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Abstract 
 

The thesis deals with studies on development of a new signaling methodology for 

anion recognition. Host 9 having a bicyclic guanidinium ion subunit as an anion binding 

site and host 10 being quite simple and commercially available 4-(N,N-dimethylamino)- 

benzoic acid, both of which possessing 4-(N,N-dimethylamino)benzoate (DMAB) group,  

are investigated to clarify the complexation behavior of them toward a variety of 

monovalent or divalent anions with trigonal planar, tetrahedral, dual-tetrahedral, or 

octahedral geometry by means of 1H NMR, UV-vis, CD, and/or fluorescence 

spectroscopic studies. The versatility of the DMAB group as a signaling subunit and the 

availability of host 10 as a new class of chormogenic and fluorogenic host for anion 

recognition are discussed.   
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First, complexation behavior of host 9 with a variety of anions was studied by 

means of 1H NMR, CD, and fluorescence spectroscopy. Divalent anions, SO4
2-, HPO4

2-, 

H2P2O7
2-, and AMP2-, as well as monovalent anions, ClO4

-, NO3
-, BF4

-, HSO4
-, PF6

-, and 

H2PO4
-, were selected as tetrabutylammonium (TBA) salts, all of which are potentially 

able to bind to the guanidinium ion moiety.  

 1H NMR spectral titration experiments were carried out in CD3CN at 25 °C. The 

chemical shift changes of aromatic protons (H7 and H8) and N-methyl proton (H11) 

were monitored during the titrations. Host 9 showed stepwise 1:1 (host 9 : anion) and 

2:1 complexation with divalent anions (SO4
2-, HPO4

2-, H2P2O7
2-, and AMP2-) and 1:1 

complexation with monovalent anions (ClO4
-, NO3

-, BF4
-, HSO4

-, PF6
-, and H2PO4

-). 

The binding constants between host 9 and the anions were determined in terms of 

non-linear least square curve fitting approach. Divalent anions showed much larger 

binding constants (SO4
2-: log K1:1 = 6.2, log K2:1 = 4.7, HPO4

2-: log K1:1 = 6.2, log K2:1 = 

4.9, H2P2O7
2-: log K1:1 = 4.4, log K2:1 = 1.8, AMP2-: log K1:1 > 7, log K2:1 > 5) than the 

monovalent anions (log K1:1 > 2), except for H2PO4
- (log K1:1 = 4.4). Therefore, the 

quantitative complexation information provided by the DMAB signaling subunit in 1H 

NMR titrations demonstrated that host 9 had strong complexation ability and high 

selectivity toward divalent anions, SO4
2-, HPO4

2-, H2P2O7
2-, and AMP2 having a 

tetrahedral array of oxygen atoms over monovalent anions, ClO4
-, NO3

-, BF4
-, HSO4

-, 

and PF6
-, except for H2PO4.  

In CD titrations, the exciton chirality method was applied to investigate not only 

the complexation behavior of host 9 toward anions but also the absolute configuration 

of the 2:1 complexes generated by host 9 and divalent anions (SO4
2-, HPO4

2-, H2P2O7
2-, 

and AMP2-) in CH3CN. CD titration profiles of host 9 by SO4
2-, HPO4

2-, and AMP2- 

were so different from those by H2P2O7
2- and H2PO4

-, even all of which have strong or 
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relatively strong affinities to host 9. That is to say, SO4
2-, HPO4

2- and AMP2- exhibited 

typical negative first and positive second Cotton effect peaks, whereas H2P2O7
2- and 

H2PO4
- showed simple CD intensity decreasing. In contrast, ClO4

- having weak affinity 

to host 9 showed almost no CD intensity change. Moreover, in the 2:1 complex, there 

are two stereochemical possibilities in the complexation mode. One is that the two 

DMAB groups are placed counterclockwise from the front-to-back, whose chirality is 

negative. The other is that the two DMAB groups are placed clockwise, whose chirality 

is positive. The observed negative first and positive second Cotton effect peaks in the 

2:1 complexes of host 9 with divalent anions (SO4
2-, HPO4

2-, and AMP2-) clearly 

indicated that the spatial array of the two DMAB chromophores in the 2:1 complexes 

was negative (counterclockwise) rather than positive (clockwise). Thus, the 

combination of the DMAB signaling subunit and the chiral guanidinium binding site 

allowed us to understand the detailed complexation information and the absolute 

confirmation of the 2:1 complexes between host 9 and the divalent anions in CD 

titrations.  

Fluorescence titration experiments were performed in CH3CN. The DMAB 

signaling subunit in host 9 showed dual fluorescence emissions from LE (locally 

excited) and TICT (twisted intramolecular charge transfer) states. Quenching behavior 

of LE and TICT intensity of host 9 upon titrations by the divalent anions was 

remarkably different from those by the monovalent anions. The dual fluorescence 

behavior of host 9 upon complexation with SO4
2-, HPO4

2-, H2P2O7
2-, and AMP2-, all of 

which have strong or relatively strong binding affinities to host 9, indicated the 

successive formations of 1:1 and 2:1 complexation, while host 9 exhibited 1:1 

complexation with ClO4
-, NO3

-, BF4
-, HSO4

-, PF6
-, and H2PO4

-, all of which have weak 

or relatively weak affinities to host 9. These results are highly consonant with those 
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obtained in 1H NMR titrations. On the other hand, the active participation of the 

lipophilic countercation such as TBA and/or the hydrophilic residue in AMP increased 

and/or decreased, respectively, the LE and TICT intensity in the 1:1 complexation via 

changing the microenvironmental polarity around the DMAB signaling subunit. 

Therefore, the unique dual fluorescence feature of the DMAB signaling subunit in host 

9 upon complexation with a variety of anions demonstrated not only the quantitative 

binding information about stoichiometry but also the roles of lipophilic countercation 

such as TBA and/or the hydrophilic residue in AMP.  

The investigation, therefore, clarifies the scope and limitations of the DMAB 

signaling subunit in host 9 on complexation with a variety of anion and finds out that 

the DMAB group is a versatile signaling subunit for anion sensing in terms of 1H NMR, 

CD, and fluorescence spectroscopic studies. 

 

Second, commercially available 4-(N,N-dimethylamino)benzoic acid (10) as a new 

class of chromogenic and fluorogenic host was directly applied for anion recognition. 

Divalent anions, HPO4
2-, SO4

2-, and H2P2O7
2- and monovalent anions, H2PO4

-, NO3
-, 

BF4
-, ClO4

-, HSO4
-, and PF6

-, were selected as TBA salts. The scope and limitations as 

well as the versatility of the DMAB signaling subunit upon complexation with the 

anions were investigated by means of UV-vis and fluorescence spectroscopic studies.  

UV-vis titrations were carried out in CH3CN to know the complexation behavior 

of host 10 toward a variety of anions. The UV-vis titration profiles of host 10 with 

HPO4
2- and SO4

2- were obviously distinguished from those with the monovalent anions 

(H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and NO3

-) and H2P2O7
2-. The decreasing absorption 

monitored at 309 nm along with the increasing one monitored at 275 nm upon addition 

of HPO4
2- and SO4

2- were observed, while the absorption changes at the two 
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wavelengths were quite small upon addition of the monovalent anions and divalent 

anion, H2P2O7
2-. Host 10 exhibited 2:1 complexation stoichiometry with HPO4

2- and 

SO4
2- and 1:1 complexation stoichiometry with monovalent anions (H2PO4

-, HSO4
-, 

ClO4
-, BF4

-, PF6
-, and NO3

-) and H2P2O7
2-. The binding constants of host 10 with 

divalent and monovalent anions were measured in terms of non-linear least square curve 

fitting approach. HPO4
2- and SO4

2- showed quite larger binding constants (log K2 > 10) 

than the monovalent anions and H2P2O7
2- (log K1 = 3.4-4.8). The combination of the 

basicity and negative charges of anions played a crucial role in affecting the affinity and 

selectivity of host 10 with anions. Therefore, the aromatic DMAB signaling subunit 

provided detailed complexation information such as complexation stoichiometry and 

binding constants in UV-vis titrations. 

In fluorescence titrations, host 10 exhibited dual fluorescence of LE and TICT 

emissions in CH3CN by excitation at 300 nm. The LE and TICT titration profiles of host 

10 with HPO4
2- and SO4

2- were quite different from those with the monovalent anions 

and H2P2O7
2-. In particular, the titration profiles of host 10 observed at TICT emission 

turned out to be quite similar to those obtained in UV-vis titrations. The complexation 

stoichiometry of host 10 with HPO4
2- and SO4

2-, namely, was turned out to be 2:1, while 

host 10 showed 1:1 complexation with H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, NO3

-, and 

H2P2O7
2-. These results are consistent with those obtained in UV-vis titrations. In 

addition, the Stern-Volmer plots of host 10 at TICT emission showed sigmoidal and 

monotonic increasing profiles upon titrations with HPO4
2- and SO4

2-, respectively, while 

almost linear profiles with the monovalent anions and H2P 2O 7
2-

 w e r e  o b s e r v e d .  

Therefore, the dual fluorescence behavior and the Stern-Volmer plots also indicated that 

host 10 possessed strong affinities and high binding selectivity toward divalent anions 

(HPO4
2- and SO4

2-) over monovalent anions (H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and 
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NO3
-) and H2P2O7

2-. 

The investigation demonstrates that simple and commercially available 

4-(N,N-dimethylamino)benzoic acid (10) is capable of being a new class of anion host 

and the DMAB group is a versatile signaling subunit for anion sensing by means of 

UV-vis and fluorescence spectroscopic studies.  
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Chapter 1. 

General Introduction 
 

Anion recognition chemistry is a rapidly developed discipline in the field of 

supramolecular chemistry. It started to grow in the late 1960s when C.H. Park and H. E. 

Simmonds of the du Pont de Nemours Company reported the complexation properties 

of a series of positively charged ammonium macrocyclic hosts termed katapinand (1) 

with halide.1 It progressed sporadically throughout the 1970s and the early 1980s with 

the syntheses of cryptand hosts, which are analogous to the katapinands. Anion 

recognition chemistry, however, became an attractive topic just from the late 1980s. In 

the past more than twenty years, a huge number of supramolecular host systems for the 

selective complexation of anionic guests have been harvested.2 

Why have sustained efforts been devoted to the realm of anion recognition 

chemistry? The reason is that anions are ubiquitous and play important roles in a wide 

range of chemical, biological, medical, and environmental fields.3 For example, in the 

field of chemistry, anions have various roles, such as catalysts in accelerating some 

reactions, bases in neutralizing the acidic components in solution, and oxidizing agents  
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used in redox electrodes.4 In biological field, almost 75 percent of enzyme substrates 

and cofactors are negatively charged. The majority of them are inorganic phosphate and 

phosphate residues in AMP, ADP, and especially in ATP, which is the energy source of 

life.5 In medical field, the cystic fibrosis, a genetically inherited disease, is caused by 

the misregulation of chloride transfer channels which are controlled by extracellular 

chloride anion. However, there is no suitable chloride analysis method currently for 

medical examination.4 In a routine blood analysis, the concentration level of phosphate 

in serum is determined for diagnosing the hyperphosphatemia and hypophosphatemia 

diseases.6 In environmental field, the over use of fertilizers containing phosphate or 

nitrate has posed sever water pollution problems. Selective binding, extraction, and 

sensing of such anions are significantly important for the ecological balance and the 

health of human being.7  

One of the most important investigations in anion recognition field is designing 

host molecules, which discriminate a target anion from others. For this purpose, the 

intrinsic properties of anions should be taken into account. First, anions, especially 

simple inorganic anions, have a wide range of shapes and geometries, such as spherical, 

linear, trigonal planner, tetrahedron, dual-tetrahedron, and octahedron (Figure 1-1). The 

host molecules have to be designed to organize a complementary binding site in their 

structures to match the geometry of the target anion.1, 4 Second, anions are relatively 

larger than cations in their ionic size.8 For instance, the radii of representative anions, 

H2PO4
-, SO4

2-, and ClO4
-, are 2.00 Å, 2.30 Å, and 2.50 Å, respectively, while the ionic 

radius of Na+ is only 1.02 Å.1 This feature requires that the sizes of the binding sites in 

the designed hosts should be considerably larger than those for cationic species so that 

the space in the host is enough to accomodate the anions. Third, anions have high free 

energies of solvation in comparison with cations, for example, the free energy of the 
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representative anions, H2PO4
-, SO4

2-, and ClO4
-, are -465 KJ•mol-1, -1080 KJ•mol-1, and 

-430 KJ•mol-1, respectively, while that of Na+ is -365 KJ•mol-1.1 In this sense, hosts 

have to compete more effectively with the surrounding medium in order to complex 

with the target anion. In addition, many anions are sensitive to the pH value of solvent 

environment. Since they would be protonated at low pH and lose their negative charges, 

the host molecules have to work efficiently within the relatively narrow pH window of 

their target anions.  

 

         

trigonal planar: NO3
-

tetrahedral: H2PO4
-, HPO4

2-, HSO4
-, SO4

2-

octahedral: PF6
-

dual tetrahedral: H2P2O7
2-

spherical: Cl-

linear: SCN-

 

Figure 1-1. The geometry of a variety of anions. 
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The complementarity between anions and the binding site of the host would play a 

crucial role in designing such anion hosts. The fundamental characteristics of anions, 

such as negative charge, basicity, and salvation, should also be taken into account in 

designing host molecules. If the designed hosts are positively charged, it would be 

potential to bind to negatively charged anions, since the charge difference between the 

hosts and the anions would give rise to attractive electrostatic interactions. If the 

designed hosts contain acidic hydrogen atoms, they would make a good basis for the 

formation of hydrogen bonds with the anions, since almost all anions are basic and 

hence serve as suitable hydrogen bond acceptors. In addition, the solvents, in which the 

host/anion complexation would take place, will strongly affect the binding properties of 

the host and anions, since anions possess large solvation energies. Thus, it is important 

to select a suitable solvent as the complexation medium. 

Considerations of molecular structures and properties of enormous variety of hosts 

reported allow us to realize the basic designing principle ⎯ the separation of the anion 

binding site and the signaling subunit in one host molecule.9 The schematic illustration 

of the concept is shown in Figure 1-2. The anion binding site and the signaling subunit 

is coupled by covalent bond in a host molecule. When the binding site of the host 

molecule would complex an anion guest, the signaling subunit would respond to the 

anion complexation process to show signal changes in color, absorbance, chemical shift, 

and/or fluorescence.  

