2.9, it can be seen that CPSO-SL can improve the solutions 

steadily for functions f����� and f���
�. For function f���
�, CPSO-SL appeared to be 
trapped into pseudo optimal solution and escaped with the execution of the algorithm 

running. On the other hand, CPSO appeared to be unable to find the optimal solution. 

The computational efforts of CPSO-SL are 1.5 and 2 times as intensive as those of 

CPSO for 500 and 1000 dimensional problems, respectively. In comparison with 

DECC-G, it can be seen that CPSO-SL can obtain better results for 8 out of the 10 

compared functions. For function f����
, CPSO-SL obtains accuracy of 10E
8, while 
DECC-G obtains accuracy of 10E
�. The computational efforts of CPSO-SL are 60 and 

80 times as intensive as those of DECC-G for 500 and 1000 dimensional problems, 

respectively. 

2.5.4.4  Discussions 

The comparison results of CCPSO-SL on classical benchmark functions, rotated 

classical benchmark functions and CEC2005 benchmark functions can be summarized 

and explained as follows. 

1. On all the classical benchmark functions except for the Rosenbrock function f�, 
CPSO-SL and the compared algorithm can approximate the optimal values. On 

the Rosenbrock function f�,  CPSO-SL obtains accuracy of 0.1, while the 
compared algorithms appeared to become trapped into pseudo optimum. On 

some of the rotated classical benchmark functions (f
, f�, f�, f
�), CPSO-SL and 
the compared algorithms can approximate the optimal values. On some of the 

rotated classical benchmark functions (f8, f
 − f�), CPSO-SL can approximate the 

optimal solutions, while the compared algorithms appeared to become trapped 

into pseudo optimum. On some of the CEC2005 benchmark functions (f����
, f����8 , f����� ), CPSO-SL and the compared algorithms can approximate the 
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optimal values. On some of the CEC2005 benchmarks functions (f�����, f�����, f����� , f���
� , f���
� , f���
� , f���8
 ), CPSO-SL can approximate the optimal 

solutions, while the compared algorithms appeared to become trapped into 

pseudo optimum. 

2. The computational efforts of CPSO-SL are 1.5 and 2 times as intensive as those 

of CPSO and 60 and 80 times as intensive as those of FEPCC, DECC-G, CCPSO 

for 500 and 1000 dimensional problems, respectively. 

3. According to Definition 2, classical benchmark functions f
 − f�, f�, f
�, rotated 
classical benchmark functions f
, f�, and CEC2005 benchmark functions f����
, f����8, f����� are separable, while the reminding functions are non-separable. 

The simulated results indicate that CPSO-SL may perform well on separable 

functions, and that it maintains its stability on non-separable functions. However, the 

computational efforts of CPSO-SL are more intensive than those of the compared 

algorithms. This outcome can be referred to as the “no free lunch theorems” for 

optimization [44], i.e., “any elevated performance over one class of problems is offset by 

performance over another class”. There is a cost for CPSO-SL obtaining better results 

on non-separable problems, and the cost is the extra computational efforts on separable 

problems. The reason that we get such results is that we have no prior knowledge of the 

problem. In CPSO-SL, the statistical variable interdependence learning model adds an 

extra computational burden to the algorithm. Moreover, due to the nature of the 

cooperative optimization framework, the CPSO-SL requires more intensive 

computational efforts than the compared algorithms during the optimization stage. 

Therefore it can be assumed that it is better to apply CPSO-SL when the problems are 

non-separable and the quality of the final results is of more concerned. The experiment 

here serves as an illustration of the usefulness of the method and provides a guideline 

for researchers when designing related algorithms. 

2.6.  Conclusion 

To tackle large scale optimization problems, one of the most common ways is to adopt 

the divide-and-conquer strategy. In this chapter, we aimed at proposing a 
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divide-and-conquer algorithm. In the empirical and application aspect, we proposed a 

statistical model to learn the variable interdependencies among variables. With the 

variable interdependencies, a decomposition method was proposed to partition the 

problem into sub-problems such that the variable interdependencies in different 

sub-problems were minimized. Then the sub-problems were optimized by a CPSO 

framework cooperatively by putting and taking information from the global solution 

vector. In the theoretical aspect, firstly, we proposed and proved a theorem that explains 

the execution process of the proposed algorithm. From the study, we found that the 

probability for a local optimum solution of a subset being global optimum values is 

associated with degree of interdependencies of its variables with variables outside the 

subset. Secondly, we proposed and proved a theorem that explains why and how the 

proposed algorithm works. From the theorem, we could design a method that can be 

used to select parameter r, which determined the final results of the decomposition 

method. The performance of the proposed algorithm was tested on benchmarks from 

different data sets. Simulated results showed that CPSO-SL could find the optimal 

solution for most of the selected test functions. 

The main contributions of this chapter include proposing the variable 

interdependence learning model, the problem decomposition method, and the CPSO 

framework. The proposed algorithm, i.e., CPSO-SL is provided to illustrate its 

practicality and effectiveness for numerical optimization. 
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Chapter 3: A support vector and K-Means based 

clustering algorithm 

3.1  Introduction 

Data clustering is a problem of grouping a set of data into clusters so that the data in 

the same cluster are analogous in properties. It can be found in many fields, such as 

engineering, computer sciences, life and medical sciences, earth sciences, social sciences, 

and economics [45]. The support vector clustering (SVC) algorithm, proposed by 

Ben-Hur et. al [6]-[8], is a recently developed unsupervised learning method inspired by 

the support vector machine (SVM) [9]. In SVC, data points are mapped from the original 

space to a higher dimensional feature space by means of a Gaussian kernel. In the 

feature space, the algorithm seeks the smallest sphere that encloses the images of the 

data points. When the sphere is mapped back to the original space, it is separated into 

several contours with each enclosing a separate cluster of data points. 

As a kernel-based algorithm, the SVC has many advantages. It can determine the 

system topological structure without prior knowledge with respect to the system itself, 

delineate cluster boundaries of arbitrary shapes other than hyper-ellipsoid and 

hyper-sphere, and deal with outliers by employing a soft margin constant which does 

not require that the sphere enclose all the data points. Due to these advantages, the 

SVC has attracted a high level of interest and many variants have been derived to 

improve its performance. In greater detail, the method presented in [46] extended the 

SVC to an adaptive cell growing model, which maps data points to a higher dimension 

feature space through a desired kernel function. In [47], a spatial chunking algorithm is 

proposed to speed up the SVC algorithm for large scale data sets. In [48], a cluster 

labeling method for SVC is developed based on some of the invariant topological 

properties of a trained kernel radius function. In [49], the authors present a kernel 

method for clustering inspired by the classical K-Means algorithm in which each cluster 

is iteratively refined using a one-class support vector machine. In [50], a topological and 
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dynamical characterization of cluster structures described by the support vector 

clustering is developed. In [51], the authors developed a cluster validity measure with 

outlier detection for the SVC algorithm. 

A review of the above literatures suggests that research on the SVC algorithms has 

reached a good level of maturation. However, as far as SVC design, there are still some 

problems requiring further consideration and investigation. We summarize the main 

problems as follows. 

1. The most widely used method for the training of SVC is the sequential minimal 

optimization (SMO) [52]. Benchmarks reported in [52] show that the time 

complexity of SMO is O(N8). This implies that the problem of computational 

complexity may become intensive as the number of data points increases under 

real-world problems. 

2. The standard deviation of the Gaussian kernel σ plays a crucial role in the 
clustering results. It controls the shapes of the enclosing contours in the data 

space. How to configure it suitably so that the SVC is capable of obtaining a 

desired cluster result for a given data set is an open problem for SVC designers. 

3. The algorithm is sensitive to outliers although a soft margin constant C is 

employed. If an outlier lies close to the cluster boundary, it will distort the cluster 

shapes, and make the algorithm fail to obtain the desired results. 

4. Since the algorithm is performed by finding connected regions of the data 

distribution, its performance may deteriorate when the data set has connecting 

clusters. 

In view of the above, the study in this chapter is conducted with three integral parts: 

a SVC training method, an empirical study, and a support vector and K-Means based 

hybrid algorithm. The three integral parts provide solutions to the aforementioned 

problems. The SVC training method is proposed based on analysis of the Gaussian 

kernel radius function. The empirical study is conducted by formulating the SVC 

training procedure as building up weighted kernel density estimator for underlying 

distribution of the given data set. The proposed hybrid algorithm works by redefining 



Chapter 3: A support vector and K-Means based clustering algorithm 

39 
 

the SVC as “one cluster as one sphere” in the feature space. It is achieved in three steps. 

In the first step, the outliers are identified and removed by training a global SVC. In the 

second step, the refined data set is clustered by a kernel-based K-Means algorithm. In 

the final step, several local SVCs are trained for the clusters, and then the removed 

data points are labeled according to their distance to the local SVCs. Since the proposed 

algorithm can integrate the advantages of the conventional SVC and the K-Means, it 

may overcome the difficulties of conventional SVC for its ability to deal data set with 

noise and connecting clusters. 

3.2  Review of support vector clustering and K-Means algorithm 

3.2.1  Support vector clustering algorithm 

The mathematical formulation of the SVC algorithm is summarized as follows [8]. 

