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Abstract

Modeling Speed-Accuracy Tradeoff in Trajectory-based Tasks
with Subjective Bias and Temporal Constraint for User

Interface Design

Xiaolei ZHOU

Speed-accuracy tradeoff is a very common phenomenon in many types of human
motor control tasks. In general, the more accurate the task to be accomplished, the
longer it takes and vice versa. In Human-Computer Interaction (HCI), trajectory-
based task (e.g., navigation through a cascade menu, drawing, writing, or steering
through a 3D space, etc) is one of the most basic task paradigms, which likewise obeys
the speed-accuracy tradeoff rule. The study on speed-accuracy tradeoff model can be
efficiently used for predicting user performance, evaluating input device and instructing
user interface design and so on.

Steering law is the widely accepted model for trajectory-based task (or steering
task) in HCT and has got so many applications. The steering law obeys certain speed-
accuracy tradeoff rule, i.e., the time of a movement tends to become longer when its
accuracy increases and vice versa. It models the speed-accuracy tradeoff effect only by
objective spatial task parameters, i.e., tunnel amplitude and tunnel width. Tasks in the
real world, however, are not as simple as the steering tasks. Besides the objective spatial
parameters, more parameters (subjective or objective, internal or external, temporal or
spatial, etc.) may affect the human motor tasks, which results in different human

performance and different description of speed-accuracy tradeoff.



In this thesis, based on the traditional steering tasks, we first investigated the
trajectory-based task with subjective operational bias toward speed or accuracy through
a controlled experiment. By analyzing the human performance data (i.e., resulting time
and accuracy), we established a new model accommodating objective and subjective fac-
tors in steering tasks. Empirical results showed that the new model was more predictive
and robust than the traditional steering law.

Following above study, we then investigated another trajectory-based task with
objective temporal constraint through a controlled experiment. Different from above
experiment, movement time was specified in advance for this study, and the accuracy
should be measured. By analyzing the obtained human performance data, we estab-
lished a new model predicting the relationship between accuracy and speed. Experi-
mental results confirm that the new model fit the empirical data well.

In addition, we also investigate the maximal path width that the traditional steering
law holds for, the effect of different start positions on human performance and the effect
of age (younger and older people) on speed-accuracy tradeoff.

In theory, this work will contribute to considering more factors (subjective bias
factor, objective temporal factor, movement direction and age-related effects) in mod-
eling human performance and speed-accuracy tradeoff. In practice, all these results will

provide new sights for future interface design and input device evaluation in HCIL.

key words Human-computer interaction, speed-accuracy tradeoff, trajectory-based
task, performance model, steering law, subjective operational bias, objective tem-

poral constraint, age effect.
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Chapter 1

Introduction

1.1 Research Motivation

Human-Computer Interaction (HCI) is the study of how people interact with com-
puter and how to design computer systems that are easy, quick and productive for
people to use. It is an interdisciplinary subject, relating computer science with many
other fields of study, such as physiology, psychology, motor control, philosophy and so
on. For a long time, researchers in HCI have mainly focused on novel input device and
user interface designs. Some typical task paradigms, such as pointing, steering, crossing
and gesture, help users to accomplish various complex tasks when interacting with com-
puters. To quantitatively evaluate the efficiency of these input devices and interfaces,
accuracy and speed of task completion are usually measured.

A user can either perform the task very fast with a large number of errors or very
slow with very few errors. When asked to perform a task as well as possible, people will
apply various strategies that may optimize speed, optimize accuracy, or combine the
two. For this reason, comparing the performance of 2 users cannot be done on the basis
of speed or accuracy alone, but both need to be known. Under some testing situations,
people can be instructed to optimize either speed or accuracy, and they will effectively
adopt the appropriate strategy. However, results can be extremely hard to compare,
because time differences between a person who made zero errors and a person who

made one error can be dramatic. For this reason, in situations where a speed-accuracy
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tradeoff exists, the relationship between speed and accuracy needs to be mapped out.
In the area of HCI, the relationship to be mapped out is called as model, which can be
used to generalize studies on instructing user interface design, evaluating input device,
predicting human performance and so on.

Target-based task and Trajectory-based task are two main and basic task paradigms
in human computer interaction. Compared to the target-based task, models studies on
trajectory-based task is not enough. One of the reason for that maybe the appearance of
the first model for trajectory-based task was in 1997 [1], much later than the first model
for target-based task in 1954 [18]. Another reason is that modeling the performance in
HCT has always been a tough job. Tablel.1 shows two by two taxonomy of model for
speed-accuracy tradeoff.

One dimension of the taxonomy is the task stimulus in two categories: A. Target,
and B. Trajectory. The other dimension is the constraint placed on 1. Spatial charac-
teristics of the task, or I1. Temporal characteristics of the task. By constraint we mean
the independent variables controlled in the task. In tasks in I row of Table 1.1, the
independent variables are the spatial characteristics of the task, controlled and system-
atically manipulated in the experiments. The dependent variables, i.e., human perfor-
mance measurements, are temporal (time or speed). In tasks in IT row of Table 1.1,
the independent variables are the temporal characteristics of the task, controlled and
systematically manipulated in the experiments. The dependent variables, i.e., human
performance measurements, are spatial (movement amplitude or standard deviation in
space). Commutativity between dependent and independent variables in human perfor-
mance laws poses an interesting theoretical issue to the psychological science.

Until now, the famous model for trajectory-based task is still steering law [1].
Steering law models a relationship between the steering time of trajectory-based tasks

and the task difficulty, which is decided by the tunnel amplitude and tunnel width
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Table 1.1 A taxonomy of speed-accuracy tradeoff model.

Models

Target-based Movement

Trajectory-based Movement

Spatial Constraint

Fitts’ law [18] (deterministic

iterative-corrections model [14]

[31]*), ID. model [68] [27],
power law  [49]  (Stochas-
tic optimized-submovement

model [50] *), SH-model [61],

SH-model with learning ef-
fect [62], Peephole pointing [10],

Magic lens pointing [63]

Crossing model (semi-
trajectory based) [4]

Steering law [1], (Steer-

ing + bias) law [78],
CLC model (free-hand
drawing) [9]

Temporal Constraint

Schmidt law [66] (impulse vari-
ability model [66]*), Error Model

[69]

Ongoing model by the au-

thors [79]

* attached represents motor control model of the corresponding law

through mathematical deduction and experimental verification. During the paradigm

experiment, subjects were asked to steer in the tunnel with amplitude A and width W

as fast and as accurately as possible.

A

(1.1)

In Equation 1.1, MT is the movement time, A and W represent the tunnel am-

plitude and tunnel width respectively, ¢ and b are two regression coefficients.

The

steering law obeys certain speed-accuracy tradeoff rule, i.e., the time of a movement
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tends to become longer when its accuracy *! increases and vice versa. It models the
speed-accuracy tradeoff effect in trajectory-based tasks by objective task parameters,
i.e., tunnel amplitude and tunnel width.

Tasks in the real world, however, are not as simple as the above steering tasks.
Besides the spatial constraint parameters, more parameters (subjective or objective,
internal or external, etc.) affect the human motor tasks, which results in different human
performance and different description of speed-accuracy tradeoff. These parameters may
include physical factor of subject (younger or older, impaired or sound), environment
(touch or hover), subjective bias (fast or slow), temporal constraint (500ms or 1000ms)
and so on. So, new models or descriptions for speed-accuracy tradeoff in human motor

tasks are needed.

1.2 Background Knowledge

Most models in HCI can be categorized into two groups: the descriptive models
with metaphoric characteristics (such as Guiard’s model of bimanual control [25] and
Buxton’s three-state model [8]) and the predictive models with mathematics rigors [35].
Simply speaking, “the descriptive models provide a framework or context for thinking
about or describing a problem or situation” [40]. It is not the focus in this dissertation.

Predictive models are sometimes called engineering models or performance mod-
els [13] [45]. In HCI, predictive models allow metrics of human performance (speed
or accuracy) to be determined analytically without undertaking time-consuming and
resource-intensive experiments [40]. This dissertation focuses on predictive models, es-
pecially speed-accuracy tradeoff nature of predictive models.

Speed-accuracy tradeoffs in human motor control tasks have been studied for more

*1 In the traditional steering law, more accurate task generally means narrower tunnel width.
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Target
Amplitlude

Fig. 1.1 Fitts’ law reciprocal pointing paradigm [18].

than a century, resulting in well established experimental protocols and empirical laws
relating movement amplitude, speed and accuracy. Woodworth [70] demonstrated that
the accuracy of a line-drawing movement depended on the movement velocity. This was
the earliest systematic study on speed-accuracy tradeoff. However, he did not formulate
the speed-accuracy tradeoff. Since then many researchers have investigated models for
speed-accuracy tradeoff. Depending on the nature of the task and the type of the

constraint, these researches can be divided into four categories as follows:

1.2.1 Target-based Task with Spatial Constraint

Fitts’ law is a model of human psychomotor behavior developed in 1954 [18], formu-
lating speed-accuracy tradeoffs in rapid aimed movement (not drawing or writing). In
Fitts’ paradigmatic experiment, subjects used a pen to reciprocally point to two strips
separated from each other by some distance on a platform (see Fig.1.1).

According to Fitts’ Law, the time to move and point to a target of width W at a

distance A is a logarithmic function of the spatial relative error (%) [18] [19], that is:

2A
MT:a+blog2(W) (1.2)

where, MT is the movement time. a and b are empirically determined constants,
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that are device dependent. A is the distance (or amplitude) of movement from start to
target center. W is the width of the target, which corresponds to “accuracy”. The term
log,(%2) is called the index of difficulty (ID) of the movement. It describes the difficulty
of the motor tasks. 1/b is called the index of performance (IP) in “bits/second”, and
measures the information capacity of the human motor system.

Extending Shannon’s theorem [67] in information theory (a formulation of effective
information capacity of a communication channel), now the most popular form of Fitts’
law [38] is:

A
MT:a+blog2(W+1) (1.3)

Fitts’ law is an effective quantitative method of modeling user performance in rapid,
aimed movements, where one appendage (like a hand) starts at a specific start position,
and moves to rest within a target area. Fitt’s law has been verified to hold for a variety
of circumstances [37] [32] [33]. Card et al. [11] reported the first comparative evaluation
of the mouse, and also the first use of Fitts’ Law in Human-Computer Interaction. Fitts’
Law is an intensively used theory in Human-Computer Interaction. It can be used in
assisting interface designs and in interface evaluation [28] [54] [60].

In addition, one explanation of motor control theory for Fitts’ law was proposed
by Crossman and Goodeve [14], and later refined by Keele [30]. It was described as
an iterative-corrections model. This model attributes the law to closed-loop feedback
control of a movement. It assumes that the whole movement is made up of a series of
discrete submovements, each of which takes the user closer to the target and is triggered
by feedback indicating the target is not yet attained.

Zhai et al. [77] investigated the speed-accuracy tradeoff based on participants’ oper-
ational biases toward speed or accuracy, and attempted to derive a model incorporating

not only objective task parameters but also subjective biases towards speed or accu-
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racy. However, a simple and linear model was not found by the empirical studies.
Consequently, Ren et al. [61] established the SH-Model involving both the system and
subjective factors based on the distribution of the actual movement time, which is dif-
ferent from the traditional Fitts’ law based on the spatial distribution of end points.
The SH-Model then was experimentally verified to hold for several input devices [34].
Although the strong predictive power of SH-Model, it doesn’t take learning effects into
account. Ren et al. [62] proposed new model that reflected the learning effect on move-

ment time based on the SH-Model in the pointing tasks.

1.2.2 Target-based Task with Temporal Constraint

Schmidt’s law [66] is closely related to Fitts’ law. In their study, movement am-
plitude and time were manipulated, and the standard deviation of end points distribu-
tion was measured. Schmidt’s law described a strong linear relationship between the
movement speed and the standard deviation of the end points distribution as shown in

Equation 1.4.
A

W, = b(m)

(1.4)

where, W, represents the standard deviation of end points, A is the amplitude of the
movement, and MT (an independent variable) is the movement time as specified by
the metronome. Therefore A/MT characterizes the average movement speed. In this
experiment, the target is a target line with zero width.

Similarly, an impulse variability model was proposed from the perspective of motor
control theory [66]. This model attributes Schmidt’s law almost entirely to a single
ballistic movement delivered by the muscles, driving the limb from its starting point
towards the target.

From the above summary, we can see that target acquisition tasks with spatial

constraint are characterized by logarithmic speed-accuracy tradeoff (Fitts’ law), while
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target acquisition tasks with temporal constraint are characterized by linear speed-
accuracy tradeoff (Schmidt’s law) [48] [69] [72]. In order to investigate the coexistence
of spatial and temporal constraints in one motor task, Zelaznik et al. [74] manipulated
movement time, amplitude and target width (not target line) and discovered a similar
linear speed-accuracy tradeoff, i.e., the target width did not affect the nature of the
speed-accuracy tradeoff relation. In addition, Zelaznik et al. [75] also observed linear
relations between speed and accuracy when attention is occupied with a secondary task.

A motor control model that explains both the linear speed-accuracy tradeoff and
the logarithmic speed-accuracy tradeoff was the stochastic optimized dual-submovement
model [49]. This model combined both open-loop and close-loop submovements, and
described the speed-accuracy tradeoff as a power relationship.

In addition to researches that look at end point distribution, Wobbrock et al. [69]
derived a predictive model for error rate through an experiment that manipulated target
size, target distance and movement time. A logarithmic speed-accuracy tradeoff was

found instead.

1.2.3 Trajectory-based Task with Spatial Constraint

The steering law is a predictive model of how quickly one may navigate, or steer,
through a 2-dimensional tunnel. The tunnel can be thought of as a path or trajectory
on a plane that has an associated thickness or width, where the width can vary along
the tunnel. The goal of a steering task is to navigate from one end of the tunnel to the
other as quickly as possible, without touching the boundaries of the tunnel. A real world
example that approximates this task is driving a car down a road that may have twists
and turns, where the car must navigate the road as quickly as possible without touching
the sides of the road. Within human-computer interaction, the law was discovered by

Accot and Zhai [1] in 1997, who mathematically derived it in a novel way from Fitts’
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law using integral calculus, experimentally verified it for a class of tasks, and developed
the most general mathematical statement of it. In this context, the steering law is a
predictive model of human movement, concerning the speed and total time with which
a user may steer a pointing device (such as a mouse or stylus) through a 2D tunnel
presented on a screen (i.e. with a bird’s eye view of the tunnel), where the user must
travel from one end of the path to the other as quickly as possible, while staying within
the confines of the path. One potential practical application of this law is in modeling
a user’s performance in navigating a hierarchical cascading menu.

Many researchers in human-computer interaction, including Accot himself, find it
surprising or even amazing that the steering law model predicts performance as well as
it does, given the almost purely mathematical way in which it was derived.