The binding site would alternatively possess positive charge, acidic hydrogen, and 

complemental position or cavity to match the anion geometry so that it would 

selectively complex with the target anion guest. In this sense, the binding forces such as 

electrostatic interactions, formations of intermolecular hydrogen bonds, or combinations 

of these interactions working together have frequently been applied during  
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Figure 1-2. Binding subunit-signaling subunit method for anion recognition. 

 

complexation process.10 Concretely, electrostatic interactions have been the simplest 

and most obvious ways for a positively charged host to bind a negatively charged anion. 

Hydrogen bonding interactions also have been widely used as binding sites for 

recognizing oxyanions. The combinations of the electrostatic attractions and the 

hydrogen bonding interactions can enhance both the strength and the selectivity of hosts 

toward anion guests as compared with the cases that electrostatic attraction or hydrogen 

bonding is independently used to bind anionic guests. Guanidinium groups11 and 

quaternary ammonium ions12 are representative binding sites for anion recognition 

using electrostatic interactions. Typical hydrogen-bonding sites are ureas,13 thioureas,14 

calyx[4]pyrroles, 15  sapphyrins, 16  porphyrins, 17  and guanidinium ions,15 and 

polyamides.18 Moreover, polyamine macrocycles, guanidinium groups, porphyrins, and 

protonated sapphyrins serve as binding sites through both the electrostatic interactions 

and the hydrogen bonding interactions simultaneously upon complexation with guest 

anions. Some representative anion recognition systems by using the electrostatic 

interactions and the hydrogen bonding simultaneously are presented in Figure 1-3, 

which are Simmons and Park’s katapinand (1), Graf and Lehn’s cryptand (2),19 de 

+

signaling subunit

G G

binding subunit

guest molecule spectral response
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Mendoza and Lehn’s guanidinium host 3, Sessler’s sapphyrin (4).  

On the other hand, signaling of the anion recognition process is of significant 

importance in the estimation of the complexation behavior of hosts towards anions. The 

role of the signaling subunit is to act as a signal transducer. Thus, chromogentic and 

fluorogenic functional groups are combined into the designed host molecules. 

Chromophores, such as nitrophenyl,20 anthraquinone,21 azo dye derivatives,22  
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Figure 1-3. Representative hosts using electrostatic interactions and hydrogen bonding 

as binding forces. 
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porphyrins, 23  and sapphyrins 24 , and fluorophores, such as polycyclic aromatic 

compounds25 and transition metal complexes with bipyridine derivatives26 have been 

applied for this purpose as signaling subunits to show absorption changes, color changes 

or fluorescent changes, which would provide clear binding information. Some of the 

representative signaling subunits with nitrophenyl derivative 5, azo dye derivative 6, 

anthraquinone derivative 7, and polycyclic aromatic derivative 8 are presented in Figure 

1-4.   

In fact, Kobiro and Inoue utilized the advantages of the guanidinium ion moiety to 

efficiently bind anions for designing a novel host molecule 9,27 in which the 

chromogenic and fluorogenic, 4-(N,N-dimethylamino)benzoate (DMAB) group was 

employed as a signaling subunit to show the binding information. Their research 

demonstrated that the guanidinium ion moiety was a perfect binding site and the DMAB 

group was an excellent signaling subunit in complexation with sulfate anion through 

both of the dual hydrogen bonding and electrostatic interactions. Electronic absorption 

spectra of host 9 revealed that a strong intramolecular hydrogen bonding was present 

between the carbonyl oxygen atom of DMAB group and one of the N-H groups of the 

guanidinium ion moiety even in a highly polar solvent such as acetonitrile. The stepwise 

1:1 (host 9: sulfate anion) and 2:1 complexation constants (log K1:1 = 6.2 and log K2:1 = 

4.7, respectively) were determined by 1H NMR titration. The CD exciton chirality 

method allowed us to know the chiral sense of the two DMAB groups in the  
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Figure 1-4. Hosts with representative signaling subunits. 

 

2:1 complex as negative. The dual fluorescence behavior of the DMAB group showed 

not only the same binding stoichoimitry as in 1H NMR titrations but also the role of the 

countercation tetrabutylammonium (TBA) upon complexation of host 9 with the sulfate 

anion.  

In the thesis, the complexation behavior of host 9 with expanded variety of anions 

was studied by means of 1H NMR, CD, and fluorescence spectroscopy.28 These anions 
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possess monovalent or divalent negative charge with trigonal planar, tetrahedral, 

dual-tetrahedral, or octahedral geometry, including divalent anions, HPO4
2-, H2P2O7

2-, 

and AMP2-, and monovalent anions, ClO4
-, NO3

-, BF4
-, HSO4

-, PF6
-, and H2PO4

-. The 

purposes are to clarify the scope and limitations of the DMAB signaling subunit in host 

9 upon complexation with a variety of divalent and monovalent anions and to 

demonstrate the versatility of DMAB signaling subunit for anion recognition. 

  

Although numerous efforts have currently been contributed to the design and 

synthesis of anion receptors in molecular recognition field according to the binding 

site-signaling approach, the efforts resulted in not simple but quite massive and 

complicated molecular features of the hosts to accomplish such selective recognition 

and sensitive signaling on the specific anions.29 Thus, the author has embarked on 

developing simple, efficient, and, if possible, commercially available chromogenic and 

fluorogenic reagents for anion hosts. One candidate suitable for this purpose is the 

aromatic acid derivative, for instance, 4-(N,N-dimethylamino)benzoic acid (10). Since 

such aromatic acid derivative has acidic hydrogen atom to be transferred to guest anions 

to form intermolecular hydrogen bonding and its aromatic moiety would show spectral 

response upon complexation with anions.  

In the thesis, simple and commercially available 4-(N,N-dimethylamino)benzoic 

acid (10) as a new class of anion host was directly applied to recognize a variety of  
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anions,30 all of which possess monovalent or divalent negative charge with trigonal 

planar, tetrahedral, dual-tetrahedral, or octahedral geometry, including divalent anions, 

SO4
2-, HPO4

2-, H2P2O7
2-, and monovalent anions, H2PO4

-, HSO4
-, ClO4

-, BF4
-, PF6

-, and 

NO3
-. The complexation behavior of host 10 with these anions was studied by means of 

UV-vis and fluorescence spectroscopies. The purposes in the thesis are to demonstrate 

the availability of the simple acid 10 as a new class of anion host and the versatility of 

the DMAB signaling subunit for anion recognition.  

 

The details of the research are presented in Chapter 2 and Chapter 3. Chapter 2 

treats with the investigation on the scope and limitations as well as the versatility of 

DMAB signaling subunit in host 9 upon complexation with a variety of anions by 

means of 1H NMR, CD, and fluorescence spectroscopic studies. Chapter 3 describes the 

availability of utilizing commercially available 10 as a new class of anion host and the 

versatility of the DMAB signaling subunit for anion recognition by means of UV-vis 

and fluorescence spectroscopic studies. 
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Chapter 2.  
Versatility of  
an Intramolecularly Hydrogen-bonded  
4-(N,N-Dimethylamino)benzoate Group  
as a Signaling Subunit for Anion Recognition 
 
 
2-1 Introduction 

The design of artificial receptors (hosts) for recognition of anionic species is a 

subject of current interest due to their importance in a wide area ranging from chemical, 

biological, and environmental fields.1 Central to the designing of the receptors with 

high complexation ability as well as excellent selectivity in anion recognition has been 

the development of new binding principles.2 In order to estimate the complexation 

behavior of receptors toward anions, signaling of the anion coordination process is of 

great importance. In this sense, separation of the signaling subunit and the binding 

subunit in a receptor would lead to more intelligent and sophisticated systems to obtain 

clear binding information (Figure 2-1).  

Kobiro and Inoue have designed and synthesized a new type of simple host 

molecule 9 having a 4-(N,N-dimethylamino)benzoate (DMAB) group as a signaling 
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Figure 2-1. Binding subunit-signaling subunit method for anion recognition. 

 

subunit and a chiral bicyclic guanidinium ion moiety as a binding subunit.3 In the 

complexation of host 9 with sulfate anion, the guanidinium group was employed as a 

suitable binding site through both of dual hydrogen bonding and electrostatic 

interactions. The DMAB signaling subunit provided spectral information upon 

complexation process. Electronic absorption spectra of 9 revealed that strong 

intramolecular hydrogen bonding was present between the carbonyl oxygen atom of the 

DMAB group and one of the N-H groups of the guanidinium ion moiety even in a polar 

solvent such as acetonitrile. The stepwise 1:1 (host 9 : sulfate anion) and 2:1 

complexation constants (log K1:1 = 6.2 and log K2:1 = 4.7, respectively) were determined 

by 1H NMR titrations. The CD exciton chirality method allowed us to determine the 

chiral sense of the two DMAB groups in the 2:1 complex as negative. The dual 

fluorescence behavior of the DMAB group demonstrated not only the binding 

information but also the role of the counteraction tetrabutylammonium (TBA) upon 

complexation of host 9 with the sulfate anion.  

In order to know whether the DMAB signaling subunit is versatile to give clear 

binding information and to clarify whether the host 9 shows selective complexation 

+

signaling subunit

G G

binding subunit

guest molecule spectral response
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with expanded variety of anions or not, 1H NMR, CD, and fluorescence titration 

experiments of host 9 toward a variety of anions were carried out. Divalent anions such 

as hydrogenphosphate (HPO4
2-, tetrahedral), dihydrogenpyrophosphate (H2P2O7

2-, dual 

tetrahedral), and adenosine 5'-monophospate (AMP2-, tetrahedral) which is a 

biologically important derivative of hydrogenphosphate, and monovalent anions, such 

as dihydrogenphosphate (H2PO4
-, tetrahedral), perchlorate (ClO4

-, tetrahedral), nitrate 

(NO3
-, trigonal planar), tetrafluoroborate (BF4

-, tetrahedral), hydrogensulfate (HSO4
-, 

tetrahedral), and hexafluorophosphate (PF6
-, hexagonal), were selected. All anions were 

used as tetrabutylammonium (TBA) salts. 

In this chapter, the scope and limitations of the DMAB signaling subunit in host 9 

upon complexation with a variety of anions possessing monovalent or divalent negative 

charge with trigonal planar, tetrahedral, dual-tetrahedral, or octahedral geometry are 

discussed. The versatility of the DMAB signaling subunit for anion recognition is also 

studied by means of 1H NMR, CD, and fluorescence spectroscopy. 
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2-2 Results and Discussion 
2-2-1 1H NMR spectral titrations 
2-2-1-2  1H NMR spectral titrations 

1H NMR spectral titration method is a useful and powerful technique to 

investigate complexation behavior between hosts and guests, especially in the case that 

hosts have no chromophore or fluorophore.4 Kobiro and Ionue reported that clear 

chemical shift changes of aromatic protons (H7 and H8) and N-methyl proton (H11) of 

the signaling subunit in host 9 were observed by 1H NMR titration in CD3CN, when  

bistetrabutylammonium sulfate (TBA)2SO4 was added to host 9. All of the H7, H8, and 

H11 signals first shifted to high field almost proportionally to the amount of added 

sulfate until the SO4
2-/9 ratio reached 0.5, and then they moved to the opposite direction 

until the ratio reached 1-1.2 and finally leveled off thereafter, as can be seen in Figure 

2-2. The observation of the clear chemical shift changes is quite interesting, since these 

protons (H7, H8, and H11) are quite distant from the NH group of the binding site and 

the existence of three single bonds between N1 and O4 would make it difficult to 

transmit any electronic effect from the NH groups in the binding subunit to the DMAB 

chromophore through the bonds. The clear chemical shift changes observed are, 

therefore, rationalized by fission of the intramolecular hydrogen bonding (Figure 2-3), 

the existence of which was indicated by electronic absorption spectra of host 9 in the 

paper.3 When a guest anion binds to the guanidinium ion moiety of host 9 with 

"covered" structure, the intramolecular hydrogen bonding will be broken to release a 

free carbonyl group with an "open" structure, which will influence the electronic and/or 

steric environment on the DMAB group. 
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Figure 2-2. Chemical shift changes of aromatic (  : H7 and  : H8) and N-methyl (  : 

H11) protons of host 9 upon 1H NMR titrations with (TBA)2SO4 in CD3CN.  

 

 

 

Figure 2-3. The schematic expressions of ‘covered’ and ‘open’ structures of host 9. 

∆δ
 

electronic
effect

anion

covered structure open structure

O O

NMe Me

H
N

N

H
N

OTBDPS
+

1
23

4
5

6

7

8
9

10
11

O

O

N

Me

Me

H
N

N

H
N

OTBDPS
+

anion



 

 20

In order to make it clear whether the chemical shift changes are a common aspect 

of anion binding in host 9 or not, a variety of anions, such as divalent anions, HPO4
2-, 

H2P2O7
2-, and AMP2-, and monovalent anions, ClO4

-, NO3
-, BF4

-, HSO4
-, PF6

-, and 

H2PO4
-, were selected, all of which are potentially able to bind to the guanidinium ion 

moiety. 

At first, the complexation behavior of host 9 with the divalent anions was studied 

by the 1H NMR titration method in CD3CN at 25°C. The chemical shifts of aromatic 

protons (H7 and H8) and N-methyl proton (H11) were monitored during the titrations. 