Let χ ⊆ ℜ�  be a d dimensional data space, {x
, x8,∙∙∙, xO} ⊆ χ  be a data set. The 
algorithm uses a nonlinear transformation Φ to map the data points from χ to a 
higher dimensional feature space, and then seeks the smallest enclosing sphere in the 

feature space. The optimization problem can be formulated as follows: 

minimize R8 + C � ξ�
O

�|
  

(3.1) 

subject to ��ΦJx�K − ���8 ≤ R8 + ξ�, j = 1,∙∙∙, N, 
where R is the radius of the enclosing sphere, ξ
, ξ8, ∙∙∙, ξO are slack variables, C is the 
soft-margin constant, || ∙ || is the Euclidean norm and aaaa is the sphere center. The 

problem can be solved by introducing the Lagrangian function: 

L = R8 − �(R8 + ξ� − ||ΦJx�K − �||8)β�
O

�|
 + C � ξ�μ�
O

�|
 − � ξ�μ�
O

�|
 , (3.2) 

where β� ≥ 0 and μ� ≥ 0 are Lagrange multipliers. The solution to the primal problem 

described in Eq. (2) can be obtained by solving the dual problem [53]: 

maximize W = � Φ(x�)8β�
O

�|
 − � � β�β�Φ(x�) ∙ Φ(x�)O
�|


O
�|
  (3.3) 
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subject to 0 ≤ β ≤ C�, � β�
O

�|
 = 1, j = 1,∙∙∙, N 
The inner dot products Φ(x�) ∙ Φ(x�) can be replaced by a Mercer kernel K(x�, x�). In this 
thesis, the Gaussian kernel is considered: 

KJx�, x�K = eE||bjEbv||h8�h , (3.4) 

where σ is the standard deviation of the Gaussian kernel. After optimization, the 

distance from a given data point $x$ to the sphere center can be computed by: 

f(x) = R8(x) = ||Φ(x) − �||8 = K(x, x) − 2 � β�K(x, x�)O
�|
 + � � β�β�K(x�, x�)O

�|
 .O
�|
  (3.5) 

Data points can be identified based on the β values. If β� = C, x� is identified as a 
bounded support vector (BSV), else if 0 < β� < �, x� is identified as a support vector 
(SV), else, x� is identified as an inner point. When mapped back to the original data 

space, the BSVs lie outside of the cluster boundaries, SVs lie on the cluster boundaries, 

and the inner points lie inside of the cluster boundaries. 

The above procedure delineates the contours of the data set. The next problem is the 

cluster assignment of each data point. The most widely used method for cluster labeling 

is the complete graph based method, which checks the connectivity for each pair of data 

points. Other methods include proximity graph based method [54], trained kernel 

radius function topology based method [48], [50], etc. 

3.2.2  K-Means algorithm 

The K-Means algorithm is a squared error based clustering algorithm [55]. Its key 

steps can be summarized as follows: 

1. Initialize a K-partition randomly or based on some prior knowledge. 

2. Based on current partition, calculate the cluster prototype matrix M = 3m
, m8,∙∙∙, mc6. 
3. Assign each data point x� (j = 1, 2,∙∙∙, N) to the cluster c� with the closest cluster 

prototype, i.e., x� ∈ c�, if ��x� − m��� < ��x� − m��� , ∀i = 1,2,∙∙∙, K(i ≠ w). 
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4. Repeat Steps 2-3 until the cluster prototype matrix becomes stable. 

The K-Means algorithm is by far the most widely used data clustering algorithm. It 

is simple in concept, easy in implementation, and has good performance on data sets 

with compact super sphere distributions. 

3.3  A novel SVC training method 

The optimization problem described in Eq. 3.3 is a quadratic programming (QP) 

problem which associates with finding the optimal values of Lagrange multipliers β
, β8, ∙∙∙, βO. The sequential minimal optimization (SMO) algorithm is by far the most 

widely used method to solve this problem. The benchmarks reported in [52] show that 

the time complexity of SMO is O(N8). This implies that its time complexity becomes 

intensive as the number of data points increases. In this thesis, a new SVC training 

method is proposed. The equality constraint ∑ β��  is eliminated by introducing 

variables a
, a8, ∙∙∙, aO. Let β� = a�/ ∑ aSS , then the QP problem described in Eq. 3.3 

can be written as: 

maximize W = � K(x�, x�) a�∑ aSS
O

�|
 − � � a�a�(∑ aSS )8 K(x�, x�)O
�|


O
�|
  

(3.6) 

subject to 0 ≤ a�∑ aSS ≤ C�, j = 1,∙∙∙, N. 
Eq. 3.6 describes a QP problem which associates with finding the optimal values of 

variables a
, a8, ∙∙∙, aO. A brief outline of the proposed training method is stated as 

follows: 

1. Set a
, a8, ∙∙∙, aO values randomly. Initially, each of the variable a� satisfies 0 ≤ a�/ ∑ aSS ≤ C. 
2. Select a variable a� randomly. 

3. Calculate u� = ∑ a�K(x�, x�)O�|
,�¡� , v� = ∑ a�O�|
,�¡� , a(ab = max a� , cons� = ∑ a�aSK(x�, xS)O�|
,S|
,�¡�,S¡� . 

4. Calculate L = max(0, −v� + a(ab/C), H = Cv�/(1 − C). 
5. Calculate a�B = (u�v� − cons�)/(u� − v�). 
6. Set the optimized value of variable a�)��, according to: 
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a�)�� = ¢ L, if a�B ≤ L,a�B, if L < a�B < £,H if a�B ≥ H. ¤ (3.7) 

7. Repeat Steps2-6 until a
, a8, ∙∙∙, aO turns stable. 
8. For each β�, set β� = a�/ ∑ a�� , return β
, β8, ∙∙∙, βO as final optimization results. 

In the following, we describe the derivation of the above optimization method. 

Without loss of generality, let the variable to be optimized at each iteration be a�, Since 
KJx�, x�K = eE��bvEbv��h/(8�h) = e�, then KJx�, x�K = 1 is satisfied. Let u� = ∑ a�K(x�, x�)O�|
,�¡� , 

v� = ∑ a�O�|
,�¡� , a(ab = max a� , cons� = ∑ a�aSK(x�, xS)O�|
,S|
,�¡�,S¡� , then Eq. 3.6 can be 

written as: 

maximize W = 1 − a�8 + 2a�u� + cons�(a� + v�)8  

(3.8) subject to 0 ≤ a�a� + v� ≤ C, 0 ≤ a(aba� + v� ≤ C. 
The extremum of the objective function W is at: 

   ∂W∂a� = 2a�(u� − v�) − 2(u�v� − cons�)(a� + v�)� = 0 (3.9) 

Following Eq. 3.9, we have: 

 a� = u�v� − cons�u� − v� . (3.10) 

Following the inequality constraint 0 ≤ β� ≤ C, we have: 
0 ≤ a�a� + v� ≤ C    and   0 ≤ a�a� + v� ≤ C   (j ≠ i). (3.11) 

Following Eq. 3.11, we have: a(ab − Cv�C ≤ a� ≤ Cv�1 − C. (3.12) 

Considering both Eq. 3.10 and Eq. 3.12, we can calculate the new value of variable a� 
according to Eq. 3.7. 

Remarks.Remarks.Remarks.Remarks.    

1. Both the proposed algorithm and the SMO decompose the QP problem into 

sub-problems. The theorem reported in [56] indicates that the QP problem can be 
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broken into a series of sub-problems. Thus, both algorithms can guarantee to 

converge to the global optimum of the QP problem. 

2. Both the proposed algorithm and the SMO can optimize the variables 

analytically, instead of using numerical QP optimization steps. 

3. The SMO performs optimization by repeatedly executing two steps: 1) select two 

variables by heuristic; 2) optimize the two variables analytically. To select the 

two variables, the algorithm scans the entire data set, and then the data points 

having the highest probability for violating the KKT conditions are selected. 

Similar to the SMO, the proposed algorithm performs optimization by repeatedly 

executing two steps: 1) select one variable randomly; 2) optimize the variable 

analytically. Since the proposed algorithm is performed without scanning the 

entire data set, it has the potential to obtain a higher speed than the SMO. 

3.4  Empirical Study 

3.4.1  SVC Training and weighted kernel density estimator 

Let {x
, x8,∙∙∙, xO} ⊆ χ  be a data set taken from an univariate distribution with 

unknown density p, the weighted kernel density estimator [57] approximates p by 

function pt: 
pt(x) = � w�φ(x, x�)O

�|
 , (3.13) 

where φ(x, x�) is the window function, 0 ≤ w� ≤ 1 is the weight of the j-th kernel, and w
, w8,∙∙∙, w) satisfy ∑ w�� = 1. Without loss of generality, we consider the Gaussian 

kernel window function: 

φJx�, x�K = 1√2πσ8 KJx�, x�K. (3.14) 

The trained kernel support function of SVC described in Eq. (3.5) can be defined by 

the squared radial distance from a data point x to the sphere center. Given a data point 

x, if x is a BSV, then: 
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f(x) = K(x, x) − 2 � β�K(x, x�)O
�|
 + � � β�β�K(x�, x�)O

�|

O

�|
 > R8. (3.15) 

Since K(x, x) = eE||§¨§||hh©h = e� = 1 is satisfied, then: 
� β�K(x, x�)O
�|
 < 12 ª1 + � � β�β�KJx�, x�KO

�|

O

�|
 − R8«. (3.16) 

Similarly, if x lies on the boundary of the sphere, then: 

� β�K(x, x�)O
�|
 = 12 ª1 + � � β�β�KJx�, x�KO

�|

O

�|
 − R8«, (3.17) 

and if x lies inside of the sphere, then: 

� β�K(x, x�)O
�|
 > 12 ª1 + � � β�β�KJx�, x�KO

�|

O

�|
 − R8«. (3.18) 

Combining Eqs. 3.13 and 3.14 with the term ∑ β�K(x, x�)� , we have: 

� β�K(x, x�)O
�|
 = ¬2πσ8 ∙ pt(x). (3.19) 

Let 

8 (1 + ∑ β�β�KJx�, x�K�,� − R8) = √2πσ8 ∙ d, we have the following relations: 
1. If x is a BSV, then pt(x) < ­. 
2. If x is a SV, then pt(x) = d. 
3. If x is a inner point, then pt(x) > ­. 
The above derivation can be explained intuitively as follows. The trained kernel 

support function of SVC describes a weighted kernel density estimator for the 

underlying data set. The objective of the SVC training procedure is to find the optimal 

weights β
, β8, ∙∙∙, βO such that the lower bound of the density function values of the 
given data points is maximized. 

3.4.2  The selection of parameter σ 

The derivations in Section 3.4.1 indicate that the SVC training can be formulated as 

the procedure of building up weighted kernel density estimator for underlying 
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distribution of the given data set. Fig.3.1 shows an illustrative example of the effect of 

parameter σ on the estimator, where Fig.3.1(a) is the original data set, Fig.3.1(b) is the 

estimator with σ = 0.2, and Fig.3.1(c) is the estimator withσ = 0.2. It can be seen from 

Fig.3.1 that the parameterσ has effect on the resulting estimator pt(x). Moreover, the 

SVC also specifies the contours that enclose the peaks of the probability distribution. As σ decreases, the estimator processes more peaks, and the SVC delineates more clusters. 