In its general form, the steering law can be expressed as

ds

MT =a+0
c W(s)

(1.5)

where MT is the average time to navigate through the path, C'is the path parameterized
by s, W (s) is the width of the path at s, and a and b are experimentally fitted constants.
In general, the path may have a complicated curvilinear shape (such as a spiral) with
variable thickness W (s).

Simpler paths allow for mathematical simplifications of the general form of the law.
For example, if the path is a straight tunnel of constant width W, the equation reduces
to Equation 1.1. We see, especially in this simplified form, a speed-accuracy tradeoft,
somewhat similar to that in Fitts’ law.

We can also differentiate both sides of the integral equation with respect to s to

obtain the local, or instantaneous, form of the law:

ds _ W(s)
dl b

(1.6)

which says that the instantaneous speed of the user is proportional to the width
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of the tunnel. This makes intuitive sense if we consider the analogous task of driving a
car down a road: the wider the road, the faster we can drive and still stay on the road,
even if there are curves in the road.

Subsequently, extensive researches have been done based on the steering law, such
as models for steering through corners [56], and steering within above-the-surface in-
teraction layers using the tracking state of the stylus [29]. In addition, a pen stroke
gesture model for predicting completion time of free hand trajectory drawing tasks has
also been proposed [9]. One aim in this paper is to investigate the effect of subjective
factor on human performance and establish a new human performance model including

both system and human factors.

1.2.4 Trajectory-based Task with Temporal Constraint

So far, trajectory-based tasks with temporal constraint has not been investigated
and modeled. Another aim in this paper is to investigate the trajectory accuracy when
the movement time is considered as an independent variable in trajectory-based tasks,

which will fill the void in human performance modeling research.

1.3 Objectives and Research Issues

First of all, we will explore the problems existing in modeling trajectory-based
tasks with spatial constraint from analyzing the human or subjective factor in human
performance (resulting speed or accuracy). Therefore, we will carry out a special con-
trolled experiment to observe the human steering performance with different levels of
speed and accuracy inclinations incurred by performers. Through revealing the nature
of speed-accuracy tradeoff in trajectory-based tasks and the impacts of objective factor

and subjective factor on human performance, we will establish a new speed-accuracy
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tradeoff model accommodating both objective and subjective parameters.

Then we will go on to investigate speed-accuracy tradeoff nature in trajectory-based
tasks from the perspective of objective temporal constraint. We will conduct a special
controlled experiment to observe the human performance with different levels of tem-
poral constraint. The experiment will help us testify the objective task parameters and
objective temporal constraint affect the relationship between speed and accuracy and
their respective impact on human performance. Through the analysis of experimental
result, we will establish another new speed-accuracy tradeoff model involving objective
task parameters and temporal constraint.

We will also try to resolve other related questions in trajectory-based tasks, in-
cluding maximal path width of the steering law, the effect of different start positions
on speed-accuracy tradeoff in the steering tasks, and the effects of aging on perfor-
mance difference (movement time and accuracy) in steering tasks when interacting with
computer interfaces and the physical and psychological characteristic of older people.

All these studies will afford us an opportunity to understand the features of
trajectory-based tasks and the nature of speed-accuracy tradeoff phenomenon in motor
tasks comprehensively. The results will be instructive to study about other kinds of

motor behaviors in HCI.

1.4 Dissertation Structure

The structure of this dissertation is shown in Fig.1.2.

Chapter 2 in this dissertation scrutinizes the effects of the objective task parame-
ters and subjective operational biases on human performance based on the statistical
analysis of authentic experimental data. The results of a controlled experiment will

be reported to help us observe the subjects steering performance with different level
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Chapter 1

Introduction«

Chapter 2 Chapter 3

Speed-accuracy tradeoff with Speed-accuracy tradeoff with

subjective operational biase objective temporal constraint.
Chapter 4+ Chapter 5« Chapter 6.
Maximum Start position’s Age-related
path width of effect in the performance
steering law. steering tasks. decrements.

Chapter 7+

Conclusions«

Fig. 1.2 The dissertation structure.

of speed and accuracy inclinations incurred by experimenters instructions. The experi-
ment will help us testify both the objective task parameters and subjective operational
biases affect the relationship between speed and accuracy and their respective impact
on human performance. Finally, we will establish a new speed-accuracy tradeoff model
accommodating both objective and subjective parameters.

Chapter 3 will explore the speed-accuracy tradeoff from the perspective of objective
temporal constraint through a controlled experiment. A new speed-accuracy tradeoff
model, in which movement time considered as a controlled variable and accuracy as
measurement, will be established. If the speed specification in Chapter 2 is subjective,
it will be objective in the Chapter 3. The robust of the proposed model will be verified
by R? method.

The study in Chapter 2 will inspire us to do the studies in the following chapters
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(Chapter 4, Chapter 5 and Chapter 6). Some basic issues of the steering law model are

discussed.

1.5 Summary

Trajectory-based task is one of the most basic and main task paradigms in human
computer interaction. Modeling for speed-accuracy tradeoff in trajectory-based tasks
helps people understand human performance. This understanding will be instructive
for not only input device evaluation but also user interface design. The studies devel-
oped with this theme will contribute to the modeling work mainly from the aspect of
considering subjective operational bias and objective temporal constraint in modeling
the performance.

These works will motivate much more explorations of speed-accuracy tradeoff in
modeling for trajectory-based tasks with both the physiological and psychological in-
formation and factor. The knowledge will be instructive for Ul design comprehensively.

With the fantastic development speed of science and technology, many novel input
devices and user interfaces will appear. For the future work, it is necessary to carry
out the model related researches about the application of human performance model on
new input technology. Because few models have been established in the trajectory-based
tasks, our study on human performance models will give evaluation of those previously
and lately developed hardware and software, and further motivate more researchers to

model human performance in the area of human computer interaction.
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Chapter 2

Speed-Accuracy Tradeoff in
Trajectory-based Task with

Subjective Operational Bias

The steering law is an excellent performance model for trajectory-based tasks, such
as drawing and writing in GUIs. Current studies on steering tasks focus on the effect
of system factors (i.e., path width and amplitude) on the movement time and steering
law’s related applications. In this chapter, we conducted a controlled experiment to
further explore the effect of different operational biases (bias speed or accuracy) on
steering completion time and standard deviation for two steering trajectory shapes, i.e.,
a straight steering task and a circular steering task, and then, establish a new model
accommodating system and subjective factor in steering tasks. Empirical results showed

that the new model is more predictive and robust than the traditional steering law.

2.1 Introduction

An important research branch in Human Computer Interaction (HCI) community is
to seek to develop formal models [12] [18] [25] useful for predicting or describing human
behavior in interactions with computer systems. Fitts’ law [18] [19] is a very powerful

model for pointing task evaluation and has found many uses in HCI [16] [43] [44]. Fitts’
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tasks follow certain speed-accuracy tradeoff rules, i.e., the more accurate the task to be
accomplished, the longer it takes and vice versa.

In 1997, Accot and Zhai developed a new model for trajectory-based tasks, called
steering law [1], deduced from Fitts’ law. Similarly, steering law also follows certain
speed-accuracy tradeoff rules and has been used for a number of studies [2] [3] [15]
[56] [76]. But still, there exist some issues with the steering model. For example,
current, studies about the steering model pay little attention to the subjective factor,
i.e., the subject’s operational biases toward speed or accuracy. If the stroke is drawn as
accurately as possible, steering completion time may increase. Conversely, if the stroke
is drawn as fast as possible, steering completion time may decrease. So, the traditional
steering law only involving system factors, i.e., tunnel amplitude and tunnel width, is
not, precise enough to model human performance accurately.

The objective of this chapter is to explore the comprehensive effect of different
operational human biases in trajectory-based tasks and attempt to establish a new

steering model involving not only system factors but also subjective factors.

2.2 Related Work

Literature about motor behavior models in human-computer interaction can be
found in Mackenzie’s paper [40], which gave a good summary of models of human
movement relevant to HCI. However, subjective operational biases were not involved in
it.

Recent studies about the effect of subjective operational biases in computer inter-
action tasks include the work of Zhai, Kong and Ren [77]. In that paper, the different
operational biases of subjects towards speed or accuracy in Fitts’ target acquisition

tasks were systematically and completely discussed. A series of related experiments
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had been conducted to explore the relationships between target utilization, task spec-
ification and subjective operational biases. Experimental results showed that target
utilization was not only affected by operational biases, but also by target width and
distance. Moreover, the effect of width was more significant than the effect of distance.
W, model *! [39] could partly compensate for the subjective layer’s effect, but not com-
pletely. A complete model which can predict the relationships between the subjective
and objective layers does not exist.

The above mentioned study about different operational biases is based on spatial
variability, i.e. the normal distribution of end-points, which lacks theoretical and empir-
ical foundations. Based on temporal constraint (distribution of movement time data), a
new model, called SH-Model [61], was presented to include system and human effects in
Fitts’ target acquisition tasks. Empirical analysis showed that the SH-Model is stronger
than the Shannon model *? [38] and W, model.

According to the definition of “effective target width” [39] in Fitts’ tasks, Kulikov et
al. introduced spatial variability into steering tasks for straight tunnels and established
“effective tunnel width” [36] of steering motions. Empirical results manifested that the
newly built model is stronger and more natural than traditional steering law. Effective
tunnel width partly reflected what the subject actually did, but the different biases of
operations were not, been systematically and comprehensively discussed and varieties in
the shape of the tunnel had not been considered in that paper, e.g. considered that
the natural arc motion of the hand warranted that a curved tunnel or round tunnel be

included.

*1 W, model, i.e., “effective target width” model is: MT = a + bloga(A/We + 1), where W, =

4.133SD
*2 Shannon model is: MT = a + blog2(A/W + 1). For both models, a and b are empirically

determined constants, A is the pointing distance, W is the target width and MT the mean time

of task completion. SD is the standard deviation of end-points distribution.
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This chapter further comprehensively investigates the effect of five different opera-
tional biases on two steering tasks, i.e., a straight steering task and a circular steering
task and introduces standard deviation as subjective factor. Finally, a new steering
model is attempted to establish reflecting not only system factors but also subjective

factors.

2.3 Experiment

2.3.1 Task

Our experiment takes a straight tunnel and a circular tunnel as two steering tasks
(see Fig. 2.1). Although there are a great number of shapes that can be studied, only
a few need to be used for practical purposes [2]. We decided to limit ourselves in this
study to two shapes: straight tunnels (see Fig. 2.1a) and circular tunnels (see Fig.
2.1b). Although they do not necessarily represent all trajectory shapes found while
interacting with a computer, these two shapes of tunnels allow us to investigate human
different operational biases in both linear and non-linear movements. The representative
nature of the two shapes of tasks, as well as the simplicity of their steering models made
them the ideal candidates for standard evaluation of human operational conditions in
trajectory-based tasks.

The difficulty for steering through a straight tunnel (see Fig. 2.1a) is ID; = A/W,
where A is the length of the tunnel, and W its width. For a circular tunnel, the
movement amplitude A is equal to the circle circumference 2w R, where R is the circle
radius, so the difficulty for steering through a circular tunnel (see Fig. 2.1b) is ID. =
2rR/W . Steering law that models the relationship between completion time MT and
tasks difficulty ID can be expressed in the following form: MT = a + b x I Dy for a

straight tunnel, and MT = a + b x I D, for a circular tunnel.
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(a) Straight tunnel steering
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() Crreular tunnel steermg

Fig. 2.1 Two steering tasks.

2.3.2 Bias

The earliest study about the operational biases of subjects was the work of Fitts and
Radford [20]. They systematically manipulated the operational biases of three subjects
towards accuracy (A), neutrality (N), and speed (S), by means of monetary award and
penalty at 1 cent per point. Fitts’ thesis was that human information capacity in motor
responses is relatively constant despite different experimental manipulations, so their

paper did not focus on the effect of W, correction.
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In the work of Zhai, Kong and Ren [77], the different operational biases of subjects,
towards speed or accuracy, were systematically and completely discussed in Fitts’ target
acquisition tasks; while the subject of our research is the effect of subjective operational
biases in trajectory-based tasks.

Although the instruction of traditional steering law [1] is “make a stroke along
the tunnel as fast and accurately as possible, and avoid crossing the tunnel border”,
the focus of this study is to investigate the effect of subjects’ operational biases on the
human performance of two steering tasks.

We would like to comprehensively investigate the effect of five different operational
biases on the above two steering tasks. They are extremely accurate (EA), accurate
(A), neutral (N), fast (F) and extremely fast (EF). The following verbal instructions
corresponding to each operational bias are given by the experimenter to the participants:
“Make a stroke along the tunnel as accurately as possible and do not worry about time
or speed; try to avoid any error” in Condition EA; “as accurately as possible but keep
some speed” in Condition A; “as accurately as possible and as fast as possible” in
Condition N; “as fast as possible but keep some accuracy” in Condition F; and “as fast

as possible and some errors are acceptable” in Condition EF.

2.3.3 Subjects

Ten subjects (7 male, 3 female, aged from 21 to 31) participated in the experiment.
All participants had normal or corrected to normal sight. The participants performed

the test using their preferred hand (all right handed).
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2.3.4 Apparatus

The experiment was conducted on an IBM ThinkPad X41 Tablet PC with a stylus
as the input device, running Windows XP. The screen size was 12.1 inches, with 1024 x

768 resolutions. Experimental software was developed with Java.

2.3.5 Design

The experiment was a 3 X 3 within-subjects factorial design. The within-subject
factors were task (linear vs. circular), amplitude (250, 350, 450 pixels), and width (10,
25, 40 pixels). The direction of a linear task was towards right, and the direction of a
circular task was clockwise.

10 participants were randomly divided into two groups, with 5 participants for each
group. The participants in Group 1 first performed a linear task, while those in Group
2 did a circular task first. Each subject was instructed to repeat the experiment five
times with different operational strategies, i.e., extremely accurate (EA), accurate (A),
neutral (N), fast (F) and extremely fast (EF). The aforementioned verbal instructions
corresponding to each operational bias were given by the experimenter to the partici-
pants before performing experiment.

The order of the EA, A, N, F, EF conditions was balanced by a Latin square pattern
across each group of subjects. The order of the nine amplitude and width combinations
was presented in random order to the participants in each operational bias. Each subject
performed 9 strokes for each Amplitude/Width combination in each operational bias
of the two tasks. So the total stroke number was 3 (tunnel amplitudes) x 3 (tunnel

widths) x 9 (strokes) x 5 (operational biases) x 2 (tasks) x 10 (subjects) = 8,100.
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2.3.6 Procedure

The participants were first briefed on the purpose of the experiment. With the
stylus as the input device, the subjects were allowed to place the Tablet PC on their
knees or on the desktop, which ever was more comfortable. But during the experiment,
all of them chose to place the Tablet PC on the desktop. Before the test, all subjects
were allowed to perform some warm-up trials in each operational bias until they felt
that they could begin the experiments.

