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Abstract 
 

After development of ultrahigh strength polymeric liquid crystalline fibers, which 
are made of liquid crystalline polyamides, intensive research efforts have been made to 
enhance the performance of polymeric liquid crystalline materials. The performance, 
such as tensile strength and modulus, strongly depends on the orientation configuration 
of constitutive molecules. For example, radial and onion structures are found in the 
liquid crystal polymer (LCP) fibers. These orientation structures are mainly formed in 
the processing, where the melted materials flow into dies, and remain in the final 
products. To optimize the processing of the LCP products, it is useful to know the 
relation between the flow and the molecular orientation of LCPs.  

The relation between the processing and properties of LCPs has long been 
recognized. A variety of computer simulations predict mold filling flow and fiber 
orientation in injection-molded parts. However, there is little research on the extensive 
controlling of the orientation configuration of LCP molecules during the processing. At 
present, the processing conditions are empirically decided. Therefore, the performance 
of LCP products only reaches about 10% of theoretical value because of defects or 
disorders. In order to make an improvement on the performance of the LCP materials it 
is necessary to investigate the results how the director is controlled by applying 
appropriate external field in the processing. 

In this dissertation the effect of magnetic fields (along the flow and velocity 
gradient direction) on molecular configuration of LCPs under shear flows are 
numerically analyzed using the Doi theory. The evolution equation for the probability 
distribution function of the LCP molecules is directly solved without any closure 
approximations. The main study discussed in this dissertation is divided into two parts: 
(1) the effect of the magnetic fields on the director confined into the shear plane, and (2) 
the effect of the magnetic fields on the director including out-of-plane case.  

For the in-plane case the magnetic fields strongly affect the transition among 
flow-orientation modes, such as tumbling, wagging, and aligning modes. When the 
magnetic fields are imposed on the LCP shear flow, a new aligning flow-orientation 
mode emerges at low shear rates, which is macroscopically same with the ordinary 
aligning mode, but is microscopically quite different from the ordinary one. For the 
magnetic fields parallel to the flow direction, the fields affect the scalar order parameter 
rather than the major orientation direction. On the other hand, for the magnetic field 
parallel to the velocity gradient direction, the effect of the magnetic field is more 
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remarkable on the major orientation direction in comparison with the effect on the 
scalar order parameter. 

The initial director is oriented at three angles with respect to the shear plane for 
the out-of-plane case, where the shear plane is parallel to both the velocity and its 
gradient: (1) along the velocity gradient direction, (2) parallel to the vorticity direction, 
and (3) set into the plane which is parallel to the vorticity direction and the velocity 
gradient direction. We find that when the initial director is along the velocity gradient 
direction in the shear plane, it doesn’t rotate out again. Three modes, tumbling, wagging 
and aligning, are observed, respectively. However, depending on the initial conditions of 
the probability distribution function of molecular configuration chose in this dissertation 
in the second and third case a log-rolling orientation state is detected at low shear rates, 
where the average orientation is perpendicular to the shear plane. The simulation results 
show that the log-rolling orientation state can be controlled well to align the direction of 
magnetic fields through the exchange of the longest and second longest axes of 
molecules. Finally in order to check the effect of the molecular length the simulation 
results for =0.9 are also represented.  
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Chapter 1 

General Introduction 

 

 

 

 
1.1 Research Background  
 

The study of liquid crystals (LCs) began in 1888 when an Austrian botanist 
named Friedrich Reinitzer observed that a material known as cholesteryl benzoate had 
two distinct melting points – the solid changed first into an opaque liquid, then on 
raising the temperature further the material became a clear liquid (1). The intermediate, 
opaque liquid was termed the liquid crystal phase. In addition to the other three distinct 
states: solid, liquid and gas, LCs are a new state of matter which exhibits a degree of 
order between that of a liquid and a solid. Therefore LCs are also called mesophases. 
For this reason LCs possess anisotropic optical properties and fluidity which intrigue 
the interesting of many scientists even for 100 years they had no practical uses. Since 
the 1960s, the knowledge they extracted has become profitable: LCs are now used in 
many applications, such as, liquid crystal displays (LCDs), liquid crystal thermometers 
and so on. Figure 1.1 shows the chemical formulas of the following typical rodlike 
liquid crystals: 4-penty1-4’ cyanobiphenyl (5CB) and 4-methoxybenzylidene-4’- 
butylaniline (MBBA) (1). 

After the development of ultrahigh strength KevlarⓇ fibers, which are made of 
liquid crystalline polyamides by DuPont in 1971, high strength fibers and high 
strength engineering plastics have been exploited and widely applied in life, such as 
Vectran90Ⓡ and XydarⓇ. The performance, such as tensile strength and modulus, 
strongly depends on the orientation configuration of constitutive molecules. But in the 
process it is difficult to maintain a monodamain orientation state at macroscopic level, 
or at least control the microstructural orientation state in any flow processing other than 
fiber spinning (2). For example, when the nematic liquid crystal polymers (LCPs) flow 
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into a mold, the singular structures (points or lines) will be formed or proliferated in 
orientation field, which is called defects. The ‘skin-core’ also is a severe problem 
happened in the LCPs process, which molecules near surface almost align along one 
direction, however, molecules in the core are distributed at random. These disorders will 
reduce the performance of LCPs since the strength is stronger along the direction that 
most molecules align than one perpendicular to this direction. On the other hand, the 
tumbling (the director rotates endless), wagging (the director oscillates around a steady 
state) and aligning (the director finally arrives a steady state) modes, which are caused 
by the LCPs flow, already have been represented by Marrucci and Maffettone (3), and 
Larson (4). In addition to these three modes, log-rolling and kayaking modes are also 
found by Larson and Öttinger (8) for the case of out-of-plane orientation configuration. 
The connection among process, structure, and properties has long been recognized. A 
variety of computer simulations predict mold filling flow and fiber orientation in 
injection-molded parts (5-10). However, the simulation results how to control the 
director in the flow process have not been done, especially for LCP materials. Therefore, 
in order to further improve the performance of the LCP products it is necessary to 
simulate the results that how the director is controlled in the process.  
     For low molar mass liquid crystals (LMMLCs) Leslie-Ericksen (L-E) theory is 
used to solve flows (11-13). In this theory the local average of the molecular orientation 
is described by a vector quantity, called the director (n). The other classical theory of 
Doi (14) for LCPs employs the probability orientation function of molecular orientation, 
which is able to capture the local molecular orientation distribution. The Doi theory 
gives a detailed view of molecular processes that affect the macroscopic rheological 
behavior. Based on Doi theory the extended theories (15) were founded, for instance, 
Tsuji-Ray theory considered short range order elasticity, long range order elasticity and 
viscous flows. In this dissertation Doi theory included the effect of magnetic fields will 
be used to discuss how to control the director in the nematic LCPs process.  
 
 

CNC5H11

5CB

CH N C４H９CH３O

MBBA

CNC5H11

5CB

CNC5H11

5CB

CH N C４H９CH３O

MBBA

CH N C４H９CH３O

MBBA
 

 
 
Figure 1.1 Examples of typical rodlike like crystals: 4-penty1-4’ cyanobiphenyl (5CB) 
and 4-methoxybenzylidene-4’-butylaniline (MBBA). 
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1.2 Classification of Liquid Crystals (LCs) 
 

LC phase is investigated in the course of phase transfer from a solid state to a 
liquid state. When the temperature is increased, the crystalline solid formed by spherical 
symmetrical molecules loses the positional order and directly changes into the liquid. 
But for the materials composed of oblate or prolate molecules the orientational order is 
kept with no, or partial, positional order at beginning. Then with further rising the 
temperature, the liquid state is arrived resulting from losing both the orientational and 
positional order. The intermediate phase that the molecules have a tendency to point a 
common direction called the director (n) is termed LCs. This distinguishing 
characteristic of LCs is contrast to the liquid state that molecules are randomly arranged 
and the solid state that molecules are highly ordered. Therefore, LCs possess both 
anisotropic optical properties and fluidity. 

When molecules show liquid crystalline behavior in their molten state, their 
anisotropic properties are often directly related to the strongly anisometric molecular 
shape, i.e. one of their molecular axes strongly deviates from the other two. This leads 
to two major subclasses: rodlike (calamitic) and disklike (discotic) LCs. 

Depending on the degree of orientational and positional order, rodlike LCs can be 
divided into nematic phase, cholesteric phase and smectic phase. In Figures 1.2 three 
kinds of LC phases are showed out. The rods describe molecules. a) isotropic phase , b) 
nematic phase, c) smectic-A phase, d) smectic-C phase, and e) cholesteric phase. In 
Figure 1.3 the columnar phase constructed by disklike molecules is represented. The 
disk describes the core of disklike molecules. In the following sections we will explain 
the main characteristics and applications of LC phases formed by rodlike and disklike 
molecules. 
 
1.2.1Nematic Phase 
 

The nematic LC phase which is the simplest LCs is characterized by molecules 
that have no positional order but tend to point in the same direction (along the director 
n). In the following diagram, notice that in Figure 1.2a the molecules are randomly 
arranged; in Figure 1.2b the molecules point vertically but are arranged with no 
particular positional order.  

Nematics are commonly used in LCDs, such as lap-top computers. 
 

1.2.2 Smectic Phase 
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The ‘smectic’ word is derived from Greek word for soap. As shown in Figure 1.2d, 
smectics, which are found at lower temperatures than nematics, possess both 
orientational and one-dimensional, or layer-like, positional order which is not presented 
in nematics. Smectic A (SA) (Fig.1.2c) and smectic C (SC) (Fig.1.2d) possess highest 
order in smectic LCs. In the SA phase, the director is perpendicular to the smectic plane, 
and there is no particular positional order in the layer. Similarly, in the SC molecules are 
oriented as in the SA, but the director is at a constant tilt angle measured normally to 
smectic plane. Because of the complicate molecular structures the theoretic research for 
smectic is very rare. According to L-E theory, however, the continuum theory for 
smectic C has been put forward. Dr. Terada showed out the detail numerical simulation 
of smectic C liquid crystalline flow with this continuum theory in his Ph.D. Dissertation 
(16).  
     Smectics have been explored as possible lubricants, because they can, in principle, 
slide readily along surfaces. Recently the study of LCDs used smectics has been noticed 
by many researchers (17, 18).  
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Figures 1.2 Schematic representations of the (a) isotropic, (b) nematic, (c) smectic-A, 
(d) smectic-C, and (e) Cholesteric liquid crystalline phases. n is the director and /q0 is 
the period. 
 
 
1.2.3 Cholesteric Phase (1) 
 

Cholesterics are the earliest LCs discovered by Reintzer in 1898. Cholesteric LCs 
are also called by twisted nematics. The order of cholesterics is same with that of 
nematics on a local level; i.e., the molecules tend to align with the director. But as 
shown by Figure 1.2e the directors also make a twist about an axis with a constant angle. 
On a larger scale, the director follows a helical path with pitch equal to twice the spatial 
period, since –n and n are equivalent. Twist structure of cholesteric LCs gives rise to 
optical rotation and selective reflection.  
      Cholesterics are used as temperature indictor, since their pitch is often in the 
range of visible wavelength and strongly dependent on the temperature. 
 
1.2.4 Nematic Discotic Phase 
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The observation of the first disk-shaped LCs was reported in 1977(19). This new 
class of LCs has gained increasing interesting, both from scientific and applicative 
points of view. For discotic LCs, multiple phases have been reported. 

The nematic phase for discotic LCs is quite similar to the one for calamitic 
mesogens. Also, there is only the orientational order. The nematic phase is less common 
than in calamitic LCs, as the discotic molecules have a great tendency of assembling to 
columns, forming columnar phases. 
 
1.2.5 Columnar Discotic Phases (20) 
 

The columnar discotic phases are the equivalents of the smectic phases for 
calamitic LCs. The cores are aligned in columns, surrounded by the side chains. 
Commonly columnar discotic phases show the two-dimensional positional order. The 
several columnar phases are distinguished by the order within the columns and the order 
between the columns. These columns can then be arranged in various ways, for example 
in a hexagonal or a rectangular lattice. The hexagonal columnar phase is shown in 
Figure1.3. It proves to be difficult to determine the type of columnar phase exactly, 
because the optical textures are often ambiguous and X-ray diffraction frequently offers 
insufficient structure details. Therefore, unlike the smectics, the classification of 
columnar LCs is still in progress. 
 
 

 
 
Figure 1.3 Structure of the discotic Colh phase  
 
     Discotic LCs have some unique properties, which are starting to get the 
commercial applications. The most important aspect is the huge anisotropy in 
conductivity between the dimension parallel to the column axis and those perpendicular 
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to that. Based on these, Fuji uses discotic LCs to produce optical compensation films 
which help to improve the viewing angle properties of LCDs. And discotic LCs are also 
used by Sanyo to focus electron beams in electron beam lithography. The recent 
progress in elucidating the properties of the columnar phases as one-dimensional 
electrical conductors (or molecular wires), fast photoconductors, light emitting diodes 
and ferroelectrics, all of which have potentially important practical application have 
been reviewed in the paper written by Chandrasekhar and Prasad (22).  
     Except this kind of classification, there are also some other ways to classify the 
LCs. For example, LC phases can be reached by means of increasing temperature of 
solutions, which is called thermotropic LCs, and some materials can become more order 
resulting from increasing the concentration of solutions, which are known as lyotropic 
LCs. In addition, depending on the weight of molecules LCs also can be differentiated 
into low molecular weight LCs (LMWLCs) and liquid crystalline polymers (LCPs). 
 