Thus the selecting of parameter σ is equivalent to selecting a proper bandwidth 
parameter for the density estimator. The density estimator simulated the true density 

so that the mean square error (MSE) is minimized. Let the true density be p(x) and the  

Fig. 3.1. Illustrative example for the effect of parameter σ on the density estimator. 
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estimated density be pt(x), then the MSE is defined by: MSE(pt(x)) = E((pt(x) − p(x))86 = (E3pt(x) − p(x)6)8 + VarJpt(x)K, (3.20) 

where E3∙6is the mathematical expectation, (E3pt(x) − p(x)6)8 represents the squared 
bias of the estimator, and VarJpt(x)K represents the variance of the estimator. Generally, 

a large bandwidth will reduce the variance and increase the bias. On the other hand, a 

small bandwidth will reduce the bias and increase the variance. In [58], the author 

proposed to compute the bandwidth of the Gaussian kernel according to some practical 

heuristic. That is: 

σ = �4σ̄�3N �E
� ≈ 1.06σ̄NE
�, (3.21) 

where N is the number of data points, and σ̄ is the standard deviation of the samples, 

which is defined by: 

σ̄ = ±1N � ||x�||8O
�|
 − || 1N � x�

O
�|
 ||8. (3.22) 

In view of this, we select the parameter σ according to Eq. 3.21 as a compromise 

between the bias and the variance. 

3.5  The proposed hybrid intelligent algorithm 

The SVC algorithm as reviewed in Section 3.2 has many advantages over other 

algorithms for its ability to delineate cluster boundaries of arbitrary shape and to deal 

Fig. 3.2. Illustrative example for the effect of outliers on the cluster boundaries. 
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with outliers by the soft margin constant. However, there are two major difficulties 

encountered when it is applied to solving real-life data. Firstly, the algorithm is 

sensitive to outliers although the soft margin constant is employed. The outliers will 

distort the cluster boundaries, and make the algorithm fail to obtain the desired 

clustering results. Fig.3.2 shows an illustrative example of this problem. In Fig.3.2(a), 

no outliers exist in the data set. It can be seen that the SVC can delineate the cluster 

boundaries correctly. However, in Fig.3.2(b), when the data set contains outliers, the 

cluster boundaries are distorted. This makes the SVC algorithm delineate undesired 

cluster boundaries. Secondly, the SVC algorithm is performed by identifying clusters by 

finding connected components among data points, thus it may have difficulty in dealing 

Fig. 3.3. Results of the kernel-based K-Means algorithm and the standard SVC 

algorithm on data set with connecting clusters. 
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with data sets with connecting clusters. Fig.3.3 shows an illustrative example of this 

problem. The simulation is conducted on the last two dimensions of IRIS data set. 

Fig.3.3(a) shows the original data set. As can be seen from Fig.3.3(a), cluster 1 is 

linearly separable from clusters 2 and 3, and clusters 2 and 3 are connected. In the 

simulation, we firstly remove the outliers by the data set refining method, which will be 

described in the rest of this section. Following this, we run the SVC algorithm on the 

refined data set. Fig.3.3(b) shows the clustering results. As can be seen from Fig.3.3(b), 

the SVC algorithm cannot distinguish clusters 2 and 3. 

To overcome the above difficulties, we propose a support vector and K-Means based 

hybrid intelligent algorithm (HIA). The key steps of the HIA are as follows: 

1. Data set refining: identify and remove the outliers by building a global SVC. 

2. Clustering: cluster the refined data set by a kernel-based K-Means algorithm. 

3. Local SVC modeling: build local SVCs for each of the clusters. 

4. Relabeling: label each removed data point according to the distance from it to the 

local SVCs. 

We now describe and explain the detailed procedure for the above steps. 

1. Data set refining: the main objective of this step is to identify and remove the 

outliers. A global SVC is trained to perform this task. In the global SVC, the BSVs are 

considered as outliers. The constant C plays a crucial role in the identifying results. It 

can be seen from Eq. 3.3 that 0 ≤ β� ≤ C and ∑ β�� = 1. The lower bound of C is 
O, since 
the constraint ∑ β�� = 1 cannot be satisfied if C < 
O. The upper bound of C is 1, since ∑ β�� = 1, the constraint β� ≤ C has no effect if C > 1. We propose to select the constant 

C value by training SVC iteratively: starting with C = 
O, and increasing it by δ, to 
count the number of outliers. The final C value is selected when the number of outliers 

exceeds a pre-specified threshold n. 

2. Clustering: the SVC algorithm may have difficulty clustering data sets with 

connecting clusters. One natural way to solve this problem is to use the K-Means 

algorithm, since the K-Means algorithm can work well for compact clusters. However, 

the K-Means algorithms that use geometric representation are often limited to 
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hyper-ellipsoids. In view of the above, we propose a novel kernel-based K-Means 

algorithm. The proposed algorithm works as follows. Firstly, the algorithm maps the 

data points from the original space to a higher dimensional feature space by a nonlinear 

transformation Φ. Secondly, in the feature space, the K-Means algorithm is used to 

cluster the mapped data points. The key steps of the algorithm are as follows: 

1. Initialize a K-partition randomly. 

2. For each partition, train a one class SVC, i.e., enlarge the SVC by redefining “one 

cluster as one sphere” in the feature space. 

3. Assign each data point x� (j = 1,∙∙∙, N) to the sphere with the closest sphere 
center. The distance from the data point to the sphere center is computed by 

Eq.-3.5. 

4. Repeat Steps 2-3 until the partition becomes stable. 

In order to verify the validity of the clustering results, we use separation as the 

criteria for clustering evaluation. The basic idea of separation is to keep the clusters 

obtained by clustering algorithm as far apart as possible [51]. In statistics, the 

Bhattacharyya distance [59] measures the similarity of two discrete or continuous 

probability distributions, and is often used to measure the separability of clusters. Thus 

we adopt the Bhattacharyya distance as a separability function to define the degree of 

separability for each pair of clusters. For a pair of clusters (e.g., cluster c� and c�), the 
Bhattacharyya distance is defined as follows: 

BJc�, c�K = 18 (μ(c�) − μ(c�))´ µ∑ c� + ∑ c�2 ¶E
 ∙ ^μ(c�) − μJc�K_ + 12 ln · | ∑ c� + ∑ c�2 || ∑ c� |
8| ∑ c� |
8¸, (3.23) 

where μ(c�) and ∑ c� are the mean vector and the covariance matrix associated with 

cluster c�. The separability function is then calculated according to: B(c
, c8,∙∙∙, cS) = min�,� �¡� B(c�, c�). (3.24) 

Due to the random nature of the initialization step of the K-Means, the clustering 

results may vary in different runs. In our study, we run the kernel-based K-Means for a 

predefined number of times, and the cluster results that yield the biggest separability 

function value are adopted. 
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The kernel-based K-Means is performed by finding the prototypes (centers) of the 

clusters, while the standard SVC is performed by finding connected components among 

data points. Thus the kernel-based K-Means may has the advantage over the standard 

SVC for its ability to deal with connecting clusters. As a comparison, Fig.3.3(c) shows 

the clustering results of the kernel-based K-Means algorithm on the refined IRIS data 

set. As can be seen from Fig.3.3(c), the kernel-based algorithm can distinguish clusters 

2 and 3, even though they are connected. 

3. Local SVC modeling: in this step, we build local SVCs for the clusters obtained by 

the K-Means. Each of the cluster is described by a one class local SVC. In the local SVC, 

the parameter σ is determined by the method presented in Section. 3.4.2. 

4. Relabeling: the main objective of this step is to label the removed data points. Let 

set SV� contains the support vectors of cluster c�. Given a removed data point x�, we 
define the distance from it to cluster c� as follows: 

d(xS, c�) = minbv∈n¹j ||xS − x�||8. (3.25) 

The data point x� is then assigned to the cluster with the minimum distance. 

3.6  Experimental studies 

3.6.1  Experimental setup 

We have conducted three sets of experiments to test the performance of the proposed 

algorithm. The experiments are performed on a PC with Pentium IV 3.0GHz Processor 

and 4GB memory. The first set of experiments is conducted to test the time complexity 

of the proposed SVC training method. In the experiments, 100 data sets are simulated. 

They are simulated as follows: the dimension of the data space is set to 4. In the data 

space, the data set is generated based on mixture models with size ranging from 50 to 

1000. For the experiments, the parameter σ  is set by the method described in 

Section-3.4.2, and the soft margin constant C is set to 1. The CPU time is used to 

evaluate the performance of the method. The SMO algorithm is used for comparison. 

The second set of experiments is conducted to illustrate the execution process of the 

proposed HIA. In the experiments, two 2D data sets, namely 2D-N160 and 2D-N450, 
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are generated. The 2D-160 is generated based on the same mixture model as used in [8], 

and 2D-450 is generated based on the same mixture model as used in [49]. In order to 

add complexity to the problem, noise data points are also included in the data set. 

Parameter settings are crucial for the performance of the HIA. Throughout the 

experiments, the parameter σ  in the kernel function is selected by the method 

described in Section 3.4.2. In the data set refining step, the soft margin constant C is 

selected by training SVC repeatedly, and the parameters δ and n are taken as follows: δ = 
O, n = 0.1N, where N is the total number of data points in the data set. In the 

clustering step, we run the kernel-based K-Means algorithm for five times, and the 

cluster results that yield the biggest separability function value are adopted. In the 

local SVC modeling step, since the outliers are removed in Step 1, the constant C is set 

to 1. In our experiments, we set the parameters as above and find that they are proper 

for all the cases. 

The third set of experiments is conducted to test the performance of the HIA on 

benchmarks. In the experiments, three data sets taken from the UCI machine learning 

repository are selected. The three data sets include: the IRIS data set, the Wisconsin's 

breast cancer data set, and the Spam data set. Their key properties are as follows. 