Subjects performed two types of steering tasks: straight tunnel steering and circular
tunnel steering (see Fig. 2.1). At the beginning of each trial, the path to be steered
was presented on the screen, in black. After placing the cursor to the left of the start
segment and depressing the tip of the stylus, the subject began to draw a green line on
the computer screen, showing the stylus trajectory. When the cursor crossed the start
segment, left to right, the line turned blue, as a signal that the task had begun, the
time was being recorded and the stylus trajectory was being sampled. When the cursor
crossed the end segment, also left to right, the current tunnel disappeared and a new
tunnel was presented to the subject. Lifting the pen tip up from the Tablet PC surface
after crossing the start segment and before crossing the end segment would result in an
invalid trial and that trial needed to be repeated. When the cursor crossed the borders
of the path, the line turned red, as a signal that the stylus trajectory was outside of the

tunnel, but the current trial did not need to be redone.

2.3.7 Measurements

While the stroke was being made, the position of the cursor was sampled in intervals
of 10 milliseconds. The dependent variables were: MT (time taken to move the cursor

from the start line to the end line), SD (Standard Deviation: for the linear tunnel, SD
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Table 2.1 Mean MT with two tasks for each bias (EA, A, N, F and EF).

MT (ms) EA A N F EF

Linear steering task ~ 2173.0 1538.1 1080.8 840.3  421.8

Circular steering task 4433.4 2939.8 2273.2 1780.3 1044.8

is computed using the sampled y-values between the start line and the end line; for the
circular tunnel, SD is computed using the distances between the sampled points and
the center of the circular tunnel), and OPM (Out of Path Movement, percentage of
sample points outside the tunnel border). For example, if 100 points were sampled and

10 of those points were outside the tunnel border, then OPM would be 10%.

2.4 Results

2.4.1 Movement time

Repeated measures ANOVA showed that there was a significant effect of bias
(Fya05 = 121.96,p < .00001 for linear tasks, Fy 405 = 227.29,p < .00001 for circu-
lar tasks) upon steering time. Mean steering time for EA, A, N, F and EF biases were
respectively 2173.0, 1538.1, 1080.8, 840.3, and 421.8 milliseconds for linear steering tasks
and 4433.4, 2939.8, 2273.2, 1780.3, and 1044.8 for circular steering tasks (see Table 2.1
or Fig. 2.2). The circular steering task was significantly more difficult than the linear
task, although the two shared the same tunnel amplitudes and tunnel widths.

Further ANOVA analysis showed that there was a significant interaction between
index of difficulty and biases (F32405 = 4.42,p < .00001 for linear tasks, F3o 405 =
4.98,p < .00001 for circular tasks) (see Fig. 2.3).

In linear steering, linear regression between steering index of difficulty and steering
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Fig. 2.2 Mean completion time with two tasks for each bias (EA, A, N, F and EF).
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Fig. 2.3 Mean completion time for each bias (EA, A, N, F and EF) as a function

of difficulty in both linear and circular steering tasks.

time (expressed in milliseconds) produced the following equations for each bias:
EA: MT = 80.68 x ID +619.92 (R? = 0.963)
A: MT =50.05% ID +574.69 (R? = 0.947)
N: MT = 28.64 « ID +529.43 (R? = 0.931)
F: MT = 21.41 = ID + 428.22 (R? = 0.926)
EF: MT = 8.01 x ID + 267.73 (R? = 0.871)
For circular steering, the equations were:

EA: MT =148.96 x ID + 1565.9 (R? = 0.974)
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A: MT =109.27 % ID + 836.33 (R* = 0.992)

N: MT = 84.32x ID + 650 (R?=0.981)

F: MT = 67.57 « ID + 479.62 (R? = 0.993)

EF: MT = 37.42% ID + 324.44 (R?* = 0.985)

For linear steering tasks, there was an interesting tendency that the more risky
(faster paced) the operational condition was, the weaker the correlation between MT
vs. ID was. That is to say, the R? values between MT vs. ID from EA to EF
declined, respectively 0.963, 0.947, 0.931, 0.926 and 0.871. This phenomenon was reverse
compared with pointing task trials [77]. In pointing tasks, the values of R? are 0.904,
0.899, 0.961, 0.995 and 0.992 respectively for biases EA, A, N, F and EF.

Although the instructions were very different and hence there were very different
levels of steering completion time, the R? values of MT vs. ID linear regression were
all above 0.92 except the bias EF (0.871). For circular steering tasks, the R? values of
MT vs. ID linear regression were all above 0.97 for each operational condition.

ID was indeed shown to be a remarkably robust determinant of the mean pointing
time within each condition, but the correlation between MT and ID became much
weaker when data from all the operational biases were merged in one regression (see
Fig. 2.4). For linear steering tasks, ID accounted for only 31.7% of the variance of
mean trial completion time caused by both different levels of I D and the quite different
five operational biases. For circular steering, ID could also account for only 44.2%.
The correlation between MT vs. ID in both linear and circular steering tasks is weaker

than that in one-dimensional pointing tasks (R? = 0.46) [77].

2.4.2 Standard Deviation (SD)

Repeated measures ANOVA analysis showed that there was a significant effect of

bias (Fy 135 = 21.09,p < .00001 for linear tasks, Fy 135 = 54.33,p < .00001 for circular
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Fig. 2.4 Mean completion time for all biases combined as a function of difficulty

in both linear and circular steering tasks.

Table 2.2 Mean SD with two tasks for each bias (EA, A, N, F and EF).

SD (pixels) EA A N F FEF

Linear steering task ~ 1.340 1.42 1.64 1.70 2.07

Circular steering task  2.09  2.41 2.66 2.89 3.78

tasks) upon standard deviation. Mean standard deviation for EA, A, N, F and EF
biases were respectively 1.34, 1.42, 1.64, 1.70, and 2.07 for linear steering and 2.09,
2.41, 2.66, 2.89, and 3.78 for circular steering (see Table 2.2 or Fig. 2.5).

SD varied irregularly with the increase of ID for both linear and circular steering
tasks (see Fig. 2.6). So we further examined the influence on SD separately by tunnel
amplitude and width (see Fig. 2.7 and Fig. 2.8 respectively).

Repeated measures ANOVA analysis showed that there was a significant effect of
amplitude (F3 135 = 19.56,p < .00001 for linear tasks, F5 135 = 11.64,p < .00001 for
circular tasks) upon standard deviation. Mean standard deviation for 250, 350, and 450
pixel amplitudes were respectively 1.41, 1.65, and 1.83 for linear steering and 2.55, 2.79,
and 2.96 for circular steering (see Fig. 2.7).

In linear steering, linear regression between amplitude and SD produced the fol-

lowing equations for each bias:
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Fig. 2.6 Mean SD vs. ID for each bias in both linear and circular steering tasks.

EA: SD =0.002« A+ 0.78 (R? = 0.996)
A: SD =0.002% A+0.78 (R?=0.995)
N: SD =0.003 % A+0.74 (R%=0.992)
F: SD =0.002* A+1.05 (R%=10.985)
EF: SD =0.003x A+ 1.15 (R? = 0.952)
For circular steering, the equations were:

EA: SD = 0.0003 « A+ 1.983 (R2 = 0.777)
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Fig. 2.7 Mean SD vs. Amplitude for each bias in both linear and circular steering tasks.
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Fig. 2.8 Mean SD vs. Width for each bias in both linear and circular steering tasks.

A: SD =0.002% A+1.792 (R? =0.998)
N: SD =0.002% A+1.96 (R2=0.972)
F: SD =0.002% A +2.05 (R%=0.995)
EF: SD = 0.004 x A+ 2.428 (R? = 0.986)

There was a significant effect of width (F5 135 = 32.29,p < .00001 for linear tasks,
F5 135 = 138.01, p < .00001 for circular tasks) upon standard deviation. Mean standard
deviation for 10, 25, and 40 pixels width were respectively 1.35, 1.66, and 1.89 for linear
steering and 1.94, 2.84, and 3.51 for circular steering (see Fig. 2.8).

In linear steering, linear regression between width and SD produced the following
equations for each bias:

EA: SD =0.02 W + 0.82 (R2 = 0.995)
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A: SD =0.02xW +0.99 (R?>=0.973)

N: SD =0.02xW +1.12 (R? = 0.908)

F: SD=10.01*W +1.35 (R?=0.999)

EF: SD =0.02%« W +1.62 (R?=0.984)

For circular steering, the equations were:

EA: SD =0.05+« W +0.964 (R?=0.992)

A: SD =0.06 « W +0.983 (R? = 0.994)

N: SD = 0.06 * W +1.178 (R? = 0.991)

F: SD = 0.05 W + 1.538 (R? = 0.987)

EF: SD = 0.05« W +2.618 (R? = 0.997)

But ANOVA analysis showed that there was no significant interaction between bias
and tunnel width (Fg 135 = 0.38,p = 0.93 for linear tasks, Fg 135 = 0.42,p = 0.91 for
circular tasks) upon standard deviation. And there was also no significant interaction
between bias and tunnel amplitude (Fg 135 = 0.27,p = 0.97 for linear tasks, Fg 135 =
0.90,p = 0.52 for circular tasks) upon standard deviation.

Although there was a significant effect of amplitude on SD, it was smaller than
the significant effect of width since only 30% and 16% enhancements of SD for linear
steering and circular steering respectively were observed for the amplitude from 250 to
450 pixels, while 40% and 81% for the width from 10 to 40 pixels. That is to say, only
30 pixel changes in width resulted in larger enhancement of SD (SD varied from 1.35
to 1.89 for linear steering, and 1.94 to 3.51 for circular steering), while 200 pixel changes
in amplitudes resulted in smaller enhancement of SD (SD varied from 1.41 to 1.83 for
linear steering, and 2.55 to 2.96 for circular steering). So, SD was mainly affected by
operational biases and tunnel widths (ignoring the smaller effect of amplitude).

From Fig. 2.7 and Fig. 2.8 in this part, we could clearly observe that SD increased

in line with operational biases from EA to EF and with widths from 10 to 40 pixels.
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Table 2.3 Mean OPM with two tasks for each bias (EA, A, N, F and EF).

OPM EA A N F EF

Linear steering task ~ 0.03% 0.27% 0.45% 1.46% 3.73%

Circular steering task  0.12% 0.21% 0.9% 1.83% 5.7%

2.4.3 Out of Path Movement (OPM)

Repeated measures ANOVA analysis showed that there was a significant effect of
bias (Fy135 = 19.75,p < .00001 for linear tasks, Fy 135 = 26.10,p < .00001 for circular
tasks) upon OPM. Mean OPM for EA, A, N, F and EF biases were respectively 0.03%,
0.27%, 0.45%, 1.46%, and 3.73% for linear steering and 0.12%, 0.21%, 0.9%, 1.83%, and
5.7% for circular steering (see Table 2.3).

There was a significant effect of width (F5 135 = 47.15,p < .00001 for linear tasks,
F5 135 = 46.87,p < .00001 for circular tasks) upon OPM. Mean OPM for 10, 25,
and 40 pixels were respectively 3.29%, 0.15%, and 0.12% for linear steering and 4.51%,
0.62%, and 0.13% for circular steering.

ANOVA analysis also showed that there was a significant interaction between width
and bias (Fg 135 = 16.04,p < .00001 for linear tasks, Fs i35 = 15.59,p < .00001 for
circular tasks) on OPM. Our OPM vs. Width plots for each operational bias (see Fig.

2.9) had the same tendency as Mackenzie’s [36].

2.5 Model Deduction and Verification

Now, in order to find out a new steering model, we would like to further examine
the effects on performance of MT with operational biases from EA to EF separately by
tunnel amplitudes and widths for both linear and circular steering tasks (see Fig. 2.10

and Fig. 2.11, respectively).
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Fig. 2.9 Mean OPM vs. Width for each bias in both linear and circular steering tasks.
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Fig. 2.10 Mean MT vs. Amplitude for each bias in both linear and circular steering tasks.

It was shown that, in Fig. 2.10 and Fig. 2.11, MT decreased in line with operational
biases from EA to EF and with width from 10 to 40 pixels for both steering tasks,

which had opposite changes tendency compared with SD, while increased in line with
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Fig. 2.11 Mean MT vs. Width for each bias in both linear and circular steering tasks.
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Fig. 2.12 Mean MT vs. A/SD for each bias in both linear and circular steering tasks.

amplitude from 250 to 450 pixels for both steering tasks.
According to foregoing analysis, it is presumably predicted that more M T is needed
with the increased tunnel amplitude, while less MT is needed with the increased SD.

So, the following hypothetic equation is given:

MT =a+bx1D, (2.1)

Where, ID,, is a new index of difficulty and formulated as:

ID, = A/SD (2.2)

where, SD is the standard deviation of sampled points.

Next, we would examine the predictive power of this newly proposed model for both
linear and circular steering tasks in each operational bias and across all the operational
biases (see Fig. 2.12 and Fig. 2.13 respectively).

In linear steering, linear regression between the new steering index of difficulty
(A/SD) and steering time produced the following equations for each bias:

EA: MT = 16.65 x (A/SD) —2105.4 (R? = 0.919)

A: MT =13.09 x (A/SD) — 1582.3 (R? = 0.953)

N: MT =8.47x (A/SD) — 777.84 (R? = 0.959)

F: MT = 6.84  (A/SD) — 559.09 (R2 = 0.787)
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Fig. 2.13 Mean MT vs. A/SD for all biases combined in both linear and

circular steering tasks.

EF: MT = 3.04 x (A/SD) — 125.43 (R? = 0.889)

For circular steering, the equations were:

EA: MT = 28.03 % (A/SD) — 626.92 (R? = 0.984)

A: MT =22.4% (A/SD) —613.95 (R? = 0.993)

N: MT = 20.96 x (A/SD) — 700.61 (R? = 0.978)

F: MT = 20.88 x (A/SD) — 876.9 (R? = 0.967)

EF: MT = 20.71 « (A/SD) — 897.02 (R? = 0.887)

From Fig. 2.13, we could clearly observe that the new index of difficulty I D,, was
a stronger determinant than ID when data from all conditions were merged in one
regression. ID,, could account for 84.4% and 90.4%, respectively for linear and circular
steering, of the variance of mean trial completion time caused by both different levels
of ID,, and the quite different five operational biases.

An interesting discovery is that the R? values of MT vs. ID, linear regression in
biases A, N and EF were even higher than their corresponding R? values of MT vs. 1D
in the same bias in linear steering tasks. In circular steering tasks, the R? values of MT
vs. ID,, linear regression in biases EA and A were higher than their corresponding R?

values of MT vs. ID in the same bias (see Fig. 2.12, Tables 2.4 and 2.5).
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Table 2.4 Summary of the two models regression (R?) for linear steering tasks.

Model EA A N F EF

ID vs. MT 0.963 0.947 0.931 0.926 0.871

ID,, vs. MT 0919 0.953 0.959 0.787 0.889

Table 2.5 Summary of the two models regression (R?) for circular steering tasks.