1.3. Molecular Characteristics and Applications of LCPs 
 

In this dissertation we will focus on nematic LCPs. LCPs are a class of materials 
that combine the properties of polymers with those of LCs. LCPs displayed order in the 
melt (liquid) phase analogous to that exhibited by non-polymeric LCs. The development 
of the application of LCPs has been carried out after ultrahigh strength KevlarⓇ fibers 
which are made of liquid crystalline polyamides by Dupont in 1971. The commercially 
interesting of LCPs is due to their unusual bulk properties and their processability, 
resulting from chain stiffness and high molecular orientation. In addition, LCP materials 
are unusually resistant to solvent attack, moisture uptake, and thermal expansion, 
softening, or decomposition. Up to now LCPs have been widely used as engineering 
plastic for electronic materials such as connectors, super fibers for bulletproof vests, and 
packaging for electrical and optical components. The main molecular characteristics and 
applications of LCPs are showed in the following sections.  
 
1.3.1Main-chain and Side-chain LCPs 
 

In order to display LC characteristics, rodlike or disklike elements (called 
mesogens) must be incorporated into their chains. According to the displacements of 
mesogens along the polymer backbone, the type of LCPs can be determined as main 
-chain and side-chain LCPs. As illustrated in Figures 1.4, main-chain LCPs (Figure 1.4 
(a)) are formed when the mesogens are themselves part of the main chain of a polymer. 
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The mesogens along the chain allow the polymer to orient in a manner similar to LCs, 
and thus display LC characteristics. Conversely side-chain LCPs (Figure 1.4 (b)) are 
formed when mesogens are connected as side chains to the polymer by a flexible 
“bridge” called spacers. Therefore, there are three parts in a side-chain LCPs: backbone, 
mesogens and spacers. The presence of long flexible spacers, a low molecular weight 
and the regular alternation of rigid and flexible units can also influence the 
mesomorphic of polymers. Main-chain LCPs are attractive materials for applications 
where their mechanical (e.g. high modulus) and rheological (e.g. low melt viscosity) 
properties can be exploited. In this dissertation only nematic main-chain LCPs are 
investigated. Side-chain LCPs are under consideration for electronic and optical 
applications.  
 
 
 

              
 

        (a) Rigid units and flexible connectors on main chain 
 
 
 

 

 
(b) Rigid units and flexible connectors on side chains 

 
Figures 1.4 Schematic illustration of different kinds of LCPs, with rigid units 
(rectangles) and flexible ones (lines) along the backbone or in side branches: (a) Rigid 
units and flexible connectors on main chain, (b) Rigid units and flexible connectors on 
side chains  
 



 9 

     A well-know main-chain LCP is poly (p-phenylene terephthalamide), which does 
not melt before decomposing at about 500o-600oC: 

             

C NC N
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H H
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O O

H H

 
 
Figure 1.5 Chemical structure of main-chain LCP: poly (p-phenylene terephthalamide) 
 
 
1.3.2 Lyotropic and Thermotropic LCPs 
 
     Another classification is lyotropic and thermotropic LCPs. A fiber with a high 
modulus and strength is obtained by spinning fibers from a lyotropic solution in an 
elongational flow field (Twaron from AKZO and Kelvlar from Dupont). Thermotropic 
LCPs are particularly attractive for injection molding, because shrinkage is low, 
injection and clamping pressure are low (because the melt viscosity is low), and cycle 
times are fast (because thermal conductivity is high and heat of fusion is low). PPTA 
(poly (p-phenylene terephthalamide)) represented in Figure 1.5 is also used as lyotropic 
LCPs. Figures 1.6 shows out some other chemical structures of well-studied LCPs (1).  
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Figures 1.6 Chemical structures of some well-studied LCPs: the top two are used as 
lyotropic polymers and the bottom is thermotropes. 
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It is difficult to create LCPs because many times the temperature of the liquid 
crystalline behavior is above the point where the polymer begins to decompose. Usually 
there are three ways (22-24) to decrease the melting point of rigid main-chain LCPs by 
dealing with the arrangement of the monomers in the chain shown in Figures 1.7. In 
 

 

(a)                        (b)                      (c) 

Figures 1.7 Methods used to decrease the melting point of rigid main-chain LCPs: (a) 
Insertion of flexible spacers, (b) Random copolymerization and the introduction of 
crankshaft monomers, (c) Attaching flexible side chains on the backbone 

Figure1.7 (a), the melting point is lowered by increasing the flexibility of the main 
chain when the flexible spacers are inserted. However, too many spacers will cause the 
LC behavior to disappear. Another way to accomplish this task of lowering the 
temperature involves copolymerization or/and the introduction crankshaft (or kink like) 
monomers showed in Figure 1.7(b). The approach using copolymerization as well as the 
crankshaft monomers has been used commercially by Hoechst-Celance for the Vectra 
polymers. Finally, shown in Figure 1.7(c), the flexible side chains are attached on the 
rigid backbone.  
 

1.4 Liquid Crystal Physics 

1.4.1 Orientational Order 
 

As mentioned above, molecules in LCs always tend to align a common direction 
called director n. Usually a scalar parameter S is defined to show the degree of 
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molecular alignment along n, which is expressed: 
 

 1)(cos3
2
1 2S                                                (1.1) 

 
with -1/2S1.  is the degree between the molecules and the director as shown in 
Figure 1.8.  <…..> means an average value over all the molecules since the degree is 
not same for all the molecules oriented about the director. 

If all the molecules are aligned along the director, S is equal to 1 which defines a 
perfectly aligned nematic phase. However, this is an ideal state for LCs since the 
thermal motion at finite temperature always exists. If S=0, an isotropic liquid phase is 
defined, and a value of S=-1/2 defines a nematic phase where the molecules are lying in 
a plane normal to the director. For 5CB illustrated in Figure 1.1, at 250C S=0.65, which 
is typical for nematics (25). 
 
 
 

                 



n̂



n̂

 

                      
Figure 1.8 Degree between the director and the molecule  
 
 
1.4.2 Doi Theory (1) 
 

A molecular theory for the effect of flow on the orientation of ideal monodisperse 
rigid rodlike polymers has been developed by Doi (26) and Hess (27). This theory has 
successfully modeled the monodomain shear flow problem for rigid, rodlike nematic 
polymers. Numerical simulations of the Smoluchowski equation for the orientational 
probability distribution function (pdf) have predicted: monodomain attractors in regions 
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of the 2-parameter space of nematic concentration and shear rate; and bifurcation curves 
of monodomain transitions. Theoretical work has focused on approximate constructions 
of pdf solutions in various linear flow regimes. The Smoluchowski equation is derived 
for the pdf f(u) that a rodlike molecule is oriented parallel to a unit vector u: 
 

 f
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In equation (1.2), v is the velocity gradient, /u is the gradient operator on the unit 
sphere, and Vnem is a nematic potential, such as that of Onsager, or of Maier and Saupe. 
In this dissertation the part of the potential, Vnem, chooses the Maier-Saupe potential.Dr 
is a preaveraged molecular rotary diffusivity in the nematic phase: 
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uuuu
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,                             (1.3) 

 
S is the order parameter tensor: 
 

 
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)
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1

IuuIuuS
u

fdA ,                                             (1.4) 

 
Here I is the unit tensor, and <…..> denotes the average over the pdf f(u). The scalar 
order parameter S is related to the tensor S by  
 

SS :
2
3

S ,                                                         (1.5) 

 
S=0 is for a completely isotropic distribution of orientations and S=1 is for rods that are 
all aligned in the same direction. 

If we consider the molecular length, another parameter  called molecular 
formation coefficient has to be introduced into the equation (1.2): 
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Here W is the vorticity tensor, and A is the rate of strain tensor. The molecular 
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formation coefficient  is described:  
 

1
1

2

2





p
p ,                                                         (1.7) 

 
with p is the aspect ratio of a molecular:  
 

d
lp  ,                                                           (1.8) 

 
l and d is the length and diameter of a rodlike molecule, respectively (Figure 1.9).  

When =1.0, the molecule is infinite long according to equation (1.7). Actually 
the real molecules have limited length. For typical small-molecule nematics, estimate of 
p range from 4 to 8, or so, depending on the molecule and how one estimates the 
molecular diameter.  
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Figure 1.9 A rodlike molecule 
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1.4.3 External Influences on LCs 
 

In a process a flow field will strongly influent the aligned direction of molecules. 
At low shear rates the director periodically rotates in the shear plane which is called a 
tumbling mode. As increasing the shear rate the director oscillates at about fixed angle 
called a wagging mode. A steady state that the director becomes stationary arrives when 
the shear rate is further increased, known as a flowing-aligning. If the average direction 
of molecules lies in the vorticity direction, a mode called ‘log-rolling’ can be found (28). 
In addition, defects (lines or points) which break the continuum of orientational order 
field are also usually produced. Since these phenomena can not be avoided in the 
process, the performance of the LCPs products, such as the tensile strength, modulus 
and thermal expansion which is strongly dependent on the aligned level of directors, 
will be reduced. So how to further improve the properties of LCPs products already has 
been noticed by many researchers.  

As we known, an external field can cause significant changes in the macroscopic 
properties of the LC system. When an electric or magnetic field is added on the LC 
system, the director is parallel or perpendicular to the electric or magnetic field. This 
major characteristic is utilized in industrial applications. As shown in Figure 1.10, the 
ellipse describes a molecule with electric dipoles, and the arrows represent the electric 
field vector and the electric force on the molecule, respectively. When an electric field is 
applied to the LCs, the dipole molecules tend to reorient along the direction of the field. 
For magnetic fields, the effects on LC molecules are analogous to electric fields since 
the magnetic dipoles can be caused by moving the electric fields.  

 
 
 

       

EE
 

 
Figure1.10 Dipole molecule applied by an electric or magnetic field 
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Therefore, if we can control the alignment of directors by means of changing the 
strength of the electric or magnetic field on LC system, we can tailor the properties of 
the products. Up to now, most researches have been done to investigate the changing of 
directors when an electric or magnetic field is applied on a steady state LC system 
(29-32). Abundant results have been showed out. However, rare simulation results are 
got for applying the electric or magnetic field on a flowing LC system, especially for a 
flowing LCP system.  
 
1.5 Dissertation Purpose 
 

A number of LCPs were produced in the 1970s which displayed order in the melt 
(liquid) phase analogous to that exhibited by non-polymeric LCs. However, the 
commercial introduction of LCP resins did not occur until 1984, at that time LCPs could 
not be injection molded. Today, LCPs can be melted processed on conventional 
equipment at fast speeds with excellent replication of mold details and efficient use of 
regrind. But as mentioned above, in fact the properties of LCP products only reach 10% 
of theoretical value since the director is easily affected by an external field. How to 
further improve the performance of LCP products in the process is also noticed. In the 
steady state of LCs, many researchers have investigated the changes of the director by 
adding an electric or magnetic field, or using a special surface treatment in LC devices 
to force special direction of the director. However, the simulation results about 
controlling the director of LCPs have not been found, especially in the process of LCP 
products. So in this dissertation the simulation results with applying magnetic field on a 
flowing LCP system are presented. As shown in the results, the director can be 
controlled well by the changes of the magnetic field strength. 
 
1.6 Dissertation Organization 
 

This dissertation contains four chapters. The main study discussed in this 
dissertation is divided into two parts: 1) the effect of the magnetic field on the director 
confined into the shear plane; 2) the effect of the magnetic field on the director 
including out-of-plane case. Chapter 2 and 3 give out the main simulation results. A 
brief description of each chapter is given blow: 
 
Chapter 1 presents the general introduction required by this dissertation. It includes the 
basic knowledge about low molecular liquid crystals (LCs) and LCPs, as well as the 
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theory required to study the LCPs flows under magnetic fields of simulation.  
 
Chapter 2 presents the effect of the magnetic field on molecular orientation of nematic 
LCPs under simple shear flow when the director is confined into the shear plane. The 
Doi theory is used including the potential caused by the magnetic field, which is solved 
directly without any closure approximations. Numerical simulation results that the 
magnetic field is along the x-axis and the y-axis are presented and discussed. In addition, 
the effect of length of molecules is also considered in this part when the magnetic field 
is applied along the x-axis and the y-axis. 
 
Chapter 3 presents the simulation results and discussions for out-of-plane case under the 
magnetic field and the simple shear flow. The Doi theory also is used in this case, where 
the asymmetry of the probability distribution function with respect to the shear plane is 
allowed. A log-rolling orientation state is detected at low shear rates depending on the 
initial condition of the probability density function of the molecular configuration. The 
comparison between the scalar parameter S and Sxx is also discussed in this chapter. 
Finally in order to check the effect of the molecular length the simulation results for 
=0.9 are also represented.  
 