1. The IRIS data set: The IRIS data set contains three classes, where each class 

contains 50 instances and refers to one type of IRIS plant. Each instance is 

composed of 4 measurements of an IRIS flower. One class is linearly separable 

from the other two. The remaining two classes have significant overlap and are 

not linearly separable from each other. 

2. The Wisconsin's breast cancer data set: the Wisconsin's breast cancer data set 

contains 699 cases of diagnostic samples. After the removal of the 16 samples 

with missing values, the data set consists of 683 diagnostic samples. The 

diagnostic samples are partitioned into two classes, benign and malignant 

tumors. Each sample is composed of 9 measurements of the clinical attributes. 

The benign tumors take about 65.5% of the data set, while the malignant tumors 

take about 34.5% of the data set. 
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3. The Spam data set: The Spam data set is a 57 dimension data set formed by 4601 

instances. Each instance represents a spam email or a non-spam email. The 

spam emails came from a postmaster and individuals who had filed spam, and 

the non-spam ones came from filed work and personal emails. 

The parameter settings are the same as those in the second set of experiments. The 

CPU time and the cluster labeling error rate are used to evaluate the performance of 

the HIA. Here, the cluster labeling error rate is the percentage of the miss-labeled data 

points with respect to the total data set. For the purpose of comparison, we select the 

following algorithms which have been applied to all or some of the selected benchmarks: 

1) the support vector clustering algorithm (SVC) [8], the kernel method (Kernel) as 

described in [49], the SVC described topological and dynamical characterization of 

cluster structures (TDSVC) [50], and the SVC with cluster validity (CVSVC) [51]. All of 

the above algorithms are kernel methods. They are able to separate a set of complex and 

nonlinear data points by transforming them to a higher dimensional feature space. 

These algorithms have been shown to be successful and can find good enough solutions. 

Hence, a comparison with these algorithms will demonstrate the performance of the 

proposed HIA, and will show if it is better or worse than other algorithms. Since the 

selected benchmarks are labeled data, the conventional SVM is also included for 

Fig. 3.4. CPU time comparison of the proposed SVC training method and the SMO 

algorithm. 
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comparison. In the experiment, the SVM tool available in [60] is used. For each data set, 

40% percent of the data points are used for training, 20% percent of the data points are 

used for validating, i.e., selecting optimal values for the parameters of SVM, and 40% 

percent of the data points are used for testing. 

3.6.2  Simulated results 

3.6.2.1  Results on data sets with different size 

Fig.3.4 shows the CPU time comparison of the proposed SVC training method and 

the SMO, where the abscissa is the size of data set and the vertical axis is the SVC 

training time. It can be seen from Fig.3.4 that the two algorithms perform almost the 

Fig. 3.5. Illustrative example for the execution process of the HIA on 2D-160 data set. 
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same when the size of data set is smaller than 200. However, when the data set is larger 

than 200, the proposed algorithm performs much better than the SMO. The results 

demonstrate that the proposed SVC training method is fast compared to the SMO. 

3.6.2.2  Results on generated 2D data sets based on mixture models 

1) Results on 2D-N160 data set: The 2D-N160 data set comprises 160 data points in 

a 2D space and consists of four clusters with noise. Fig.3.5 shows an illustrative 

example for the execution process of the HIA on the 2D-160 data set. In Fig.3.5(a), the 

outliers are identified by a global SVC. The data points marked with circle are 

considered as outliers, and the data points marked with plus are considered as support 

vectors or inner points. After the removal of the identified outliers, the kernel-based  

Fig. 3.6. Illustrative example for the execution process of the HIA on 2D-450 data set. 
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Table 3.1 

Comparison results of the proposed HIA with other algorithms (to be continued). 

Data 

Set 
Size Dim 

Proposed HIA SVC Kernel TDSVC 

Time Error (%) Error (%) Error (%) Time Error (%) 

IRIS 150 4 0.17 0.00 14.00 5.30 9.38 0.00 

Breast 683 9 4.12 0.15 - 3.07 - - 

Spam 4601 57 301.45 2.43 - 18.71 544.96 1.70 

K-Means algorithm operates on the refined data set. Fig.3.5(b) shows the kernel-based 

K-Means clustering results, the data points in the four clusters are marked with cross, 

star, circle, and plus, respectively. Following this, four local SVCs are built for each of 

the clusters. Fig.3.5(c) shows the cluster contours delineated by the local SVCs. In 

Fig.3.5(d), the removed data points are labeled according to the distance from them to 

the local SVCs, resulting in labeling the whole data set. 

2) Results on 2D-450 data set: The 2D-450 data set comprises 450 data points in a 

2D space and consists of two clusters with noise. The two clusters are not linearly 

separable from each other. The experiments conducted on 2D-160 are repeated on 

2D-450. Fig.3.6 shows an illustrative example for the execution process of the HIA on 

the 2D-450. 

The results on the 2D-160 data set and the 2D-450 data set demonstrate that the 

proposed HIA can perform well when the data set contains nonlinearly separable 

classes and are polluted by noise. 

3.6.2.3  Results on data sets taken from the UCI machine learning 

repository 

Table 3.1 summarizes the results of the experiments on data sets taken from the 

UCI machine learning repository. The contents of the table include the name of each 

data set (Data set), the scale of the data set (Size), the dimension of the data set (Dim), 

the CPU time used for the proposed algorithm (Time), the cluster labeling error rate 

(Error%) of the HIA, and the results reported in literatures using other kernel-based  
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Table 3.1 

Comparison results of the proposed HIA with other algorithms (continued). 

Data 

Set 
Size Dim 

Proposed HIA CVSVC SVM 

Time Error (%) Error (%) Time Error (%) 

IRIS 150 4 0.17 0.00 3.33 0.02 0.00 

Breast 683 9 4.12 0.15 2.93 3.98 2.64 

Spam 4601 57 301.45 2.43 - 429.88 2.15 

algorithms [8], [49]-[51] and the results of SVM. For the algorithm compared, not all 

results of selected benchmarks are reported in literature, so for those benchmarks 

without reported results, their corresponding comparison values are marked with ‘-’. 

For the SVM, the CPU time includes the training time and the testing time, and the 

cluster labeling error rate is the percentage of the miss-labeled testing data points with 

respect to the total testing data points. 

From the table, it can be seen that the proposed algorithm yields a significant 

improvement in terms of cluster labeling error rate with respect to the listed results, 

except for the results obtained by TDSVC algorithm. Compared with TDSVC, it can be 

seen that both algorithms can obtain the same results for the IRIS data set, and the 

TDSVC algorithm has a better performance for the Spam data set. Concerning about 

the time complexity, the TDSVC follows the key steps of the standard SVC, i.e., solving 

the quadratic programming of SVC, and then labeling each data point. Generally, 

cluster labeling task is more computationally intensive than the SVC training task, and 

may become highly intensive as the scale of the data set increase. On the other hand, in 

the proposed algorithm, the kernel-based K-Means algorithm yields labeled data points 

for most data points, and each removed data point is labeled according to the distance 

from it to the clusters. By using this strategy, the cluster labeling step as used in the 

standard SVC is unneeded. Thus, compared with TDSVC, the proposed algorithm has 

the potential to obtain a faster computing time with a moderate labeling error rate. The 

results shown in Table 3.1 validate the above analysis although it cannot provide a 
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completely fair comparison since the CPU and memory specifications are different. In 

summary, the above results indicate the successful incorporation of the SVC algorithm 

and the K-Means. 

3.7  Conclusion 

The SVC algorithm has been successfully applied to solving many real-life data 

clustering problems. In this chapter, we aimed at proposing a new kernel-based 

clustering algorithm to improve the performance of SVC. A SVC training method was 

proposed based on theoretical analysis of the Gaussian kernel radius function. An 

empirical study was conducted to guide better selection of the standard deviation of the 

Gaussian kernel. A new data clustering algorithm, i.e., the support vector and K-Means 

based hybrid intelligent algorithm, was developed by integrating the merits of both SVC 

and K-Means algorithm. The effectiveness of the proposed algorithm was validated by 

three sets of experiments on generated data sets with different sizes, generated 2D data 

sets, and data sets taken from the UCI machine learning repository. The results 

demonstrated that the proposed hybrid intelligent algorithm compared favorably with 

existing kernel-based clustering algorithms. The current research can be further 

extended to study the theoretical properties of the algorithm (in particular, convergence 

analysis of the hybrid clustering algorithm) and to apply the algorithm to the solving of 

real-life problems such as image processing and computer vision. 

 

 



Chapter 4: Support vector description of clusters for content based image annotation 

58 
 

Chapter 4: Support vector description of clusters 

for content based image annotation 

4.1  Introduction 

There has been a surge of research interest in image automatic or semi-automatic 

annotation based on the low-level image visual contents. These methods are referred to 

as content based image annotation (CBIA). In greater detail, the methods presented in 

[61]-[65] are based on multiple classifiers. They partition the images into different 

classes, and assign each class a distinct topic of interest and a set of descriptive words. 

For an untagged image, the system treat annotation as a classification problem and 

select the relevant annotation words based on the classification results. The methods 

presented in [1], [66]-[73] are probabilistic modeling methods, which are also referred to 

as generative modeling methods. They try to learn the correlations between images and 

annotation words by statistical tools so that the joint probability for an untagged image 

being labeled with each word can be computed. In the annotating process, the relevant 

annotation words are selected by graph based techniques [71], [72] or some other data 

fusion and aggregation techniques [1], [66]-[70], [73]. More recently, the development of 

image platform on the Internet, e.g., Flickr [74], Alipr [67], and PhotoStuff [75], has 

enabled users to annotate images and give feedbacks to the annotating results. This 

provides opportunities to develop automatic annotating methods using the user 

provided information and the existing search results. Methods presented in [61], [76], 

[77] fall into this category. 

Many of the above methods require substantial machine learning techniques to fill 

the gap between the low-level image visual contents and the high-level semantics. 

Among the machine learning techniques, the support vector clustering (SVC), which 

was described in Section 4, has many advantages over other algorithms for its ability to 

determine the system topological structure without prior knowledge with respect to the 

system itself, to delineate cluster boundaries of irregular shapes, and to deal with 
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outliers by employing a soft margin constant [48], [50]. In the real world image systems, 

many images described by the same words often have a wide range of variety. For 

example, if an image is tagged with “historical building”, then it can be a picture taken 

in the desert, near the beach or in the city. These images are organized irregularly in 

the image system. Since the SVC exhibits its ability to delineate cluster boundaries of 

irregular shapes, it will provide opportunities to develop unified models to describe the 

irregularly organized images. 