Model EA A N F EF

ID vs. MT 0974 0.992 0.981 0.993 0.985

ID, vs. MT 0984 0.993 0.978 0.967 0.887

We further compared the new steering model with the “effective tunnel width”
steering model, in which tunnel width was adjusted to be 4.133SD. The two models
showed the same predictive ability in performance. So, another more interesting dis-
covery was that the concept of “effective width” in steering tasks seemed much more
robust than in pointing tasks. In pointing task experiments, the R? values between
MT vs. “effective index of difficulty” (which replaces target width by 4.1335D) in each
bias (EA, A, N, F, EF) were all lower (all below 0.9 except 0.926 in bias F) than their
corresponding R? values between MT vs. ID in the same bias [77]. Moreover, when
all the operational biases were merged in one regression, the R? value between MT
vs. “effective index of difficulty” was only 0.783, which is significantly lower than both
0.844 in linear steering tasks and 0.904 in circular steering tasks.

In fact, SD is equivalent to “effective tunnel width”, since only the coefficient is
different. But the steering model with SD has the following advantages: firstly, the
calculation is simpler with SD than with “effective tunnel width”, with which one must

remember the coefficient 4.133; secondly, the concept of “effective width” was derived
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from the theory of normal distribution, which has no empirical or theoretical foundations
and may be more complex in steering tasks than in pointing tasks; finally, SD reflects

what subjects actually performed.

2.6 Conclusions

We have systematically explored the effect of different operational biases of subjects
(toward to speed or accuracy) on steering tasks for both straight and circular move-
ments. Experimental results showed that the effect of subjective factors indeed existed.
Different operational biases would result in different levels of SD, which was mainly
affected by the different operational biases of subjects and by tunnel widths. Then, we
deduced a new steering model involving system and subjective factors, which was shown
to have the same predictive power as the “effective tunnel width” steering model.

Three interesting discoveries in our investigation were, firstly, the effect of subjective
factor indeed existed in steering tasks, which was reflected by different levels of SD and
MT; secondly, our newly proposed model was still shown to be a robust determinant of
the mean steering time within each operational bias for both linear and circular steering
tasks. When all the operational conditions were merged in one regression, the new model
was shown to be a much more predictive determinant of the mean steering time than the
traditional steering model; thirdly, although the concept of “effective tunnel width” in
steering tasks was directly, without explanation, derived from “effective target width”

in pointing tasks, it seemed more robust in steering tasks than in pointing tasks.
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Chapter 3

Speed-Accuracy Tradeoff in
Trajectory-based Task with
Objective Temporal

Constraint

Speed-accuracy tradeoff is a common phenomenon in many types of human motor
tasks. In general, the more accurately the task is to be accomplished, the more time
it takes, and vice versa. In particular, when users attempt to complete the task with
a specified amount of time, the accuracy of the task can be considered as a dependent
variable to measure user performance. In this chapter, we investigate speed-accuracy
tradeoff in trajectory-based tasks with temporal constraint, through a controlled exper-
iment that manipulates the movement time (MT') in addition to the tunnel amplitude
(A) and width (W). A quantitative model is proposed and validated to predict the task

accuracy in terms of lateral standard deviation (SD) of the trajectory.

3.1 Introduction

An important research branch of human-computer interaction is to develop predic-

tive models for human performance in fundamental interaction tasks. One of such tasks
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is the trajectory-based “steering” task, in which the user uses the input device such
as a stylus to produce a trajectory (“stroke”) through a “tunnel” with set amplitude
(length) A and width W. The movement time (MT) of the steering tasks has been
modeled by the steering law [1]: MT = a + b(A/W), where a and b are empirically
determined constants, and A/W (index of difficulty or ID) characterizes the difficulty
of the task. The steering law has been verified with several input devices [2], in different
scales [3] and in simulated driving tasks [76].

The steering law models the relationship between the movement time of trajectory-
based tasks and the task difficulty, determined by the tunnel amplitude A and tunnel
width W. In the steering law, the movement time M7 is the dependent variable. The
more accurate the task is required (the narrower the tunnel width W is), the longer the
resulting movement time is. However, if we want to consider the opposite direction, i.e.
inferring the actual trajectory accuracy given a specific movement time (or speed), the
steering law does not enable us to make this prediction.

Given the bidirectional relationship between time and accuracy, it is worthwhile to
establish a model that predicts the trajectory accuracy by considering the movement
time as an independent variable. Such a model will supplement the steering law, and
enrich our understanding of the speed-accuracy tradeoff in trajectory-based tasks. On
the other hand, a prediction model of the trajectory accuracy also has practical impli-
cations. For example, pen gestures have been widely used to trigger commands. Such
a model may allow us to estimate the deviation of the actual gesture stroke from the
standard template at different drawing speeds, and improve the recognition and inter-
pretation of the gestures. In a real world scenario, we may determine the optimal road
width according to the marked driving speed.

Although speed-accuracy tradeoff have been widely studied [49] [48] [57] [66], these

works have mostly focused on target acquisition tasks. In this chapter, we sought to
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investigate the speed-accuracy tradeoff in trajectory-based tasks through a controlled
experiment, and derive a quantitative model for predicting accuracy.

Previous studies on speed-accuracy tradeoff have involved experimental protocols
with two types of constraints: spatial constraint and temporal constraint, which differ-
entiate the nature of the task. For example, in rapid aimed hand movements with spatial
constraints, participants are required to move as quickly as possible to reach the target
with width W placed at distance A. The movement time is measured to reflect the
task performance. This is a target acquisition task (also known as time-minimization
task) and has been modeled by Fitts’ law [18]. In rapid aimed hand movements with
temporal constraints, participants are required to reach the target with a specified move-
ment time. This is a paced reaching task (also known as a time-matching movement,
task) [66]. It is similar to the standard target acquisition task, except that the move-
ment time MT now becomes an independent variable. In this type of tasks, movement
time is controlled and spatial variability of the movement is measured to reflect the ac-
curacy. Similarly, in trajectory-based movements with spatial constraints, participants
are required to produce a trajectory through a tunnel with length A and width W as
quickly as possible. This is the standard steering task and has been modeled by the
steering law [1]. However, if participants are required to produce a trajectory through a
tunnel with length A and width W with a specified movement time, does regularity ex-
ist in the relationship between the trajectory accuracy and the task parameters? What
kind of speed-accuracy tradeoff can be observed from trajectory-based task with tem-
poral constraint? What are the differences between trajectory-based movements with
temporal constraint and with spatial constraint? We sought to answer these questions

in this chapter.
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Fig. 3.1 Experimental task.

3.2 Problem Definition & Hypothesis

In this chapter, we investigate the trajectory-based task of steering through a
straight tunnel with temporal constraint (Fig. 3.1). The user is required to com-
plete the task with a specified movement time (within a tolerance range). Although the
tunnel does have a finite width W that the user supposedly stays within, this spatial
constraint is not strictly enforced, i.e. the user may move outside the sides of the tunnel
without failing the task.

We are interested in establishing a quantitative model for the trajectory accuracy
described by the amount of lateral deviation throughout the trajectory produced. In
practice this is represented by SD, the standard deviation of the y-coordinates (in the
case of a horizontal tunnel) along the entire trajectory. The larger SD is, the less
accurate the trajectory is. Note that in contrast to the target acquisition task where
accuracy is measured by the statistical distribution of a set of trials, here SD describes
the accuracy of a single steering movement trajectory.

In both Schmidt et al.’s study (W = 0) [66] and Zelaznik et al.’s study (W > 0) [74]

on target acquisition tasks with temporal constraint, the standard deviation of the end
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point distribution is linearly related to the average movement speed. The effect of
the target width on the accuracy was small and not included in their speed-accuracy
tradeoff models. This might be explained as that in the target acquisition task, the
target width only constrains the final corrective submovement but not the initial ballistic
submovement (as discussed by Meyer et al. [49]). In contrast, in trajectory-based tasks
the tunnel width constrains the entire movement, as the user is expected to produce
a trajectory that stays within the tunnel all the time. Consequently, we hypothesize
that in trajectory-based tasks with temporal constraint, not only is SD related to the
average movement speed (A/MT), but also the tunnel width W will have a considerable
influence on it. In order to provide a holistic understanding of all affecting factors, our
speed-accuracy for trajectory-based tasks model should incorporate the impacts of both

factors. The correctness of this hypothesis will be verified through our experiment.

3.3 Experiment

3.3.1 Apparatus

The experiment was conducted on an IBM ThinkPad X41 Tablet PC with a 12.1-
inch screen at the resolution of 1024x 768, and a stylus as the input device. The exper-

imental software was developed in Java.

3.3.2 Task

The experiment used a basic trajectory-based task, that is steering through a hor-
izontal straight tunnel with amplitude A and width W (see Fig. 3.1). The participant
was required to move the stylus from the start line rightward to the end line through
the tunnel, with a specified movement time (denoted as movement time goal or MT goal

hereafter to distinguish from the actual movement time observed). A percentage tempo-
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ral error tolerance parameter determined the acceptable range for the actual movement
time. For example, if movement time goal was 200ms and temporal error tolerance
was 10%, the actual movement time was allowed to range between 180ms and 220ms
to be accepted. The participants were instructed that their movement time should be
anywhere within the specified range.

Before the experiment began, the instructions were explained to the participants,
who then conducted training trials until they fully understood the requirements and
felt comfortable with the task. At the beginning of each trial, the tunnel to be steered
was presented in black. After placing the stylus tip to the left of the start line, the
subject began to move the stylus rightward. A green line was displayed to show the
stylus trajectory produced by the participant. When the stylus crossed the start line,
the trajectory line turned blue to signal that the task had begun. When the stylus
crossed the end line, the task ended, and the actual movement time taken was displayed
as feedback to the participant.

If the actual movement time was within the acceptable range, the trial was consid-
ered successful. Otherwise, the trial needed to be repeated until the actual movement
time was within the acceptable range. For unsuccessful trials, the system indicated the
percentage by which the trial was too fast or too slow, to help the participant adjust
the movement time to meet the requirement.

Lifting the stylus between the start line and the end line was considered invalid
and the trial needed to be repeated. The participant was instructed to try to keep
the stylus within the upper and lower borders of the tunnel throughout the task. If
the stylus was outside the tunnel borders during the trial, the trajectory part that was
outside the borders was displayed in red as a warning (see Fig. 3.1), but the trial was

not considered invalid.
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3.3.3 Measurements

For each successful trial, the stylus position along the trajectory was sampled in
intervals of 10ms. Based on these sample points, we calculated SD (standard deviation
of y-coordinates of the sample points), and OPM (Out of Path Movement, percentage of
sample points outside the tunnel). Calculated from the same set of data, both SD and
OPM describe the accuracy of the trajectory, but from slightly different perspectives.
SD describes the original user behavior (lateral deviation) under the current stimuli,
and provides understandings about the fundamental human capabilities; while OPM
evaluates how the user behavior satisfies the accuracy requirement (tunnel width) set
by the particular task, and its implications are more on the user interaction side. For
both SD and OPM, higher values indicate lower accuracy.

In addition to the accuracy metrics, we recorded the actual movement time (or
actual MT) for each successful trial to understand participants’ performance on match-
ing the movement time goal. The actual movement time is the time taken to move the

stylus between the start line and the end line.

3.3.4 Design & Procedure

The experiment employed a mixed factorial design and combined within- and
between-subject factors. The within-subject factors were A (300, 600, 800 pixels), W
(10, 25, 40, 55, 70 pixels), and MT goal (300, 500, 2000, 3500, 5000ms). The values of
MT goal were chosen according to the preliminary results of a pilot study.

The between-subject factor was temporal error tolerance (10%, 20%, and 40%).
Previous research [66] [75] on temporally-constrained tasks usually used a single level of
temporal error tolerance of 10%. Zelaznik et al. [74] adopted 3 levels of temporal error

tolerance to investigate the effect of temporal precision on the nature of the speed-
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accuracy tradeoff. In our experiment, we also chose 3 levels in order to investigate
whether and how different levels of temporal error tolerance might affect the human
performance and the nature of speed-accuracy tradeoff.

The participant was first briefed on the purpose of the experiment. Then 5 ex-
periment sessions corresponding to the 5 MT goal conditions were tested in sequence.
Within each session, the participant performed 3 successful trials for each condition
combination of A and W respectively. Before each session began, the participant was
informed of the current MT goal and the relevant acceptable range of the actual mowve-
ment time, and was allowed to perform practice trials until s/he felt comfortable.

The order of the MT goal conditions was counterbalanced using a Latin square
pattern across participants. The order of the A and W conditions was randomized

within each MT goal condition.

3.3.5 Participants

Thirty righted-handed people, aged from 21 to 34, participated in the experiment.
They were assigned randomly to one of three temporal error tolerance groups (10%, 20%
and 40%), with 10 participants (8 males and 2 females) per group. All participants had
normal or corrected to normal sight.

Therefore, the total number of successful trials performed was:

3 (trials) x 3 (tunnel amplitude A) x 5 (tunnel width W) x 5 (MT goal) x 3

(temporal error tolerance group)x 10 (participants per group) = 6,750
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3.4 Results

3.4.1 Actual Movement Time

The actual movement time (actual MT) varied significantly with both the between-
subject factor temporal error tolerance (Fp27; = 8.97,p = .001), and all the within-
subject factors: MT goal (F4108 = 6584.77,p < .001), W (Fy 108 = 13.01,p < .001), and
A (Fy 54 = 249.24,p < .001). The mean actual MT for the 10%, 20% and 40% temporal
error tolerance groups were 2250ms, 2226ms and 2089ms respectively. A significant
interaction between temporal error tolerance and MT goal was observed on actual MT
(Fs,10s = 6.35,p < .001) (see Fig. 3.2). For 10% and 20% groups, the mean actual MT
values approximated the MT goals. However, such was not the case for the 40% group.
The mean actual MTs for the 300ms to 5000ms conditions were 312, 495, 1910, 3205,
and 4522 ms respectively. Post hoc pair-wise comparisons showed that actual MTs were
almost equivalent with the MT goals for the 10% and 20% groups. However, for the
40% group, the actual MTs were equivalent with the other two groups only under the
300ms and 500ms condition, and significantly lower actual MTs were observed than the
other two groups under the 2000, 3500 and 5000ms conditions (p < 0.05).

Similar to the results obtained by [74], the results of MT for the 40% group also
indicated a range effect [58]: longer-duration tasks exhibit an actual MT shorter than
the MT goal, indicating the participant moving at a more natural speed, faster than
the speed dictated. The looser temporal constraint in the 40% group allowed this range
effect to be observed, while the tighter constraints in the other two groups effectively
eliminated the range effect.

Another phenomenon was the significant interaction for temporal error tolerance x
W (Fg 108 = 4.36,p < .001), and temporal error tolerance x A (Fy54 = 57.39,p < .001).