Chapter 4 presents conclusions throughout this study. In this chapter, we mention about 
the native of the magnetic field on the LCP flows. Also, the efficient way to control the 
LCP molecular configuration under the flow is proposed.  
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Chapter 2  

Effect of Magnetic Field on Molecular Orientation of 

Nematic Liquid Crystalline Polymers Under Simple 

Shear Flow:I In-Plane Case 

 

 

 

 
The effect of magnetic fields on molecular configuration of liquid crystalline polymers 
under shear flows are numerically analyzed using the Doi theory. The evolution 
equation for the probability density function of the LCP molecules is directly solved 
without any closure approximations. Two cases of the magnetic fields are considered:(1) 
the magnetic field parallel to the flow direction, and (2) the magnetic field parallel to the 
velocity gradient direction. For both cases, the magnetic fields strongly affect on the 
transition among flow-orientation modes, such as tumbling, wagging, and aligning 
modes. When the magnetic field is imposed on the LCP shear flow, a new aligning 
flow-orientation mode emerges at low shear rate, which is macroscopically same as the 
ordinary aligning mode, but is microscopically quite different from the ordinary one. 
For the magnetic field parallel to the flow direction, the field affects on the scalar order 
parameter rather than the major orientation direction. On the other hand, for the 
magnetic field parallel to the velocity gradient direction, the effect of the magnetic field 
is more remarkable on the major orientation direction in comparison with the effect on 
the scalar order parameter. 
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2.1 Introduction 
 

After development of ultrahigh strength KevlarⓇ fibers, which are made of liquid 
crystalline polyamides by DuPont in 1971, intensive research efforts have been 
achieved to enhance the performance of polymeric liquid crystalline materials. The 
performance, such as tensile strength and modulus, strongly depend on the orientation 
configuration of constitutive molecules. For example, radial and onion structures are 
found in the LCP fibers. These orientation structures are mainly formed in the 
processing, where the melted materials flow into dies, and remain in the final products. 
To optimize the processing of the LCP products, it is useful to know the relation 
between the flow and the molecular orientation of LCPs. 

For the last few decades, many researches have been performed on the molecular 
orientation in the LCP flows, especially by means of theoretical and computational 
analysis (1~5). One of the major advances in the theoretical LCP rheology was made by 
Doi in 1981, who extended the theory for semi-dilute polymeric fluids to that for 
concentrated rod-like polymeric fluids. The theory is well applicable to the flow of 
LCPs in the absence of the long range order of the molecular orientation configuration. 
Using the Doi theory, Marrucci and Maffettone (6) and Larson (7) found that for simple 
shear flows LCPs show three flow-orientation modes depending on the shear rate; they 
are tumbling, wagging, and aligning modes. These three modes correspond to the 
rotational, oscillatory, and stationary behaviors of the macroscopic molecular 
orientation direction, respectively. In addition to these three modes, log-rolling and 
kayaking modes are found by Larson and Öttinger (8) for the case of out-of-plane 
orientation configuration. On the other hand, the behaviors of macroscopic orientation 
are not necessarily same as those of microscopic molecules (i.e., behaviors of individual 
molecules). Using the Langevin simulation technique, it has been shown that the 
individual molecules continue rotating even in the wagging or aligning modes (9~10). 
Although the flow-orientation modes are of apparent, they are successfully connected 
with the complex phenomena in the rheological quantities of LCPs, such as shear 
viscosity thinning (11~13), negative first normal stress difference (14~17), and the kink 
in viscosity (14, 16, 18~19). 

To obtain the desired performance and to optimize the process of the LCP 
products, one must carefully find the best coupling of the condition parameters which 
emerge in the process, such as a temperature, a flow rate, and the shape of die. Of 
course, the previous investigations on LCP flows mentioned above are greatfully useful 
for determining those parameters, but it is still hard to determine all of them. 
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If one can freely control the molecular orientation configuration during the 
processing, the processing optimization may become much simpler. It is known that the 
LC molecules are sensitive to a magnetic field. The LC molecules tend to align parallel 
or perpendicular to the field, depending on the sign of the magnetic susceptibility 
coefficient. Thus, it may be useful to use the magnetic field for controlling the 
orientation of LC molecules. Some studies on the effect of a magnetic field on the 
flowing LC molecular orientation field have been reported for low molecular weight 
liquid crystals (LMWLCs) (20~23). In the studies (21,22), the Leslie-Ericksen theory 
(24~26) was used to solve the flows. The L-E theory employs a vector notation to 
represent the local averaged molecular orientation direction, and thus the orientation 
order of LC molecules is not taken into account. On the other hand, the probability 
density function of the molecular orientation is employed in the Doi theory (1). The 
major difference between the low molecular and the polymeric liquid crystals is in the 
strength of the short range order elasticity (i.e., magnitude of a rotational diffusivity of 
rod-like molecules). The rotational diffusivities of LMWLCs are much higher than 
those of LCPs, and the time and/or spatial change in the molecular orientation order is 
negligible for LMWLCs. Thus the vector notation is enough for LMWLCs. However, 
for LCPs the molecular orientation order is easily affected by the flow or other external 
fields, and the previous results for LMWLCs are hard to be used to infer the LCP flow 
behaviors under the magnetic field. 

In this paper, we focus our attention on the effect of magnetic fields on the 
flow-orientation behaviors. The behaviors are computed using the Doi theory and the 
results are organized in terms of the flow-orientation modes. The organization of this 
paper is as follows. In section 2.2 we briefly review the Doi theory, and section 2.3 
presents the main simulation results that the director is affected by the magnetic field 
within the shear plane. In this section we also discuss the effect of the molecular 
formation coefficient  which can be defined in terms of the aspect ratio of the ideal 
rodlike molecules on the flow-orientation modes, for instants,  =1.0 and 0.9 are chose 
in this paper.  
 
2.2 Theory Model 
 

The LCP dynamical system used in this study is subjected to a magnetic field in 
addition to Hydrodynamic, Brownian and the intermolecular forces. In the Doi theory 
the polymer molecules were modeled as rigid axisymmetric rods with infinite aspect 
ratio, and the governing equation for the orientation distribution function f, which gives 
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the probability of finding a rod at an orientation within the solid angle du of the unit 
vector u, is written as: 
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Where Ds is the rotational diffusivity of an isotropic state, and the order parameter 
tensor S, which is the second moment of the orientation distribution f, is defined by the 
following equation: 
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Here I is a unit tensor. When the effect of the magnetic field on the LCP molecules is 
taken into account, the mean field potential V(u) in eq.(2.1) can be described as a sum 
of the Maier-Saupe potential and the potential due to the magnetic field, as follows 
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Where k is the Boltzmann constant, T the absolute temperature, and U the 
dimensionless nematic potential intensity. 0 is the permeability of vacuum, H the 
vector of the magnetic field, and (=-) the magnetic anisotropy. u  in eq.(1) 
represents the rate of change of u by the macroscopic flow, given by 
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Here  is the velocity gradient tensor. 
 
2.3 Numerical Calculation 
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We consider simple shear flow, as shown in Figure 2.1, where x-axis is the flow 
direction, y-axis is the direction of the velocity gradient, and z-axis is co-axial with the 
vorticity axis. The material is sheared with the shear rate of   in the x-y plane, and the 
velocity gradient tensor is given by, 
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The orientation of a single molecule represented by a unit vector u is characterized with 
an azimuthal angle  and a polar angle . The orientation distribution function f keeps 
symmetry with respect to the x-y plane, when the director which represents the local 
average of the molecular orientation always remains in the shear plane. That is, 
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Figure 2.1 Geometry and coordinate systems 
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Also, it should be mentioned here that since there is no distinction between head and 
tale of the model rods, the function f must has the point symmetry: 
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From above conditions for the distribution function f, the non-zero components of the 
order parameter tensor S are: 
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After non-dimensionalization using the time scale 1/Ds and the magnetic force 
χ2kT 0 , eq.(2.1) for two dimensional magnetic field (H=(Hx,Hy,0)) becomes 
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stD*t ,                                                                  (2.14) 
 
The superscripts * denote non-dimensionalized variables and parameters. Above 
equation is computed using the finite difference method for spatial discretization and 
the Crank-Nicolson method for time integration. Because of the conditions eq.(2.7) and 
eq.(2.8), the computation area for f can be restricted in the region 0/2 and 
-/2/2. Boundary conditions for the function are: 
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The normalization condition, 
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is also required. An initial profile of the function, f(,,t*=0), is derived from the 
Boltzmann profile with the major orientation direction along the x-axis (flow direction). 
The time step and the spatial mesh width are set to be t*=0.005/   and ==3deg. 
 
2.3.1 Results and Discussions for =1.0 
 

Computational parameters in eq.(2.10) are the dimensionless nematic potential 
intensity U, the dimensionless magnetic field strength H*, and dimensionless shear rate 

 . Throughout this paper, the nematic potential intensity U is set to be 5 which 
corresponds to the lowest order of the nematic state, to make easy to see the effect of the 
magnetic field on the orientation order. In the following discussions, the computation 
results for the orientation distribution function will be mainly organized in terms of the 
major orientation angle m and the scalar order parameter S, defined by 
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In this paper, we choose two simple cases of the magnetic fields; (1) the magnetic field 
along the flow direction (H=(Hx,0,0)) and (2) the magnetic field along velocity gradient 
direction (H=(0,Hy,0)). 
 
2.3.1.1 The Magnetic Field along the x-axis  
 

In this section, we deal with the case that the magnetic field is parallel to the flow 
direction (i.e., H=(Hx,0,0)). Both of the shear flow and the magnetic field are 
simultaneously imposed at t*=0.  

Figures 2.2 show the time evolutions of the major orientation angle m and scalar 
order parameter S for  =2 and Hx*=0, 110-6, and 1.810-6. The horizontal axis 
t* * ) represents the strain by the shear flow which is equivalent to the  
dimensionless time. m shows the typical tumbling behavior for Hx*=0 where m 
periodically decreases with . When the magnetic field is imposed, the decrease period 
becomes longer (Hx*=110-6). Above a certain critical magnetic field strength, m no 
longer changes with time and the system shows an aligning like behavior. This new 
aligning behavior at low shear rates is quite different from the aligning behavior at high 
shear rates. As mentioned in the introduction, although the major orientation angle 
remains stationary, the individual molecules continue rotating, in the aligning behavior 
at high shear rates. However, the rotation of the individual molecules is suppressed in 
the aligning behavior at low shear rates, since the torque on the molecules by the 
magnetic field overcomes the torque by the flow. The behaviors of S reflect the 
behaviors of m, and the steady value of S for Hx*=1.810-6 is slightly higher than that 
at the equilibrium state. Figures 2.3 show the time evolutions of the major orientation 
angle m and scalar order parameter S for  =4 and Hx*=0, 110-6, and 1.810-6. For 
Hx*=0, the system exhibits the wagging behavior. As the magnetic field is imposed, for 
Hx*=110-6, the period and the amplitude of the oscillatory behavior of m increase. 
Similar to the case for  =2, the system shows the new aligning behavior above a 
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certain critical Hx*. Figures 2.4 are the time evolutions of the major orientation angle 
m and scalar order parameter S for  =10, at which the system shows the aligning 
behavior at no magnetic field. The damping behaviors of m and S can be seen for all 
values of Hx* and only the ordinary aligning behaviors are found. The steady values of 
m decrease and the steady values of S increase with increasing Hx*.  

To analyze the influence of Hx
* on the scalar order parameter, the time-averaged 

scalar order parameterS as a function of Hx
* is shown in Figure 2.5. For  =10 and 50, 

S increases slightly in this magnetic field strength range. However, for  =2 and 4, S 
increases drastically with increasing Hx

*, since the effect of the magnetic field can 
easily over the shear flow effect. Figure 2.6 shows the effect of the shear rate   on 
the time-averaged scalar order parameterS for Hx

*=0, 110-6, 1.610-6, and 1.810-6. 
For Hx

*=0,S decreases continuously toward the minimum value at  ≈4.7, and then 
increases monotonically as the shear rate increases. This tendency inS does not change 
for Hx

*=110-6 and 1.610-6. However, for Hx
*=1.810-6, a discontinuous decrease inS 

is found at  ≈5.2, where the flow-orientation mode transition from the new aligning 
mode to the ordinary aligning mode arises. 

Next, we discuss about the effect of the magnetic field on the flow-orientation 
mode transition. Figure 2.7 represents a flow-orientation mode diagram spanned by the 
shear rate   and the magnetic field strength Hx

*. For the case that only the shear flow 
is applied to the system (i.e., Hx

*=0), the tumbling, wagging, and aligning modes appear 
depending on the shear rate. At Hx

*=110-6, the new aligning mode regime emerges at 
low shear rate. This new aligning mode regime spreads toward the higher shear rate 
with the increase of Hx

*, and takes over whole the tumbling regime at Hx
*=1.410-6. 