As can be seen in Figure 2-4, when host 9 was titrated with HPO4
2-, a representative 

anion having a tetrahedral array of four oxygen atoms with divalent negative charges, 

similar titration curves were obtained as compared with those for SO4
2-. All of the H7, 

H8, and H11 signals, namely, first decreased almost linearly toward high field along 

with the increasing of the amount of added HPO4
2- till the HPO4

2-/9 ratio reached 0.5, 

then they oppositely increased toward low field until the ratio reached almost 2, and 

finally leveled off thereafter. In the case of H2P2O7
2-, which contains dual phosphate 

moieties in a molecule, the titration curves were close to the cases of SO4
2- and HPO4

2-, 

irrespective of a dual tetrahedral array of seven oxygen atoms (Figure 2-5). All of the 

H7, H8, and H11 signals shifted to high field first and then low field and maintained no 

changes to the end of titrations, while the chemical changes appeared around the 0.5 

equivalent amounts of addition of H2P2O7
2- was much smoother than those observed for 

SO4
2- and HPO4

2-. With respect to AMP2- having the phosphate moiety as a partial 

structure, the chemical shift changes were quite similar to those recorded in the cases of 

SO4
2- and HPO4

2-, irrespective of a large volume of an organic residue on one of the 

oxygen atoms of the phosphate anion (Figure 2-6). The characteristic titration curves  
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Figure 2-4. Chemical shift changes of aromatic ( : H7 and  : H8) and N-methyl (  : 

H11) protons of host 9 upon 1H NMR titrations with (TBA)2HPO4 in CD3CN. 
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Figure 2-5. Chemical shift changes of aromatic ( : H7 and  : H8) and N-methyl (  : 

H11) protons of host 9 upon 1H NMR titrations with (TBA)2H2P2O7 in CD3CN.  
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Figure 2-6. Chemical shift changes of aromatic ( : H7 and  : H8) and N-methyl (  : 

H11) protons of host 9 upon 1H NMR titrations with (TBA)2AMP in CD3CN.  
 

 

clearly indicate that 2:1 (host 9 : anion) complexes were formed at the initial stages of 

titrations up to the anion/9 ratio equal to 0.5 and then they were gradually replaced by 

the 1:1 complexes with increasing the anion/9 ratio ranging from 0.5 to 2, and finally 

the 1:1 complexes dominated thereafter.   

Next, the complexation behavior of host 9 toward the monovalent anions was also 

studied by 1H NMR titrations in CD3CN at 25°C via monitoring the chemical shift 

changes of H7, H8, and H11 protons. Upon addition of ClO4
-, one of the most 

representative monovalent anions which have a tetrahedral array of four oxygen atoms 

with monovalent negative charge, the chemical shift changes of host 9 monitored in H7 

proton was quite slight, while almost no changes were observed in H8 and H11 protons, 

even though excess amounts of ClO4
- were added, as shown in Figure 2-7. Similar 

results were obtained in the cases of other monovalent anions such as NO3
- (Figure 2-8),   

∆δ
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BF4
- (Figure 2-9), HSO4

- (Figure 2-10) and PF6
- (Figure 2-11). Unfortunately, 

precipitation was observed during 1H NMR titration of 9 with H2PO4
-. The observed 

simple and moderate upfield shift suggested that weak 1:1 complexation occurred 

between host 9 and ClO4
- as well as NO3

-, BF4
-, HSO4

-, and PF6
-.  
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Figure 2-7. Chemical shift changes of aromatic (  : H7 and  : H8) and N-methyl (  : 

H11) protons of host 9 upon 1H NMR titrations with (TBA)ClO4 in CD3CN.  
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Figure 2-8. Chemical shift changes of aromatic (  : H7 and  : H8) and N-methyl (  : 

H11) protons of host 9 upon 1H NMR titrations with (TBA)NO3 in CD3CN.  
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Figure 2-9. Chemical shift changes of aromatic (  : H7 and  : H8) and N-methyl (  : 

H11) protons of host 9 upon 1H NMR titrations with (TBA)BF4 in CD3CN.  

 

∆δ
 

∆δ
 



 

 25

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0 1 2 3 4 5 6
HSO4

- / host 9 ratio

 (
pp

m
)

 
Figure 2-10. Chemical shift changes of aromatic (  : H7 and  : H8) and N-methyl (  : 

H11) protons of host 9 upon 1H NMR titrations with (TBA)HSO4 in CD3CN.  
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Figure 2-11. Chemical shift changes of aromatic (  : H7 and  : H8) and N-methyl (  : 

H11) protons of host 9 upon 1H NMR titrations with (TBA)PF6 in CD3CN.  
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For easy comparison of the titration behavior of host 9 toward the anions, the 

chemical shift changes of aromatic H7 and H8 as well as N-methyl H11 protons were 

summarized into Figures 2-12, Figure 2-13 and Figure 2-14 for H7, H8, and H11, 

respectively. As can be seen in three figures, the titration profiles of host 9 upon 

complexation with the divalent anions (SO4
2-, HPO4

2-, H2P2O7
2-, and AMP2-) were quite 

different from those upon complexation with the monovalent anions (NO3
-, BF4

-, ClO4
-, 

HSO4
-, and PF6

-). Furthermore, the inflection points around 0.5 equivalent amounts of 

addition of the divalent anions in titration profiles ensure that host 9 leads to stepwise 

2:1 and 1:1 complexation with the divalent anions. In the cases of the monovalent 

anions, the chemical shift changes were so simple and quite small that host 9 would 

show only 1:1 complexation with the monovalent anions. The observation obviously 

demonstrates that host 9 exhibited highly selective complexation behavior with the 

divalent anions over the monovalent anions. 
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Figure 2-12. Chemical shift changes of aromatic H7 protons of host 9 upon 1H NMR 
titrations with (TBA)2SO4 (   ), (TBA)2HPO4 (   ), (TBA)2H2P2O7  (    ), 
(TBA)2AMP (   ), (TBA)ClO4 (   ), (TBA)NO3 (   ), (TBA)BF4 (   ), 
(TBA)HSO4 (   ) and (TBA)PF6 ( × ) in CD3CN.  
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Figure 2-13. Chemical shift changes of aromatic H8 protons of host 9 upon 1H NMR 
titrations with (TBA)2SO4 (    ), (TBA)2HPO4 (    ), (TBA)2H2P2O7  (    ), 
(TBA)2AMP (   ), (TBA)ClO4 (   ), (TBA)NO3 (   ), (TBA)BF4 (   ), 
(TBA)HSO4 (   ) and (TBA)PF6 ( × ) in CD3CN.  
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Figure 2-14. Chemical shift changes of aromatic N-methyl H11 protons of host 9 upon 
1H NMR titrations with (TBA)2SO4 (   ), (TBA)2HPO4 (   ), (TBA)2H2P2O7 (   ), 
(TBA)2AMP (   ), (TBA)ClO4 (   ), (TBA)NO3 (   ), (TBA)BF4 (    ), 
(TBA)HSO4 (    ) and (TBA)PF6 ( × ) in CD3CN.  
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2-2-1-2  Binding constants and anion selectivity of host 9  

As concluded in the former section, host 9 showed 1:1 binding stoichiometry 

toward the monovalent anions and stepwise 1:1 and 2:1 binding stoichiometry toward 

the divalent anions. (Figure 2-15). The binding constant K1:1 for the 1:1 complexation is, 

therefore, defined by equation (1),    

 

     9+ + A–
 

K1:1
 9+•A–             K1:1 = [9+•A–]/([9+][A–])    (1) 

 

where A– denotes a monovalent anion. In the case of a divalent anion, on the other hand, 

not only 1:1 complex (B) but also 2:1 complex (A) will be formed by addition of the 

anion as illustrated in Figure 2-15. The stepwise binding constants K1:1 and K2:1 for the 

1:1 and 2:1 complexes, therefore, are defined by equations (2) and (3), respectively, 

 

9+ + A2–  
K1:1

  9+•A2–           K1:1 = [9+•A2–]/([9+][A2–])    (2) 

 

9+•A2– + 9+ 
K2:1

 (9+)2•A2–      K2:1 = [(9+)2•A2–]/([9+•A2–] [9+])  (3) 

 

where A2– denotes a divalent anion. The titration data obtained with the H7 proton of 9 

were submitted to the non-linear least square curve-fitting4a,5 to calculate K1:1 and K2:1 

values, because the H7 proton exhibited the largest chemical shift changes among three 

protons upon titrations. The calculation results of binding constants are summarized in 

Table 2-1. 
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Figure 2-15. The complexation stoichiometry of host 9 toward monovalent anions and divalent anions. 
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Table 2-1. Binding Constants of Host 9 with Anions in CD3CN 

binding constants (log M-1) 
anion 

log K1:1 log K2:1 

HPO4
2- 6.2 4.9 

H2P2O7
2- 4.4 1.8 

AMP2- > 7a > 5a 
SO4

2- 6.2b 4.7b 
NO3

- < 2c — 
BF4

- < 2c — 
ClO4

- < 2c — 
H2PO4

- 4.4d — 
HSO4

- < 2c — 
PF6

- < 2c — 

a Binding constants K1:1 and K2:1 are too large to be accurately determined. 
b Taken from reference 3. 
c Binding constant K1:1 is not determined accurately because chemical shift 

 changes were so small (< 0.03 ppm) and clear endpoint of titration was 
 not obtained. 

d The binding constant of K1:1 was calculated, instead, by the use of 
titration data on CD shown in Figure 2-22, because precipitation 
occurred during 1H NMR titration of 9 with H2PO4

-.  

 

The tetrahedral divalent anion HPO4
2- exhibited quite large binding affinities (log 

K1:1 = 6.2 and log K2:1 = 4.9) and these binding constants are almost identical with those 

for SO4
2- (log K1:1 = 6.2 and log K2:1 = 4.7). With respect to H2P2O7

2- having divalent 

negative charge with dual tetrahedral array of seven oxygen atoms, the binding 

constants of log K1:1 (4.4) and log K2:1 (1.8) are relatively large. Binding constants, K1:1 

and K2:1, for AMP2- were too large to be calculated accurately. On the other hand, the 

binding constants for monovalent anions ClO4
-, NO3

-, BF4
-, HSO4

-, and PF6
-, the 

geometries of which are tetrahedral, trigonal planer, and octahedral, as illustrated in 



 

 33

Figure 1-1, turned out to be small (log K1:1 < 2.0). Interestingly, H2PO4
- (tetrahedral) 

showed relatively strong binding affinity (log K1:1 = 4.4). Host 9, therefore, showed 

strong complexation affinities toward the divalent anions over the monovalent anions.  

Anions, indeed, must compete with and then overcome the inherent strong internal 

hydrogen bonding existing between one of the NH groups of the guanidinium moiety 

and the carbonyl oxygen atom of the DMAB group to give complexes. Geometric 

matching between the binding site of host 9 and anions as well as charge densities on O 

or F atoms of guest anions must play a crucial role in complexation in this regard, 

because host 9 binds the anions through both dual-hydrogen-bonding and ion-pairing 

interactions.3 The geometric matching can be estimated by comparison of the 

interatomic distance of two NH groups of host 9 and those of O atoms or F atoms of the 

anions. Thus, semiempirical AM1 calculations6 of anions were performed in order to 

determine the interatomic distances of O atoms or F atoms and charges on the anions. 

The calculation results were presented in Table 2-2. The interatomic distance of and 

charges on hydrogen atoms of cyclic guanidinium ion, a simplified model compound 11 

for host 9, were also calculated to give the values of 2.37 Å and +0.273 au, respectively.  

Several interesting trends can be gleaned from the data of Tables 2-1 and 2-2. 

Host 9 showed much higher complexation affinities to the divalent anions, SO4
2-, 

HPO4
2-, H2P2O7

2-, and AMP2-, than those to the monovalent anions, ClO4
-, NO3

-, BF4
-, 

HSO4
-, and PF6

-. The higher affinities of host 9 to the divalent anions, HPO4
2- and SO4

2-,  

 

 

 

11 

H
N

N

H
N+



 

 34

Table 2-2. Calculated Interatomic Distances between Oxygen Atoms or Fluorine Atoms, 

Charges on Oxygen or Fluorine Atoms, and Heat of Formation  

anion 
O---O or F---F  

distances (Å) 

charges on O or  

F atom (au) 
∆Hf  

(kcal·mol-1) 

HPO4
2- 2.56×2, 2.55, 2.54×2, 2.41 -1.29, -1.27×2, -0.85       -205 

SO4
2- 2.39×6 -1.20×4 -133 

NO3
- 2.12×3 -0.57×3 -89 

BF4
- 2.12×6 -0.32×4 -397 

ClO4
- 2.89×6 -0.50×4 166 

H2PO4
- 2.66, 2.56×2, 2.47, 2.44×2 -1.17×2, -0.82×2 -316 

HSO4
- 2.44×2, 2.37×2, 2.36×2 -1.11, -1.08×2, -0.82 -234 

PF6- 2.22×15 -0.65×6 -504 
 

 

should be attributable to the large negative charges on the O atoms (-1.29 — -0.85 au: 

HPO4
2- and SO4

2-). The distances between the O atoms in SO4
2- (2.39 Å) are almost  

equal to that of the H atoms of the guanidinium NH groups (2.37 Å) in the model 

compound 11. Similarly, the corresponding distances of HPO4
2- are almost equal to or 

only a little bit longer (2.56 — 2.41 Å) than that of the calculated distance of the 

guanidinium NH groups (2.37 Å). By contrast with the divalent anions, monovalent 

anions, ClO4
-, NO3

-, BF4
-, and PF6

-, exhibiting very low affinity toward host 9, have 

smaller negative charges on their O or F atoms (-0.65 — -0.32 au) as well as a little bit 

shorter (2.22 — 2.12 Å: NO3
-, BF4

-, and PF6
-) or quite longer (2.89 Å: ClO4

-) 

interatomic distances between the O atoms or F atoms than that of the NH groups in the 

model compound 11(2.37 Å). The low affinity of host 9 to the anions is most probably 

due to small charges on the O or F atoms of the anions and the geometric disagreement 

between the binding site of host 9 and guest anions. The exceptionally high affinity of 

H2PO4
- is presumably due to the significantly large charge of the O atoms (-1.17 — 
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-0.82 au) among monovalent anions. On the contrary, HSO4
- has comparable negative 

charge on the O atoms (-1.11 — -0.82 au) to those of HPO4
2- and SO4

2- (-1.29 — -0.85 

au) and interatomic distances between the O atoms (2.44 — 2.36 Å) are almost equal to 

the NH distance of the guanidinium ion (2.37 Å), while the binding affinity resulted in 

unexpectedly low value.7 
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2-2-1-3  Conclusions   

The DMAB signaling subunit provided quantitative information on complexation 

of host 9 with a variety of anions in terms of 1H NMR titrations. The titration profiles of 

host 9 monitored at H7, H8, and H11 protons upon complexation with the divalent 

anions were remarkably different from those with the monovalent anions. The binding 

constants of host 9 with the divalent anions were quite larger (SO4
2-: log K1:1 = 6.2 and 

log K2:1 = 4.7, HPO4
2-: log K1:1 = 6.2 and log K2:1 = 4.9, H2P2O7

2-: log K1:1 = 4.4 and log 

K2:1 = 1.8, AMP2-: log K1:1 > 7 and log K2:1 > 5) than those with the monovalent anions 

(log K1:1 < 2.0, exceptional case of H2PO4
-: log K1:1 = 4.4). Host 9 showed successive 

1:1 and 2:1 complexation with SO4
2-, HPO4

2-, H2P2O7
2-, and AMP2-, while 1:1 

complexation with ClO4
-, NO3

-, BF4
-, HSO4

-, PF6
-, and H2PO4

-. It is noteworthy that the 

dual tetrahedral structure of H2P2O7
2- and the existence of an extraordinarily large 

organic residue of AMP2- did not influence their complexation behavior with host 9. 