In the 10% temporal error tolerance group, W did not have a significant effect on
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Fig. 3.2 Actual MT vs. MT goal for each temporal error tolerance.

actual MT (Fy 36 = 1.68,p = .176). However, in both of the other two groups, W had
significant effects on actual MT (Fy 36 = 4.91,p = .003 for 20% group; Fy 3¢ = 8.49,p <
.001 for 40% group), in that actual MT decreased as W increased. Similarly, in the 10%
group pair-wise comparisons revealed no significant difference of actual MT between the
A = 600 pixels and A = 800 pixels conditions (p = 0.673). But in both the 20% and
the 40% group, significant differences of actual MT were found among all three levels of
A (p = 0.003), showing that actual MT increased as A increased. In the 20% and 40%
groups the effects of A and W displayed the similar trends discovered by the steering
law research [1], i.e., MT increases with A and decreases with W. Not surprisingly,
because of the temporal constraints, the trends shown in our experiment were not strong
enough to follow the linear relationship dictated by the steering law. Nevertheless,
this is an interesting finding that even when people intentionally attempt to match

a specific movement time, the underlying motor control mechanism still regulates the
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Table 3.1 Main effects on SD.

MT goal (ms) 300 500 2000 3500 5000

SD (pixels) 4.15 3.50 240 2.16 2.04

W (pixels) 10 25 40 5L} 70

SD (pixels) 2.33 2.50 2.86 3.19 3.38

A (pixels) 300 600 800

SD (pixels)  1.87 2.92 3.76

motion subconsciously within the allowable range and cannot be completely overridden.
Again, in the 10% group, the strict temporal constraint prevented the trends from being

observable.

3.4.2 Trajectory Accuracy (SD)

SD measures the lateral deviation of the trajectory, as an indication of the trajec-
tory accuracy. The grand mean of SD was 2.85 pixels. SD did not vary significantly
with the between-subject factor temporal error tolerance (F» 27 = 1.36,p = .275), but
varied significantly with all the within-subject factors: MT goal (Fy 108 = 121.04,p <
.001), W (Fy 108 = 82.22,p < .001), and A (Fr54 = 292.42,p < .001). SD decreased
as MT goal increased, showing that a longer movement time enabled participants to
be more accurate. SD increased as W increased, showing that a wider tunnel allowed
for less accurate movement. SD also increased as A increased, showing that a longer
path (hence higher movement speed when other factors remain the same) resulted in

less accurate movement. Table 3.1 summarizes these.
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Fig. 3.3 Mean SD vs. W for each MT goal.

Since no significant difference of SD was observed among the three temporal error
tolerance groups, we combined the data sets from the three groups in further analysis of
the interaction effects between MT goal, A and W. No significant interaction between
MT goal and W (Fi6 144 = 1.669,p = .059) was observed on SD, as shown in Fig. 3.3
by the fact that the five regression lines are almost parallel, meaning that the effects of
MT goal and W were independent. In addition, the correlations (R?) between SD and
W are high (0.875 ~ 0.985) for each MT goal, showing that SD follows a strong linear
relationship with W when other variables are factored out.

Similarly, no significant interaction between W and A were observed on SD, indi-
cating that the effects of W and A were independent as well.

A significant interaction between MT goal and A (Fg 7o = 45.216,p < .001) was
observed on SD (see Fig. 3.4). The effect of A increased as M T goal decreased, as shown

by the slopes of the regression lines. This is an intuitive observation if we consider the
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Fig. 3.4 Mean SD vs. A for each MT goal.

average movement speed that is A/MT. Smaller MT goal resulted in larger changes on
the anticipated movement speed for the same amount of change over A, and in turn
larger changes on the movement accuracy. Similar to W, the correlations (R?) between
SD and A are high for each MT goal in Fig. 3.4, showing that SD follows a strong

linear relationship with A when other variables are factored out.

3.4.3 Out of Path Movement (OPM)

OPM measures the percentage of the trajectory outside the tunnel, indicating
how well the spatial constraint was satisfied. The grand mean of OPM was 3.4%.
OPM did not vary significantly with the between-subject factor temporal error tolerance
(Fa,07 = 1.77,p = .189), but varied significantly with all within-subject factors: MT goal
(Fy108 = 148.53,p < .001), W (Fy 108 = 315.58,p < .001), and A (Fa 54 = 128.88,p <

.001). Table 3.2 summarizes mean OPM under different conditions. Similar to SD,
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Table 3.2 Main effects on OPM.

MT goal (ms) 300 500 2000 3500 5000

OPM (%) 86 66 1.3 05 0.2

W (pixels) 10 25 40 5L} 70

OPM (%) 143 23 04 02 0.1

A (pixels) 300 600 800

OPM (%) 1.3 3.3 5.7

OPM decreased as MT goal increased, and increased as A increased. However, different
from SD, OPM decreased as W increased. It was easier for participants to keep the
stylus inside a wider tunnel, despite that the produced trajectory itself becomes more
relaxed (resulting in higher SD).

Given that no significant difference of OPM was observed among the three tem-
poral error tolerance groups, we combined the data set from these three groups in
further analysis on OPM. Significant interaction between MT goal and W (Fig 144 =
190.31,p < .001) was observed on OPM (Fig. 3.5). The effect of W increased as MT
goal decreased. As known from the analysis of SD, smaller MT goal resulted in larger
lateral deviation (SD) in the trajectory, which contributed to the variety of OPM val-
ues that depended heavily on the tunnel width. However when MT goal is larger, the
resulting smaller SD meant most of the trajectory would stay inside the tunnel, and in
turn caused the uniformly small OPM. This finding is similar to the study results on
subjective bias in steering tasks [79]. Significant interactions also exist in A x MT goal

(Fs.72 = 35.31,p < .001) and A x W (Fg.75 = 115.86,p < .001).
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Fig. 3.5 Mean OPM vs. W for each MT goal.

3.5 Model Deduction and Verification

Based on the experimental results, we now attempt to establish a speed-accuracy
tradeoff model that quantitatively predicts SD from A, W and MT goal. Based on our

analysis of SD, we concluded that:

SD is significantly affected by tunnel width W, tunnel amplitude A and MT goal.

SD increases as A and W increase, and decreases as MT goal increase.

The relationship between S D and W is linear when other variables remain constant.

Same for the relationship between SD and A.

The effects of W and MT goal on SD are independent of each other (i.e. additive).
Same for the effects of W and A. The effects of A and MT goal on SD are not

independent (i.e. not additive)

,51,



3.5 Model Deduction and Verification

Table 3.3 Regression results of the proposed model 3.1.

temporal error tolerance a b c R?
All 1.08 0.0185 1.44 0.857
10% 0.985 0.0209 1.20 0.800
20% 1.25  0.0164 1.41 0.826
40% 1.02 0.0181 1.71 0.880

Considering all these properties, we speculated the following model to describe the

speed-accuracy tradeoff in trajectory-based tasks with temporal constraint:

SD =a+ bW + c(A/MT) (3.1)

where W is the tunnel width, A is the tunnel amplitude, MT is the specified move-
ment time (i.e. MT goal), and SD is the lateral standard deviation of the trajectory. a,
b and c are empirically determined constants. The A/MT also represents the average
movement speed.

To verify the above model, we fit it to our experimental data using least-square
regression. In addition to fitting to the entire data set, we also fit the model to the data
from each temporal error tolerance group individually to test its performance under
different conditions. Table 3.3 summarizes the regression coefficients and R? values for
each fitting result.

The model had a good fit with the entire data set (R? = 0.857), as well as with
data from all individual temporal error tolerance groups (R? > 0.800). This confirmed
the validity of our model.

This model also confirmed our initial hypothesis that in trajectory-based tasks with

temporal constraint, SD is not only related to the average movement speed (A/MT),
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Table 3.4 Regression results of the proposed model 3.2.

temporal error tolerance  a’ v R?
All 1.82 1.44 0.764
10% 1.82 1.20 0.654
20% 1.90 1.41 0.751
40% 1.74 1.71 0.813

but also related to the tunnel width W. In order to further consolidate our model by
comparing its performance with simpler alternatives, we tested an alternate model that

ignored the effect of W in model 3.1, i.e.:

SD = a' + b (A/MT) (3.2)

Again, the alternative model 3.2 was fit to both the entire data set and the individ-
ual temporal error tolerance groups. The regression coefficients and R? values of model
3.2 are summarized in Table 3.4.

The R? values for model 3.2 are considerably lower than those of model 3.1 in all
cases, therefore not considered a valid model. Unlike in target acquisition tasks, the
effect of W on SD cannot be ignored in trajectory-based tasks. As such, we conclude
that model 3.1 best describes the speed-accuracy tradeoff in trajectory-based tasks with

temporal constraint.

3.6 Discussion

In our model, SD measures the “average” accuracy throughout the entire tra-
jectory. This is consistent with our original problem setup of a straight tunnel with
uniform width W, and A/MT is the “average” movement speed. However, if we con-

sider the more general case in which both the tunnel width and the movement speed
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can vary throughout the trajectory, we could let Wp and Vp represent the local tunnel
width and instant movement speed at a given point on the trajectory. As a result,
SDp = a + bWp + ¢Vp might be used to predict the local expected lateral deviation
at the point. This might help us design and analyze interactions using trajectories or
tunnels of various shapes and properties, and understand them at a finer level.

Our experiment used a setup with relatively strict temporal constraint and non-
strict spatial constraint. We could naturally consider the other variant where there
is no explicit spatial constraint at all (i.e. tunnel width W = 0), which essentially
becomes a line tracing task. This is the analogy of Schmidt et al.’s study [66] where
the target is a thin line with nominally zero width. Fortunately, we might predict the
user performance under this case by setting W = 0 in our current model, which then
becomes SD = a + ¢(A/MT). This means the lateral deviation is linearly related to
the movement speed only, a similar result to Schmidt’s law. Obviously, this conclusion
would need real experimental data to be validated.

The two accuracy metrics we used, SD and OPM, are highly correlated since they
are both calculated from the trajectory. In fact, if we know the tunnel width W and
assume the y-coordinates of the trajectory follow a normal distribution, we can calculate
the OPM value from SD by utilizing the properties of normal distributions, and vice
versa. This may prove useful in practice, e.g., after predicting the SD for a particular
trajectory-based task, we can further predict the associated error rate by calculating
the OPM. Conversely, knowing the S D value we could calculate the “effective tunnel
width” as the width of an imaginative tunnel for which an anticipated OPM (e.g. 4%)
would be achieved. This may guide us to choose the optimal tunnel width depending
on the speed and accuracy requirements for particular trajectory-based interactions,
such as navigating a hierarchical menu or triggering a hover widget [24]. Our model for

trajectory accuracy may also have implications in scenarios beyond human-computer
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interaction, e.g., to decide optimal road widths for different driving speeds in road
planning.

Throughout this paper we have been referring to previous research on speed-
accuracy tradeoff in target acquisition tasks as an analogy. However, we also want to
emphasize the differences between trajectory-based tasks and target acquisition tasks,
especially in terms of the notion of accuracy. In a target acquisition task, the movement
accuracy is solely determined by the destination (end point) of the movement, for which
we call the “destination accuracy”. The spatial error in the destination is mainly caused
by the ballistic nature of the movement, and is collinear to the movement. In contrast,
in a trajectory-based task, the movement accuracy is determined by the entire process
(trajectory) of the movement, for which we call the “process accuracy”. The spatial
error in the trajectory is mainly caused by the motor instability in the movement, and
is perpendicular to the movement. These differences also contributed to the different
forms of speed-accuracy tradeoff models for the two types of tasks. Similar comparisons
can be made with other motor control tasks, For example, in a crossing task, destina-
tion accuracy and perpendicular error coexist, which may result in yet another form of
speed-accuracy tradeoff.

Since participants could not possibly finish a task with exactly the specified move-
ment time, temporal error tolerance was introduced to define the range of acceptable
movement time. Although our choice of testing multiple levels of temporal error toler-
ance did not result in observable effects on the trajectory accuracy, it did provide us
with interesting observations on user behaviors in terms of the actual movement time
taken. In particular, from the groups with higher temporal error tolerance values, we
observed that the steering law as a fundamental motor control mechanism still affects
the movement time, even when people consciously follow an explicit temporal require-

ment. We suspect that a similar effect might be present in other types of motor control
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tasks as well. This suggests that in practical time-critical applications, we cannot over-
look the inherent properties of the tasks and expect users to be able to perform at
an arbitrary rate, even when accuracy is not the priority. On the other hand, in our
experiment we used a post hoc feedback mechanism about the participant’s temporal
performance. How real-time feedback mechanisms (e.g. progressively filling the tun-
nel with color to indicate the elapsing of time) might affect the participants’ behaviors

remains an interesting question for further investigations.

3.7 Conclusion

As the result of our investigation, we now can answer the questions we raised in
the beginning: In trajectory-based tasks with temporal constraints, regularity does exist
in the relationship between the trajectory accuracy and the task parameters, which is
described by the speed-accuracy tradeoff model: SD = a + bW + ¢(A/MT), where W
is the tunnel width, A is the tunnel amplitude, MT is the specified movement time,
and SD represents the lateral standard deviation of the trajectory. SD forms a linear
relationship with both the tunnel width W and the average movement speed (A/MT).

Regarding the comparison between temporally- and spatially- constrained
trajectory-based movements, both of them reflect a linear speed-accuracy tradeoff. As
investigated by Zhou and Ren [79], in spatially-constrained tasks with subjective biases,
the lateral deviation of trajectory (SD) is mainly affected by the tunnel width W and
the subjective bias. In comparison, in temporally-constrained tasks the accuracy of
trajectory (SD) is affected by both the tunnel width W and the average steering speed
(A/MT).

In this chapter we experimentally investigated the speed-accuracy tradeoff in

trajectory-based tasks with temporal constraint. A quantitative model has been
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established and validated by the experimental data. This work may enrich the research
on human performance modeling, and enhance the understanding of speed-accuracy
tradeoff in fundamental interaction tasks. This understanding would help guide the
design and evaluation of trajectory-based user interfaces as well as relevant input

devices. We hope this work will motivate further explorations in this direction.

3.8 Future Work

In the future, we plan to extend our investigation to trajectory-based tasks with zero
tunnel width, non-uniform tunnel with, as well as trajectories of other shapes such as a
circle. We would also like to test our model using other input devices such as a mouse,
other forms of temporal feedback, or other reward-penalty mechanisms for the temporal
constraint. In addition to spatial accuracy, we are also interested in systematically
investigating the temporal accuracy, which describes human capabilities in matching
the temporal constraints. Finally, we plan to investigate individual differences in terms
of perception, estimation, and preference of the time constraints, especially for different

age groups.
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Chapter 4

An Investigation on Maximal

Path Width for Steering Tasks

Steering law is a robust performance model for studying steering tasks in Human-
Computer Interaction (HCI), such as drawing, writing and navigating a cascade menu.
In this chapter, we investigated the maximum path width for steering law with stylus
and mouse as two different input devices for both straight and circular steering tasks.
Experimental results showed that the maximum path with size was 70 pixels for both
stylus and mouse in the straight steering task, while 60 pixels for stylus and 50 pixels
for mouse in the circular steering task. So, the maximum path width range is 50 ~ 70

pixels (12.1 ~ 16.9 mm).