The wagging mode regime also disappears, when Hx
* is increased up to 1.810-6. A 

dashed line at Hx
*=1.810-6 represents the mode transition shear rate between the new 

aligning mode and the ordinary aligning mode, and corresponds to the discontinuous 
decrease inS in Figure 2.6. It is expected that his transition shear rate becomes higher 
if Hx

* is increased further more. 
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Figures 2.2 Transient behaviors of preferred angle m and scalar order parameter S 
versus strain same with the dimensionless time at a given dimensionless shear rate: * =2 
for various values of dimensionless magnetic field: Hx

*=0, 1×10-6, and 1.8×10-6at =1.0. 
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Figures 2.3 Transient behaviors of m and S versus strain at * =4 for various values of 
Hx

*: Hx
*=0, 1×10-6, and 1.8×10-6 at =1.0. 
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Figures 2.4 Transient behaviors of m and S versus strain at * =10 for various values of 
Hx

*: Hx
*=0, 1×10-6, and 1.8×10-6 at =1.0. 
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Figure 2.5 Effect of magnetic field parallel to the x-axis on average scalar order 
parameterS for various values of shear rates: * =2, 4, 10, and 50 at =1.0. 
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Figure 2.6 Average order parameterS as a function of shear rate * at Hx

*=0, 1×10-6, 
1.6×10-6, and 1.8×10-6 at =1.0. 
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Figure 2.7 Critical shear rates as a function of magnetic field along the x direction at 
=1.0. 
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2.3.1.2 The Magnetic Field along the y-axis 
 

In this section, the case that the magnetic field is imposed parallel to the velocity 
gradient direction is considered. Figures 2.8 show the time evolutions of the major 
orientation angle m and the scalar order parameter S for  =2 and Hy

*=0, 110-6, and 
1.810-6. Behaviors of m and S for Hy

*=0 and 110-6 are similar to those shown in 
Figure 2.2 in the case of the magnetic field along x-axis, but the results for 
Hy

*=1.810-6 are somewhat different from the results in Figure 2.2 for Hx
*=1.810-6. 

The major orientation angle m decreases at first and then increases to a steady value. It 
should be noticed that the steady direction of the major molecular orientation is not 
parallel to y-axis. Figure 2.9 shows the torques exerted on a LCP molecule. The torque 
on a LCP molecule by the shear flow becomes the minimum when the molecules are 
along the flow direction, while the magnetic field tends to align the molecules along the 
velocity gradient direction. The major orientation angles at steady states are determined 
as a result of the competition between the torques by the shear flow and the magnetic 
field.  

Figures 2.10 are the time evolutions of m and S for  =4 and Hy
*=0, 1.410-6, 

and 1.810-6. The behaviors of S and m exhibit same tendency as those shown in 
Figures 3, except for Hy

*=1.810-6. The steady state value of m≈30deg obtained for 
Hy

*=1.810-6 is also the result of the competition discussed above. Figures 2.11 
represent the time evolutions of m and S for  =10 and Hy

*=0, 110-6, and 1.810-6. 
Within the magnetic field strength region used here, all the results look like the ordinary 
aligning state. However, as shown in Figure 2.12, a discontinuous decrease in the 
time-averaged scalar order parameterS exists for Hy

*=1.610-6, and corresponds to the 
transition shear rate between the ordinary and the new aligning modes as mentioned 
above. The effect of the magnetic field strength Hy

* on the steady major orientation 
angle m

steady is shown in Figure 2.13 for  =2, 4, and 10. The angles m
steady increase 

with increasing the magnetic field strength Hy
*. Finally, a flow-orientation mode 

diagram spanned by the shear rate   and the magnetic field strength Hy
* is shown in 

Figure 2.14. As the magnetic field strength increases, the new aligning mode emerges at 
low shear rate, and then it covers whole the tumbling mode regime, similar to the 
diagram for the case of the magnetic field along the x-axis (Figure 2.7). On the other 
hand, the wagging-ordinary aligning mode transition shear rate in Figure 2.14 decreases 
with increase of the magnetic field strength, while that shear rate in Figure 2.7 
increases. 
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Figures 2.8 Transient behaviors of m and S versus strain at * =2 for various values of 
Hy

*: Hy
*=0, 1×10-6, and 1.8×10-6 at =1.0. 
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Figure 2.9 Torques (arbitrary unit) on a LCP molecule as a function of the azimuthal 
angle at =1.0. 
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Figures 2.10 Transient behaviors of m and S versus strain at * =4 for various values of 
Hy

*: Hy
*=0, 1.4×10-6, and 1.8×10-6 at =1.0. 
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Figures 2.11 Transient behaviors of m and S versus strain at * =10 for various values of 
Hy

*: Hy
*=0, 1×10-6, and 1.8×10-6 at =1.0. 
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Figure 2.12 Average order parameterS as a function of shear rate * at Hy

*=0, 1×10-6, 
1.4×10-6, and 1.6×10-6 at =1.0. 
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Figure 2.13 Effect of the magnetic field strength Hy

*on the steady major orientation 
angle ｍ

steady at =1.0. 
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Figure 2.14 Critical shear rates as a function of magnetic field along the y direction at 
=1.0. 
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2.3.2 Results and Discussions for =0.9 
 

In this part, the molecular length will be considered since the real molecules are 
not infinite. We choose =0.9 in equation (2.1). With the relation (1.7), we can know the 
length is about 4.5 times to the diameter. In addition to the value of , other parameters 
are same with the case when =1.0. Also two cases are discussed: 1) the magnetic field 
along the x-axis, 2) the magnetic field parallel to the y-axis.  
 
2.3.2.1 The Magnetic Field along the x-axis 
 

Figures 2.15 show that the transient behaviors of preferred angle m and scalar 
order parameter S versus strain at * =3 for various values of dimensionless magnetic 
field: Hx

*=0, 1.5×10-6, and 2×10-6. When Hx
*=0, the preferred angle monotonously 

decreases from 0o, namely, tumbling modes are presented. As shown in Figures 2.15, the 
rotational periodic of the director increases with the increasing strength of the magnetic 
field. A new aligning mode also appears at Hx

*=2×10-6. The scalar order parameter S 
increases with the magnetic field. Increased the shear rate at 5, the director oscillates at 
a fixed angle when only the flow is added on the LCP system. With increasing the 
strength of the magnetic field the oscillation of the director becomes slow and finally at 
Hx

*=2×10-6 a steady state arrives, namely, the new aligning defined in the last part is 
detected. The higher orientational state can be arrived with increasing the strength of the 
magnetic field as shown in Figures 2.16. The ordinary aligning at Hx

*=0 is given out at 
* =20 in Figures 2.17. Even increasing the strength of the magnetic field in the range 

chose by this part the new aligning modes can not be found in the range of ordinary 
aligning. However, the scalar order parameter S also increases under the increasing 
magnetic field. From Figure 2.18, we also can get two groups that one is the new 
aligning at the low shear rates * =3, 5; another is the ordinary aligning represented at 
the high shear rates * =20, 50. Figure 2.19 describes the orientation distribution 
function versus the degree  at * =3, 50. The orientatioal distribution function at * = 
50 becomes wider than the one at * =3 and the peak of it shifts to the bigger degree. To 
analyze the influence of Hx

* on the scalar order parameter, the time-averaged scalar 
order parameterS as a function of Hx

* is shown in Figure 2.20. It is similar to Figure 
2.7, at the low shear rates * =3, 5 the time-averaged scalar order parameter can be 
increased very quickly after a critical value of the magnetic filed; however, at the high 
shear rates * =20, 50, theS is increased slightly with the magnetic field. Figure 2.21 
shows the effect of the shear rate  on the time-averaged scalar order parameterS for 
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Hx
*=0, 1.510-6, and 210-6. The discontinuous happens at about *  5.4 when 

Hx
*=210-6. As can be seen in Figure 2.22 where a flow-orientation mode diagram 

spanned by the shear rate   and the magnetic field strength Hx
*, this discontinuous 

describes the boundary of the new aligning modes and the wagging modes. The range of 
tumbling is repressed and the new aligning modes appear at low shear rates.  

Compared the simulation results obtained at =1.0 the main difference resulting 
from the molecular length is that the wagging mode doesn’t disappear, on the contrary, 
the range of it is enlarged with the increasing magnetic field strength represented in 
Figure 2.22.  
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Figures 2.15 Transient behaviors of m and S versus strain at * =3 for various values of 
Hx

*: Hx
*=0, 1.5×10-6, and 2×10-6 at =0.9. 



 42 

0 10 20 30 40 50

-40

-20

0

20

40



 m
  d

e
g

0

0 10 20 30 40 50

-40

-20

0

20

40
1.510-6

0 10 20 30 40 50

-40

-20

0

20

40

210-6

 
 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8



s

0 1.510-6

210-6

 
Figures 2.16 Transient behaviors of m and S versus strain at * =5 for various values of 
Hx

*: Hx
*=0, 1.5×10-6, and 2×10-6 at =0.9. 
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Figures 2.17 Transient behaviors of m and S versus strain at * =20 for various values of 
Hx

*: Hx
*=0, 1.5×10-6, and 2×10-6 at =0.9. 
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Figure 2.18 Transient behavior of order parameter S at * =3, 5, 20, 50 for Hx

*=2×10-6 
at =0.9. 
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Figure 2.19 Orientation distribution function versus the degree  at * =3, 50 at =0.9. 
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Figure 2.20 Effect of magnetic field parallel to the x direction on average scalar order 
parameterS for various values of shear rates: * =3, 5, 20, and 50 at =0.9. 
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Figure 2.21 Average order parameterS as a function of shear rate * at Hx

*=0, 1.5×10-6, 
and 2×10-6 at =0.9. 
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Figure 2.22 Critical shear rates as a function of magnetic field along the x direction at 
=0.9. 
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2.3.2.2 The Magnetic Field along the y-axis 
 

As we can see from Figures 2.23 to 2.26 the results for the magnetic field along 
the y-axis are almost same with the simulation results shown in the part 2.3.1.1when 
=1.0. Also two groups can be defined from Figure 2.26, which are the new aligning 
with higher orientation states at low shear rates defined in the last section and the 
ordinary aligning at high shear rates. Figure 2.27 shows that the orientation distribution 
function changes with the degree . When the shear rate decreases the peak of the 
orientation distribution function obviously shifts to the right and becomes much sharper 
than the one at high shear rate * =50. In Figure 2.28 the effect of the shear rate on the 
time-averaged scalar order parameterS is represented at Hy

*=0, 1.510-6, and 2.010-6. 
It can be seen that the higher orientational state can be got at low shear rates resulting 
from the comparison between the torques caused by the shear flow and the magnetic 
field. A discontinuous decrease, corresponding to the boundary between the ordinary 
and new aligning, also appears at *  5.0 in Figure 2.29 which shows the effect of the 
magnetic field on the time-averaged scalar parameterS. A flow-orientation mode 
diagram spanned by the shear rate   and the magnetic field strength Hy

* also is plot in 
Figure 2.30. The new aligning range also can be observed at low shear rates, however, 
the range of the wagging mode will be reduced with the magnetic field, and finally 
disappears at Hy

*=2.010-6. The dot line means the boundary between the ordinary and 
new aligning modes. 
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Figures 2.23 Transient behaviors of m and S versus strain at * =3 for various values of 
Hy

*: Hy
*=0, 1.5×10-6, and 2×10-6 at =0.9. 



 49 

0 10 20 30 40 50
-30

-20

-10

0

10

20

30



 m
 d
e
g

0

1.510-6210-6

 
 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8



s

1.510-6

210-6

0

 
Figures 2.24 Transient behaviors of m and S versus strain at * =5 for various values of 
Hy

*: Hy
*=0, 1.5×10-6, and 2×10-6 at =0.9. 
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Figures 2.25 Transient behaviors of m and S versus strain at * =20 for various values of 
Hy

*: Hy
*=0, 1.5×10-6, and 2×10-6 at =0.9. 
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Figure 2.26 Transient behavior of order parameter S at * =3, 5, 20, 50 for Hy

*=2×10-6 
at =0.9. 
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Figure 2.27 Orientation distribution function f versus the degree  at * =3, 50 for 
Hy

*=2×10-6 at =0.9. 
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Figure 2.28 Effect of magnetic field parallel to the y direction on average scalar order 
parameterS for various values of shear rates: * =3, 5, 20, and 50 at =0.9. 
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Figure 2.29 Average order parameterS as a function of shear rate * at Hy

*=0, 1×10-6, 
1.4×10-6, and 1.6×10-6at =0.9. 
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Figure 2.30 Critical shear rates as a function of magnetic field along the y direction at  
=0.9 
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2.4 Conclusions 
 

In this paper, we have simulated the evolution of LCP molecular configuration 
under the shear flow. In the Doi theory used for the computation, the molecular 
configuration is represented by the probability density function of LCP molecules. The 
computation results are analyzed and discussed in terms of the major orientation 
direction, the scalar order parameter, and the flow-orientation mode transitions. When 
the magnetic field is imposed in the flow direction (x-direction), the scalar parameter 
becomes higher for entire shear rate regime because of the magnetic field. Also, the 
existence of the new aligning state is found at low shear rate regime in which the effect 
of the shear flow prevails the effect of the magnetic force, and the rotation of individual 
molecules is suppressed. On the other hand, for the case of the magnetic field along the 
velocity gradient direction (y-direction), the magnetic fields drastically affect on the 
steady angle of the major orientation direction, in addition to the effects mentioned 
above. The major difference between the two cases of the magnetic field is the relations 
between the orientation direction preferred by the shear flow and the magnetic field; the 
flow-orientation direction is same as the magnetic field-orientation direction for 
H*=(Hx*,0,0), but the flow-orientation direction is perpendicular to the magnetic 
field-orientation direction for H*=(0,Hy*,0). Thus, for the former case the magnetic 
fields affect on the scalar parameter rather than the major orientation direction, and for 
the latter case the effect of the magnetic field is more remarkable on the major 
orientation direction in comparison with the effect on the scalar order parameter. 