Therefore, the complexation information offered by DMAB signaling subunit indicated 

that host 9 exhibited strong binding ability and high selectivity toward SO4
2-, HPO4

2-, 

H2P2O7
2-, and AMP2- having a tetrahedral array of oxygen atoms with divalent negative 

charges over monovalent anions such as NO3
-, BF4

-, ClO4
-, HSO4

-, and PF6
-, except for 

H2PO4
-. 
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2-2-2 CD spectral titrations 

2-2-2-1 CD spectral titrations8 

The exciton chirality method is a simple and practical approach for establishing 

absolute configurations and conformations of organic compounds in solution on a 

microscale.9  Kobiro and Inoue reported that the two guanidinium ion moieties in 2:1 

complex of host 9 with SO4
2- were fixed in perpendicular arrangement (as a statistical 

ensemble) to each other around the SO4
2- as illustrated in Figure 2-16. A closer look at 

this structure immediately reveals that two stereochemical possibilities exist in the 

complexation mode. One is complex C with negative chirality in which two DMAB 

groups are placed counterclockwise from the front-to-back, whose CD spectrum should 

show a negative first (at longer wavelength) and a positive second Cotton effect peaks. 

The other is complex D with positive chirality in which two DMAB groups are placed 

clockwise, whose CD spectrum should show a positive first (at longer wavelength) and  

a negative second Cotton effect peaks. Complexes C and D are diastereomers.  

Host 9 showed, indeed, simple positive Cotton effect peak in CH3CN, while the 

CD spectrum of host 9 was varied to show bisignated exciton coupling with negative 

first and positive second Cotton effect peaks upon addition of a half equivalent amount 

of SO4
2-. Then a negative Cotton effect was observed when an excess amount of SO4

2- 

was added, as shown in Figure 2-17. The observation of the exciton coupling peaks 

clearly indicates that the spatial array of the two DMAB chromophores in the 2:1 

complex should be a counterclockwise arrangement (complex C) rather than a 

clockwise arrangement (complex D).    
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= divalent tetrahedral anion

- +

complex C                                                complex D

= 4-(N,N-dimethylamino)benzoate

= TBDPSO  

 

Figure 2-16. Schematic expressions of the exciton chirality of the 2:1 complex between 

host 9 and divalent anion.  
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Figure 2-17. CD spectra of acetonitrile solution of host 9 in the absence of (thin dashed 

line) and in the presence of 0.5 (thick solid line), 1 (thin solid line), and 3 (thick dashed 

line) equivalents of (TBA)2SO4. 
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In order to clarify whether the favorable formation of complex C is an intrinsic 

aspect in the complexation of host 9 with divalent anions possessing a tetrahedral array 

of four oxygen atoms, the titrations of host 9 with several anions on CD spectra were 

carried out in acetonitrile. The titrations of host 9 by HPO4
2- and AMP2-, which are 

divalent anions with a tetrahedral array of four oxygen atoms, exhibited similar results 

to SO4
2-. In the case of HPO4

2- (Figure 2-18), for example, simple positive Cotton effect 

peaks were observed in the absence of the anion and, then, the profile of CD spectral 

varied to show negative first and positive second Cotton effect peaks upon addition of a 

half amount of HPO4
2-. Finally, a negative Cotton effect peak appeared on addition of 

an excess amount of HPO4
2-. The observed weak but clear negative first and positive 

second Cotton effect peaks indicate that two DMAB groups in the 2:1 complex are 

arranged counterclockwisely. Similar results were given in the case of AMP2- (Figure 

2-19), regardless of the sterically bulky organic residue on the oxygen atom of the 
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Figure 2-18. CD spectra of acetonitrile solution of host 9 in the absence of (thin dashed 

line) and in the presence of 0.5 (thick solid line), 1 (thin solid line), and 3 (thick dashed 

line) equivalents of (TBA)2HPO4. 
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Figure 2-19. CD spectra of acetonitrile solution of host 9 in the absence of (thin dashed 

line) and in the presence of 0.5 (thick solid line), 1 (thin solid line), and 3 (thick dashed 

line) equivalents of (TBA)2AMP. 

 

phosphate moiety. The formation of complex C, therefore, is certainly favorable in 2:1 

complexations of host 9 with both HPO4
2- and AMP2-. 

In contrast, addition of a half amount of H2P2O7
2-, having a “dimer” structure of 

HPO4
2-, to host 9 resulted in simple decrease of CD intensity (Figure 2-20) rather than 

exciton coupling peaks, though host 9 tends to give the 2:1 complex with the anion as 

demonstrated by 1H NMR titration. The different titration profiles of HPO4
2- and 

H2P2O7
2- could be explained by the flexibility of the 2:1 complexes. Since the 2:1 

complex (Figure 2-21) of 9 with H2P2O7
2- has P-O-P single bonds leading to a number 

of conformers by rotation, the relative position of the two DMAB groups in the complex 

would not be fixed well, while the 2:1 complex of 9 with HPO4
2- has no such single 

bond in the corresponding complex. Further addition of an excess amount of H2P2O7
2-  
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Figure 2-20. CD spectra of acetonitrile solution of host 9 in the absence of (thin dashed 

line) and in the presence of 0.5 (thick solid line), 1 (thin solid line), and 3 (thick dashed 

line) equivalents of (TBA)2H2P2O7. 

 

 

 

H
N

N

H
NO

O

N
Me

Me
OTBDPS+

O
P

O-

O
OH

O
P

-O

OH

N
H

N

N
H

O

O

N
Me

Me
TBDPSO +

free
rotation

 
 

Figure 2-21. The postulated structure of the 2:1 complex of host 9 with H2P2O7
2-. 
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finally led to a negative Cotton effect peak. Similarly, addition of monovalent anion  

H2PO4
- led to a simple decrease of CD intensity and finally an almost flat line (Figure 

2-22). The simple change in Cotton effect peaks on addition of H2P2O7
2- or H2PO4

- to 

host 9 could be ascribed to some conformational changes around the DMAB groups 

caused by anion coordination, which would drive the DMAB chromophores from the 

original position to a different sector of the chiral field created by the chiral 

guanidinium skeleton. In the case of ClO4
-, having quite weak complexation ability as 

shown by 1H NMR titrations, no change in CD profiles was observed on addition of 

even excess amount of ClO4
-, as expected (Figure 2-23). 
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Figure 2-22. CD spectra of acetonitrile solution of host 9 in the absence of (thin dashed 

line) and in the presence of 0.5 (thick solid line), 1 (thin solid line), and 3 (thick dashed 

line) equivalents of (TBA)H2PO4. 
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Figure 2-23. CD spectra of acetonitrile solution of host 9 in the absence of (thin dashed 

line) and in the presence of 0.5 (thick solid line), 1 (thin solid line), and 3 (thick dashed 

line) equivalents of (TBA)ClO4. 
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2-2-2-2 Conclusions 

The DMAB signaling subunit successfully provided the complexation information 

for host 9 with some anions in terms of the exciton chirality method. Divalent anions, 

SO4
2-, HPO4

2-, and AMP2- exhibited clear intensity changes with exciton coupling peaks. 

In addition, the observation of the bisignate negative first and positive second Cotton 

effect peaks in the 2:1 complexes indicates that the two DMAB groups in the 

corresponding 2:1 complexes are arranged with negative chirality (counterclockwise) 

rather than positive chirality (clockwise). Divalent anion H2P2O7
2- and monovalent 

anion H2PO4
- showed simple decreases in CD intensities. Monovalent anion ClO4

- with 

weak coordination ability exhibited no change. Thus, anions having strong affinity for 

host 9 gave the characteristic intensity changes in CD profiles during titrations. The 

combination of the DMAB signaling subunit and the chiral guanidinium binding site 

makes it possible to obtain detailed information on the complexation process of host 9 

with anions as well as on the absolute configuration of the 2:1 complexes of host 9 with 

the divalent anions using CD spectroscopy. 
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2-2-3 Fluorescence titrations 
2-2-3-1 Fluorescence titrations 

Fluorescence detection has been widely used as a powerful tool in various fields 

due to its high sensitivity.10 An excellent fluorophore, 4-(N,N-dimethylamino)benzoate 

group has been known to have the dual fluorescence emission feature, which is emitted 

from the locally excited (LE) state and twisted intramolecular charge transfer (TICT) 

state. Since the dual fluorescence property of DMAB group is quite susceptible to the 

media polarity, it has been applied for the probe of media polarity11 as well as of 

signaling group of the artificial anion receptor.12 Figure 2-24 depicts the energy 

diagram of ethyl 4-(N,N-dimethylamino)benzoate (12) with LE (at the coplanar 

conformation) and TICT (at the twisted conformation) states.  

Kobiro and Inoue reported3 that the DMAB in host 9 showed two fluorescence 

emissions at 346 nm and 491 nm in acetonitrile upon excitation at 280 nm, which were 

attributable to the LE and TICT emissions, respectively. However, the relative intensity 

of TICT and LE bands of host 9 was greatly smaller than that of ethyl 

4-(N,N-dimethylamino)benzoate. The reduced relative TICT fluorescence intensity 

observed for host 9 was ascribed to the intramolecular hydrogen bonding between the 

guanidinium proton and the ester carbonyl oxygen atom as pointed out in section 

2-2-1-2, Figure 2-3, which delayed the relaxation of the DMAB moiety to the TICT 

state even in polar acetonitrile. When fluorescence titration of host 9 with divalent 

sulfate anion was performed in acetonitrile, the LE intensity first dropped quickly up to 

a half amount of addition of SO4
2-, and then increased rapidly up to addition of twice 

amounts. In contrast, the TICT band showed a simple increase until a half amount 

addition of SO4
2-, and then the TICT intensity showed no appreciable increase 
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Figure 2-24. Schematic expressions of LE and TICT states of ethyl 

4-(N,N-dimethylamino)benzoate. 

 

thereafter, as can be seen in Figure 2-25. These observations were due to the formation 

of stepwise 2:1 and 1:1 complexes. The feasibility of rotation to give a TICT state from 

the LE state was hindered by the intramolecular hydrogen bonding in host 9. When 

SO4
2- bound to host 9, of which the complexation ability was stronger than the 

intramolecular hydrogen bonding, the internal hydrogen bonding was broken to make 

the rotation easy and give a TICT state from the LE state with increasing TICT intensity 

along with the decreasing LE intensity in the 2:1 complex. On the other hand, the 

participation of lipophilic counteraction TBA with the DMAB chromophore, which 

decreased the polarity of the microenvironment around the DMAB group, gave rise to  
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Fgure 2-25. Fluorescence intensity changes in the LE band at 346 nm (  ) and those in 

the TICT band at 491 nm ( ) upon titration of host 9 with (TBA)2SO4 in CH3CN. 

Excitation wavelength: 280 nm.  

 

increase of the fluorescence intensity in the 1:1 complex. 

In order to investigate whether the dual fluorescence behavior of the DMAB group 

in host 9 is a common feature upon complexation with expanded variety of anions or 

not, titrations of host 9 with divalent and monovalent anions were performed on 

fluorescence spectra in CH3CN. As can be seen in Figure 2-26, the titration profiles 

obtained with HPO4
2- were very close to those with SO4

2-. The LE intensity first 

dropped sharply on addition of up to 0.5 equivalent amounts of the anion, then 

gradually increased to exceed the original intensity until about 2 equivalent amounts of 

the anion was added, finally maintained the increasing tendency. In contrast, the TICT 

fluorescence showed an initial rapid increase up to HPO4
2-/1 ratio equal to 0.5, but 

almost no change was observed even large amount addition of the anion. The titration  
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Figure 2-26. Fluorescence intensity changes in the LE band at 348 nm (  ) and those in 

the TICT band at 491 nm ( ) upon titration of host 9 with (TBA)2HPO4 in CH3CN. 

Excitation wavelength: 280 nm.  

 

profiles of host 9 by H2P2O7
2- and AMP2- were also similar to those with SO4

2-and 

HPO4
2-. However, the tendency of the decreasing of the LE intensity and the increasing 

of the TICT intensity was smaller (up to 0.5 equivalent addition) in the case of H2P2O7
2- 

(Figure 2-27), whereas the LE and TICT intensity obviously decreased upon addition of 

excess amounts of AMP2- (Figure 2-28). The characteristic titration profiles of the LE 

bands observed in divalent anions (SO4
2-, HPO4

2-, H2P2O7
2-, and AMP2-) demonstrate 

that the 2:1 complexation occurred on addition of up to 0.5 equivalent amounts of the 

divalent anions and further addition of the anions would replace the 2:1 complexes with 

the 1:1 complexes concomitant with lipophilic TBA cation.  

It is understandable that the decreasing of LE intensity compensated the increasing 

of TICT intensity upon addition of 0.5 equivalent amounts of the divalent anions. 

Because divalent anions (SO4
2-, HPO4

2-, H2P2O7
2- and AMP2-) having strong affinities 
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Figure 2-27. Fluorescence intensity changes in the LE band at 348 nm (  ) and those in 

the TICT band at 491 nm (  ) upon titration of host 9 with (TBA)2H2P2O7 in CH3CN. 

Excitation wavelength: 280 nm.  
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Figure 2-28. Fluorescence intensity changes in the LE band at 348 nm (  ) and those in 

the TICT band at 491 nm (  ) upon titration of host 9 with (TBA)2AMP in CH3CN. 