In view of the above, in this chapter, we present a novel algorithm for content based 

image annotation. In this work, images are represented by colored pattern appearance 

models (CPAM) [78]. The system has two major components, the training process and 

the tagging process. In the training process, clusters of images with manually tagged 

words are used as training instances. For each cluster, the image vectors are mapped to 

a higher dimensional space and the vectors identified as support vectors are used to 

describe the cluster. Since the mapping process is the same as that in SVC and its 

objective is to build support vector described models for image clusters, we term the 

system as support vector based method for image annotation (SVIA). In the tagging 

process, for an image to be tagged, the distances from it to the support vector described 

models are computed. A closer distance indicates a stronger association between the 

image and the model. Moreover, the word to word correlations contain rich information 

about the semantic meanings of the images. For example, if an image is tagged with 

``France", then it will have a higher probability to be tagged with ``Europe", and if an 

image is tagged with ``indoor", then it will have a lower probability to be tagged with 

``grass". Therefore, the word to word correlations are also considered in the annotation 

framework. For an image to be tagged, the system exploits the distances from the image 

to the models and the word to word correlations in a probabilistic framework to predict 

annotation words. 

4.2  Related works 

This work is related to the probabilistic modeling methods. In this section, we review 

the basic concepts and some prevailing methods of the probabilistic modeling 
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approaches to CBIA. 

4.2.1  Probabilistic models 

The probabilistic modeling method tries to compute the joint probability for an 

untagged image being labeled with each annotation word. Given an untagged image I», 
the main objective is to find a group of words w∗ in a given vocabulary ¼, such that 

the conditional distributions p(w|I») are maximized as follows: w∗ = arg max�⊂¼ p(w|I»). (4.1) 

One type of probabilistic modeling method operates by generating words directly from 

the visual content of the given image. The formulation can be described as: 

w∗ = arg max�⊂¼ � p(w|I�)pJI»�I�Kp(I�)¿j∈À , (4.2) 

where À is the training image set, p(w|I�) is the probability that the word w can be 
generated by training image I�, p(I»|I�) is the probability that I� is relevant (or similar) 

Fig. 4.1 Generative models for image auto-annotation. (a) The two-layer model. Words 

are directly generated from visual features. (b) The three layer model. Words are 

generated from a hidden layer of “topics”. 
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to I», and p(I�) is the prior probability of I�. This is corresponds to the generative model 

shown in Fig.4.1(a), in which annotations are generated directly given the images. 

Another type of probabilistic modeling method operates by introducing a set of “topics”. 

The training images are distributed to the topics. Then the words are generated from 

the topics. The formulation can be described as: 

w∗ = arg max�⊂¼ � ¢ª� pJw�t�Kp(t�|I�)Nv∈n « × pJI»�I�KP(I�)Á¿j∈À , (4.3) 

where S is a set of topics, p(w|t�) is the probability that the word w can be generated by 
topic t�, p(t�|I�) is the probability that I� is correlated with t�. This is corresponds to 
the generative model shown in Fig.4.1(b), where there is a hidden layer of “topics” so 

that images are represented as a mixture of them. It is from these topics that words are 

generated. In addition, the word to word relation p(w�|w�) can also be used in the 
probabilistic modeling formulation to maintain the semantic consistence. 

4.2.2  Prevailing methods 

Some of the methods are based on the formulation described in Eq. 4.2 or its variants. 

For instance, Duygulu et al. [66] proposed an object recognition model to translate the 

image regions into words. Firstly, images are segmented into regions, which are 

classified into region types based on the visual contents. Then a mapping between the 

region types and the words is learned using an expectation-maximization based 

algorithm. Tang et al. [72] explored a unified learning framework that combines the 

multiple instance and single instance of image features for annotation. An integrated 

graph based semi-supervised learning framework is proposed to utilize the multiple 

instances and single instance simultaneously. And three strategies are explored to 

convert from multiple instance representation into a single instance one. Lu et al. [70] 

proposed a discriminative stochastic method for image categorization and annotation. 

Images are divided into blocks. Visual keywords are generated by quantizing the 

features of the image blocks. A spatial Markov chain model that uses the visual 

keywords as input is proposed to perform categorization and annotation. 
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On the other hand, some of the methods are based on the formulation described in 

Eq. 4.3 or its variants. For instance, Li et al. [67] proposed a statistical modeling 

approach to CBIA. Categorized images are used to train a set of statistical models, with 

each representing a topic. Images of each topic are regarded as instances of stochastic 

process that characterizes the topic. The association between an untagged image and 

each topic is measured by the probability of the image generated by the stochastic 

process of the topic. Carneiro et al. [68] proposed a probabilistic formulation for image 

annotation and retrieval. Annotation and retrieval are posed as classification problems. 

Each class is defined as a group of training images labeled with a set of labels. Then a 

minimum probability of error annotation and retrieval is computed by establishing the 

one-to-one correspondence between labels and the image classes. Li et al. [1] proposed 

an automatic linguistic indexing of pictures-real time system. In the proposed system, 

the discrete distribution clustering is developed to group objects by bags of weighted 

vectors. A generalized mixture modeling technique is developed using the concept of 

hypothetical local mapping. 

More recently, some of the methods use the user provided information and the 

existing search results to perform annotation tasks, i.e., the word to word relation p(w�|w�) is used in the probabilistic modeling formulation.  For instance, Wang et al. 

[76] proposed an attempt at model-free image annotation, which is a data-driven 

approach that annotates images by mining their search results. Wong et al. [77] 

proposed a semantic annotation technique based on the use of image parametric 

dimensions and meta-data. Zhou et al. [61] proposed a hybrid probabilistic model which 

integrates low-level image features and high-level user provided tags to automatically 

tag images. 

4.3  Support vector description of clusters 

In this section, we describe the training process of the proposed SVIA system. Firstly, 

the colored pattern appearance model (CPAM) representation of images [78], which is 

used to represent the color and texture visual contents of the images, is reviewed. 

Following this, the details of the support vector modeling process is presented. Finally, 
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the method of estimating the probability of a given image generated by the support 

vector described model is presented. 

4.3.1  CPAM representation of images 

In this work, the visual content of images are represented by CPAM2. The CPAM 

captures the statistically representative chromatic and achromatic spatial image 

patterns. And the distributions of these patterns are used to characterize the color and 

texture information of the visual content. The application of our system is to tag images 

taken in daily life other than special fields such as medical or geography. Since the 

CPAM can capture both the features around salient points and the features included in 

the entire image [61], it is therefore suitable for our application. 

To represent an image using CPAM, firstly, the image is partitioned into a set of 4 × 4 blocks. Each block is then represented by CPAM appearance prototypes, which 

are comprised of the achromatic spatial pattern histograms (ASPH) and the chromatic 

spatial pattern histograms (CSPH). The CPAM appearance prototypes of the 4 × 4 
blocks are then concatenated to construct a feature vector x of the entire image. In the 

experiment, a feature vector with 64 achromatic prototypes and 64 chromatic 

                                                   
2 In the experiment, the software developed by Zhou et al [61] was used. The Matlab 

codes of the software were downloaded from: 

http://www.viplab.cs.nott.ac.uk/download/CPAM.html 

Fig. 4.2. The support vector modeling process. 
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prototypes is selected. Thus, each image is represented by a 128-dimensional vector. 

Given two images, their CPAM based feature vectors are represented by x
 and x8, 
respectively. Then the distance between x
 and x8 can be defined as: 

d(x
, x8) = � |ASPH
(i) − ASPH8(i)|1 + ASPH
(i) + ASPH8(i)∀� + � |CSPH
(j) − CSPH8(j)|1 + CSPH
(j) + CSPH8(j) ,∀�  (4.4) 

where | ∙ | is the absolute value, ASPH(i) is the i-th ASPH component, and CSPH(j) is 
the j-th CSPH component. 

4.3.2  The support vector described model 

Let the set of distinct annotation words be ¼＝{w
, w8,∙∙∙, wc}. Given a word w�, let 
the set of images tagged with w�  be ℐ(w�). Fig.4.2 illustrates the support vector 
modeling process. Firstly, the CPAM based feature vectors are extracted for the images. 

Following this, a support vector described model is trained for each image set ℐ(w�). 
The training method maps the CPAM based feature vectors to a higher dimensional 

space by a nonlinear transformation, and then seeks the smallest enclosing sphere in 

the higher dimensional space. Each sphere represents a support vector described model. 

This process follows closely to the derivations of Eqs. 3.1, 3.2 and 3.3, which are 

described in Section 3.2.1. In Fig.4.2, for the convenience of illustration, we assume that 

the CPAM-based feature vectors are mapped to a three dimensional space. The spheres 

are referred to as the support vector described models, which are stored in the form of 

the parameters of the trained kernel radius functions. 

The Gaussian kernel described in Eq. 3.4 of Section 3.2.1 cannot be directly applied 

to the CPAM based features. In this thesis, we define the kernel function as: 

KJx�, x�K = eE�(bj,bv)Ã , (4.5) 

where d(x�, x�) is the distance between the CPAM based feature vectors x� and x�, 
which is described in Eq. 4.4. The Gaussian bandwidth parameter h plays a crucial role 

in the support vector described model. It controls the shape of the enclosing contour in 

the data space, and affects the width of the kernel function. The problem of selection of 

the parameter h can be referred to as balancing the empirical risk and the confidence 

risk [79] of the support vector described model. In this thesis, the parameter h is chosen 
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using a trial and test method. The trial and test method operates by adjusting the h 

value and calculating the system score iteratively. The h value that yields the highest 

system score is then adopted. For a set of training images and a set of validating images, 

the system score can be calculated as follows. Firstly, the system score is set to 1, and 

then a support vector described model is trained for each image set ℐ(w�) using the 
current h value. Following this, for each validating image, the distance from it to the 

support vector described models is calculated using the trained kernel radius function 

as described in Eq. 3.5 of Section 3.2.1. Suppose the model that yields the shortest 

distance be mr, and suppose the set of models that actually generate the validating 

image be M\. If mr ∈ M\, then the system score is increased by 1, else, it remains 

unchanged. The system score is obtained when all the images in the validating set are 

evaluated. Since the experiment on all the training images of the system is 

computational intensive, thus, in the experiment, for trial and test, we randomly select 

10% images of the system for training and select 5% images of the system for validating. 