The effect of the molecular length by setting =0.9 also is discussed in the two 
cases that the magnetic field is along the x-axis and the y-axis, respectively. The major 
difference from =1.0 is the effect of the magnetic field along the x-axis on the 
flow-orientation mode, which the wagging state doesn’t disappear with the increasing 
magnetic filed.  

In this calculation all of the quantities are non-dimensionalized with equations 
(2.11) to (2.14). In particularly, the real value of the magnetic field what we need in the 
process is noticed. For instance, if we choose 1kg PAA (t=399K and=1.2110-7cgs), 
the real strength of the magnetic field at Hx*=110-6 is about 2.410-8 A/m.  

Through this simulation, we obtained the conclusion that the magnetic fields 
affect not only on the scalar order parameter and the major orientation direction, but 
also on the flow-orientation modes. In other word, using the proper magnetic field, one 
can obtain the arbitrary desired molecular orientation configurations which enhance the 
functionality of the LCP materials. 
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Chapter 3 

Effect of Magnetic Field on Molecular Orientation of 

Nematic Liquid Crystalline Polymers Under Simple 

Shear Flow:II Out-of-Plane Case 

 

 

 

 
The effect of magnetic fields on molecular configuration of liquid crystalline polymers 
(LCPs) under simple shear flows is numerically analyzed using the Doi theory when the 
out-of-plane case is considered. The evolution equation for the probability distribution 
function of the LCP molecules is directly solved without any approximation closure. 
The initial director is oriented at three angles with respect to the shear plane, where the 
shear plane is parallel to both the velocity and its gradient:(1) along the direction of the 
flow, (2) parallel to the vorticity direction, and (3) set into the plane which parallel to 
the vorticity direction and the flow. Two cases of the magnetic fields which are parallel 
to the flow and velocity gradient direction are considered. We find that when the initial 
position of the director is along the flow, it doesn’t rotate out from the shear plane. 
Three modes, tumbling, wagging and aligning, are observed, respectively. However, 
depending on the initial conditions of the probability distribution function of molecular 
configuration chose in this chapter in the second and third case a log-rolling orientation 
state is detected at low shear rates, where the average orientation is perpendicular to the 
shear plane. The simulation results show that the director can be controlled well to align 
the direction of magnetic fields. It is an efficient way to improve the performance of 
LCP materials. Finally in order to check the effect of the molecular length the 
simulation results for =0.9 are also represented.  
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3.1 Introduction 
 
     In the Chapter 2 the effect of magnetic fields on molecular configuration of LCPs 
under simple shear flows for the in-plane case are numerically analyzed using the Doi 
theory (1). The simulation results are discussed through investigating the effect of 
magnetic fields on the major orientation direction, the scalar order parameter, and the 
flow-orientation mode transitions. A conclusion was made that the strength of LCPs can 
be tailored by applying the appropriate magnetic fields. However, the director doesn’t 
always be confined into the shear plane in the LCP processing. Also the calculations, 
which had been done by Zuniga and Leslie (2), show that director gradients can create 
flow instabilities that drive the director out of the shear plane in tumbling range. The 
detail discussions for the out-of-plane case were done by Larson and Öttinger (3) with 
Doi equation which was solved by two numerical solution technique: one was an 
expansion in spherical harmonic functions, and another was a stochastic method that 
integrates the equations of motion for a large ensemble of molecules. A steady 
log-rolling orientation state where the average orientation is always perpendicular to the 
shear plane, and a time-periodic kayaking state with an orbit oblique to the shear plane 
were observed depending on the initial conditions of the molecular configuration of 
LCPs. Recently a constitutive model for dispersions of acicular magnetic particles has 
been developed by modeling the particles as rigid dumbbells dispersed in a solvent by 
Bhandar and Wiest (4, 5). Based on the Doi theory an average alignment parameter J 
(J=<u>) is introduced into the probability orientation function of the molecular 
orientation because of the difference between the two “beads” of the dumbbell. 
However, as we known, the alignment parameter J will be equal to zero because the 
probability distribution function f(u,t) has for-aft symmetry for molecules of LCPs. In 
this case the constitutive equation for the modeling of magnetic dispersions will be 
returned into Doi equation solved through second tensor equation. As a result, the 
mesoscal constitutive modeling of magnetic dispersions can not show out the tumbling 
and wagging modes of LCPs.  
     In the process basically the strength of LCP products along the flow direction is 
noticed. If the director rotates out of the shear plane, the strength along the flow 
direction will be reduced since it depends on the degree of the molecular alignment. 
How the magnetic fields affect the molecular configuration of flowing LCPs is further 
investigated with Doi theory when the out-of-plane case is considered. The degree of 
molecular alignment along the director direction and the flow direction is also 
calculated, respectively.  
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    The organization of this chapter is as follows. In section 3.2 we give out the basic 
equations used in the calculations. And the main simulation results are presented into 
section 3.3 for =1.0 and section 3.4 for =0.9. Finally a brief conclusion is made in 
section 3.5.  
 
3.2 Basic Equations  
 

The Doi theory is used to solve the out-of-plane case which has been described in 
the section 2.2. We also consider a simple shear flow, and define x to be the flow 
direction, y to be the velocity gradient direction, and z to be the vorticity direction as 
shown in Figure 3.1. The orientation of a single molecule represented by a unit vector u 
is characterized with an azimuthal angle  and a polar angle . The magnetic field is 
applied in the shear plane, and two cases will be considered: 1) the magnetic field along 
the x-axis, 2) the magnetic field along the y-axis. The Doi equation represented in the 
part 2.2 is showed:  
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Figure 3.1 Geometry and coordinate systems 
 
 

When the probability distribution function f(u,t) is confined into the shear plane,  
it is symmetry with respect to the x-y plane. However, this symmetry will be broken if 
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the restriction on the director is removed.  
The material is sheared with the shear rate of   in the x-y plane, and the 

velocity gradient tensor is given by, 
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 is the molecular formation coefficient. Because the director doesn’t always remain in 
the shear plane, all the components of the order parameter tensor will be considered:  
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Using the same way with the part 2.3 to non-dimensionlize the equation (3.1) for two 
dimensional magnetic field (H=(Hx,Hy,0)) then  
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                                                                  (3.4) 
The superscripts * denote non-dimensionalized variables and parameters. Above 
equation is computed using the finite difference method for spatial discretization and 
the Crank-Nicolson method for time integration. The computation area for f can be 
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restricted in the region 0 and -/2/2 due to the broken symmetry with respect 
to the x-y plane. Boundary conditions for the function are: 
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The normalization condition, 
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is also required.  

An initial profile of the function, f(,,t*=0), is derived from the Boltzman 
profile with the major orientation direction along the x-axis (flow direction). The time 
step and the spatial mesh width are set to be t*=0.005/   and ==3deg. The 
nematic potential intensity U also is set to be 5 in order to compare with the results 
getting from the section 2.3. Here we allow the director to exist an angle  between the 
y and z axes similar to the method done by Larson and Öttinger(3). Thus when =0o the 
director is parallel to the x-axis, and when =-90o, it is parallel to the z-axis, namely the 
vorticity direction. In general the initial director is defined as n=(nx,ny,nz)=(cos,0,sin). 
In this thesis =0o, -90o and -50o are chosen. According to the equation (2.3), the order 
parameter tensor can be solved by the integration of the probability distribution 
function f(u,t).  

A quantity S2=Syy-Szz defined same with the paper by Larson and Öttinger(1991) 
is also discussed in the following results, especially, the effect of the magnetic fields on 
it will be investigated. When S2=0, it can be seen that 0)( 22  zyeq nnS . It is impossible 
that ny is equal to nz. As a result, the director is aligned along x axis. Here nx,ny,nz are 
the three components of the director n obtaining by solving the eigenvalues and 
eigenvectors of the order parameter tensor S. And Seq is obtained at the equilibrium 
state. Using the same method the conclusions as follows can be made that if S2 is 
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roughly Seq, the director is along the y-axis; if S2 is roughly -Seq, the director is oriented 
to be parallel to the z axis. Therefore, we can easily distinguish any drift of the director 
and how the magnetic fields control it.  

The azimuthal angle  and the polar angle  of the director can be defined as: 
 

)arccos( znθ ,                                                  (3.10) 
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As we known the scalar parameter S can show out the molecular alignment of 

LCPs along the director. Actually, the tensile strength of LCPs along the flow direction 
always is noticed in the process. Therefore, in this part we will focus on the strength of 
LCPs along the flow direction through showing out the component Sxx of the order 
parameter tensor S, and the effect of the magnetic field parallel to the x-axis on it also 
will be investigated. 
 
3.3 Results and Discussions for =1.0 
                                                                                
3.3.1 Initial Position of the Director along the x-axis 
 

In this section, the director starts rotating from the x-axis, namely n = (1, 0, 0). 
Figure 3.2 shows S2 oscillates with time in the range of 0~Seq at  =1. Obviously the 
director is confined into the shear plane: when S2=0, the director is parallel to the flow 
direction, and when S2Seq, the director is almost along the y-axis. With the equation 
(3.10) the major orientation angle m with time in the shear plane is represented in 
Figures 3.3. A typical tumbling mode is showed where m periodically decreases with 
strain . The scalar parameter S and Sxx as the function of time also is showed in Figures 
3.3. Since the director periodically rotates in the shear plane, Sxx also shows periodically 
oscillation. Compared with Figure 3.2, Sxx max is related to S2=0, namely, the director is 
along the x-axis; on the contrary, Sxx min indicates the director almost is parallel to the 
y-axis. When  =2.85 in Figure 3.4, the amplitude of S2 is reduced compared with the 
one at  =1, which shows that the x-axis tends to become an attractor for the director. 
A wagging mode is exhibited in Figures 3.5 where the director periodically oscillates in 
the shear plane after several damping oscillations. The changing of the scalar parameter 
S and Sxx with time are also represented in Figures 3.5. With the increasing shear rate 
(  =10 Figure 3.6), the oscillatory peak of S2 decreases very quickly, and within a short 
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time it becomes zero. From Figures 3.7, the director in the shear plane describes an 
aligning mode which oscillates several times then reaches a steady state at m0o. The 
director is aligned almost along the x-axis because the torque caused by the shear rate is 
strong enough. The scalar parameter S and Sxx also is described in Figures 3.7, where 
reflect the behaviors of m. Obviously, the molecular alignment along the direction of 
the flow is smaller than the one along the director.  

The time-averagedS andSxx affected by the shear rate   are investigated in 
Figure 3.8. The changes ofS with the shear rate is almost same with the simulation 
results when the director is confined into the shear plane for Hx

*=0 described in Figure 
2.6.Sxx decreases continuously, and then increases monotonically as the shear rate 
increases. It can be seen that both the time-averagedS andSxx increase with the shear 
rate andS is much higher thanSxx. 

As we can see from the simulation results from Figures 3.2 to 3.8 that once we 
set the director along the x-axis at t*=0, then the director doesn’t rotate out from the 
shear plane. Three modes, tumbling, wagging and aligning, also can be detected. The 
molecular alignment along the flow also can be increased by increasing the shear rate. 
In this part we will not discuss the effect of the magnetic field on the director since it 
will be similar to the discussions in the part of 2.3.  
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Figure 3.2 S2 versus strain at * =1 for =1.0. 
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Figures 3.3 Transient behaviors of preferred angle m and scalar order parameter S and 
Sxx versus strain at a given shear rate * =1 for =1.0. 
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Figure 3.4 S2 versus strain at * =2.85 for =1.0. 
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Figures 3.5 Transient behaviors of preferred angle m and scalar order parameter S and 
Sxx versus strain at a given shear rate * =2.85 for =1.0. 
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Figure 3.6 S2 versus strain at * =10 for =1.0. 
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Figures 3.7 Transient behaviors of preferred angle m and scalar order parameter S and 
Sxx versus strain at a given shear rate * =10 for =1.0. 
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Figure 3.8 Average order parameterS andSxx as a function of shear rate. 
 
 
3.3.2 Initial Position of the Director along the z-axis 
 

We will set the director to be orthogonal to the shear plane in this section. When 
the director n is parallel to the vorticity axis, n = (0, 0, 1), the bi-steady state 
depending on the tumbling parameter, which is discussed when molecular elasticity is 
absent(6), has to be considered: if 1, the nematic is called tumbling nematic. The 
solution, n = (0, 0, 1), is neutrally stable to homogeneous disturbances, that is, such 
disturbances neither grow nor decay away, but produce neutrally stable orbits. This 
orientation is called log-rolling orientation (5) since the director merely orbits about the 
vorticity axis; if 1, the nematic is flow-aligning. The log-rolling orientation is 
unstable to small disturbances and the director always finds its way to the flow 
alignment angle in the shear plane. Based on these known results, the case considering 
the effect of molecular elasticity has been discussed by Larson and Öttinger in 1991 
with Doi theory solved by two numerical solution techniques: an expansion in spherical 
harmonic functions and a stochastic method. The initial director decides the final state 
that is either a time-periodic tumbling orbit in shear plane or log-rolling (or kayaking) 
state at a low and modest shear rates. In order to control the orbit of the director in the 
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LCP process we will further investigate the effect of the magnetic field along the x and 
y direction on the log-rolling orientation. The simulation results described the degree of 
molecular alignment along the flow direction under the magnetic field parallel to the 
x-axis, which Sxx changes with non-dimensional time, are also represented. The 
simulation results show out an efficient method to obtain a high orientation state along 
the flow direction. 
 