Excitation wavelength: 280 nm.  
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for host 9 would break the intramolecular hydrogen bond upon complexation at the 

guanidinium moiety binding site, which allowed the rotational relaxation from the LE to 

TICT state. Hence, the TICT intensity increased with the loss of the LE intensity on 

increasing concentration of the 2:1 complex in solution. However, the LE and TICT 

fluorescence behaved in different ways after addition of 0.5 equivalent amounts of SO4
2-, 

HPO4
2- and H2P2O7

2-. The LE intensity monotonously increased, while the TICT 

intensity presented almost no change. The phenomenon would ascribe to the active 

participation of the lipophilic TBA counteraction in the complex species, which greatly 

increased the microenvironmental polarity around the DMAB group. Addition of an 

excess amount of AMP2- resulted in the decreases both at LE and TICT states, which 

would be caused by the influence of large amounts of quite hydrophilic AMP2- salt on 

increasing the polarity of the microenvironment around the DMAB group.   

By contraries, titration curves were quite simple in the case of ClO4
- (Figure 2-29). 

The LE intensity became gradually stronger with increasing amount of added ClO4
-, 

while almost no change was observed in TICT intensity. The appreciable differences in 

coordination affinities between the divalent anions, SO4
2-, HPO4

2-, H2P2O7
2-, and AMP2-, 

and the monovalent anion, ClO4
-, should be the reason for the differences in the 

observed titration curves. Fission of the intrinsic internal hydrogen bonding in host 9, 

namely, would increase the feasibility of rotation leading to a TICT state from the LE 

state. However, weak (or almost no) coordination of ClO4
- should have no influence on 

the internal hydrogen bonding and, therefore, leads to almost no change in TICT 

intensity. The simple increase in LE emission is most likely due to the active 

participation of lipophilic TBA countercation to the DMAB group of host 9, as 

discussed above. Furthermore, quite similar results to ClO4
- were obtained in the 
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titrations of host 9 with NO3
-, BF4

-, HSO4
-, and PF6

-, all of which have low affinities for 

host 9 as indicated by 1H NMR titrations (Figure 2-30 for NO3
-, Figure 2-31 for BF4

-, 

Figure 2-32 for HSO4
-, Figure 2-33 for PF6

-). 
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Figure 2-29. Fluorescence intensity changes in the LE band at 348 nm (  ) and those in 

the TICT band at 491 nm (  ) upon titration of host 9 with (TBA)ClO4 in CH3CN. 

Excitation wavelength: 280 nm. 
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Figure 2-30. Fluorescence intensity changes in the LE band at 348 nm (  ) and those in 

the TICT band at 491 nm (  ) upon titration of host 9 with (TBA)NO3 in CH3CN. 

Excitation wavelength: 280 nm. 
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Figure 2-31. Fluorescence intensity changes in the LE band at 348 nm (  ) and those in 

the TICT band at 491 nm (  ) upon titration of host 9 with (TBA)BF4 in CH3CN. 

Excitation wavelength: 280 nm. 
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Figure 2-32. Fluorescence intensity changes in the LE band at 348 nm (  ) and those in 

the TICT band at 491 nm (  ) upon titration of host 9 with (TBA)HSO4 in CH3CN. 

Excitation wavelength: 280 nm. 
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Figure 2-33. Fluorescence intensity changes in the LE band at 348 nm (  ) and those in 

the TICT band at 491 nm (  ) upon titration of host 9 with (TBA)PF6 in CH3CN. 

Excitation wavelength: 280 nm. 
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Particularly, the titration profiles of the LE and TICT intensity of host 9 by 

addition of H2PO4
- (Figure 2-34) were quite different from those of the divalent anions 

and the other monovalent anions. The LE intensity exhibited an intricate increase with 

increasing amount of H2PO4
-, while the TICT intensity increased slightly till the ratio of 

anion/9 reached about 1 and, then, became almost flat. Relatively strong complexation 

ability of H2PO4
- with host 9 would lead to decrease of the LE intensity along with 

increase of the TICT intensity. Judging from the increment of the TICT intensity, the 

decrease of the LE intensity seems to be very small. The expected slight decrease of the 

LE intensity could overlap with the large increase of the LE intensity which is caused 

by the active participation of the lipophilic TBA to show the observed intricate increase 

of the LE profile. 
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Figure 2-34. Fluorescence intensity changes in the LE band at 348 nm (  ) and those in 

the TICT band at 491 nm (  ) upon titration of host 9 with (TBA)H2PO4 in CH3CN. 

Excitation wavelength: 280 nm. 
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All the intensity data monitored at LE state (348 nm) and TICT state (491 nm) 

were put together into two graphics respectively for easy comparison of the 

complexation behavior of host 9 upon addition of divalent anions, SO4
2-, HPO4

2-, 

H2P2O7
2-, and AMP2- as well as monovalent anions, ClO4

-, NO3
-, BF4

-, HSO4
-, PF6

-, and 

H2PO4
- (Figure 2-35 for LE and Figure 2-36 for TICT). As can be seen, the titration 

profiles of host 9 by divalent anions (SO4
2-, HPO4

2-, H2P2O7
2-, and AMP2-) were quite 

different from those by monovalent anions (ClO4
-, NO3

-, BF4
-, HSO4

-, PF6
-, and H2PO4

-). 

The results obtained from the dual fluorescence emissions of the DMAB signaling 

subunit upon complexation with the anions are highly in agreement with those obtained 

in 1H NMR titrations.  
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Figure 2-35. LE intensity changes (348 nm) upon fluorescence titrations of host 9 with 
(TBA)2SO4 (   ), (TBA)2HPO4 (  ), (TBA)2H2P2O7 (  ), (TBA)2AMP (  ), 
(TBA)ClO4 (  ), (TBA)NO3 (  ), (TBA)BF4 (   ), (TBA)HSO4 (  ),  
(TBA)PF6 ( × ), and (TBA)H2PO4 ( * ) in CH3CN. Excitation wavelength: 280 nm. 
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Figure 2-36. TICT intensity changes (491 nm) upon fluorescence titrations of host 9  
with (TBA)2SO4 (   ), (TBA)2HPO4 (  ), (TBA)2H2P2O7 (  ), (TBA)2AMP (  ), 
(TBA)ClO4 (  ), (TBA)NO3 (  ), (TBA)BF4 (   ), (TBA)HSO4 (  ),  
(TBA)PF6 ( × ), and (TBA)H2PO4 ( * ) in CH3CN. Excitation wavelength: 280 nm. 
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2-2-3-2 Conclusions 

The DMAB group in host 9 as a signaling subunit successfully showed distinctive 

LE and TICT fluorescence responses on recognition of a variety of anions. Divalent 

anions (SO4
2-, HPO4

2-, H2P2O7
2-, and AMP2-) with tetrahedral geometries exhibited 

substantial decreases of LE emissions first up to a half amount addition of the anions 

and then gradual increases on further addition of the anions, while TICT emissions 

showed simple increases up to a half amount addition of the anions. However, the 

monovalent anions (ClO4
-, NO3

-, BF4
-, HSO4

-, PF6
-, and H2PO4

-) with weak 

coordination ability, the corresponding LE emissions exhibited a simple increase on 

gradual addition of the anions, whereas almost no change was observed in TICT bands. 

Meanwhile, the fluorescence titration profiles allowed us to know that the binding 

stoichiometry of host 9 with the divalent anions would be successive 2:1 and 1:1 

complexation but only week 1:1 complexation of host 9 toward the monovalent anions 

occurred, which are highly consonant with the conclusions obtained in 1H NMR 

titrations. In addition, the countercation TBA strongly enhanced the LE intensity of the 

DMAB group via reducing the microenvironmental polarity around the signaling 

subunit. The large volume of quite hydrophilic residue in AMP strongly reduced the LE 

and TICT intensity of DMAB group via increasing the microenvironmental polarity 

around the signaling subunit.   
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2-3  Conclusions 

The novel host 9 with a chiral bicyclic guanidinium ion moiety as a binding 

subunit linked to a DMAB group as a signaling subunit was applied for binding a 

variety of anions by means of 1H NMR, CD, and fluorescence spectroscopy.  

In 1H NMR titrations, the DMAB signaling subunit provided quantitative 

information on complexation of host 9 with anions. The binding constants of host 9 

toward the divalent anions were quite large (SO4
2-: log K1:1 = 6.2 and log K2:1 = 4.7, 

HPO4
2-: log K1:1 = 6.2 and log K2:1 = 4.9, H2P2O7

2-: log K1:1 = 4.4 and log K2:1 = 1.8, 

AMP2-: log K1:1 > 7 and log K2:1 > 5), whereas host 9 gave relatively small binding 

constants toward the monovalent anions (log K1:1 < 2.0, exceptional case of H2PO4
-: log 

K1:1 = 4.4). Host 9 gave successive 1:1 and 2:1 complexation stoichiometry with the 

divalent anions (SO4
2-, HPO4

2-, H2P2O7
2-, and AMP2-) and 1:1 complexation with the 

monovalent anions (ClO4
-, NO3

-, BF4
-, HSO4

-, PF6
-, and H2PO4

-). Therefore, host 9 

exhibited strong complexation ability and high selectivity toward SO4
2-, HPO4

2-, 

H2P2O7
2-, and AMP2- having a tetrahedral array of oxygen atoms with divalent negative 

charge as compared with those with monovalent anions, ClO4
-, NO3

-, BF4
-, HSO4

-, and 

PF6
-, except for H2PO4

-. 

In CD titrations, the DMAB signaling subunit successfully showed the 

complexation information for host 9 with divalent anions in terms of the exciton 

chirality method. Anions having strong affinity for host 9 such as SO4
2-, HPO4

2-, and 

AMP2- gave bisignate Cotton effect peaks upon CD titrations, while H2P2O7
2- and 

H2PO4
- having strong affinity for host 9 gave the simple intensity decreases in CD 

profiles during titrations. On the contrary, ClO4
- with weak coordination ability for host 

9 showed almost no CD intensity change. On the other hand, divalent anions, SO4
2-, 
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HPO4
2-, and AMP2-, exhibited weak but clear negative first positive second Cotton 

effect peaks in the 2:1 complexes, which indicates that the two DMAB groups in the 

corresponding 2:1 complexes are arranged with negative chirality (counterclockwise) 

rather than positive chirality (clockwise). Thus, the combination of the DMAB signaling 

subunit and the chiral guanidinium binding site made it possible to obtain detailed 

information on the complexation process of host 9 with the anions as well as on the 

absolute configuration of the 2:1 complexes of host 9 with the divalent anions using CD 

spectroscopy. 

In fluorescence titrations, the DMAB group embedded in host 9 as a signaling 

subunit successfully exhibited clear fluorescence responses on LE and TICT emissions 

in accordance with the recognition of a variety of divalent and monovalent anions. The 

LE and TICT intensity changes of host 9 by the anions having strong binding affinities, 

such as SO4
2-, HPO4

2-, AMP2-, and H2P2O7
2- were remarkably different from those by 

the monovalent anions having weak binding affinities. Host 9 showed the successive 2:1 

and 1:1 complexation with the divalent anions as well as 1:1 complexation with the 

monovalent anions, which were highly consonant with the conclusions obtained in 1H 

NMR titrations. In addition, the participation of the countercation TBA, or the large 

residue in AMP showed strong influences on increasing or decreasing the LE intensity 

of the DMAB group through decreasing or increasing the micro environmental polarity 

around the signaling subunit.  

The rational design of the binding-signaling principle introduced in the thesis, 

therefore, provided not only quantitative information about binding constants but also 

detailed understanding of the complexation behavior such as stoichiometry of the 

complexes, chiral sense of the 2:1 complexes, and participation of a countercation or a 



 

 61

hydrophilic group in the coordination process. As conclusions, the investigation in the 

thesis allowed us to understand not only the scope and the limitations of the DMAB 

signaling subunit in host 9 on complexation with divalent and monovalent anions but 

also the versatility of the DMAB group as an excellent signaling subunit by means of 1H 

NMR, CD, and fluorescence spectroscopic studies.   
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2-4   Experimental Section 
2-4-1 General 

1H NMR spectra were obtained on a Varian UNITY INOVA 400 NMR 

spectrometer. CD spectra were obtained on a JASCO J-820 spectropolarimeter. 

Fluorescence spectra were recorded by a Fluorolog JOBIN YVON-SPEX 

spectrophotometer. Elemental analyses were performed on an Elementar Vario EL III. 

pH Measurements were done on a HORIBA F-22 pH meter. Spectroscopic grade 

acetonitrile from Dojindo Laboratories was used without further purification for all 

spectrophotometric measurements. Tetrabutylammonium nitrate, tetrabutylammonium 

dihydrogenphosphate, tetrabutylammonium tetrafluoroborate, tetrabutylammonium 

perchlorate, tetrabutylammonium hydrogensulfate, tetrabutylammonium hexan- 

fluorophosphate, and tetrabutylammonium hydroxide were purchased from Aldrich and 

used without further purification. 

2-4-2 Preparation of bis(tetrabutylammonium) hydrogenphosphate, 
bis(tetrabutylammonium) dihydrogenpyrophosphate, and bis(tetra- 
butylammonium) adenosine 5'-monophosphate 

2-4-2-1  Method 

A potentiometric titration method in water was applied to prepare 

bis(tetrabutylammonium) hydrogenphosphate, bis(tetrabutylammonium) dihydrogen- 

pyrophosphate, and bis(tetrabutylammonium) adenosine 5'-monophosphate. An acid 

solution (0.1 mol/L solution of phosphoric acid, pyrophosphoric acid, or adenosine 

5’-monophosphoric acid in water) was titrated by 0.1 mol/L water solution of 

tetrabutylammonium hydroxide. The endpoint of the titration was monitored by pH 



 

 63

meter. The resulting solution containing tetrabutylammonium salt was lyophilized to 

give pure salt.  

2-4-2-2  1H NMR and elemental analysis 

Bis(tetrabutylammonium) hydrogenphosphate•5H2O (white solid, 

hygroscopic). 1H NMR (400 MHz, CD3CN): δ 3.16 -3.09 (m, 16H), 1.67 - 1.56 (m, 

16H), 1.44 - 1.29 (m, 16H), 0.97 (t, J = 7.4 Hz, 24H). Anal. Calcd for C32H83N2O9P: C, 

57.28; H, 12.47; N, 4.18. Found: C, 57.35; H, 12.65; N, 4.23.  