4.1 Introduction

As referred in chapters 2 and 3, the steering law [1] has been a robust model
for studying steering tasks in human-computer interaction, such as drawing, writing,
navigating through a cascade menu, steering through a 3D space, etc. A daily example
of the steering task is driving an automobile without crossing the road boundaries. The
classical steering task paradigm is that steering a certain pointing device (such as a
mouse or a pen) from the start segment of a tunnel to the end segment as quickly as

possible, while staying within the boundaries of the tunnel (see Fig. 2.1).
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The steering law quantifies the difficulty of a trajectory task with an index ID
(Index of Difficulty), and relates tunnel steering time with the index in a linear fashion.
The difficulty for steering through a straight tunnel (see Fig. 2.1a) is ID; = A/W,
where A is the length of the tunnel, and W is its width. For a circular tunnel, the
movement, amplitude A is equal to the circle circumference 2w R, where R is the circle
radius, so the difficulty for steering through a circular tunnel (see Fig. 2.1b) is ID,. =
2rR/W . Steering law that models the relationship between completion time MT and
tasks difficulty ID can be expressed in the following form: MT = a + b x I D, for a
straight tunnel, and MT = a + b x I D, for a circular tunnel.

From the mathematical formulation of the steering law, we can see that when the
path width W goes to infinity, the steering time MT will go to a constant a. Moreover,
Accot and Zhai [1] reported that the steering law would lose its predictability power
as the path width exceeded certain upper bound limit on a display [5]. But so far, no
literature has reported the maximum path width for the steering law holding. In this
chapter, we will explore the maximum path width for the steering law. Investigation
on this issue will contribute to a further understanding of the steering law and user

behavior, and provide new insight on user interface design and evaluation.

4.2 Experiment

The aim of this experiment is to explore the maximum path width of the steering
law with a stylus and a mouse respectively as input devices on both straight and circular

steering tasks.
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4.2.1 Task

The experimental task was steering a stylus or a mouse through straight and cir-
cular tunnels with different sizes (see Fig. 2.1) along a certain direction as fast and as
accurately as possible. The two typical steering tunnels are often used in the researches

related to steering tasks [2], [3], [76].

4.2.2 Subjects

In the experiment, 20 young subjects were recruited from local university and ran-
domly divided into 2 groups with 10 subjects for each group. The first group performed
both straight and circular steering tasks with a stylus as input device, while the second
group with a mouse as input device. All subjects were right-handed and experienced

mouse and stylus users.

4.2.3 Apparatus

The experiment was conducted on an IBM ThinkPad X41 Tablet PC with a stylus
and a Microsoft Optical Wheel mouse respectively as the input devices, running Win-
dows XP. The screen size was 12.1 inches, with 1024 x 768 resolutions. Experimental

software was developed with Java.

4.2.4 Procedure

With the stylus and the mouse as two kinds of input devices, the subjects placed
the Tablet PC on the desktop. Before the test, all subjects were allowed to perform
some warm-up trials with the input devices assigned to them until they felt that they
could begin the experiments.

Following the protocols pointed out by [2], [3], subjects performed two types of
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steering tasks: straight and circular tunnel steering. At the beginning of each trial,
the path to be steered was presented on the screen, in black. After placing the cursor
to the left of the start line and depressing the tip of the stylus or the left button of
the mouse, the subject began to draw a green line on the computer screen, showing
the cursor’s trajectory. When the cursor crossed the start line, left to right, the cursor
trajectory turned blue, as a signal that the task had begun, the time was being recorded
and the cursor’s trajectory was being sampled. When the cursor crossed the end line,
also left to right, the current tunnel disappeared and a new tunnel was presented to the
subject. Lifting the pen tip up or releasing the mouse left button from the Tablet PC
surface after crossing the start line and before crossing the end line would result in an
invalid trial and that trial needed to be repeated. When the cursor crossed the borders
of the path, the line turned red, as a signal that the cursor trajectory was outside of
the tunnel, but the current trial did not need to be redone. Subjects were instructed
to steer through the tunnel as fast and accurate as possible. The steering direction of

straight tunnel was rightward; as for circular tunnel, it was clockwise.

4.2.5 Design

Input device was a between-subject factor with two levels (mouse and stylus, with
10 subjects for each input device). The within-subject variables included: tunnel shape
(straight tunnel and circular tunnel); tunnel Amplitude (100-700 pixels with 100 pixels
increment), tunnel Width (10-300 pixels with 10 pixels increment) for straight tunnel;
tunnel Amplitude (100-800 pixels with 100 pixels increment), tunnel Width (10-100
pixels with 10 pixels increment) for circular tunnel. The order of tunnel amplitude and
width combinations was in random presented to the subjects in each trial. 3 repetitions
were made for each tunnel amplitude and width combination. Two shapes of steering

tunnel were balanced by Latin Square between 10 subjects of each group, i.e., five
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subjects had trials of circular tunnels first followed by those of straight tunnels, and the

other half of the subjects had the reverse order.

4.2.6 Measurements

While the stroke was being made, the position of the cursor was sampled in intervals
of 10 milliseconds. The dependent variables were: MT (Movement Time: time taken
to move the cursor from the start line to the end line), SD (Standard Deviation: for
the straight tunnel, SD is computed using the sampled y-values between the start line
and the end line; for the circular tunnel, SD is computed using the distances between
the sampled points and the center of the circular tunnel), and OPM (Out of Path
Movement: percentage of sample points outside the tunnel border). For example, if 100
points were sampled and 10 of those points were outside the tunnel border, then OPM

would be 10%.

4.3 Results

4.3.1 Movement Time (MT)

For the stylus as input device, experimental results showed that the R? values of
MT vs. ID (Index of Difficulty) linear regression were all above 0.94 for all the tunnel
widths on both straight (see Fig. 4.1) and circular tunnel steering. The traditional
steering law still holds for all the path widths tested in this experiment. Here we only
reported two path widths of straight tunnel steering at the smallest (10 pixels) and
largest values (300 pixels) since the limitation of space.

However, Turkey HSD analysis showed that MT was significantly different between
10-60 pixels group and 70-300 pixels group for straight tunnel steering, and between 10-

50 pixels group and 60-100 pixels group for circular tunnel steering (see Fig. 4.2). That

,63,



4.3 Results

Width=10 pixels Width=300 pixels

300 /

4000
y=40383x +470.36
R*=0.996

3000

z z
é’ 2000 = 200 y=47.002x+ 246.26
= R =0.959
1000 100
i 0
0 10 20 30 40 50 60 70 a s 1 13 2 e
D (bits) D (bits)

Fig. 4.1 MT vs. ID for widths 10 and 300 pixels in the straight tunnel steering
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Fig. 4.2 MT vs. Width for straight tunnel (a) and circular tunnel (b) steering

(stylus as input device).

is to say, M'T was not significantly affected by path width when the width size was over

70 pixels for straight tunnel steering and over 60 pixels for circular tunnel steering.

For the mouse as input device, the traditional steering law still holds for all the

path widths (R? > 0.95) on both straight and circular tunnel steering. Turkey HSD

analysis results showed that MT was not significantly affected by path width when the

width size was over 70 pixels for straight tunnel steering and over 50 pixels for circular

tunnel steering (see Fig. 4.3).
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(mouse as input device).

4.3.2 Standard Deviation (SD)

For the stylus as input device, ANOVA analysis showed that SD was significantly
affected by path width (Fag 279 = 10.6,p < 0.001) for the straight tunnel steering. The
value of SD increased with increasing path width (see Fig. 4.4a). The same result was
observed for the circular tunnel steering. For the mouse as input device, the case was

also the same.

4.3.3 Out of Path Movement (OPM)

For the stylus as input device, ANOVA analysis showed that O PM was significantly
affected by path width (Fag 270 = 20.65,p < 0.001) for the straight tunnel steering. The
value of OPM rapidly decreased with increasing width when path width was smaller
(see Fig. 4.4b). The same result was observed for the circular tunnel steering. For the

mouse as input device, the case was also the same.

4.4 Discussion

From the experimental results of this chapter, we could see that the steering law

still held for all the tunnel widths (R? > 0.9) for both straight and circular steering
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Fig. 4.4 SD vs. Width (a) and OPM vs. Width (b) for straight tunnel steering

(stylus as input device).

tunnels. The reason for this maybe the limitation of apparatus size. Further Turkey
HSD analysis showed that when the tunnel width exceeded a certain size, movement
time (MT) would not be significantly affected by tunnel width. Here, we specified the
certain size as the maximal path width for steering law under some situations. So, the
maximum path width was 70 pixels for both stylus and mouse in the straight steering
task, while 60 pixels for stylus and 50 pixels for mouse in the circular steering task.

In general, the wider the tunnel width, the less time one may take. From our
experimental results, however, the tunnel width can not be widened infinitely. In the
user interface design of handheld devices, like tablet PC, it is enough for the tunnel
width to set as 70 pixels. Much wider tunnel size will not only take more space, but

also not contribute to the reduction of movement time.

4.5 Conclusions

In this chapter, one basic issue related to the traditional steering law/tasks was
investigated, i.e., the maximum path width for the steering law with a stylus and a
mouse as input device on both straight and circular steering tasks. Experimental results
showed that the maximum path width was 70 pixels (16.9 mm) for both stylus and mouse

in the straight steering task, while 60 pixels (14.5 mm) for stylus and 50 pixels (12.1
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mm) for mouse in the circular steering task. That is to say, when path width exceeds a
certain value, MT will not change. The maximum path width range is 50 ~ 70 pixels

(12.1 ~ 16.9 mm). This result will be instructive for user interface design.
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This is a blank page.

,68,



Chapter 5

Effect of Different Start
Positions on Human

Performance in Steering Tasks

In this chapter, based on the maximal path width obtained in the above chapter,
we investigated the effect of four different start positions on human performance in
steering task. Experimental results showed that no statistically significant differences
of the human performance, such as MT (Movement Time), SD (Standard Deviation),
and OPM (Out of Path Movement) were observed among the four start positions in the
circular steering task. However, there was a significant difference in SD among the four
start positions in the straight steering task. Vertical steering resulted in more SD than
horizontal steering. These results will be useful for further research and experiment

design.

5.1 Introduction

The steering law, proposed by Accot and Zhai in 1997 [1], has been a robust model
for studying steering tasks in human-computer interaction, such as drawing, writing
and navigating through a menu and its nested menus. A daily example of the steering

task is driving an automobile without crossing the road boundaries. Examples of the
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steering task performed with input devices in current GUI (Graphical User Interface)
include steering through a menu and moving a scroll bar of a window, etc.

So far, the steering law has been widely studied. It has been verified with several
input devices [2], such as stylus, mouse, isometric joystick, touch pad, and trackball, in
different scale [3] and in locomotion [76]. Consequently, some extensive researches about
the steering task have been done based on the steering law, such as the model of steering
through tunnel with corner [56], steering within above-the-surface interaction layers for
time prediction in the tracking state of the stylus [29], and study of subjective biases
toward speed or accuracy in the steering tasks [79]. In addition, the pen stroke gesture
model for time prediction in free hand drawing tasks has also been established [9]. A
similar study to ours is Dennerlein et al.’s [15], which concluded that vertical movements
required more time to complete than horizontal screen movement for the conventional
mouse. The input device they used was indirect. We don’t know whether the direct
input device, such as stylus, had the same performance.

Through above literature, we see that little attention has been paid to the influence
of different start positions on human performance. Investigations on this issue will rich in
the content of the steering law and further enhance the understanding of user behaviors
and instruct user interface design. In this chapter, we specify four kinds of start position
for both straight and circular steering tasks, i.e., the left, right, top and bottom of the
tunnel. For the circular tunnel steering, both clockwise and anti-clockwise directions’

movement, are performed.

5.2 Experiment

The aim of this experiment is to investigate the effect of four kinds of start position

(top, bottom, left and right) on human performance with a stylus as input device on
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Fig. 5.1 Four kinds of start position (in the red ellipse).

both straight and circular steering tasks.

5.2.1 Tasks

The same as chapter 4, we also take a straight tunnel and a circular tunnel as
two steering tasks. Different from the experiment in chapter 4, four start positions
are specified in this experiment. The four start positions for the straight and circular
tunnel are respectively at the left, right, top and bottom of the path (see Fig. 5.1). The
red ellipses in Fig. 5.1 show different start positions. For the straight tunnel, different
start position represents different steering direction. For example, the left start position
represents rightward steering. For the circular tunnel, however, two steering directions,

i.e., clockwise and anticlockwise are specified for each of the four start positions.

5.2.2 Subjects

10 subjects were recruited from local university to participate in this experiment.

All subjects were right-handed.
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5.2.3 Apparatus

The experiment was conducted on an IBM ThinkPad X41 Tablet PC with a stylus
as the input device, running Windows XP. The screen size was 12.1 inches, with 1024 x

768 resolutions. Experimental software was developed with Java.

5.2.4 Design

A fully-crossed, within-subject factorial design was used. The independent variables
included: tunnel Width (10, 20, 30, 40 and 50 pixels) and tunnel Amplitude (150, 250,
350 and 450 pixels) for straight tunnel, tunnel Width (10, 25 and 40 pixels) and tunnel
Amplitude (250, 350 and 450 pixels) for circular tunnel, start position (left, right, top
and bottom) for both straight and circular tunnel. The order of start position, tunnel
amplitude and width combinations was in random presented to the subjects in each
trial, with each combination repeating 3 times. Two shapes of steering tunnel were

balanced by Latin Square between 10 subjects.

5.2.5 Procedure

The participants were first briefed on the purpose of the experiment. With the
stylus as the input device, the subjects were allowed to place the Tablet PC on their
knees or on the desktop, which ever was more comfortable. But during the experiment,
all of them chose to place the Tablet PC on the desktop. Before the test, all subjects
were allowed to perform some warm-up trials in each steering start position until they
felt that they could begin the experiments. The experimental instruction was “Make a
stroke as accurately as possible and as fast as possible along the tunnel”.

All subjects performed two types of steering tasks: straight tunnel steering and

circular tunnel steering. At the beginning of each trial, the path to be steered was
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presented with steering start position hint on the screen, in black. After placing the
cursor at start position (red ellipse) and depressing the tip of the stylus, the subject
began to draw a green line on the computer screen, showing the stylus trajectory. When
the cursor crossed the start segment or start position line, the pen trajectory turned
blue, as a signal that the task had begun, the time was being recorded and the stylus
trajectory was being sampled. When the cursor crossed the end line, the current tunnel
disappeared and a new tunnel was presented to the subject. Lifting the pen tip up
from the Tablet PC surface after crossing the start line and before crossing the end line
would result in an invalid trial and that trial needed to be repeated. When the cursor
crossed the borders of the path, the trajectory turned red, as a signal that the stylus

trajectory was outside of the tunnel, but the current trial did not need to be redone.