The main computational cost in the support vector modeling comes from the solving 

of the quadratic programming (QP) problem described in Eq. 3.3 of Section 3.2.1. In this 

thesis, we use the algorithm described in Section 3.3 as a tool for the training of the 

support vector described models. 

4.3.3  The probabilities of a given image generated by the support vector 

described models 

The derivation described in Section 3.4.1 indicates that the trained kernel radius 

function of the support vector described model delineates a weighted density estimator 

for underlying distribution of the data set. Thus, in this thesis, we use this density 

estimator to compute the probability of a given image being generated by the support 

vector described models. Given a CPAM based feature vector x of image I, and a trained 

kernel radius function of model m, the probability of x being generated by m is 

computed by: 

p(x|m) = 1h � β�K(x, x�))
�|
 . (4.6) 
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4.4  The annotation method 

In this section, we describe the tagging process of the proposed SVIA system. A 

unified probabilistic framework which generates words from the support vector 

described models and the word to word correlations is proposed. 

4.4.1  The word to word correlations p(w�|w�) 

The word to word correlations contain rich information about the semantic meanings 

of the images. For instance, if an image is tagged with “France”, then it will have a 

higher probability to be tagged with “Europe”. If an image is tagged with “indoor”, then 

it will have a lower probability to be tagged with “grass”. If the system uses only the 

visual contents of images to generate tagging words, the information contained in the 

word to word correlations will be lost. Therefore, the word to word correlations are 

considered in the probabilistic framework. Let À = {I
, I8,∙∙∙, IO} be a set of images in the 

Fig. 4.3 The relationship between ℐ(w�) and ℐ(w�). 

(a) ℐ(w�) ∩ ℐ(w�) ≠ ϕ (b) ℐ(w�) ∩ ℐ(w�) 

(c) ℐ(w�) ⊃ ℐ(w�) (d) ℐ(w�) ∩ ℐJw�K = ϕ 
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training set and ¼＝{w
, w8,∙∙∙, wÆ}  be a given vocabulary. Each image I� ∈ À  is 

manually tagged with a set of M� words {w�
, w�8,∙∙∙, w�Æj}. Denote the set of images that 

contain word w� in their annotations by ℐ(w�). Given a pair of words w� and w�, we 
use the following formulations to estimate the word to word correlations: 

pJw��w�K = |ℐ(w�) ∩ ℐ(w�)||ℐ(w�)| , (4.7) 

pJw��w�K = |ℐ(w�) ∩ ℐ(w�)||ℐ(w�)| , (4.8) 

where | ∙ | is the number of images in the set. Generally, the relationship between ℐ(w�) 
and ℐ(w�) falls into four categories, which correspond to the illustrative figures shown 
in Fig.4.3 and can be summarized as follows: 

1. If ℐ(w�) ∩ ℐ(w�) ≠ ϕ, then pJw��w�K > 0 and pJw��w�K > 0; 
2. If ℐ(w�) ⊆ ℐ(w�), then 0<pJw��w�K ≤ 1 and pJw��w�K = 1; 
3. If ℐ(w�) ⊃ ℐ(w�), then pJw��w�K = 1 and 0 < ÇJw��w�K < 1; 
4. If ℐ(w�) ∩ ℐJw�K = ϕ, then pJw��w�K = 0 and pJw��w�K = 0; 

4.4.2  The probabilistic framework 

Given an untagged image I», if the system has not selected any word as annotation, 

then the conditional probability that I» being tagged with w� can be represented by p(w�|I»), which can be computed by applying the Bayesian rule: 

pJw��I»K = p(w�)p(I»|w�)p(I»)  (4.9) 

where p(I»|w�) is the probability of I» being generated by w�, p(I») is the probability 
of the image I», and p(w�) is the probability of the word w�. If the system has selected w»
, w»8,∙∙∙, w»ÆÈ as annotations, taking into account the word to word correlations 
among the new word w�  and the selected words w»
 , w»8 , ∙∙∙ , w»ÆÈ , then the 
conditional probability that I»  being tagged with w�  can be represented by p(w�|I», w»
, w»8,∙∙∙, w»ÆÈ), which can be computed by applying the Bayesian rule: 

p ^w��I», w»
, w»8,∙∙∙, w»ÆÈ_ = p(w�)p(I», w»
, w»8,∙∙∙, w»ÆÈ|w�)p ^w»
, w»8,∙∙∙, w»ÆÈ�I»_ p(I») . (4.10) 

For a new word w�, we can assume that I», w»
, w»8, ∙∙∙, w»ÆÈ are independent of 
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each other, thus: 

p ^I», w»
, w»8,∙∙∙, w»ÆÈ�w�_ = pJI»�w�K s pJw»N�w�KÆÈ
N|
 . (4.11) 

Then Eq. 4.10 can be written as: 

p ^w��I», w»
, w»8,∙∙∙, w»ÆÈ_ = p(w�)pJI»�w�K ∏ pJw»N�w�KÆÈN|
p ^w»
, w»8,∙∙∙, w»ÆÈ�I»_ p(I»). (4.12) 

p(w�) can be estimated using the training set. Suppose the total number of annotations 

on the training images is n, and the number of annotations using word w� is n�, then p(w�) can be estimated by: 

p(w�) = n�n . (4.13) 

Suppose the CPAM based feature vector of I» is x», and the support vector described 
model that corresponds to w� is m�, then the probability p(I»|w�) can be computed by 

the formulation described in Eq. 4.6, i.e., pJI»�w�K = p(x»|m�). For w»
, w»8, ∙∙∙, w»ÆÈ, 
the word to word correlations can be computed by Eqs. 4.7 and 4.8. In our 

implementation, we assume that p ^w»
, w»8,∙∙∙, w»ÆÈ�I»_ and p(I») are kept constant 
across different new words. 

4.4.3  Annotation of untagged images 

Let the set of distinct annotation words be ¼ = {w
, w8,∙∙∙, wc}. Given an untagged 
image I», let the set of words that have been selected as annotations by the system be É = {w»
, w»8,∙∙∙, w»ÆÈ}, where M» is the number of words in É. To annotate I», its 
CPAM based feature vector is extracted first. For each w� ∈ ¼ − É, the conditional 
probability that I» being tagged with w� is then computed. If É = ϕ, i.e., M» = 0, then 
the conditional probability is computed by Eq. 4.9, else if É ≠ ϕ, i.e., the system has 

selected a set of words as annotations, then the conditional probability is computed by 

Eq. 4.12. By computing the conditional probability for the words in the set ¼ − É, the 
words can be sorted in descending order, and the top ranked word is selected as next 

annotation. Suppose the top ranked word be w∗ , then we set É = É ∪ {w∗}  and 
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M» = M» + 1. This process is repeated until the number of selected words reaches a 

predefined number k. 

4.5  Experimental studies 

In this section, we conduct experiments to evaluate the performance of the proposed 

SVIA. The experiments were performed on a PC with pentium IV 3.0GHz processor and 

4GB memory. 

4.5.1  Image datasets 

In the experiment, we select the Corel5k dataset [66], the Corel30k dataset [68], and 

the Corel60k dataset [1] as benchmarks. These three datasets are originated from the 

Corel stock photograph collection and are widely used in evaluating the image 

annotation methods. The Corel5k dataset contains 5000 images that are stored with 

size 192 × 128 or 128 × 192. There are 371 distinct words in the vocabulary. Each 
image is tagged with 1-5 words, and the average number of words per image is 3.5. 

According to Ref. [66], the data set is divided into two parts. Out of the 5000 images, 

4500 images are used for training and 500 images are used for testing. The testing set 

vocabulary contains 260 distinct words out of the entire vocabulary. The Corel30k 

dataset is of similar property as the Corel5k dataset except that it is substantially 

larger. It contains 31695 images that are stored with size 384 × 256 or 256 × 384. 
There are 5587 distinct words in the vocabulary. Each image is tagged with 1-5 words, 

and the average number of words per image is 3.6. In the experiments of Refs. [66] and 

[61], the dataset is divided into training and testing set with a ratio of 9:1. In the 

training set, only the words that are used as annotations by at least 10 images are 

considered. Therefore, the total number of words in the training set vocabulary is 1035. 

In the testing set, the vocabulary contains 950 words out of the entire vocabulary. The 

Corel60k dataset contains about 60000 images that are stored with size 384 × 256 or 256 × 384. There are 417 distinct words in the vocabulary. The images are assigned to 

600 categories, where each category has about 100 images and represents a distinct 

topic of interest. Each category is tagged with 1-7 words, which describe the category as 



Chapter 4: Support vector description of clusters for content based image annotation 

70 
 

a whole, but not accurately describe each individual image. In our experiment, for each 

image, the ground truth tagging words are taken as the words that describe its category. 

As an example, Fig.4.4 shows the thumbnails of some randomly selected images from 

the Corel5k, Corel30k, and Corel60k dataset, respectively. As can be seen from Fig.4.4, 

the datasets contain a wide variety of images, ranging from nature sceneries to 

historical buildings or people activities, which reflect the diversity of the datasets. Since 

the application of the proposed SVIA is to tag images taken in daily life other than 

special fields such as medical or geography, thus the selected datasets are suitable for 

our performance evaluation. 

4.5.2  Experimental settings 

Experimental settings are crucial for the performance evaluation. The first decision 

is on the selection of the training images and the testing images. For the Corel5k and 

Corel30k datasets, to make a fair comparison, we use the same training and testing sets 

as that used in [66] and [68], i.e., 90% of the images are used for training and 10% of the 

images are used for testing. For the Corel60k datasets, we randomly select 90% of the 

images for training and 10% of the images for testing. In the experiment, to fix the 

Gaussian bandwidth parameter h described in Eq. 4.5, 15% images of the entire dataset 

Fig. 4.4. Thumbnails of some randomly selected images from the Corel5k, Corel30k, 

and Corel 60k datasets. 