Bis(tetrabutylammonium) pyrophosphate•3H2O (white solid, hygroscopic). 1H 

NMR (400 MHz, CD3CN): δ 3.16 - 3.09 (m, 16H), 1.68 - 1.56 (m, 16H), 1.44 - 1.28 (m, 

16H), 0.97 (t, J = 7.4 Hz, 24H). Anal. Calcd for C32H80N2O10P2: C, 53.76; H, 11.28; N, 

3.92. Found: C, 53.61; H, 11.41; N, 3.84.  

Bis(tetrabutylammonium) 5'-adenosine monophosphate•3H2O (white solid, 

hygroscopic). 1H NMR (400 MHz, D2O): δ 8.44 (s, 1H, adenine CH), 8.07 (s, 1H, 

adenine CH), 5.95 and 5.94 (d, J = 3.0 Hz, 1H, O-CH-N), 4.66 - 4.52 (m, 1H, CH-OH),  

4.35 - 4.30 (dd, J = 4.2 Hz, 1H, O-CH-CH2), 4.18 (br, 1H, CH-OH), 3.84 - 3.77 (t, J = 

3.8 Hz, 2H, CH2O), 3.08 - 2.92 (m, 16H), 1.52 - 1.40 (m, 16H), 1.24 - 1.10 (m, 16H), 

0.76 (t, J = 7.2 Hz, 24H). Anal. Calcd for C42H90N7O10P: C, 57.05; H, 10.26; N, 11.09. 

Found: C, 57.39; H, 10.61; N, 10.76. 

2-4-3 Spectral titrations of host 9 by anions  

In 1H NMR titrations, a 2.00×10-3 mol/L solution of host 9 and a 1.20×10-2 mol/L 

solution of anions as tetrabutylammonium salts were first prepared in CD3CN separately. 

Next, 0.600 mL of host solution was transferred into an NMR tube. After the NMR 

spectrum of host itself was measured, an aliquot of the guest solution was added to the 

NMR tube, and the chemical shift changes of host molecule were monitored; this 
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procedure was repeated for each aliquot addition. 

In CD titrations, the procedures were similar to above descriptions except for the 

concentration used in 1H NMR titrations. For HPO4
2-, H2PO4

-, and ClO4
-: a 4.50×10-5 

mol/L solution of host 9 and a 2.70×10-3 mol/L solution of the anions as 

tetrabutylammonium salts were used in CH3CN. For H2P2O7
2- and AMP2-: a 3.65×10-5 

mol/L solution of host 9 and a 2.19×10-3 mol/L solution of the anions as 

tetrabutylammonium salts were used in CH3CN. (TBA)2AMP itself has strong 

absorption around 270 nm in the CD spectra, which interferes with the signal of host 9 

in CD titration. To cancel the influence of the AMP signal, the following procedures 

were performed. CD spectra of (TBA)2AMP were recorded, then the intensity of 

(TBA)2AMP was subtracted from each titration result in each experiment.  

In fluorescence titrations, the procedures were similar to above described except 

for the concentration used in 1H NMR titrations. A 4.05×10-5 mol/L solution of host 9 

and a 2.43×10-3 mol/L solution of anions as tetrabutylammonium salts were used in 

CH3CN. 

2-4-4 Semiempirical molecular orbital calculation 

AM1 semiempirical calculations were performed using CAChe WorkSystem Pro 

Version 6.01 software. 
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Chapter 3.  
Simple 4-(N,N-Dimethylamino)benzoic Acid  
as a New Class of Chromogenic and  
Fluorogenic Host for Anion Recognition 
 
 

3-1 Introduction 

Many efforts have recently been contributed to the design and synthesis of anion 

receptors in the field of molecular recognition due to the importance of anions in the 

areas of chemistry, environment, and biology. However, these efforts resulted in not 

simple but quite massive and complicated molecular features of the hosts to accomplish 

such selective recognition and sensitive signaling on the specific anions.1 Thus, the 

author has concentrated on developing simple, efficient, and, if possible, commercially 

available reagents for anion hosts. If such easily obtained host molecules could be 

successfully utilized, they would facilitate the process of design and synthesis of anion 

receptors. Some commercially available chromogenic and fluorogenic reagents, hence, 

are taken into account and expected to act as host molecules, for example, aromatic acid 

derivatives, sulfonic acid derivatives, and so on. The optical properties of some of the 

reagents such as UV-vis absorption and fluorescence emission are quite well-known. 

However, the complexation behavior of the reagents with anion guests is still unknown.  

Based on the above considerations and the fact that 4-(N,N-dimethylamino) 

benzoate (DMAB) group was utilized as an excellent signaling subunit for anion 

recognition as introduced in Chapter 2, aromatic acid derivatives, for instance, 

4-(N,N-dimethylamino)benzoic acid (10) would be one of the candidates suitable for the  
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purpose to develop a new class of anion receptors. In addition, two characteristic 

properties of host 10 would be taken into account: 1) acid 10 and its conjugate base 

have large absorption coefficients (ε = 2.62 × 104 [L·mol-1·cm-1]),2 which makes it 

possible to use host 10 at very low concentration such as 10-6 mol/L level, and 2) host 

10 shows dual fluorescence feature originating from the simultaneous emissions of 

locally excited (LE) state and twisted intramolecular charge transfer (TICT) state,3 

which are quite sensitive to the microenvironment of the media surrounding 10.4 

Simple and commercially available 4-(N,N-dimethylamino)benzoic acid (10), therefore, 

was directly utilized as an anion host in a preliminary investigation for developing the 

new signaling methodology for anion recognition.  

Host 10 has an acidic hydrogen atom to be transferred to guest anions as well as an 

aromatic moiety to show spectral response upon complexation with guest anions. If the 

aromatic acid interacts with the guest anion whose conjugate acid is less acidic than the 

host acid (i.e. the basicity of the guest anion is stronger than that of the conjugate base 

of the host acid), the host acid would easily transfer a proton to the guest anion to give 

the corresponding carboxylate anion, which would cause notable spectral changes. In 

the case of the guest anion whose conjugate acid is more acidic than the host acid (i.e. 

the basicity of the guest anion is weaker than that of the conjugate base of the host acid), 

proton exchange between the host acid and the guest anion would be quite difficult. 

However, even in this case, if the structure of the guest anion is complementary to the 

10

COOHN
Me

Me
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host acid, complexation between the host acid and the guest anion could occur to give a 

partially anionic species of the acid concomitant with spectral changes as reported by 

Wu et al.5 Table 3-1 lists the acid dissociation constants (pKa) of a variety of acids and 

base dissociation constants (pKb) of their conjugate bases. As can be seen in Table 3-1, 

divalent anion HPO4
2- has the highest basicity among typical inorganic anions which 

frequently appear in the environment. In addition, charge densities on guest anions 

would play a crucial role in effective interaction between the host acid and the guest 

anion. 

In order to know the complexation behavior of host 10 with a variety of anions, 

the UV-vis and fluorescence titration experiments were carried out. Divalent anions, 

SO4
2-, HPO4

2-, and H2P2O7
2-, and monovalent anions, H2PO4

-, HSO4
-, ClO4

-, BF4
-, PF6

-, 

and NO3
- were selected, all of which were used as tetrabutylammonium (TBA) salts.   

 

Table 3-1. Acid Dissociation Constants (pKa) of a Variety of Acids and Base 

Dissociation Constants (pKb) of Their Conjugate Bases 

acid pKa conjugate base pKb
a 

H2SO4 ca. -3b HSO4
- ca. 17 

HNO3 -1.64c NO3
- 15.6 

HClO4 -1.6d ClO4
- 15.6 

HBF4 0.5d BF4
- 13.5 

HSO4
- 1.99b SO4

2- 12.0 

H3P2O7
- 2.10d H2P2O7

2- 11.9 

H3PO4 2.16d H2PO4
- 11.8 

C6H5COOH 4.19d C6H5COO- 9.81 

H2PO4
- 7.21d HPO4

2- 6.79 

a Calculated by equation Kb = Kw / Ka. b Ref. 7. c Ref. 8. d Ref. 6. 
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In this chapter, the availability of host 10 as a new class of anion receptors and the 

versatility of the DMAB group as an excellent signaling subunit are investigated to 

develop a new signaling methodology for anion recognition.  
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3-2 Results and Discussion 
3-2-1 UV-vis spectral titrations 
3-2-1-1 UV-vis spectral titrations 

The UV-vis spectral titration method is a simple and convenient approach to study 

interactions between hosts and guests. Since acid 10 and its conjugate base has strong 

absorption, as introduced in former section, the UV-vis spectral titration technique was 

applied to investigate complexation behavior of host 10 toward a variety of anions in 

CH3CN. 

Host 10 showed maximum absorption at 309 nm in CH3CN. The possibility of the 

dimerization of host 10 in CH3CN was checked by monitoring the absorption changes 

of host 10 at different concentrations. No change was observed in the spectral shape of 

host 10 at the concentration ranging from 6.5 × 10-7 mol/L to 6.5 × 10-5 mol/L. The 

values of the maximal absorbance monitored at 309 nm against the concentration of 

host 10 exactly obeyed the Lambert-Beer equation with an excellent correlation 

coefficient (r2 = 0.9999, n = 10). The results indicated that no substantial intermolecular 

interactions of 10 took place in acetonitrile at such concentration range. Meanwhile, the 

molar absorption coefficient of host 10 in CH3CN was determined to be 2.8 × 104 

[L·mol-1·cm-1].  

Gradual addition of HPO4
2-, whose basicity (pKb = 6.79)6 is stronger than that of 

the conjugate base of 10 (pKb of benzoate itself = 9.81),6 led to substantial decrease of 

the absorbance at 309 nm along with obvious increase of the absorbance of a new 

absorption at 275 nm, as shown in Figure 3-1. In a separate experiment, similar 

absorption around 275 nm appeared when equimolar amounts of host acid 10 and 

tetrabutylammonium hydroxide ((TBA)OH) were mixed together in CH3CN. This result  
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Figure 3-1. Absorption spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) in the absence 
(    ) of and in the presence of 0.1 (  ), 0.2 (  ), 0.3 (    ), 0.4 (    ), 0.5 
(    ), 1.0 (    ), 2.0 (    ), and 10.0 (    ) equivalent of (TBA)2HPO4, 
respectively. 

 

clearly indicated that the new absorption at 275 nm should be ascribed to the absorption 

of the conjugate base (4-(N,N-dimethylamino)benzoate anion) of host acid 10 generated 

by simple proton exchange between acid 10 and base HPO4
2-. In addition, the author 

supposes that the resulting host carboxylate and conjugate acid of anion would not be 

separated by the solvent fully to give complete ion species but would make a pair 

through hydrogen bonding in CH3CN, because titrations of host 10 by the strongest base 

(OH-), a strong base (HPO4
2-), and a weak base (SO4

2-) gave similar spectra finally. 

Moreover, a clear isosbestic point was observed at the position around 285 nm in the 

titration spectra of host 10 with HPO4
2-, which indicated that only one complex was 

formed during the complexation process.   

The Job’s method was adopted to determine the binding stoichiometry of host 10 
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with HPO4
2-. As shown in Figure 3-2, a maximum absorption was clearly observed 

when the molar function of host 10 ([10]/([10] + [HPO4
2-])) approached 0.65, which 

indicated that the complexation stoichiometry between host 10 and HPO4
2- was 2:1 

(host 10 : anion). The structure of the postulated 2:1 complex between host 10 and 

HPO4
2- was shown in Figure 3-3. 
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Figure 3-2. Job’s plot for complexation of host 10 (3.00×10-5 mol/L) with (TBA)2HPO4 

in CH3CN monitored at 275 nm.  
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Figure 3-3. Postulated structure of 2:1 complex between host 10 and HPO4
2-. 
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It is quite interesting that almost comparable changes such as large spectral 

changes both at 275 nm and 309 nm as well as rapid saturation of titration were 

obtained on the titration of host 10 by SO4
2- (Figure 3-4) and were relatively close to 

those by HPO4
2-, because judging from the weaker bacisity of SO4

2- (pKb = 12.0)7 than 

that of the conjugate base of 10 (pKb of benzoate itself = 9.81), almost no spectral 

changes of host 10 upon titration by SO4
2- should be expected. In addition, a clear 

isosbestic point was also observed in the titration spectra around 285 nm upon SO4
2- 

addition, which meant that only one complex was formed in the titration.   

The titration curves of host 10 at higher concentration (3.10 × 10-5 mol/L) by 

SO4
2- monitored both at 275 and 309 nm showed clear inflection points at SO4

2-/10 ratio 

equal to 1.0 (Figure 3-5). The observation ensured that the binding stoichiometry  
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Figure 3-4. Absorption spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) in the absence 
(    ) of and in the presence of 0.1 (  ), 0.2 (  ), 0.3 (    ), 0.4 (    ), 0.5 
(    ), 1.0 (    ), 2.0 (    ), and 10.0 (    ) equivalent of (TBA)2SO4, respectively. 
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between host 10 and SO4
2- is 1:1 in this concentration. Furthermore, the Job’s method 

was adopted to determine the binding stoichiometry of host 10 with SO4
2-. A maximum 

absorption was clearly observed in the Job’s plot when [10]/([10] + [ SO4
2-]) equaled 0.5 

(Figure 3-6), which also meant that the complexation stoichiometry between host 10 

and SO4
2- was 1:1 (host 10 : anion) in this concentration. 