5.2.6 Measurements

While the stroke was being made, the position of the cursor was sampled in intervals
of 10 milliseconds. The dependent variables were: MT (Movement Time: time taken
to move the cursor from the start line to the end line), SD (Standard Deviation: for
the straight tunnel, SD is computed using the sampled y-values between the start line
and the end line; for the circular tunnel, SD is computed using the distances between
the sampled points and the center of the circular tunnel), and OPM (Out of Path
Movement: percentage of sample points outside the tunnel border). For example, if 100
points were sampled and 10 of those points were outside the tunnel border, then O PM

would be 10%.
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Fig. 5.2 MT vs. ID for both straight and circular tunnels.

5.3 Results
5.3.1 Movement Time (MT)

Repeated measures ANOVA showed that no significant effect of start position
(F539 = 2.87,p = 0.35 for straight tasks, F339 = 2.87,p = 0.23 for clockwise di-
rection and F3 39 = 2.87,p = 0.63 for anticlockwise direction of circular tasks) upon
steering time was observed. Mean steering time for left, right, top and bottom start
positions were respectively 790.1, 761.7, 814.7, and 930.5 ms for straight steering tasks
and 1625.2, 1639.6, 1937.3, and 1828.7 ms for clockwise direction and 1901.0 1944.7,
1788.8, and 2062.1 ms for anticlockwise direction of circular steering tasks. Moreover,
MT was not significantly different between clockwise and anticlockwise directions of
circular steering tasks.

The steering law still holds for the four kinds of start position in both straight and

circular steering tasks with all R? > 0.99 (see Fig. 5.2).

5.3.2 Standard Deviation (SD)

Repeated measures ANOVA showed that there was significant effect of start posi-

tion (F3,39 = 2.87,p < 0.001) upon SD for straight steering tasks. Mean SD for left,
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Fig. 5.3 SD for four kinds of start position in both straight and circular tunnel steering.

right, top and bottom start positions were respectively 1.82, 1.98, 2.44, and 2.50 (see
Fig. 5.3a). However, no significant effect of start position (F5 39 = 2.87,p > 0.5) upon
SD was observed for clockwise and anticlockwise directions of circular steering tasks.
Mean SD for left, right, top and bottom start positions were respectively 2.84, 2.87,
3.02, and 2.99 (see Fig. 5.3b) at the clockwise direction and 2.93, 3.01, 2.99 and 2.93
at the anticlockwise direction. Moreover, SD was not significantly different between
clockwise and anticlockwise directions of circular steering tasks.

In addition, pairwise comparisons showed no significant differences between top
and bottom (p = 0.731), and between left and right (p = 0.296) start positions for
straight tunnel steering, which meant that horizontal and vertical steering resulted in
significantly different SD. The mean SDs for horizontal and vertical steering were
respectively 2.86 and 3. Vertical steering produced larger SD than horizontal steering.
This indicates that user performs horizontal movement more accurate than performing
vertical movement.

The reason for the difference of the effect of start positions on SD maybe that in
the straight tunnel different start positions represent different drawing directions; the
movements of wrist are different in the different drawing directions, especially at the

horizontal direction and vertical direction; while in the circular tunnel the movements
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Fig. 5.4 OPM vs. Width for four kinds of start position in both straight and

circular tunnel steering.

of wrist are the same in spite of different start positions.

5.3.3 Out of Path Movement (OPM)

Repeated measures ANOVA showed that there was no significant effect of start
position (Fj 39 = 2.87,p = 0.40 for straight tasks, F3 39 = 2.87,p = 0.41 for clockwise
direction and F3 39 = 2.87,p = 0.84 for anticlockwise direction of circular tasks) upon
OPM. Mean OPM for left, right, top and bottom start positions were respectively
0.64%, 1.01%, 1.38%, and 1.33% for straight steering tasks and 1%, 1.14%, 1.57%,
and 0.92% for clockwise direction of circular steering tasks. Moreover, OPM was not
significantly different between clockwise and anticlockwise directions of circular steering
tasks. Fig. 5.4 showed that OPM decreased with increasing tunnel width for all four
kinds of start position in both straight and circular tunnel steering, which was consistent

with [36].
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5.4 Discussion

In the circular tunnel steering tasks, start position didn’t have significant effect
on human performance for both clockwise and anti-clockwise steering directions. This
indicates that the wrist rotation movement of human is very flexible, which can easily
perform clockwise or anti-clockwise movement from different start points.

In the straight tunnel steering tasks, horizontal movement led to more accurate
than vertical movement. For example, in the menu item design, the designer should

arrange the items in row not in column as possible.

5.5 Conclusions

In this chapter, we investigated the effect of four start positions on human perfor-
mance for both straight and circular steering tasks. Experimental results showed that no
statistically significant differences of the human performance, such as MT (Movement
Time), SD (Standard Deviation), and OPM (Out of Path Movement) were observed
among the four start positions in the circular steering task. However, there was sig-
nificant difference in the values of SD among the four start positions in the straight
steering task. Vertical steering resulted in more SD than horizontal steering. That
means a user performs horizontal movement more accurately than performing vertical
movement. It will be instructive for user interface design. For example, user interface
should let user perform horizontal movement as much as possible.

Future work includes further comparing the difference between visual-guided move-

ments and free-hand drawing with the effect of drawing directions.
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Chapter 6

Assessing Age-Related
Performance Decrements in

User Interface Tasks

As the computer and internet generations age, there is an increasing need to develop
appropriate interfaces for the elderly that can accommodate age-related changes in
manual dexterity, visual acuity, and cognitive abilities. Assessment of age effects is
typically a necessary first step in designing age-appropriate interfaces, but assessment
of age related effects may be complicated by a bias towards accuracy in the elderly
or by other differences in how the tradeoff between speed and accuracy is handled
by different people. In this paper, we attempt to investigate the effects of aging on
performance difference in interacting with computer interfaces. An experiment was
conducted to examine age related effects in a steering task. In order to assess the
impact of a possible speed-accuracy tradeoff, performance was observed under three
different instructional sets i.e., accuracy (A), neutral (N), and speed (S) when steering
on a circular track. Experimental results showed that the elderly group performed
significantly less accurately for all three instruction sets. The younger subjects were
more influenced by instructions to perform faster, or with more accuracy. Cluster

analysis of the empirical data individually for both the old and younger participants
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showed that variability among subjects was much greater in older users than younger
users. Implications for user interface design for older users, and for the evaluation of

age effects in HCI generally, are discussed.

6.1 Introduction

In the past, elderly users have tended to have low computer literacy and design
of information technologies for the aged has received little emphasis. However, the
situation is set to change as the baby boomer generation reaches retirement age, where
large numbers of retiring people, particularly in developed countries, will both highly
educated and experienced computer users. In spite of their greater technical proficiency,
baby boomers and subsequent generations will still be subject to the physiological and
psychological changes that occur with aging, including reductions in manual dexterity,
visual acuity, hearing sensitivity and cognitive complexity, etc., which affect control of
user interfaces in particular [6] [73] [80].

In order to meet the needs of aging computer users, novel interfaces are required for
the elderly so that they can contribute to and function in a society that is increasingly
dominated by information technology.

In this chapter, we attempt to investigate the effects of aging by a bias towards
speed or accuracy in the elderly or by other performance differences in how the trade-
off between speed and accuracy is handled by different people. An experiment was
conducted to examine age related effects under three different instructional sets i.e.,
accuracy (A), neutral (N), and speed (S) when steering on a circular track. The reason
that we chose the steering task was that this was a task that has been extensively stud-
ied in past research, and as [2] pointed out, straight and circular steering tunnels are

two basic and representative steering tasks in HCI. Examples of steering task in HCI
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include navigation through a cascade menu, drawing, writing, or steering through a 3D
space, etc. These are also tasks that require fine motor control and where age effects
may be expected to occur. According to the experimental results, implications for user
interface design for older users, and for the evaluation of age effects in HCI generally

are discussed.

6.2 Related Work

The study of age effects in HCI is complicated by a tendency for the elderly to
focus more on accuracy at the expense of speed [64]. This suggests that potential
speed-accuracy tradeoffs [42] [77] need to be considered when age effects are examined
in HCI.

The research reported in this chapter focuses on assessing age effects on a common
HCIT task in visual interfaces: navigating, or steering the cursor through a 2-dimensional
tunnel, which can be modeled using steering law [1]. Many studies have been performed
in the past on the verification of the steering law for various input devices [2], scales [3],
and parameters of steering motion [36]. However, the participants in previous studies
were young adults, mostly involving students from universities. The present study
sought to address this deficiency in the literature by providing findings on the effect of
aging on the steering task, while also serving as a case study of how to examine the
impact of speed-accuracy tradeoffs in HCI evaluations.

Aging effects have been examined in other HCI tasks. For instance, it has been
reported that older users position the cursor much more slowly than younger users and
have great difficulty making targeted movements to small targets [71]. Novel interaction
techniques have been proposed (e.g., use of proxy targets [26], area cursors and sticky

icons [71]) to overcome this difficulty and improving the accessibility of user interface or
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web usability for older people. Other recommended changes to user interfaces involve
changes to content aspects such as font type and size for enhanced legibility [7]. Mof-
fatt et al. [52] [51] [53] conducted a controlled laboratory experiment to examine target
acquisition difficulties across the lifespan (younger, pre-old, and old people) during two
tasks: multi-dimension tapping and menu selection, and attempted to address these
difficulties by using appropriate interactive techniques for older people. In addition,
adaptive interface for older people or motor impaired person [21] [22], and systematic
theory framework research for web design or user interface design [73] were also inves-
tigated. However, research investigating age related effects in steering tasks that also
considers the possible impact of age-related differences in the speed accuracy trade-
off has yet to be carried out. The following experiment was designed to address that

deficiency.

6.3 Experiment
6.3.1 Speed and Accuracy

In steering tasks, speed is typically represented by the time spent to accomplish a
task, or movement time (MT). Accuracy may be measured as the standard deviation
of sampled points in a trajectory made by a user, or by the number of points that are
outside the specified area be steered within. We used both measurements for accuracy in
this research. In this paper, the effect of three different instructional sets on performance
in the circular steering tasks is contrasted for younger vs. older users. The following
instructional sets were used: accuracy emphasis (A) where users were asked to focus on
accuracy only; neutral (N) where users were asked to focus on both speed and accuracy;

speed emphasis (S) where users were asked to focus on speed only.
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6.3.2 Subjects

12 younger participants (3 females and 9 males; 20 to 27 years old, mean age 21.3;
all right-handed), and 12 older participants (4 females and 8 males, 61 to 72 years
old, mean age 65.8; all right-handed) were recruited to participate in this experiment.
The younger people were students, and the older people were educated (two graduated
from college, and others from middle school) and from a local “Older People’s Center”.
The older people investigated in this paper are healthy older people, who don’t appear
disabled, but their functionality, needs and wants are different from those they had

when they were younger [23].

6.3.3 Apparatus

The experiment was conducted on an IBM ThinkPad X41 Tablet PC running Mi-
crosoft Windows XP tablet edition, using a stylus as input. The screen size was 12.1
inches (1024768 pixels resolution). The experimental software was developed in Java

6.0.

6.3.4 Task

Fig. 6.1 illustrates the experimental task for both user groups. Users were asked
to perform steering tasks in a circular tunnel from the start line to the end line. R was
the radius of the circular tunnel and W was its width. The movement amplitude A was

equal to the circle circumference 27 R.

6.3.5 Design

The experiment used a mixed design. User group was the only between-subject

factor with two levels (young vs. old). The three within-subject factors were: Amplitude
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start line & end line

start area

Fig. 6.1 Circle tunnel steering.

(300, 600, 800 pixels), Width (20, 30, 40, 50, and 60 pixels), and Instructional set (A,
N, and S, as defined above). The direction of the circular steering task was clockwise.
Similar designs were used previously [2] [3].

Each subject repeated the experiment three times with the different instructional
sets, i.e., A, N, and S. Instructions corresponding to each instructional set were given
by the experimenter before each experiment.

The order of the three instructional sets, A, N, S, was balanced using a Latin square.
The order of the 15 amplitude and width combinations was presented in random order
to the participants within each instructional set. Each subject performed 3 strokes
for each Amplitude/Width combination within each instructional set of the circular
steering tasks. Subjects completed the experiment in one session of about 30 minutes.
In summary, the experiment design involved 24 subjects x 3 (tunnel amplitudes) x 5
(tunnel widths) x 3 (strokes) x 3 (instructional sets) = 3240 for the total number of

trials.
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6.3.6 Procedure

Warm-up trials were performed before each instructional set was used for the first
time by each subject, leading to three sets of warm-up trials.

For each trial, subjects were instructed to trace a circular path from the start line
to the end line in one clockwise motion. The trajectory of the stylus’ movement was
displayed in real time as feedback to users. The color of the trajectory was green if the
stylus was inside the start area and had not entered the tunnel, blue if the movement
of the stylus had crossed the start line and was inside the tunnel, and red if the stylus
moved outside the path boundaries. Users completed the entire circle by passing the
stylus across the end line from left to right, after which the tunnel disappeared. During
this task, the tip of the stylus was required to stay in contact with the touchscreen. The

same trial was repeated if the pen lifted off the touchscreen surface during this process.

6.3.7 Measurements

The position of the stylus was sampled every 10 milliseconds for each trial. The
movement time (MT) required for users to trace the entire circle, from beginning to
end, along with standard deviation (SD) of the distances from the center of the circular
tunnel to the sampled points in pixel units, and the out of path movement (OPM),

measured as the percentage of sample points outside the tunnel border were measured.

6.4 Results

Since the focus of this study was on the speed-accuracy tradeoff, the effects of
amplitude and width are not reported below. The main effect of instruction set (as
expected) was significant on movement time, SD, and OPM (p < .001 in all the three

cases), demonstrating that the subjects changed their performance in response to the

,85,



6.4 Results

6000

T O Older
5000 —

H Younger

4000

MT (ms)
[
S
S
S

2000

1000

A N s
Instruction Set

Fig. 6.2 Mean MT in instruction set A, N, and S for both older and younger

user groups (with standard error bars).

instructions provided to them. In the following subsections the results of more detailed

analysis will be reported.

6.4.1 Movement Time (MT)

ANOVA analysis showed a significant interaction effect of age group and instruction
set on movement times (Fy 544 = 4.43,p < .05) *L  but no main effect of age group
(p > .05). As can be seen in Fig. 6.2, while movement times vary with instructional set

for both age groups, the change is more dramatic for the younger group.