Chapter 4: Support vector description of clusters for content based image annotation 

71 
 

are further randomly selected from the training dataset. Among the selected images, 

10% images of the entire dataset are used for training and 5% images of the entire 

dataset are used for validating. After the h value is fixed, the entire training image set 

is then used as a whole to train the support vector described models. 

Basically, we use the precision and recall rate on the testing image set to assess the 

performance of the proposed SVIA. For each word w, denote the number of images 

tagged by the system by nr, denote the number of ground truth related images in the 

testing set by nN, and denote the number of images correctly annotated by the system by n�, then the precision and recall rate can be computed by: 

precision(w) = n�nr ,       and     recall(w) = n�nN . (4.14) 

We then compute the average precision and recall rates over all the words in the testing 

set vocabulary to evaluate the performance of the system. Generally, there is a trade-off 

between precision and recall rate. For the testing images, when the number of words 

provided by the system increase, the recall rate will usually increase, whereas the 

precision rate will usually decrease. In the experiment, to compare the precision rates 

at different levels of recall rates, we change the parameter k (The number of word 

provided by the system, which was described in Section 4.4.3 from 1 to 15. Moreover, we 

use the coverage rate to show the generalization ability of the system. The coverage rate 

is calculated as follows. Denote the number of words with positive recall rate by nG, 
denote the number words in the testing set by n, then the coverage rate can be 

computed by: 

coverge = nGn . (4.15) 

4.5.3  Existing systems for comparison 

For the purpose of comparison, we select the following systems which have been 

evaluated for all or some of the selected benchmark datasets. 

1. Supervised multiclass labeling (SML) [68]: the SML poses annotation and 

retrieval as classification problems where each class is defined as the group of 

database images labeled with a common semantic label. A minimum probability 
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of error annotation and retrieval is computed by establishing a one-to-one 

correspondence between semantic labels and semantic classes. Then the images 

are labeled based on the probabilities. 

2. Automatic Linguistic Indexing of Pictures-Real Time (ALIPR) [1]: in ALIPR, the 

Discrete Distribution (D2-) Clustering method, which is in the same spirit as 

K-Means for vectors, is developed to group objects represented as bags of 

weighted vectors. And a generalized mixture modeling technique for non-vector 

data is developed using the concept of Hypothetical Local Mapping (HLM). 

3. Graph Learning Model (GLM) [71]: in GLM, firstly, the image-based graph 

learning is performed to obtain the candidate annotations for each image. To 

capture the complex distribution of image data, a nearest spanning chain 

method is proposed to construct the image based graph. Secondly, the word based 

graph learning is developed to refine the relationships between images and 

words to get final annotations for each image. Moreover, two types of word 

correlations based on web search results are designed. 

4. Hybrid Probabilistic Model (HPM) [61]: the HPM integrates low level image 

features and high level user provided tags to automatically tag images. For 

images without any tags, HPM predicts new tags based solely on the low level 

image features. For images with user provided tags, HPM jointly exploits both 

the image features and the tags in a unified probabilistic framework to 

recommend additional tags to label the images. Moreover, a collaborative 

filtering method based on the nonnegative matrix factorization is developed for 

tackling the data sparsity issue. 

The SML, ALIPR, and HPM are probabilistic modeling methods. They perform 

labeling tasks by computing the joint probabilities for an untagged image being labeled 

with the annotation words. The GLM is performed by propagating the keywords from 

the tagged images to the untagged images by visual similarities. These systems have 

been shown to be successful and can obtain suitable annotation results. Hence, a 

comparison with them will demonstrate the performance of the proposed SVIA, and will  
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SVIA 

Tagging 

jet, plane, clouds, 

runway, sky 

beach, sand, tree, 

valley, sky 

tree, cat, tiger, forest, 

bengal 

Human 

Tagging 
jet, plane, sky 

beach, palm, tree, 

people 

bengal, cat, forest, 

tiger 

 

 
  

SVIA 

Tagging 

sky, water, street, 

buildings, mountain 

sky, tree, water, 

buildings, street 

reefs, coral, ocean, 

fish, water 

Human 

Tagging 

buildings, harbor, 

water, shore 

tree, scalpture, street, 

buildings 

coral, fan, ocean, reefs, 

sea 

 

 
 

SVIA 

Tagging 
plants, lawn, garden, house, petals foals, mare, horses, fence, field 

Human 

Tagging 
garden, house, lawn, tree horse, mare, meadow 

 

  

SVIA 

Tagging 
plants, leaf, stems, petals, flowers 

turn, formula, tracks, straight, 

prototype 

Human 

Tagging 
flowers, grass, petals cars, formula, tracks, wall 

Fig. 4.5. Examples of some annotations generated by the SVIA and human tagging on 

the Corel5k dataset. 
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show whether it is better or worse than other systems. 

4.5.4  Comparison results 

4.5.4.1  Results for the Corel5k data set 

This subsection aims to show the results of SVIA for Corel5k dataset. In the training 

process, on average, the computing time involved in selecting the Gaussian width 

parameter h was 55.1 seconds, the computing time involved in training the support 

vector described models was 214.6 seconds. In the tagging process, on average, the 

computing time was as high as 0.16 seconds for tagging one image. We note that these 

times are not definitive since the computing time varies when the computer 

configurations are different. The reason why we show them here is to roughly illustrate 

the time complexity of the SVIA. Since the images in the Corel5k dataset is tagged with 

1-5 words, we basically show the results of the SVIA when the system provides 5 words 

for each image. Fig.4.5 presents the examples of some annotations generated by the 

SVIA. The images were randomly selected from the testing image set. Fig.4.6 is a plot of 

precision-recall curves for annotation on Corel5k testing dataset using SVIA and SML. 

The curve generated by SML is taken from Ref. [68]. In the experiment, the Gaussian 

Mixture Model mixed with Discrete Cosine Transform representation, i.e., the  

Fig. 4.6. Precision-recall curves for annotation on Corel5k testing dataset using SVIA 

and SML. 
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Table 4.1 

Results of SVIA and the compared systems for Corel5k testing dataset. 

 n�(a\� n�ÊË� precise (%) recall (%) coverage (%) 

SVIA 

500 260 

25.5 31.3 51.2 

SML 23.0 29.0 52.7 

GLM 25.3 29.1 50.4 

HPM 25.0 28.0 52.3 

GMM-DCT representation is adopted. The curve is generated when the dimension of 

the DCT feature space is 63. Table 4.1 presents the results of SVIA when the system 

provides 5 words for each images, and the results of studies using SML, GLM, and HPM, 

respectively. The contents of the table include the number images in the testing set n�(a\�, the number of words in the testing set vocabulary n�ÊË�, the average precision 
and recall rates over the entire testing set vocabulary (precision %, recall %), and the 

coverage rate of the system (coverage %). As far as HPM concerned, the system uses 

user provided tags to enhance the tagging accuracy. In order to present a fair 

comparison, we list the results of HPM under the Given 0 protocol, i.e., the result of 

HPM that didn't use any user provided tags as hints. For the ALIPR, the results on 

Corel5k dataset are not reported in the literature, so they are not included in this 

subsection. 

As can be seen from Fig.4.5, though the SVIA tagging doesn't match the human 

tagging exactly, it is usually more plausible. Take the second image in the top row as an 

example, the SVIA provided words are “beach, sand, tree, valley, sky”, and the human 

provided words are “beach, palm, tree, people”. From the contents of the image, it can be 

seen that the words “sand, sky” are more plausible than the human provided words. 

From Fig.4.6, it can be seen that the SVIA curve has the best precision at 0.371, and its 

precision is superior to that of SML when the recall rate is below 0.352. There are also 

some levels of recall rates where the SML obtain a better precision, especially when the 

recall rate is between 0.4 and 0.6. This is due to the fact that the system has to provide 
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more words to obtain a higher recall rate, and the number of correct annotations doesn't 

increase as the number of system pamrovided word increase. From Table 4.1, it can be 

seen that the SVIA obtains the best results in terms of recall, precision rates. More 

specifically, when compared with the previous best results (GLM), the SVIA obtains 

recall rate 31.3% and precision rate 25.5%, while the GLM obtains recall rate 29.1% and 

precision rate 25.3%. The coverage rate of SVIA is lower than those of SML and HPM, 

and higher than that of GLM. Although the result is worse than those of SML and HPM, 

it  is  not  deteriorated much since i t  can obtain coverage rate 51.2%. 

4.5.4.2  Results for the Corel30k data set 

This subsection aims to show the results of SVIA for Corel30k dataset. The 

experiments that were conducted on Corel5k dataset are repeated on Corel30k dataset. 

In the training process, on average, the computing time involved in selecting the 

Gaussian width parameter h was 443.1 seconds, the computing time involved in 

training the support vector described models was 2167.6 seconds. In the tagging process, 

on average, the computing time was as high as 0.18 seconds for tagging one image. 

Fig.4.7 is a plot of precision-recall curves for annotation on Corel30k testing dataset 

using SVIA and SML. The curve generated by SML is taken from Ref. [68]. In the 

experiment, similar to the experiments on Corel5k dataset, the GMM-DCT  

Fig. 4.7. Precision-recall curves for annotation on Corel30k testing data set using 

SVIA and SML. 
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Table 4.2 

Results of SVIA and the compared systems for Corel30k testing dataset. 

 n�(a\� n�ÊË� precise (%) recall (%) coverage (%) 

SVIA 

500 260 

27.5 28.1 41.1 

SML 12.0 21.0 44.6 

HPM 10.0 19.0 46.2 

representation is adopted. The curve is generated when the dimension of the DCT 

feature space is 128 and the Gaussian mixture model is learned with 3-level hierarchy. 

Table 4.2 presents the results of SVIA when the system provides 5 words for each 

images, and the results of studies using SML and HPM, respectively. The item 

meanings of Table 4.2 are the same as those in Table 4.1. As far as HPM concerned, the 

same as the experiments on the Corel5k dataset, we list the results of HPM under the 

Given 0 protocol.  Similar to the experiments on Corel5k dataset, the results of ALIPR 

and GLM are not reported in the literature, so they are not included in this subsection. 