In the case of divalent anion H2P2O7
2-, whose basicity is weaker (pKb = 11.9)6 than 

that of the conjugate base of 10 (pKb of benzoate itself = 9.81), the absorption changes 

monitored at 275 nm and 309 nm (Figure 3-7) were relatively smaller as compared with 

those in the cases of divalent anions, HPO4
2- and SO4

2-. An isosbestic point was again 

observed around 285 nm upon addition of H2P2O7
2-, which also indicated that one 

complex was formed in this case. 
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Figure 3-5. Absorption changes monitored at 275 nm (  ) and 309 nm (  ) upon 
titration of host 10 (3.10 × 10-5 mol/L) with of (TBA)2SO4 in CH3CN. 
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Figure 3-6. Job’s plot for complexation of host 10 (3.00×10-5 M) with (TBA)2SO4 in 
CH3CN monitored at 275 nm.  
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Figure 3-7. Absorption spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) in the absence 
(    ) of and in the presence of 0.1 (  ), 0.2 (  ), 0.3 (    ), 0.4 (    ), 0.5 
(    ), 1.0 (    ), 2.0 (    ), and 10.0 (    ) equivalent of (TBA)2H2P2O7, 
respectively.  
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On the other hand, monovalent anions, such as H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, 

and NO3
-, have very weak basicity (pKb > 11)6, 7, 8 as compared to the conjugate base of 

host 10 (pKb of benzoate itself = 9.81). The UV-vis titration spectra of host 10 gave rise 

to quite limited absorption changes both observed at 275 and 309 nm upon gradual 

addition of the monovalent anions (Figure 3-8 for H2PO4
-, Figure 3-9 for HSO4

-, Figure 

3-10 for ClO4
-, Figure 3-11 for BF4

-, Figure 3-12 for PF6
-, and Figure 3-13 for NO3

-). 
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Figure 3-8. Absorption spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) upon addition 
with (TBA)H2PO4. The arrows denote the direction of absorption changes along with 
increasing the amounts of the anion. 
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Figure 3-9. Absorption spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) upon addition 
with (TBA)HSO4. The arrows denote the direction of absorption changes along with 
increasing the amounts of the anion. 
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Figure 3-10. Absorption spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) upon addition 
with (TBA)ClO4. The arrows denote the direction of absorption changes along with 
increasing the amounts of the anion. 
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Figure 3-11. Absorption spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) upon addition 
with (TBA)BF4. The arrows denote the direction of absorption changes along with 
increasing the amounts of the anion. 
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Figure 3-12. Absorption spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) upon addition 
with (TBA)PF6. The arrows denote the direction of absorption changes along with 
increasing the amounts of the anion. 
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Figure 3-13. Absorption spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) upon addition 
with (TBA)NO3. The arrows denote the direction of absorption changes along with 
increasing the amounts of the anion. 

 

In order to easily compare the differences on the titration profiles of host 10 upon 

addition of divalent anions, HPO4
2-, SO4

2-, and H2P2O7
2-, as well as monovalent anions, 

H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and NO3

-, the absorbance monitored at maximal 

absorption wavelengths (275 nm and 309 nm) were selected to generate the titration 

curves, as shown in Figure 3-14 for 275 nm and Figure 3-15 for 309 nm, respectively. 

As can be seen in Figure 3-14, the absorbance at 275 nm increased almost linearly from 

the beginning to 0.5 equivalent amounts upon addition of HPO4
2- and then maintained 

almost horizontal even in the presence of an excess amount of HPO4
2-. In the case of 

SO4
2-, the absorption changes were very small up to 0.3 equivalent amounts of addition 

of SO4
2-, and then increased sharply till the ratio of SO4

2-/10 equaled 2, finally went 

flatly. In the cases of H2P2O7
2- and H2PO4

-, the absorptions were gradually enhanced 

along with increasing the amounts of the anions. The increasing tendency observed in  
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Figure 3-14. Absorbance changes monitored at 275 nm upon titrations of host 10 (4.46 
× 10-6 M) with (TBA)2HPO4 (   ), (TBA)2SO4 (   ), (TBA)2H2P2O7 (   ), 
(TBA)H2PO4 (   ), (TBA)HSO4 (   ), (TBA)ClO4 (   ), (TBA)BF4 (   ), (TBA)PF6 
( × ), and (TBA)NO3 ( * ) in CH3CN. 
 

the case of H2P2O7
2- was stronger than that in the case of H2PO4

-. With respect to the 

monovalent anions, small absorption changes were observed during titrations.  

By contrast with Figure 3-14, the absorption at 309 nm decreased rapidly from 

beginning to half amount of addition of HPO4
2- and saturated thereafter (Figure 3-15). 

The titration profile of host 10 with SO4
2- showed slightly sigmoidal decreasing up to 

twice amount addition of SO4
2- and kept no absorption change till the end of the 

titrations. The absorption changes of host 10 upon addition of H2P2O7
2- as well as 

monovalent anions, such as H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and NO3

- showed 

monotonic decreasing during titrations. 
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Figure 3-15. Absorbance changes monitored at 309 nm upon titrations of host 10 (4.46 
× 10-6 M) with (TBA)2HPO4 (   ), (TBA)2SO4 (   ), (TBA)2H2P2O7 (   ), 
(TBA)H2PO4 (   ), (TBA)HSO4 (   ), (TBA)ClO4 (   ), (TBA)BF4 (   ), (TBA)PF6 
( × ), and (TBA)NO3 ( * ) in CH3CN. 

 

Thus, the observation of distinct titration profiles of host 10 upon titrations with a 

variety of divalent and monovalent anions allowed us to understand that different 

complexation behavior occurred. The DMAB signaling subunit successfully displayed 

the UV-vis spectral changes during the complexation processes. 
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3-2-1-2 Binding Constants 

The UV-vis titration data monitored at 309 nm (Figure 3-15) were subjected to 

non-linear least square curve fitting to determine binding constants of host 10 with the 

anions.9 The existence of clear inflection points around [HPO4
2-]/[10] = 0.5 in titration 

profiles (Figures 3-14 and 3-15) clearly demonstrated that the complexation 

stoichiometry of host 10 and HPO4
2- would be 2:1. Monotonic changes were observed 

in the cases of divalent H2P2O7
2- as well as monovalent anions (H2PO4

-, HSO4
-, ClO4

-, 

BF4
-, PF6

-, and NO3
-), whereas slightly sigmoidal change was observed in the case of 

divalent anion SO4
2- (Figure 3-15). Taking into account of the charge balance between 

host acid 10 and guest anions as well as the above titration profiles, 1:1 (host 10: anion) 

complexation model was applied for the binding constant calculations in the cases of 

H2P2O7
2- and the monovalent anions and 2:1 complexation models were applied for 

divalent anions HPO4
2- and SO4

2-. The postulated 2:1 complex structure of host 10 and 

SO4
2- was shown in Figure 3-16. The binding constants K1 for 1:1 complexation and K2 

for 2:1 complexation were, therefore, defined by equations (1) and (2), respectively, 

10 + A–   K1    10•A–       K1 = [10•A–]/([10][A–])    (1)  

102 + A2– 
K2  102•A2–       K2 = [102•A2–]/([10]2[A2–])   (2) 

 

where A– and A2– denote a monovalent anion and a divalent anion, respectively. Table 

3-2 summarized the calculation results of binding constants of host 10 toward a variety 

of anions. In Table 3-2, K1 denotes 1:1 complexation constants for H2P2O7
2- and the 

monovalent anions, and K2 denotes 2:1 complexation constants for HPO4
2- and SO4

2-.  
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Figure 3-16. Postulated structure of 2:1 complex between host 10 and SO4
2-. 

 

 

Table 3-2. Binding Constants of Host 10 toward Anions 

binding constants  
anion 

log K1 (log M-1) log K2 (log M-2) 

H2PO4
- 4.3 ⎯ 

HSO4
- 3.6 ⎯ 

ClO4
- 4.2 ⎯ 

BF4
- 3.4 ⎯ 

PF6
- 3.4 ⎯ 

NO3
- 3.5 ⎯ 

H2P2O7
2- 4.8 ⎯ 

SO4
2- ⎯ > 10a 

HPO4
2- ⎯ > 10a 

a K2 was too large to be accurately determined. 

 

As results, monovalent anions (H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and NO3

-) as 

well as divalent anion, H2P2O7
2- showed almost equal binding affinities to host 10 (log 

K1 = 3.4 - 4.8), while divalent anions (HPO4
2- and SO4

2-) showed quite high binding 

affinities (log K2 > 10). The binding constants K2 for divalent anions (SO4
2- and HPO4

2-) 

are too large to be calculated accurately. Judging from the titration profiles as shown in 

Figure 3-15, however, the binding constant for HPO4
2- would be larger than that for 

SO4
2-. The strongest basicity of HPO4

2- (pKb = 6.79) among the anions also suggests 
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that the interaction between acid 10 and HPO4
2- would be very strong. It is quite 

interesting that anions, H2PO4
- and SO4

2-, have almost the same basicity (pKb = 11.8 and 

12.0, respectively),6 while the binding constant for SO4
2- was much larger than that for 

H2PO4
-. This result turned out that the basicity of anions did not play an important role 

in the complexation between host 10 and the anions in these examples. Therefore, it 

would be concluded that the charge density on anion would be the most important factor 

influencing the complexation ability between host 10 and anions with weaker basicity 

than the conjugate base of host 10. Thus, it is quite reasonable that monovalent anions 

(H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and NO3

-) showed relatively weak binding ability to 

host 10, since they have monovalent negative charge and the weaker basicity of the 

anions (pKb > 11) than that of the conjugate base of host 10. The observed weak binding 

affinity of host 10 toward H2P2O7
2- could be rationalized by its weaker basicity (pKb > 

10.9) as well as the “dual-H2PO4
-” structure, as introduced in Chapter 2.  
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3-2-1-3 Conclusions 

Commercially available 4-(N,N-dimethylamino)benzoic acid (10) was directly 

used as an anion host molecule to investigate the complexation behavior toward a 

variety of anions in terms of UV-vis titrations. Host 10 exhibited strong affinities and 

high binding selectivity toward divalent anions (HPO4
2- and SO4

2-) over monovalent 

anions (NO3
-, BF4

-, ClO4
-, HSO4

-, PF6
-, and H2PO4

-) as well as H2P2O7
2-. The binding 

stoichiometry of host 10 with HPO4
2- and SO4

2- turned out to be 2:1 and that with 

H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, NO3

-, and H2P2O7
2- turned out to be 1:1. Host 10 in 

high concentration (3.10 × 10-5 mol/L) gave a 1:1 complex with SO4
2-. The basicity and 

negatively charges of anions were the main factors to influence the selectivity of host 10 

toward anions. 
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3-2-2 Fluorescence Titrations 
3-2-2-1 Fluorescence titrations 

Fluorescence titration method is a simple and sensitive technique to investigate the 

interactions between hosts and anions. Since acid 10 has unique dual fluorescence 

feature, as introduced in former section, the fluorescence technique was applied to 

investigate the complexation behavior of host 10 with a variety of anions in CH3CN.   

Host 10 in CH3CN exhibited dual fluorescence emissions at 343 nm (LE) and 491 

nm (TICT) by excitation at 300 nm. First, the fluorescence titrations of host 10 by 

divalent anions (HPO4
2-, SO4

2-, and H2P2O7
2-) were performed and the titration spectra 

were shown in Figure 3-17 for HPO4
2-, Figure 3-18 for SO4

2-, and Figure 3-19 for 

H2P2O7
2-. Stepwise addition of the divalent anions caused different fluorescence 

intensity changes of host 10 at LE and TICT states.  
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Figure 3-17. Fluorescence spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) in the 
absence (    ) of and in the presence of 0.1 (  ), 0.2 (  ), 0.3 (    ), 0.4 (    ), 
0.5 (    ), 1.0 (    ), 2.0 (    ), and 10.0 (     ) equivalent of (TBA)2HPO4, 
respectively. Excitation wavelength: 300 nm.  
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Figure 3-18. Fluorescence spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) in the 
absence (    ) of and in the presence of 0.1 (  ), 0.2 (  ), 0.3 (    ), 0.4 (    ), 
0.5 (    ), 1.0 (    ), 2.0 (    ), and 10.0 (    ) equivalent of (TBA)2SO4, 
respectively. Excitation wavelength: 300 nm.  
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Figure 3-19. Fluorescence spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) in the 
absence (    ) of and in the presence of 0.1 (  ), 0.2 (  ), 0.3 (    ), 0.4 (    ), 
0.5 (    ), 1.0 (    ), 2.0 (    ), and 10.0 (    ) equivalent of (TBA)2H2P2O7, 
respectively. Excitation wavelength: 300 nm. 



 

 89

However, addition of monovalent anions, such as H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, 

and NO3
-, caused quite similar intensity changes both at LE and TICT bands, as shown 

in Figure 3-20 for H2PO4
-, Figure 3-21 for HSO4

-, Figure 3-22 for ClO4
-, Figure 3-23 for 

BF4
-, Figure 3-24 for PF6

-, and Figure 3-25 for NO3
-. 
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Figure 3-20. Fluorescence spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) upon 
addition with (TBA)H2PO4. Excitation wavelength: 300 nm. The arrows denote the 
direction of intensity changes along with increasing the amounts of the anion. 
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Figure 3-21. Fluorescence spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) upon 
addition with (TBA)HSO4. Excitation wavelength: 300 nm. The arrows denote the 
direction of intensity changes along with increasing the amounts of the anion. 
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Figure 3-22. Fluorescence spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) upon 
addition with (TBA)ClO4. Excitation wavelength: 300 nm. The arrows denote the 
direction of intensity changes along with increasing the amounts of the anion. 
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Figure 3-23. Fluorescence spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) upon 
addition with (TBA)BF4. Excitation wavelength: 300 nm. The arrows denote the 
direction of intensity changes along with increasing the amounts of the anion. 
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Figure 3-24. Fluorescence spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) upon 
addition with (TBA)PF6. Excitation wavelength: 300 nm. The arrows denote the 
direction of intensity changes along with increasing the amounts of the anion. 
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Figure 3-25. Fluorescence spectra of host 10 in CH3CN (4.46 × 10-6 mol/L) upon 
addition with (TBA)NO3. Excitation wavelength: 300 nm. The arrows denote the 
direction of intensity changes along with increasing the amounts of the anion. 

 

For clear comparison of the LE and TICT intensity changes of host 10 upon 

titrations with divalent anions, HPO4
2-, SO4

2-, and H2P2O7
2-, as well as monovalent 

anions, H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and NO3

-, the intensity data monitored at LE 

state (343 nm) and TICT state (491 nm) were selected to generate the titration curves, as 

shown in Figure 3-26 for 343 nm and Figure 3-27 for 491 nm.  

As can be seen, titration profiles of host 10 by divalent HPO4
2- and SO4

2- 

monitored at LE and TICT emission bands were remarkably different from those by 

H2P2O7
2- as well as monovalent anions (H2PO4

-, HSO4
-, ClO4

-, BF4
-, PF6

-, and NO3
-). In 

Figure 3-26, stepwise addition of divalent HPO4
2- caused gradual fluorescence 

quenching of host 10 at LE band till the concentration ratio of HPO4
2-/10 reached 

around 0.5 and, then, the LE intensity maintained almost no change even addition of an 

excess amount of HPO4
2-. In the case of SO4

2-, the LE intensity first increased sharply  



 

 93

0 1 2 3 4 5 6 7 8 9 10
anion / host 10 ratio

Fl
uo

re
sc

en
ce

 in
te

ns
ity

 (a
. u

.)