3.3.2.1 The Magnetic Field along the x-axis 
 

In this section, we deal with the case that the magnetic field is parallel to the flow 
direction (i.e., H=(Hx,0,0)). Figure 3.9 shows the time evolutions of S2 for  =1 and 
Hx*=0, 1.510-6, and 2.010-6. When Hx*=0, S2 almost is equal to -Seq with time. As 
explained above the director is parallel to the vorticity direction, namely, the log-rolling 
orientation is detected. With applying the magnetic field along the x-axis for 
Hx*=1.510-6, S2 shifts up slightly and remains a constant. The vorticity direction also 
is an attractor for the director. The magnetic field, however, is increased at 
Hx*=2.010-6, S2 at first is increased slowly, then suddenly becomes zero and keeps it 
with time. The director from the vorticity direction goes into the shear plane and is 
controlled along the direction of the magnetic field. The Figure 3.10 describes the polar 
angle  of the director changes with the increasing strength of the magnetic field 
at  =1. When Hx*=0, the polar angle  of the director remains zero since the director is 
parallel to the vorticity direction at  =1. Increasing the magnetic field at 
Hx*=2.010-6, the polar angle  of the director at beginning keeps 0o, and then suddenly 
becomes 90o. It shows that the director doesn’t continuously rotate into the shear plane 
from the vortictity direction. As we known a biaxial nematic must be described by two 
directors that are mutually perpendicular; the longest axis of the molecule tends to be 
parallel to one of the directors, the second longest axis is parallel to the other director. 
Figures 3.11 show the schematics of the molecular deformation under the magnetic 
field and the shear flow along the x-axis. The ellipse in the origin represents a rodlike 
molecule of LCPs. At t*=0 the longest axis of the molecule is along the z-axis and 
suppose that the second axis of it is parallel to the x-axis. The molecules are deformed 
with time, which caused mainly by the effect of the magnetic field since the shear rate 
is so small that it can not deform the molecule which can be proved when Hx*=0 in 
Figure 3.10. As can be seen from Figures 3.11, the longest axis along the z-axis 
becomes shorter and shorter; on the contrary, the second longest axis along the x-axis 
becomes longer and longer, then finally is changed into the longest one. As a result, the 
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director suddenly becomes to be parallel to the direction of the magnetic field, namely, 
the x-axis. This course also can be reflected by the changing of the scalar parameter S 
with time because when the molecule becomes a sphere, the scalar parameter S is near 
zero resulting from reaching an isotropic phase. Figure 3.12 shows out the result just 
like what we speculated on the course of molecular deformation in Figures 3.11. When 
Hx*=0 and 1.510-6, S is a constant because of the log-rolling orientation represented in 
the two cases. However, when the magnetic field is increased at 210-6, S decreases 
slowly and a very small value is arrived, which shows the isotropic phase due to the 
deformation of molecules under the magnetic field, and then quickly becomes a high 
value, which shows that the deformed molecules are parallel to the direction of the 
magnetic field. And also we can see that S increases with the magnetic field. In order to 
investigate the strength of LCPs along the flow, Figures 3.12 represent Sxx changes with 
time at  =1 for Hx*=0 and 210-6. When Hx*=0, the value of Sxx is very small 
resulting from molecules almost along the voiticity direction. When we increase the 
magnetic field at 210-6, Sxx increases slightly at first time, and then suddenly becomes 
a very high value. 

We directly increase the shear rate into a higher range since a small shear rate can 
not affect the log-rolling orientation. Figure 3.13 shows S2 as a function of time changes 
with the magnetic field at  =10. When Hx*=0, the shear plane is an attractor for the 
director because the stronger shear rate results in the deformation of molecules as 
explained by Figures 3.11. The magnetic filed is applied and increased from 1.510-6 to 
210-6. The director is accelerated to be close by the shear plane as can be seen from 
the changes of S2 after adding the magnetic field along the x-axis. If the strength of the 
magnetic field is increased again, it can shorten the time that the director is aligned to 
be parallel to the shear plane; in addition, a higher orientational state can be arrived 
where most molecules will be controlled to be aligned along the direction of the 
magnetic field as well as the direction of the flow. Figures 3.14 give out the scalar 
parameter S and Sxx changes with time at  =10 for Hx*=0, 1.510-6and 210-6. We can 
see S decreases at first and increases again for all the cases, which also reflect the 
molecular deformation caused by the high shear rate and the magnetic field. With the 
increasing strength of the magnetic field S also increases. On the other hand, although 
Sxx is low at the beginning due to the log-rolling orientation state at the initial state, it 
increases very quickly with time because molecules are aligned along the flow direction 
under the effect of the torques caused by the shear flow and the magnetic field. With 
increasing the magnetic field Sxx also is increased. 

During the LCP process it hopes that the molecular alignment can be improved 
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after applying the magnetic field. In order to investigate the effect of the magnetic field 
on it, the time-averagedS andSxx changing with the magnetic field at  =1,10,100 
are plot in Figures 3.15. When  =1, the director keeps the log-rolling orientation state 
if the magnetic field is smaller than 1.510-6. However, when the magnetic field is 
larger than it, the director is confined into the shear plane in a short time, and then is 
parallel to the x-axis. Therefore, the time-averagedS increases quickly with the 
magnetic field. When  =10 and 100, the shear plane is the attractor even without the 
magnetic field. The final state of the director shows an aligning where the director is 
along the x-axis. The time-averagedS increases apparently when the magnetic field is 
larger than 210-6 at  =10. However, when  =100, the effect of the magnetic field 
onS is not evident in the magnetic field strength range chose by this paper. It can be 
seen that the time-averagedSxx is very small near to zero and decreases continuously 
toward the minimum value at Hx*=1.510-6, and then suddenly changes into a big value 
at Hx*=210-6 when  =1. After thatSxx smoothly increases with the magnetic field. As 
the shear rate increases at  =100 the evident effect of the magnetic field chose by this 
part can not be observed.  

Figures 3.16 describe the time-averagedS andSxx changes with the shear rate 
when the magnetic field is considered as a parameter. As the shear rates increasesS 
decreases at first time, and then slowly increases for all the cases at Hx*=0, 1.510-6, 
210-6, 310-6. At low shear rates if the strength of the magnetic field is not stronger 
enough to rotate the director into the shear planeS will be smaller than the one at 
Hx*=0 due to the molecular deformation as can be shown in Figures 3.16 at 
Hx*=1.510-6. Also a discontinuous is observed at Hx*=0, 1.510-6 corresponding to the 
boundary between the log-rolling orientation and the aligning state along the x-axis. 
When the magnetic field is increased at 210-6 and 310-6, the discontinuousness 
disappears since the torque caused by the magnetic field is so strong that the shear 
plane becomes the attractor even the director along the vorticity direction at the initial 
state. The time-averagedSxx increases with the increasing strength of the magnetic field. 
At low shear ratesSxx is very small due to the log-rolling orientation state at Hx*=0, 
1.510-6, and then suddenly becomes a high value. This discontinuousness also 
indicates the boundary between the log-rolling orientation state and the aligning along 
the x-axis.  

From these simulation results it can be made a conclusion that when the initial 
state of the director is along the vorticity direction, a log-rolling orientation can be 
detected in the tumbling range of the shear rate. The method applying the magnetic 
field along the flow direction in LCP process can reduce the log-rolling orientation; at 
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the same time the molecular alignment is controlled to align the direction of the 
magnetic field. 
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Figure 3.9 S2 versus strain at * =1 for =1.0 when Hx

*=0, 1.5×10－６, and 2×10－６. 
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Figure 3.10 Polar angle  versus strain at * =1 for =1.0 when Hx

*=0 and 2×10-6. 
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Figures 3.11 Schematics of the molecular deformation under the magnetic field and the 
shear flow along the x-axis. 
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Figures 3.12 Transient behaviors of scalar order parameter S and Sxx versus strain 
at * =1 for =1.0 when Hx

*=0, 1.5×10－６, and 2×10－６. 
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Figure 3.13 S2 versus strain at * =10 for =1.0 when Hx

*=0, 1.5×10－６, and 2×10－６. 
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Figures 3.14 Transient behaviors of scalar order parameter S and Sxx versus strain at 

* =10 for =1.0 when Hx
*=0, 1.5×10－６, and 2×10－６. 
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Figures 3.15 Effect of magnetic field parallel to the x-axis on average scalar order 
parameterS and Sxx at * =1, 10, 100 for =1.0. 
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Figures 3.16 Average order parameterS andSxx as a function of shear rate for=1.0 at 
Hx

*=0, 1.5×10-6, 2×10-6and 3×10-6. 
 
 
3.3.2.2 The Magnetic Field along the y-axis 
 

In this section, the case that the magnetic field is imposed parallel to the velocity 
gradient direction is considered. Figure 3.17 shows that S2 as the function of time 
changes with the increasing strength of the magnetic field along the y-axis at  =1. 
The log-rolling orientation state also can be found when Hy*=0 and 1.510-6. Further 
increasing the magnetic field at Hy*=210-6, the molecules are deformed and aligned 
along the x-axis, which is indicated by the changes of S2 with time. Because the 
direction of the flow is different from the one of the magnetic field, the final position of 
the director is decided by the comparison of the torques resulting from the flow and the 
magnetic field. If we hope that molecules have a tendency to align along the y-axis, the 
more magnetic field strength is needed. When Hy*=310-6, S2 directly becomes a very 
high value in a short time, which illustrates that the director is controlled to align along 
the y-axis by the torque caused by the magnetic field. Figure 3.18 shows that the scalar 
parameter S increases with the magnetic field. When Hy*=210-6 and 310-6, S 
continually decreased toward the minimum because the rodlike molecules are deformed 
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into the spherical molecules by the stronger magnetic field. After that the director is 
aligned along the direction of the magnetic field as explained in Figure 3.11. Figure 
3.19 describes the orbits of the director in a three dimensional space at Hy*=310-6. 
When nz=1 and nx=ny=0, the director is along the vorticity direction. When nz=0, the 
tracks of the director in the shear plane show that the director almost is aligned along 
the y-axis. The discontinuous change of the director can be explained by the exchange 
of the two axes resulting from the molecular deformation as described in Figure 3.11. 

We also increase the shear rate at a high value  =10 (Figure 3.20), where the 
shear plane becomes an attractor for the director when Hy*=0. Because the torque 
added along the x-axis becomes stronger with the increasing shear rate, S2 doesn’t reach 
a bigger value than the one at  =1 at Hy*=310-6. Only further increasing the 
magnetic field, the torque caused by the magnetic field along the y-axis can conquer the 
torque caused by the flow along the x-axis so that the state where the molecules are 
parallel to the y-axis is obtained. Figure 3.21 presents that the scalar parameter S 
increases with the strength of the magnetic field, and the minimum value indicates that 
the rodlike molecules are deformed. The tracks of the director affected by the flow and 
the magnetic field (Hy*=310-6) are also showed out in Figure 3.22. The orbits of the 
director in the shear plane lie between the x-axis and the y-axis, which reflects the 
competition of the torques caused by the flow and the magnetic field.  

The time-averagedS as the function of the shear rate at Hy*=0, 1.510-6, 210-6 
and 310-6 is described in Figure 3.23. We can see thatS decreases at low shear rates, 
and only when Hy*=0, a discontinuous decrease is found, which is a boundary between 
the log-rolling orientation and the alignment in the shear plane.  
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Figure 3.17 S2 versus strain at * =1 for =1.0 when Hy

*=0, 1.5×10-6, 2×10-6and 3×10-6. 
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Figure 3.18 Transient behaviors of scalar order parameter S versus strain at * =1 for 
=1.0 when Hy

*=0, 1.5×10-6, 2×10-6and 3×10-6. 
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Figure 3.19 Orbits of the director in a three dimensional space at * =1 for =1.0 when 
Hy*=310-6. 
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Figure 3.20 S2 versus strain at * =10 for =1.0 when Hy

*=0, 2×10-6and 3×10-6. 
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Figure 3.21 Transient behaviors of scalar order parameter S versus strain at * =10 for 
=1.0 when Hy

*=0, 2×10-6and 3×10-6. 
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Figure 3.22 Orbits of the director in a three dimensional space at * =10 for =1.0 when 
Hy*=310-6. 
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Figure3.23 Average order parameterS as a function of shear rate for =1.0 at Hy

*=0, 
1.5×10-6, 2×10-6and 3×10-6. 
 
 
3.3.3 Initial Position of the Director at =-50o 
 
     In this section, the director is set into the x-z plane at =-50o. Under the shear 
flow and the magnetic field the tracks of the director will be discussed. Also the degree 
of molecular alignment along the flow direction is investigated when the magnetic field 
is applied along the x-axis. 
 
3.3.3.1 The Magnetic Field along the x-axis  
 
     We will consider in this part that the direction of the torque caused by the 
magnetic field is same with the one caused by the shear flow. Figure 3.24 shows S2 
changes with time at  =1 for Hx*=0 and 1.510-6. When Hx*=0, S2 reduces and 
reaches a steady state at -Seq. The vorticity direction is an attractor for the director 
because the force coming from the shear flow is weaker so that it can not control the 
director to align along it. However, after applying the magnetic field, the torque 
controlling the director to align along the x-axis is reinforced. As can be seen from 
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Figure 3.24 S2 becomes zero in a short time under the magnetic field at Hx*= 1.510-6. 
The scalar parameter S and Sxx also increases with the magnetic field represented in 
Figures 3.25. Due to the log-rolling orientation state at Hx*=0 Sxx describing the 
molecular alignment along the x-axis is very small, however, it becomes very high 
under the force of the magnetic field when Hx*= 1.510-6.  