It can be seen from Fig.4.7 that the SVIA curve has the best precision at 0.359, and 

its precision and recall rates are superior to that of SML significantly. From Table 4.2, it 

can be seen that the SVIA obtains the best results in terms of recall and precision rate. 

When compared with SML and HPM, the SVIA obtains recall rate 28.1%, and precision 

rate 27.5%, while the SML obtains recall rate 12.0%, precision rate 21.0% and HPM 

obtains recall rate 19.0%, precision rate 10.0%. As far as coverage rate concerned, the 

SVIA obtains coverage rate 41.1%, while the SML and HPM obtain coverage rate 44.6% 

and 46.2%, respectively. The results demonstrate that the SVIA maintains its 

scalability as the size of the dataset increases. 

4.5.4.3  Results for the Corel60k data set 

This subsection aims to show the results of SVIA for Corel60k dataset. The 

experiments that were conducted on Corel5k and Corel30k datasets were repeated on 

Corel60k dataset. In the training process, on average, the computing time involved in 

selecting the Gaussian width parameter h was 1439.2 seconds, the computing time 
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involved in training the support vector described models was 6972.7 seconds. In the 

tagging process, on average, the computing time was as high as 0.22 seconds for tagging 

one image. Fig.4.8 presents the comparing annotation results of SVIA, SML and ALIPR 

for annotation on Corel testing dataset. Fig.4.8(a) is a plot of precision-recall curves 

using SVIA and SML.  In the experiment of SML, the GMM-DCT representation is 

adopted. The SML classifiers were learned using 3-level hierarchies. Fig.4.8(b) and (c) 

compare the results of SVIA and ALIPR in terms of precision and recall rates,  

Fig. 4.8. Comparing annotation results of SVIA, SML and ALIPR. (a) Precision-recall 

curves for annotation using SVIA and SML. (b) Comparing precision rates obtained by 

SVIA and ALIPR. (c) Comparing recall rates obtained by SVIA and ALIPR. 
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Table 4.3 

Results of SVIA and the compared systems for Corel60k testing dataset 

 n�(a\� n�ÊË� precise (%) recall (%) 

SVIA 

60000 417 

24.9 26.6 

SML 23.6 15.3 

ALIPR 22.4 28.7 

respectively, where precision and recall rates are shown with the number of words 

provided by the system ranging from 1 to 15. Table 4.3 presents the results of SVIA 

when the system provides 5 words for each images, and the results of studies using SML 

and ALIPR, respectively. The item meanings of Table 4.3 are the same as those in 

Tables 4.1 and 4.2. The coverage rate of SVIA is 42.6% when the system provides 5 

words for each image. Since the coverage rates of SML and ALIPR are not reported in 

the cited literatures Refs. [68]} and [1], they are not included in Table 4.3. For the GLM 

and HPM, the results on Corel60k dataset are not reported in the literature, so they are 

not included in this subsection. 

It can be seen from Fig.4.8(a) that the SVIA curve has the best precision at 0.398, 

and its precision and recall rates are superior to that of SML significantly. From 

Fig.4.8(b), it can be seen that the curves of SVIA and ALIPR have the same shape, and 

the SVIA has a higher precision rate. From Fig.4.8(c), it can be seen that the curves of 

SVIA and ALIPR have the same shape. When the systems provide less than 3 words, 

the ALIPR has a higher recall rate, and when the system provides more than 3 words, 

the SVIA has a higher recall rate. From Table 4.3, it can be seen that the SVIA obtains 

the best results in terms precision rate. The SVIA obtains precision rate 24.9%, while 

the SML obtains precision rate 23.6%, and ALIPR obtains precision rate 22.4%. As far 

as recall rate concerned, the SVIA obtains recall rate 26.6%, the SML obtains recall rate 

15.3%, and ALIPR obtains recall rate 28.7%. The results demonstrate that SVIA mains 

it scalability on the Corel60k datasets. 
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4.5.5  Discussions 

The comparison results of SVIA on Corel5k, Corel30k and Corel60k datasets can be 

summarized and explained as follows. 

1. When compared with SML, SVIA obtains a better precision and recall rates on 

all the Corel5k, Corel30k and Corel60k datasets. The precision-recall curves of 

Fig.4.6, Fig.4.7 and Fig.4.8(a) show that SVIA has a higher precision rate at most 

levels of recall rates. The coverage rates of SVIA are lower than those of SML on 

the Corel5k and Corel30k datasets. 

2. When compared with ALIPR on the Corel60k dataset, SVIA obtains a better 

precision rate as the number of words provided by the system increasing from 1 

to 15. ALIPR has a higher recall rate when the system provides less than 3 words, 

and SVIA has a higher recall rate when the system provides more than 3 words. 

3. When compared with GLM on the Corel5k dataset, SVIA obtains a better result 

in terms of precision, recall and coverage rates. 

4. When compared with HPM on the Corel5k and Corel30k datasets, SVIA obtains 

a better result in terms of precision and recall rates. And the coverage rates of 

SVIA are lower than those of HPM. 

The simulated results indicate that the SVIA may obtain a better result in terms of 

precision and recall rates, and maintains its stability as the size of the dataset increases. 

However, the coverage rates are not as high as the compared systems in most cases. 

This is due to the fact that in the SVIA, the support vector description of cluster is 

adopted, and its most important advantages is to describe clusters of arbitrary shape. 

When the cluster in the training dataset contains a large amount of images, the 

advantage of the SVIA will be exhibited. On the other hand, when the cluster in the 

training dataset contains less images, the SVIA will lose its advantage, thus obtain a 

lower coverage rate. 

4.6  Conclusion 

In this chapter, we aims at proposing an image annotation algorithm based on 

support vector descriptions of clusters. The main novelty of this chapter is in the 
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proposed SVC-based approach, which aims at describing the clusters of training images 

that manually annotated by semantic words. The fact that it can exploit the advantage 

of SVC for its ability to delineate cluster boundaries of arbitrary shape makes it 

particularly useful when the training images are not regularly organized. The 

performance of the proposed algorithm is tested on Corel5k, Corel30k and Corel60k 

data set. The simulated results validate the effectiveness of the proposed algorithm. 
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Chapter 5: Conclusions and future perspectives 

5.1  Conclusions 

Images are major media on the Internet. To mitigate the “semantic gap problem” 

between the low level images and the high level semantic of documents, image 

automatic annotation is an imperative but highly challenging task. In this thesis, we 

aimed at developing non-linear machine learning techniques to address the problems in 

the CBIA system. 

Referring to the parameters in the CBIA system, we proposed a cooperative 

optimization algorithm. A statistical model is proposed to learn the variable 

interdependencies among variables. With the variable interdependencies, a 

decomposition method was proposed to partition the problem into sub-problems so that 

the variable interdependencies in different sub-problems are minimized. Then the 

sub-problems were optimized by a cooperative particle swarm optimization framework. 

We further proposed and proved a theorem that explains the execution process of the 

proposed algorithm. From the study, we found that the probability for a local optimum 

solution of a subset being global optimum values is associated with degree of 

interdependencies of its variables with variables outside the subset. Then another 

theorem that explains why and how the proposed algorithm works is proposed and 

proved. The performance of the proposed algorithm was tested on benchmarks from 

different data sets. Simulated results showed that the proposed algorithm could find the 

optimal solution for most of the selected test functions. This work has shown that large 

scale optimization problem can be partitioned into small scale sub-problems and can be 

optimized cooperatively. 

Referring to the data clustering problems in the CBIA system, we proposed a support 

vector and K-Means hybrid clustering algorithm. A SVC training method was proposed 

based on theoretical analysis of the Gaussian kernel radius function. An empirical study 

was conducted to guide better selection of the standard deviation of the Gaussian kernel. 

A new data clustering algorithm was developed by integrating the merits of both SVC 
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and K-Means algorithm. The performance of the proposed algorithm was tested on 

generated data sets with different sizes, generated 2D data set, and data sets taken 

from the UCI machine learning repository. The results shown that the proposed 

algorithm compared favorably with existing kernel based clustering algorithms. 

We further proposed a support vector based CBIA system. The system contains two 

major components, the training process and the annotating process. In the training 

process, clusters of images that manually annotated by semantic words are used as 

training instances. Images within each cluster are modeled using a support vector 

based method. The fact that it can exploit the advantage of SVC for its ability to 

delineate cluster boundaries of arbitrary shape makes it particularly useful when the 

training images are not regularly organized. In the annotating process, the system 

exploits the distance from the image to the support vector described models and the 

word to word correlations in a probabilistic framework to predict annotation words. The 

performance of the proposed algorithm is tested on Corel5k, Corel30k, and Corel60k 

data sets. The simulated results show the performance of the proposed system. 

5.2  Future perspectives 

Future work of this thesis can take many directions. Firstly, the parameters used in 

the CBIA system described in Chapter 4 are selected empirically. The incorporation of 

the CPSO-SL described in Chapter 2 to the CBIA system may produce more desirable 

results. Thus one direction of future is to integrate the CPSL-SL with CBIA system so 

that better parameter settings can be obtained. This includes the problems of how to 

formulate the optimization problems, how to design the PSO operators, and how to 

define the objective functions, etc. Secondly, the support vector and K-Means data 

clustering algorithm described in Chapter 3 is effective for data sets with less than 

10000 data points. However, whether it can deal with large scale data sets is still a 

question to be answered. On the other hand, in the CBIA system described in Chapter 4, 

the training images are annotated manually, which is known to be tedious and labor 

intensive. Thus, one direction of future work is to develop data clustering algorithm for 

large scale data sets so that the training images of the CBIA system can be generated 
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automatically by computer. Finally, a review of literatures suggests that the accuracies 

of CBIA systems are less than 50% in most case. Obviously, it is not enough for the user 

demand. Thus, the third direction of current research is to improve the accuracy of the 

system. The orientations are multi-fold. Shape information can be utilized to improve 

the training and annotating process. Better and larger amounts of training images may 

produce more robust models. Contextual information may also help in the modeling 

process. And the system can be integrated with other retrieval methods to improve 

usability. 
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