*1 Note that non-integer values for degrees of freedom indicate that the sphericity assumption was
violated and that the Huyn-Feldt adjustment to the effect degrees of freedom was used, as is

recommended practice in such cases.
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6.4.2 Standard Deviation(SD)

ANOVA analysis showed no significant interaction between instruction set and age
group on SD (F < 1), but there was a significant main effect of Age group on SD
(F1,22 = 4.94,p < .05). On average the younger group was more accurate for all three

of the instructional sets (see Fig. 6.3).

6.4.3 Out of Path Movement (OPM)

ANOVA analysis showed no significant effect on OPM is found for user group (p >
.05). Mean OPM: s for older and younger groups were 3.3% and 2.0% respectively. No
significant interaction effect between instructional set and user group was observed (p >
.05). These showed that both older and younger users’ behaviours could equivalently

follow the requirement (tunnel width) the task set. A significant interaction between
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instructional set and W was observed on OPM (F3 176 = 49.79,p < .01) (see Fig. 6.4).
The effect of W on OPM is larger in condition S (when speed is the only concern) than

that in condition A and N.

6.4.4 Cluster Analysis of Individual Differences

Individual differences are known to increase with age [59]. Here we investigated
the individual difference for both older and younger people by the cluster analysis.

We found that the older group were overall less accurate in terms of the SD mea-
sure, and were also less responsive to instructional set. In order to better understand
the nature of these effects, cluster analysis was carried out to determine the extent to
which individual differences occurred within the two age groups, and how strongly such
differences might have affected the results obtained.

Since there was both a strong age effect and a strong instruction set effect on
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accuracy, cluster analysis was carried out to examine how individual differences may
have mediated the observed relationships between age, instruction set, and accuracy.

The average accuracies in terms of pixel SD were calculated across all combina-
tions of the 24 participants and the three instructional sets. The accuracies were then
converted into z-score units with the normalization being carried out for the data pooled
across all instructional sets and participants. K-means analysis clustering was then car-
ried out, with two, three, and four cluster solutions being examined. The four cluster
solution was chosen for further study based on its interpretability.

Accuracy values across the three instruction sets are shown for each of the clusters
in Fig. 6.5. Members of cluster 1 consisted of three older people and one younger
people. They displayed very little change in accuracy in response to instruction set (with
accuracy remaining within one half standard deviation of the experiment average across
all three instruction sets). Cluster 4 contained only older (five) people. The people in
this cluster were generally less accurate, and particularly so in the speed instruction set
(with average SD in this case being over two standard deviations above the average
for the experiment). Eight of the nine people in clusters 1 and 4 were older people. In
contrast, six of the eight people in cluster 2 were younger, and five of the seven people
in cluster 3 were younger. Clusters 2 and 3 both had high accuracy when instructed
to be accurate and a fairly good level of accuracy in the neutral condition, but they
differed in that cluster 3 subjects retained an accuracy level close to the experimental
average, whereas S'D increased to almost 1.5 standard deviation units above the average
for cluster 2 subjects.

The clusters described above were identified based on the accuracy data, could they
also predict differences in movement time across the different instruction sets?

This question was addressed by turning the four clusters into four levels of a corre-

sponding “Cluster” pseudo factor and again running mixed ANOVA, but this time using
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Fig. 6.5 Cluster centre values for z-score of SD across the four clusters (clusters

one through four in left to right order).

the Cluster factor in place of the age group factor. There was a significant interaction
between cluster and instruction set on movement time (Fy 7g 40 = 4.135,p < .01).

It can be seen in Fig. 6.6 that the an increasing instruction set for accuracy slowed
movement times down in all four clusters, but that this effect was more pronounced for
the “younger” clusters, i.e., clusters 2 and 3. By comparing Fig. 6.5 and Fig. 6.6, it can
also be seen that subjects in cluster 2 responded more aggressively to the instructions,
slowing down more in the accurate condition (but with no benefit to accuracy as com-
pared with that obtained in cluster 3) and speeding up more in the speed condition (but
at a relatively high cost to accuracy). Similarly it can be seen for the “older clusters
(1 and 4)” that the fast movement times achieved in cluster 4 came at the expense of a

substantial loss of accuracy.

6.5 Discussion

In general the more accurately a task is performed, the longer it takes and vice versa,

with a characteristic s-shaped curve often being observed [55]. The relationship between
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Fig. 6.6 The effect of instruction set on average movement time across the four clusters.

SD and MT was fitted as a power function separately for both older and younger groups.
As indicated by the power curve goodness of fits shown in Fig. 6.7, there was a more
consistent speed-accuracy relationship for the younger subjects (R = 0.861 vs. 0.699
for the older subjects). The effect of instruction set can be seen vividly in Fig. 6.7,
where the triangles (speed set) tend to be above and to the left of the squares (neutral)
which in turn tend to be above and to the left of the circles (accurate set). It can also be
seen that the speed-accuracy tradeoff is more strongly defined for the younger subjects.

Individual differences tend to increase with age [59]. We found that the older group
were overall less accurate in terms of the SD measure, and were also less responsive to
instructional set. When analyzing the data individually for both the old and younger
participants, we found that variability among subjects was much greater in older users
than younger users. Using cluster analysis based on SD over the three different instruc-
tion sets, we found that four of the elderly group showed a pattern of performance that
was characteristic of the younger group, whilst only one of the younger group exhibited

“older” performance.
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The overall results showed that aging significantly diminishes performance on the
steering task in terms of accuracy but not movement time. However, the speed-accuracy
tradeoff induced by differences in instruction set was much stronger for the younger

subjects.

6.6 Implications for Interface Design

While older users tend to have accuracy bias, in this study older users produced
larger SD (greater deviation from the centre of the tunnel) than did younger users. In
the user interface design for older users, one obvious strategy for dealing with this age
effect would be to use larger tunnel size or target size.

It is generally more difficult for older users to perform a trajectory tracing task. In
our experiment we observed that slow but precise movement of the stylus required firm
but stable grasp of the stylus, which was difficult for older users’ due to hand tremor.
Fast movement of the stylus required good hand dexterity, which was also difficult for
older users.

The older subjects showed less variability in movement time in spite of the instruc-
tion set. When older users did attempt to speed up a lot, there was a disastrous loss of
accuracy. The inability of at least some of the older subjects to perform both fast and
accurately may be partly due to the effects of reduced hand dexterity.

Recently, there has been considerable interest in gesture-based interfaces for pen-
based computing. Many of these interfaces designed for efficient performance, especially
by expert users. However, our results suggest that the utility of an interaction technique
may be influenced by age. Many innovative techniques are currently tested only with
younger users and age effects are ignored. Since gestural interfaces often rely on steering

tasks of one sort or another, the differences found in our results indicate that some of the
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advantages exhibited by these interfaces in a younger user group may not apply to older
users. Empirical studies are needed to reassess the effectiveness of these interfaces for an
older population. Some of these techniques may need to be redesigned or enhanced by
special interactive techniques such as force feedback, and area cursors to make steering
tasks more manageable for older users.

Observations made in our experiment also point out issues that need to be con-
sidered while conducting age related evaluation. Our experiment shows that relying on
chronological age in studying age effects may be misleading. A distinction needs to be
made between elderly users who perform like younger people and more typical elderly
users who show the effects of age in their performance.

In addition, the effects of implied or explicit instruction sets on performance need
to be carefully controlled in studies involving age effects. In general younger people may
show a greater effect of instruction set on their performance. Thus depending on the
instruction set younger users may appear to speed up or slow down (or become more or

less accurate) relative to older subjects.

6.7 Conclusion

As Salthouse has pointed out [65], as people age, their cognitive, perceptual, and
motor abilities decline, with negative effects on their ability to perform many tasks.
However, as the present results demonstrate, aging effects need to be evaluated carefully.
While it seems clear that aging has a negative impact on the steering task (and likely
on many other HCI tasks as well), the situation is complicated both by speed-accuracy
tradeoff effects and also by the heterogeneous nature of elderly populations. In any tasks
there are likely to be some elderly people that can perform like younger people, and

for those people an interface design specifically for the elderly might be annoying and
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inefficient. With respect to speed versus accuracy, researchers need to be careful about
how much they stress speed or accuracy in performing experimental tasks. It is possible
that relatively subtle changes in instructional set may lead to radically different apparent
age effects. Where possible, it may be useful, as carried out in the present paper, to
examine explicitly speed-accuracy tradeoffs and the effect of individual differences on
performance. It would seem that analysis of aging effects in HCI may require more
careful and detailed analysis of the experimental data and the subtle patterns and
effects obtained therein.

This chapter shows how interpretation of age effects in HCI is complicated by the
different way in which speed is traded off against accuracy in older people, the tendency
of older people to stress accuracy at the expense of speed, and to have greater individual
differences in performance, enriching our knowledge of how aging effects are likely to
impact evaluations in HCI. In the future, we would like to perform further analysis to
systematically investigate the individual effects of visual acuity, manual dexterity, and
possibly other factors (such as hearing and cognitive abilities) on the steering task and

other common user interface tasks.

,94,



6.7 Conclusion

"
i

5D (pixels
[ R N T W T N . TR = O S R o I Y ]

5D (phrels)
= — b (%) = a [m | (0] ]

[ —
[ B

[T —
==

*h on 45

43T

y= 85 128x
o B =06%4

1] 1000 2000 3000 4000 5000 000 /000 2000 Q000
T (ne)
(a) Older uzer group
*h oM A3
&
dk
w=63.723" 0
R =08612
1] 1000 2000 3000 4000 5000 &000 7000 2000 9000

MT (1)

(b)) Younger user group

Fig. 6.7 Changes in speed (MT) and accuracy (SD) - for (a) older user group

and (b) younger user group. Points corresponding to different instruction sets

are labeled with differed shapes.

,95,



6.7 Conclusion

This is a blank page.
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Chapter 7

General Conclusions and

Future Directions

This chapter summarizes the researches that were carried out, addresses the main

contributions of this dissertation and views the future directions.

7.1 General Conclusions and Contributions

Modeling speed-accuracy tradeoff nature for trajectory-based tasks is the most fun-
damental work for human performance prediction, devices selection and user interface
design. In the traditional steering law for trajectory-based tasks, only the objective spa-
tial parameters of the task itself are considered. In real user interface tasks, however,
some physiological and psychological effects of human beings and other subjective or
objective factors also may affect the human performance and the formulation of speed-
accuracy tradeoff model, which have not been emphasized enough in early studies. That
is to say, the traditional steering law may not hold in some of these situations when
more factors are considered.

The subjective operational bias towards speed or accuracy in the steering tasks had
been studied in detail in Chapter 2. A controlled experiment was conducted involving
five levels of subjective bias (EA, A, N, F, EF). Empirical data showed that subjective

operational bias indeed had significant effect on human performance (movement time
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or accuracy). Analysis of interaction effect between subjective bias and objective spa-
tial parameters (tunnel amplitude and width) indicated that accuracy SD was mainly
affected by subjective bias and tunnel width. Then, we deduced a new steering time
model (Equation 2.1) involving system and subjective factors, which was shown to have
more robust predictive power than the traditional steering law.

Given that subjective speed or accuracy specification in Chapter 2, we explored
the objective temporal (speed) constraint in trajectory-based tasks for modeling speed-
accuracy tradeoff in Chapter 3. This study mainly discussed how the objective temporal
constraint and objective spatial parameters of tasks affects human performance and the
nature of speed-accuracy tradeoff. The experimental results showed that the accuracy
of trajectory (SD) was affected by tunnel width and average movement speed and a
quantitative accuracy model was proposed (Equation 3.1). In addition, we also discussed
the differences of speed-accuracy tradeoff nature and motor mechanism in target-based
tasks and trajectory based tasks.

We also investigated the maximal path width in the traditional steering law for
both straight and circular tunnel steering with a stylus and a mouse respectively in
Chapter 4, and experimental results showed that the maximum sizes of path width was
70 pixels (16.9 mm) for both stylus and mouse in the straight steering task, while 60
pixels (14.5 mm) for stylus and 50 pixels (12.1 mm) for mouse in the circular steering
task. That is to say, when path width exceeds a certain value, MT will not change.
The maximum path width range is 50 ~ 70 pixels (12.1 ~ 16.9 mm).

In Chapter 5, we investigated the effect of different start positions (left, right, top
and bottom) on human performance in straight and circular trajectory-based tasks.
In the circular steering tasks, drawing direction for the four kinds of start position
is clockwise and anticlockwise. Experimental results showed that only in the straight

trajectory-based tasks, significant difference of accuracy of the trajectory was observed
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among different start positions, in which top and bottom start positions produce less
accuracy of trajectory than left and right start positions. That is to say, horizontal
movement is more accurate than vertical movement.

Finally, we investigated the effects of aging on performance difference in interacting
with computer interfaces in Chapter 6. An experiment was conducted to examine age
related effects in a steering task. In order to assess the impact of a possible speed-
accuracy tradeoff, performance was observed under three different instructional sets, i.e.,
accuracy (A), neutral (N), and speed (S) when steering on a circular track. Experimental
results showed that the elderly group performed significantly less accurately for all three
instruction sets. The younger subjects were more influenced by instructions to perform
faster, or with more accuracy. Cluster analysis of the empirical data individually for
both the old and younger participants showed that variability among subjects was much
greater in older users than younger users.

Comprehensively, the main contributions of this dissertation are as follows:

e Modeling speed-accuracy tradeoff nature in trajectory-based tasks (Chapters 2
and 3): From subjective operational bias, the performance model is: MT = a +
b(A/SD);

From objective temporal constraint, the performance model is: SD = a + bW +
c(A/MT)

e Exploring the maximum path width in the steering law (Chapter 4): In steering
task, when path width exceeds a certain value, movement time (MT) will not
change. The maximum path width is 12.1 ~ 16.9 mm.

e Steering direction choice (Chapter 5): The accuracy of horizontal movement is
higher than that of vertical movement, which is instructive for user interface design.

e Assessing age-related performance declining in trajectory-based tasks: The younger
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subjects were more influenced by instructions to perform faster, or with more ac-
curacy; variability among subjects was much greater in older users than younger

users.

7.2 Future Directions

We aim to establish the speed-accuracy tradeoff models which can accurately in-
clude the human physiological and psychological information, temporal constraint pa-
rameters into the mathematical equations. Such speed-accuracy tradeoff models will be
reliable and applicable for devices selection and user interface evaluation.

These works will motivate much more explorations of speed-accuracy tradeoff in
modeling for trajectory-based tasks with both the physiological and psychological in-
formation and factor. The knowledge will be instructive for UI design comprehensively.
All these works can assist us to know whether the existing devices or user interfaces are
appropriate for a certain user group or under a certain situation.

With the fantastic development speed of science and technology, many novel input
devices and user interfaces will appear. For the future work, it is necessary to carry
out the model related researches about the application of human performance model on
new input technology. Because few models have been established in the trajectory-based
tasks, our study on human performance models will give evaluation of those previously
and lately developed hardware and software, and further motivate more researchers to

model human performance in the area of human computer interaction.
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