With the increasing shear rate at  =2 the shear plane becomes an attractor for the 
director as shown as in the Figure 3.26, where S2 will oscillate between 0~Seq even 
Hx*=0. The director can not be controlled to align along the direction of the shear flow 
since the torque caused by the flow is not stronger enough. In order to tailor the 
properties of LCPs the alignment of the director must be freely decided in terms of the 
strength of the magnetic field. The magnetic field, Hx*= 1.510-6, is added on the 
director along the shear flow, then the director ceases the oscillation in the shear plane 
and aligns along the direction of the shear flow and the magnetic field, namely, the 
x-axis. The scalar parameter S and Sxx are presented in Figures 3.27, where the aligning 
state is arrived at Hx*=1.510-6. In addition, the degree of molecular alignment along 
the x-axis increases with the magnetic field as can be seen from the changes of Sxx with 
time. 

When the shear rate is increased at 6, the director is controlled to be parallel to 
the x-axis by the shear flow described by Figure 3.28 at Hx*=0. After applying the 
magnetic field (1.510-6) along the x-axis, the exchange of two axes is accelerated and 
much higher orientational state can be arrived. S increases with the increasing magnetic 
field and the minimum value of it hints the maximum deformation of molecules showed 
in Figures 3.29.  
     The time-averagedS andSxx as the function of the magnetic field are plot in 
Figures 3.30 at  =1, 10, 100.S slightly decreases at  =1 when Hx* is smaller than 
110-6 since the anisotropy of the rodlike molecules is reduced when the director keeps 
the log-rolling orientation state. After thatS will increases with the magnetic field. The 
apparent changes ofS with the magnetic field chose by this part can not be found as 
increasing the shear rate.Sxx is near to zero at  =1 when Hx* is smaller than 110-6 
because the log-rolling orientation state is remained. As the increasing magnetic 
fieldSxx quickly increases and reaches a high value. With the increasing shear rate the 
excellent effect of the magnetic field on it can not be observed in the scope chose by 
this part.  
     The time-averagedS andSxx as the function of the shear rate also is investigated 
in Figures 3.31 at Hx*=0, 210-6, 310-6. For all the casesS decreases at first, and then 
slowly increases with the shear rate. When Hx*=0, a discontinuousness is detected as 
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the boundary of a log-rolling orientation state and an aligning state along the magnetic 
field. As the increasing magnetic fieldS also increases with the shear rate. At low shear 
rates because of the log-rolling orientation state at Hx*=0, the molecular alignment is 
very low, with increasing the shear rateSxx becomes bigger and bigger due to the 
stronger torque caused by the shear rate.Sxx also increases with the increasing strength 
of the magnetic field.  
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Figure 3.24 S2 versus strain at * =1 for =1.0 when Hx
*=0, and 1.5×10-6. 
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Figures 3.25 Transient behaviors of scalar order parameter S and Sxx versus strain at 

* =1 for =1.0 when Hx
*=0, and 1.5×10-6. 
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Figure 3.26 S2 versus strain at * =2 for =1.0 when Hx

*=0, and 1.5×10-6. 
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Figures 3.27 Transient behaviors of scalar order parameter S and Sxx versus strain at 
* =2 for =1.0 when Hx

*=0 and 1.5×10-6. 
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Figure 3.28 S2 versus strain at * =6 for =1.0 when Hx
*=0, and 1.5×10-6. 
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Figures 3.29 Transient behaviors of scalar order parameter S and Sxx versus strain at 
* =6 for =1.0 when Hx

*=0 and 1.5×10-6. 
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Figures 3.30 Effect of magnetic field parallel to the x-axis on average scalar order for 
=1.0 parameterS and Sxx at * =1, 10, 100. 
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Figures 3.31 Average order parameterS andSxx as a function of shear rate for =1.0 
 
 
3.3.3.2 The Magnetic Field along the y-axis  
 

In this part, the effect of the magnetic field along the y-axis on the director is 
discussed. Figure 3.32 shows that S2 changes with time at  =1 for Hy*=0, 1.510-6, 
210-6. The director rotates into the vorticity direction without adding a magnetic field. 
When Hy*= 1.510-6, S2 increases and keeps a constant in the range of 0~Seq. Increasing 
the strength of the magnetic field (Hy*=210-6) again, the value of S2 also is increased 
to be near Seq. The alignment of the director can be controlled well according to the 
change of the magnetic field. The scalar parameter S versus the time is showed out in 
Figure 3.33, in which it increases with the magnetic field.  

When  =2, we have already known that the director rotates into the shear plane 
and oscillates between the x-axis and the y-axis without adding the magnetic field. The 
effect of the magnetic field along the y-axis is plot in Figure 3.34. The oscillation of the 
director in the shear plane is eliminated by applying the magnetic field at Hy*= 1.510-6, 
210-6. And at the same time the director also deviates from the direction of the shear 
flow to keep a steady state between the direction of the shear flow and the direction of 
the magnetic field. With the increasing strength of the magnetic field the director is 
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nearer to the direction of the magnetic field. Figure 3.35 describes S changes with the 
magnetic field as the function of the time.  

Figure 3.36 shows the simulation results of S2 at  =6 for Hy*=0, 1.510-6and 
210-6. The shear plane becomes an attractor since the torque caused by the shear rate 
along the x-axis is strong enough. The more strength of the magnetic field is needed to 
control the director along the y-axis compared with the one of  =2. The changes of S 
with time at Hy*=0, 1.510-6and 210-6 is described in Figure 3.37, in which S 
increases with the applying magnetic field.  

The time-averagedS changing with the shear rate at Hy*=0, 1.510-6, 210-6and 
310-6 is plot in Figure 3.38.S decreases at first time, and then slowly decreases with 
the shear rate. We can see with the increasing magnetic fieldS also increases.  
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Figure 3.32 S2 versus strain at * =1 for =1.0 when Hy
*=0, 1.5×10-6 and 2×10-6. 
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Figure 3.33 Transient behaviors of scalar order parameter S versus strain at * =2 for 
=1.0 when Hy

*=0, 1.5×10-6 and 2×10-6. 
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Figure 3.34 S2 versus strain at * =2 for =1.0 when Hy
*=0, 1.5×10-6 and 2×10-6. 
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Figure 3.35 Transient behaviors of scalar order parameter S versus strain at * =2 for 
=1.0 when Hy

*=0, 1.5×10-6 and 2×10-6. 
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Figure 3.36 S2 versus strain at * =6 for =1.0 when Hy

*=0, 2×10-6 and 3×10-6. 
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Figure 3.37 Transient behaviors of scalar order parameter S versus strain at * =6 for 
=1.0 when Hy

*=0, 1.5×10-6 and 2×10-6. 
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Figure 3.38 Average order parameterS as a function of shear rate for =1.0 at Hy

*=0, 
1.5×10-6, 2×10-6 and 3×10-6. 
 
 
3.4 Results and Discussions for =0.9 
 

In this part, we will discuss the effect of the molecular length on the director by 
choosing =0.9 in the equation (3.4) in out-of-plane cases. The three initial directors 
investigated in the part 3.3 are considered when the magnetic field is applied along the 
x-axis and the y-axis.  
 
3.4.1 Initial Position of the Director along the x-axis 
 

In this section the initial director is set to be along the x-axis. Figure 3.39 shows 
S2 as the function of time oscillates between 0~Seq in the shear plane. Compared with 
Figure 3.2 the oscillation periodic obviously increases. Transient behaviors of preferred 
angle and order parameters in the shear plane at  =1 is described in Figures 3.40. The 
endless rotation of the major orientation indicates that a tumbling mode is detected. 
With increasing the shear rate at  =5 the amplitude of S2 in Figure 3.41 is apparently 
reduced, and infers that the director oscillates in the shear plane. A wagging mode is 
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found as can be seen from Figures 3.42, where the director periodically oscillates in the 
shear plane. Figure 3.43 describes S2 changes with time when  =12, which the 
amplitude of it decreases as the oscillation, finally becomes a constant near to zero. An 
alignment is found when  =12 where the major orientation direction remains a 
constant along the shear flow in Figures 3.44. 

The time-averaged scalar order parameterS andSxx as the function of the shear 
rate are represented in Figures 3.45. Apparently, Sxx is smaller than the one at =1.0 
shown in Figure 3.8. 

Compared with the results in part 3.3 at =1.0 the oscillation periodicity of the 
director is obviously increased. And at the same calculation conditions the molecular 
alignment at=0.9 is lower than the one when =1.0. From the simulation results we 
can make a conclusion same with before that the director shows out the three modes, 
tumbling, wagging and aligning, in the shear plane once the initial director is set into it. 
Therefore, the effect of the magnetic field on the director also will not be investigated 
since the results are almost same with the ones discussed in Chapter 2 where the 
director is always confined into the shear plane. 
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Figure 3.39 S2 versus strain at * =1 for =0.9. 
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Figures 3.40 Transient behaviors of preferred angle m and scalar order parameter S 
versus strain at * =1 for =0.9. 
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Figure 3.41 S2 versus strain at * =5 for =0.9. 
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Figures 3.42 Transient behaviors of preferred angle m and scalar order parameter S 
versus strain at * =5 for=0.9. 
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Figure 3.43 S2 versus strain at * =12 for =0.9. 
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Figures 3.44 Transient behaviors of preferred angle m and scalar order parameter S 
versus strain at * =12 for =0.9 
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Figure 3.45 Average order parameterS andSxx as a function of shear rate. 
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3.4.2 Initial Position of the Director along the z-axis 
 

In this section the initial director will be parallel to the voriticity direction, namely, 
along the z-axis. As explained above a log-rolling orientation state will be found in this 
case. In order to control the director freely the effect of the magnetic field applied along 
the x-axis and the y-axis on the director also is discussed, respectively. 
 
3.4.2.1 The Magnetic Field along the x-axis 
 
     The simulation results that the magnetic field is applied along the x-axis ((Hx, 0, 
0)) are given out in this section. Figure 3.46 describes S2 as the function of time changes 
with the magnetic field at  =1 for Hx*=0, 1.510-6 and 210-6. From the figure we can 
see that when Hx*=0 and 1.510-6, the vorticity also is an attractor for the director. The 
log-rolling orientation state is kept. However, once further increasing the magnetic field 
at 210-6, the director will be aligned along the x-axis after the course of molecular 
deformation by the magnetic field (Figures 3.11) which also can be testified by the 
changing of S with the time in Figures 3.47. It is obvious that the alignment of the 
molecules is improved by adding the magnetic field along the flow direction. Sxx versus 
time also is described in Figures 3.48, where it becomes a big value after the director 
aligns in the shear plane.  
     We directly increase the shear rate into a high value in order to further investigate 
the effect of the shear rate on the log-rolling orientation state. Figure 3.49 gives out that 
the shear plane becomes an attractor when  =10 even without applying the magnetic 
field. After applying the magnetic field along the flow direction the alignment along the 
director is reinforced again which is showed out in Figures 3.50. At the same time the 
molecular alignment along the flow direction described by Sxx also is improved by the 
magnetic field.  
     The time-averaged scalar order parameterS andSxx versus the shear rate also is 
plot at Hx*=0, 210-6and 310-6 in Figures 3.51. When Hx*=0, at low shear rates a 
discontinuous decrease is observed, which is the boundary between the log-rolling 
orientation state and the aligning state along the flow direction. Also at high shear 
ratesS increases with the magnetic field. When Hx*=210-6and 310-6, the log-rolling 
orientation state is conquered. The time-averaged Sxx also is represented with the shear 
rate. At low shear ratesSxx is very small because of the log-rolling orientation state 
when Hx*=0. After thatSxx becomes bigger suddenly at a critical value then slowly 
increases with the shear rate.  
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Figure 3.46 S2 versus strain at * =1 for =0.9 when Hx

*=0, 1.5×10-6 and 2×10-6. 
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Figures 3.47 Transient behaviors of scalar order parameter S and Sxx versus strain at 

* =1 for =0.9 when Hx
*=0, 1.5×10-6and 2×10-6. 
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Figure 3.48 S2 versus strain at * =10 for =0.9 when Hx

*=0, 1.5×10-6 and 2×10-6. 
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Figures 3.49 Transient behaviors of scalar order parameter S and Sxx versus strain at 

* =10 for =0.9 when Hx
*=0, 1.5×10-6and 2×10-6. 
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Figures 3.50 Average order parameterS andSxx as a function of shear rate for =0.9 at 
Hx

*=0, 1.5×10-6, 2×10-6 and 3×10-6.  
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3.4.2.2 The Magnetic Field along the y-axis  
 
     The discussions of the simulation results are represented in the following part 
when the magnetic field is parallel to the y-axis. As we known in this case the toques 
caused by the flow and the magnetic field is not along the same direction. Therefore the 
final director will be decided by the competition made by the torques caused by the flow 
and the magnetic field. Figure 3.51 indirectly shows out the director changes with the 
time through checking S2 at  =1. It is almost same with the results when we set =1.0 
except that the time of the molecular deformation becomes longer as can be seen from 
the results at Hy*= 210-6. The scalar parameter S versus time also shows out this point 
in Figure 3.52. When the shear rate is increased at  =10, the director is aligned along 
the flow direction shown in Figure 3.53. The director doesn’t always align the flow 
direction once the magnetic field is stronger enough as can be obtained at Hy*= 310-6. 
The scalar order parameter S also is given out in Figure 3.54. In order to investigate the 
time-averagedS changes with the shear rate at the different strength of the magnetic 
field, Figure 3.55 is plot. Both of them have a discontinuous decrease as explained 
above. 
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Figure 3.51 S2 versus strain at * =1 for =0.9 when Hy

*=0, 1.5×10-6, 2×10-6 and 3×10-6. 
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Figure 3.52 Transient behaviors of scalar order parameter S versus strain at * =1 for 
=0.9 when Hy

*=0, 1.5×10-6, 2×10-6 and 3×10-6. 
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Figure 3.53 S2 versus strain at * =10 for =0.9 when Hy

*=0, 2×10-6 and 3×10-6. 
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Figure 3.54 Transient behaviors of scalar order parameter S versus strain at * =10 for 
=0.9 when Hy

*=0, 2×10-6 and 3×10-6. 
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Figure 3.55 Average order parameterS as a function of shear rate for =0.9 at Hy

*=0, 
1.5×10-6, 2×10-6 and 3×10-6. 
 
 
3.4.3 Initial Position of the Director at =-50o 
 
     In this part, we will consider a general situation that the initial director is set to be 
into the x-z plane at =-50o. The two cases that the magnetic field is along the x-axis 
and the y-axis are considered, respectively.  
 
3.4.3.1 The Magnetic Field along the x-axis 
 
     The simulation results that the magnetic field applies along the x-axis are given 
out in the following discussions. Figure 3.56 describes the orbit of the director at  =1 
through S2 changes with time, where the director rotates to align along the vorticity 
direction at Hx*=0, however, when Hx*=1.510-6 the shear plane becomes the attractor 
for the director. Compared the two figures in Figures 3.57 we can obtain that the 
molecular alignment along the flow direction is increased after the magnetic field is 
applied. Increasing the shear rate at  =2 in Figure 3.58 the director will rotates into 
the shear plane and oscillates in it. The periodicity is obviously increased compared the 
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one at =1.0. After applying the magnetic field (Hx*=1.510-6) the director ceases 
oscillations in the shear plane and aligns along the direction of the magnetic field. 
Figures 3.59 describes the scalar parameter S and Sxx changes with time at Hx*=0 and 
Hx*=1.510-6. Further increasing the shear rate at  =6 in Figure 3.60 the shear plane 
becomes an attractor, and at the same time the director is aligned along the flow 
direction without applying the magnetic field. The scalar parameter S is very low which 
is showed out in Figures 3.61.  
     The time-averaged scalar parameterS andSxx versus the shear rate at Hx*=0, 
210-6 and 310-6 is plot in Figures 3.62. Only when Hx*=0 at low shear rates, the 
log-rolling orientation state is observed, which is indicated whenSxx is very low. 
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Figure 3.56 S2 versus strain at * =1 for =0.9 when Hx

*=0 and1.5×10-6. 
 

0 30 60 90 120 150
0

0.2

0.4

0.6

0.8



S

0 1.510-6

 
 



 117 

0 30 60 90 120 150
0

0.1

0.2

0.3

0.4

0.5

0.6



S x
x 0

1.510-6

 
Figures 3.57 Transient behaviors of scalar order parameter S and Sxx versus strain at 

* =1 for =0.9 when Hx
*=0 and 1.5×10-6. 

 

0 30 60 90 120 150
-0.4

-0.2

0

0.2

0.4

0.6



S 2

0

1.510-6

 
Figure 3.58 S2 versus strain at * =2 for =0.9 when Hx

*=0 and1.5×10-6. 
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Figures 3.59 Transient behaviors of scalar order parameter S and Sxx versus strain 
at * =2 for =0.9 when Hx

*=0 and 1.5×10-6. 
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Figure 3.60 S2 versus strain at * =10 for =0.9 when Hx

*=0 and1.5×10-6. 
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Figures 3.61 Transient behaviors of scalar order parameter S and Sxx versus strain at 

* =10 for =0.9 when Hx
*=0 and 1.5×10-6. 
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Figures 3.62 Average order parameterS andSxx as a function of shear rate for =0.9 at 
Hx

*=0, 1.5×10-6, 2×10-6 and 3×10-6. 
 
 
3.4.3.2 The Magnetic Field along the y-axis 
 
     In this section, we will discuss the simulation results when the magnetic field is 
parallel to the velocity gradient direction. Figure 3.63 shows that the S2 changes with 
time at  =1 for Hy*=0, 1.510-6 and 210-6. The director almost aligns along the 
y-axis when Hy*=210-6. S increases with the increasing strength of the magnetic field 
showed in Figure 3.64. When the shear rate is equal to 2 the final director will be 
decided by the torques caused by the flow and the magnetic field indirectly showed out 
in Figure 3.65. The scalar parameter S as the function of time at  =2 is plot in Figure 
3.66 for Hy*=0, 1.510-6 and 210-6. If further increasing the shear rate at  =6, the 
shear flow becomes stronger so that much more strength of the magnetic field is needed 
to align the director along the magnetic field as can be seen from Figure 3.67. S also is 
increased very quickly when the magnetic field is increased at 310-6 described in 
Figure 3.68. The time-averagedS as the function of the shear rate at Hy*=0, 1.510-6, 

210-6 and 310-6 is described in Figure 3.69. A high orientation state can be obtained 
at low shear rates. 
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Figure 3.63 S2 versus strain at * =1 for =0.9 when Hy

*=0, 1.5×10-6 and 2×10-6. 
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Figure 3.64 Transient behaviors of scalar order parameter S versus strain at * =1 for 
=0.9 when Hy

*=0, 1.5×10-6 and 2×10-6. 
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Figure 3.65 S2 versus strain at * =2 for =0.9 when Hy

*=0, 1.5×10-6 and 2×10-6.  
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Figure 3.66 Transient behaviors of scalar order parameter S versus strain at * =2 for 
=0.9 when Hy

*=0, 1.5×10-6 and 2×10-6. 
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Figure 3.67 S2 versus strain at * =6 for =0.9 when Hy

*=0, 2×10-6 and 3×10-6. 
 

0 30 60 90 120 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7



S 0210-6

310-6

 
Figure 3.68 Transient behaviors of scalar order parameter S versus strain at * =6 for 
=0.9 when Hy

*=0, 2×10-6 and 3×10-6. 
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Figure 3.69 Average order parameterS as a function of shear rate for =0.9 at Hy

*=0, 
1.5×10-6, 2×10-6 and 3×10-6. 
 
 
3.5 Conclusions 
 
     In this chapter the effect of the magnetic field along the x-axis and the y-axis on 
the out-of-plane case is investigated under the simple shear flow. Doi equation is solved 
without any approximation. The computation results are mainly analyzed and discussed 
according to the quantity S2, the scalar parameter S and Sxx. When the initial director is 
along the x-axis, it doesn’t rotate out from the shear plane again. And the three modes, 
tumbling, wagging and aligning, are observed as the increasing shear rate, respectively. 
However, if the initial director is along the vorticity direction, namely the z-axis, the 
log-rolling orientation state where the average orientation is always perpendicular to the 
shear plane is detected at low shear rates. It can be seen that the director is controlled to 
align along the magnetic field in the shear plane if the strength of the magnetic field is 
stronger enough. With the increasing shear rate the shear plane becomes an attractor for 
the director that is aligned along the flow direction. The torque caused by the applying 
magnetic field accelerates the rotational velocity of the director into the shear plane. 
Finally we also consider a general situation that the director lies in the x-z plane at 
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=-50o. In this case the shear plane also is an attractor for the director at low shear 
rates. 
     In particular the molecular alignment along the flow direction under the magnetic 
field along the x-axis is investigated. The molecular alignment along the flow also can 
be increased by applying the proper magnetic field. 
     Finally the detail simulation results at =0.9 are also presented. It can be seen 
that the time-averaged scalar order parameterS andSxx is lower than the ones when 
=1.0 at the same calculation conditions. 
     From the simulation results a conclusion can be made that the magnetic field can 
eliminate the log-rolling orientation state and control the director to align the direction 
of the magnetic field. The strength of the LCPs can be efficiently improved by applying 
the magnetic field.  
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Chapter 4  

Conclusions 

 

 

 

 

     This thesis gave a detailed presentation of computer simulation of the effect of the 
magnetic field on molecular orientation of nematic LCPs under the simple shear flow. 
In particular, the effect of the magnetic field on the major orientation direction, the 
scalar order parameter, and the flow-orientation mode transition are analyzed and 
discussed with the Doi theory directly solved without any approximation closures. 
Figures 4.1 describe how the moment caused by the flow and the magnetic field acts on 
the director. The arrows represent the moment direction. The intensity of the moment on 
the director is showed by the changes of the color on the arrows. The flow is along the 
x-axis. Two cases are considered in this dissertation: a) the magnetic field is applied 
parallel to the flow, namely, along the x-axis; b) the magnetic field is perpendicular to 
the flow, namely, along the y-axis. The moment caused by the flow along the x-axis 
always rotates the director. As shown as in Figures 4.1, when the director is parallel to 
the y-axis, the moment acting on the director is strongest. On the other hand, the 
moment is zero when it is parallel to the direction of flow. In Figure 4.1(a), the magnetic 
field is imposed along the x-axis. It can be seen that the torque caused by the magnetic 
field has the tendency to rotate the director along the x-axis. In this case the 
flow-orientation direction is along the magnetic field-orientation direction. However, 
when the magnetic field is parallel to the y-axis, the flow-orientation direction is 
perpendicular to the magnetic field-orientation direction. The final director will be 
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determined through the competition of the moments caused by the flow and the 
magnetic field. The conclusions are presented below.   

1) Conclusions for in-plane case:  

In this case the director always is confined into the shear plane so that the 
probability orientation function is symmetry to the shear plane. The simulation results 
are presented from two aspects: 1) the magnetic field along the flow direction 
(x-direction); 2) the magnetic field parallel to the velocity gradient direction 
(y-direction). When the magnetic field is imposed in the flow direction, the scalar 
parameter becomes higher for entire shear rate regime because of the magnetic field. 
Also, the existence of the new aligning state is found at low shear rate regime in which 
the effect of the shear flow prevails the effect of the magnetic force, and the rotation of 
individual molecules is suppressed. On the other hand, for the case of the magnetic field 
along the velocity gradient direction, the magnetic fields drastically affect on the steady 
angle of the major orientation direction, in addition to the effects mentioned above.  

The effect of the molecular length by setting the molecular formation coefficient 
=0.9 on the orientation behavior of the director also is discussed in the two cases that 
the magnetic field is along the x-direction and y-direction. Compared with the 
simulation results obtained at =1.0 the major difference is the effect of the magnetic 
field along the x-axis on the flow-orientation mode, where the wagging state doesn€31t 
disappear with the increasing magnetic field.  

2) Conclusions for the out-of-plane case: 

     Since the director has the chance to rotate out of the shear plane, the method has 
to be considered to control it in order to obtain the arbitrary desired molecular 
orientation configurations which enhance the functionality of LCP materials. The Doi 
theory also is used to solve this problem, in which the asymmetry of the probability 
orientation function is allowed. As discussed in the paper written by Larson and 
Öttinger in 1991 the initial director will decide the final orientation state of the director. 
Therefore, in this part three position of the director is chose: 1) along the flow direction, 
2) along the vorticity direction, and 3) in the x-z plane and the degree with respect to 
the z-axis at =-50o. And the effect of the magnetic field on the orientation state in the 
three cases also is investigated, respectively. When the initial director is along the 
x-axis, it doesn’t rotate out from the shear plane again. And the three modes, tumbling, 
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wagging and aligning, are observed as the increasing shear rate, respectively. However, 
if the initial director is along the vorticity direction, namely the z-axis, the log-rolling 
orientation state where the average orientation is always perpendicular to the shear 
plane is detected at low shear rates. It can be seen that the director is controlled to align 
along the magnetic field in the shear plane if the strength of the magnetic field is 
stronger enough. Finally when the director lies in the x-z plane at =-50o, the shear 
plane also is an attractor for the director at low shear rates.  

     In particular the molecular alignment along the flow direction under the magnetic 
field along the x-axis is investigated. Through the simulation results a conclusion can be 
made that except the log-rolling orientation state where the director always is 
perpendicular to the shear plane the molecular alignment along the flow direction will 
be increased by applying the magnetic field along the flow direction.  

     Finally the detail simulation results at =0.9 are also presented. It can be seen that 
the time-averaged scalar order parameterS andSxx is lower than the ones when =1.0 
at the same calculation conditions.  

     Through the simulation results presented in this thesis the performance of LCP 
material can be freely tailored by applying the appropriate strength of the magnetic field. 
It is an efficient way to make an improvement on the performance of LCP materials.  
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(b) Magnetic field is along the y-axis 
 

Figures 4.1 Moment caused by the flow and the magnetic field 
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