 

Figure 3-26. LE intensity changes monitored at 343 nm upon titrations of host 10 (4.46 
× 10-6 mol/L) with (TBA)2HPO4 (  ), (TBA)2SO4 (  ), (TBA)2H2P2O7 (  ), 
(TBA)H2PO4 (   ), (TBA)HSO4 (   ), (TBA)ClO4 (   ), (TBA)BF4 (   ), (TBA)PF6 
( × ), and (TBA)NO3 ( * ) in CH3CN. Excitation wavelength: 300 nm. 
 
 
from the starting point to addition of 1.0 equivalent amounts of SO4

2- and then 

oppositely decreased up to around 2.5 equivalent addition of SO4
2-. Almost no change at 

LE state was observed even large amounts of SO4
2- used. In contrast, the gradual 

increasing of LE intensity was observed in the cases of H2P2O7
2- and monovalent anions 

(H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and NO3

-). Since the binding affinities of host 10 

toward H2P2O7
2- and the monovalent anions were relatively weaker than those toward 

divalent HPO4
2- and SO4

2-, as discussed in Section 3-2-1, the observed LE intensity 

increases would not be caused by the complexation behavior between host 10 and these  
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Figure 3-27. TICT intensity changes monitored at 491 nm upon titrations of host 10 
(4.46 × 10-6 mol/L) with (TBA)2HPO4 (   ), (TBA)2SO4 (   ), (TBA)2H2P2O7 (   ), 
(TBA)H2PO4 (   ), (TBA)HSO4 (   ), (TBA)ClO4 (   ), (TBA)BF4 (   ), (TBA)PF6 
( × ), and (TBA)NO3 ( * ) in CH3CN. Excitation wavelength: 300 nm. 

 

anions, but would ascribe to the influence of the microenviorental polarity around host 

10 by lipophilic counteraction TBA, as pointed out in Chapter 2.  

In Figure 3-27, gradual addition of divalent HPO4
2- caused rapid decrease at TICT 

band until the concentration ratio of HPO4
2-/10 reached around 0.5 and, then, the TICT 

intensity maintained almost no change even addition of an excess amount of HPO4
2-. In 

the case SO4
2-, the TICT intensity showed smooth decrease from beginning to around 

0.4 equivalent amounts of SO4
2- added, and then sharply decreased till the concentration 

ratio of SO4
2-/10 approached 2.5. Almost no change at the TICT state was observed 

even large amounts of SO4
2- used. By contrast with HPO4

2- and SO4
2-, the additions of 

∆ 
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H2P2O7
2- and monovalent anions (H2PO4

-, HSO4
-, ClO4

-, BF4
-, PF6

-, and NO3
-) resulted 

in the monotonic decreasing of TICT intensity. 

Titration profiles of host 10 monitored at TICT emission (491 nm, Figure 3-27) 

were quite similar to those observed in UV-vis titrations monitored at 309 nm as shown 

in Figure 3-15. The existence of clear inflection points around [HPO4
2-]/[10] = 0.5 in 

TICT emission (Figure 3-27) demonstrated that the binding stoichiometry of host 10 

with HPO4
2- would be 2:1. Consideration of the charge balance between host 10 and 

SO4
2- and sigmoidal TICT changes turned out that the complexation stoichiometry of 

host 10 and SO4
2- would likely be 2:1. In addition, monotonic decreasing of TICT 

emissions of host 10 was observed in the titrations by H2P2O7
2- as well as monovalent 

anions, H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and NO3

-, which indicated that the binding 

stoichiometry of host 10 with H2P2O7
2- and the monovalent anions would be 1:1. The 

titration profiles of host 10 by divalent anions (HPO4
2- and SO4

2-) monitored at LE 

emission (343 nm, Figure 3-26) exhibited completely different features from those by 

H2P2O7
2- and the monovalent anions, which suggested the chemical species generated 

by interactions of host 10 with the divalent anions were quite different from those with 

the monovalent anions. Therefore, the results, such as selectivity and complexation 

stoichiometry of host 10 toward the anions obtained in fluorescence titrations, are 

highly consistent with those obtained in UV-vis titrations. 
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3-2-2-2  Stern-Volmer’s Equation 

The intensity data monitored at TICT state (491 nm) were applied to the 

Stern-Volmer equation in order to obtain more fluorescence binding information of host 

10 toward a variety of anions. The fluorescence quenching of host 10 by H2P2O7
2- and 

monovalent anions (H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and NO3

-) was found out to obey 

the Stern-Volmer equation, as shown in Figure 3-28, which indicated that the amounts 

of the non-fluorescent complexes generated by the interactions between the host and the 

anion in ground state would be limited as compared with the amounts of the fluorescent 

host itself in titration solution and that the binding affinities of the host with the anion in 

ground state would be relatively weak. Therefore, the observation of the almost linear 

Stern-Volmer plots ensured that the complexation ability of host 10 with H2P2O7
2- and 

monovalent anions (H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and NO3

-) would be very weak, 

which sustained the accordance with the results obtained in UV-vis titrations as well as 

fluorescence titrations.  
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Figure 3-28. Stern-Volmer’s plots of host 10 at TICT band upon addition of 
(TBA)2H2P2O7 (   ), (TBA)H2PO4 (   ), (TBA)HSO4 (   ), (TBA)ClO4 (   ), 
(TBA)BF4 (   ), (TBA)PF6 ( × ), and (TBA)NO3 ( * ) in CH3CN. 

 

In contrast, the Stern-Volmer plots showed sigmoidal and monotonic increasing 

profiles for HPO4
2- (Figure 3-29) and SO4

2- (Figure 3-30), respectively, which meant 

that the interaction of host 10 with HPO4
2- and SO4

2- in ground state would be so strong 

that large amounts of complexes would be produced. The observation demonstrated that 

the binding affinities of host 10 with HPO4
2- and SO4

2- would be very high, especially in 

the case of HPO4
2-. The results obtained from the Stern-Volmer plots also were 

consistent with those obtained in UV-vis titrations as well as fluorescence titrations.  

In addition, the notably different fluorescence quenching behavior of host 10 in 

Stern-Volmer plots between the divalent anions (HPO4
2- and SO4

2-) and H2P2O7
2- and 

the monovalent anions also apparently indicated that host 10 had high selectivity to the 

divalent anions over H2P2O7
2- and the monovalent anions.  
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Figure 3-29. Stern-Volmer’s plot of host 10 at TICT band upon addition of 
(TBA)2HPO4 in CH3CN.  
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Figure 3-30. Stern-Volmer’s plot of host 10 at TICT band upon addition of (TBA)2SO4 
in CH3CN.  

 
 



 

 99

3-2-2-3 Conclusions 

Commercially available 4-(N,N-dimethylamino)benzoic acid (10) was directly 

used as an anion host to investigate the complexation behavior toward a variety of 

anions by means of fluorescence titrations. The observation on the titration profiles of 

the LE and TICT emissions as well as the Stern-Volmer’s plots demonstrated that host 

10 exhibited strong affinities and high binding selectivity toward divalent anions 

(HPO4
2- and SO4

2-) over monovalent anions (H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and 

NO3
-) and H2P2O7

2-. The complexation stoichiometry of host 10 with HPO4
2- and SO4

2- 

turned out to be 2:1, while host 10 showed 1:1 complexation with H2PO4
-, HSO4

-, ClO4
-, 

BF4
-, PF6

-, and NO3
-, and H2P2O7

2-. These results were in agreement with those obtained 

in UV-vis titrations.   
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3-3  Conclusions 

Simple and commercially available 4-(N,N-dimethylammino)benzoic acid (10) 

was directly used as an anion host for anion recognition. The versatility of the DMAB 

signaling subunit was investigated in terms of UV-vis and fluorescence spectroscopy. 

In UV-vis titrations, host 10 exhibited strong affinities and high binding selectivity 

toward divalent anions (HPO4
2- and SO4

2-) over monovalent anions (H2PO4
-, HSO4

-, 

ClO4
-, BF4

-, PF6
-, and NO3

-) and H2P2O7
2-. The binding constants of host 10 with 

HPO4
2- and SO4

2- (HPO4
2- and SO4

2-: log K2 > 10) were quite larger than those with 

H2P2O7
2- and the monovalent anions (log K1 = 3.4-4.8). Host 10 showed 2:1 binding 

stoichiometry with HPO4
2- and SO4

2- and 1:1 binding stoichiometry with the 

monovalent anions and H2P2O7
2-. The combination of the basicity and negative charges 

of anions played a crucial role in influencing the selectivity of host 10 toward anions.  

In fluorescence titrations, the titration profiles obtained both at LE and TICT states 

of host 10 exhibited remarkable differences upon addition of the divalent anions and the 

monovalent anions as well as H2P2O7
2-. The binding stoichiometry of host 10 with 

HPO4
2- and SO4

2- also turned out to be 2:1, while in the cases of H2PO4
-, HSO4

-, ClO4
-, 

BF4
-, PF6

-, NO3
-, and H2P2O7

2-, host 10 showed 1:1 complexation. In addition, the 

Stern-volmer plots also revealed that host 10 had high selectivity with the divalent 

anions over the monovalent anions and H2P2O7
2-. All of the results obtained from dual 

fluorescence titrations and Stern-Volmer plots were in agreement with those obtained in 

UV-vis titrations.  

The research10 presented in the thesis demonstrated that commercially available 

host 10 is capable of being a new class of anion receptor and the DMAB group is a 

versatile signaling subunit with UV-vis and fluorescence responses for anion 
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recognition. A promising signaling methodology by utilization of chromogenic and 

fluorogenic reagents as anion hosts has been developed. The author believes that the 

investigation would open a novel prospect in the field of anion recognition chemistry. 
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3-4 Experimental Section 
3-4-1 General 

UV-vis spectra were obtained on a Perkin Elmer UV-VIS/NIR Lamnda 19 

spectropolarimeter. Fluorescence spectra were recorded by a Fluorolog JOBIN 

YVON-SPEX spectrophotometer. Spectroscopic grade acetonitrile from Dojindo 

Laboratories was used without further purification for all spectrophotometric 

measurements. Tetrabutylammonium nitrate, tetrabutylammonium dihydrogen- 

phosphate, tetrabutylammonium tetrafluoroborate, tetrabutylammonium perchlorate, 

tetrabutylammonium hydrogensulfate, tetrabutylammonium hexanfluorophosphate, and 

tetrabutylammonium hydroxide were purchased from Aldrich and used without further 

purification. Bis(tetrabutylammonium) hydrogenphosphate, bis(tetrabutylammonium) 

dihydrogenpyrophosphate were prepared in laboratory. The detailed preparation 

methods were described in Chapter 2. 

3-4-2 Spectral titrations of host 10 by anions 

In UV-vis and fluorescence titration experiments, a 4.46×10-6 mol/L solution of 

host 10 and a 2.68×10-4 mol/L solution of anions as tetrabutylammonium salts were first 

prepared in CH3CN separately. Next, 3.0 mL of host solution was transferred into a 

quartz cell. After the UV-vis or fluorescence spectrum of host itself was measured, an 

aliquot of the guest solution was added to the quartz cell, and the absorption or intensity 

changes of host solution were monitored; this procedure was repeated for each aliquot 

addition. In the experiment to examine the possibility of the dimerization of host 10, a 

6.50×10-5 mol/L solution of host 10 was first prepared in CH3CN. It was diluted to 

prepare different concentration solution of host 10 ranging from 6.5 × 10-7 mol/L to 6.5 

× 10-5 mol/L. Then, the UV-vis spectrum of each solution was measured. 
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Chapter 4. 

Conclusions 

 

The thesis treats with the development of a new signaling methodology for anion 

recognition. The artificial anion receptor 9 and quite simple commercially available 

4-(N,N-dimethylamino)benzoic acid (10), both of which possessing 4-(N,N-di- 

methylamino)benzoate (DMAB) group, have been applied to investigate the scope and 

limitations of the DMAB group upon complexation with a variety of anions and the 

versatility of the DMAB group as a signaling subunit by means of 1H NMR, UV-vis, 

CD, and/or fluorescence spectroscopic studies. The results obtained through the 

research are summarized and concluded as follows: 

 

The author has focused on the investigation of complexation behavior of host 9 

with a variety of divalent and monovalent anions in terms of 1H NMR, CD, and 

fluorescence spectroscopic studies. The artificial host 9 has a chiral bicyclic 

guanidinium ionic moiety as a binding subunit and DMAB group as a signaling subunit. 

Strong intramolecular hydrogen bonding is present between the carbonyl oxygen atom 

of the DMAB group and one of the N-H groups of the guanidinium ion moiety in the 

host 9. Thus, it is rationally assumed that host 9 would show a “covered” structure first, 

in which the binding site would be covered with DMAB signaling subunit via the 

intramolecular hydrongen bonding. When anions, having stronger affinity to host 9 than 

the DMAB group, bind to the guanidinium ion moiety, the intramolecular hydrogen 

bonding would be cleaved and the DMAB group would be driven out. The host 9 would 
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show an “open” structure finally. The DMAB signaling subunit would lead to the 

complexation information via the spectral changes on 1H NMR, CD, and fluorescence 

spectroscopy. All of the results obtained in 1H NMR, CD, and fluorescence titrations are 

in agreement with the strategy.     

In 1H NMR titrations, the DMAB signaling subunit provided quantitative 

information upon complexation of host 9 with divalent and monovalent anions. Host 9 

showed strong binding ability and high selectivity toward divalent anions (SO4
2-, 

HPO4
2-, H2P2O7

2-, and AMP2-) over monovalent anions (ClO4
-, NO3

-, BF4
-, HSO4

-, and 

PF6
-). The binding constants of host 9 toward divalent anions (SO4

2-: log K1:1 = 6.2 and 

log K2:1 = 4.7, HPO4
2-: log K1:1 = 6.2 and log K2:1 = 4.9, H2P2O7

2-: log K1:1 =4.4 and log 

K2:1 =1.8, AMP2-: log K1:1 > 7 and log K2:1 > 5) were much larger than those toward the 

monovalent anions (log K1:1 < 2.0 ), except for H2PO4
- (log K1:1 = 4.4). Host 9 exhibited 

successive 2:1 (host 9 : anion) and 1:1 complexation stoichiometry with the divalent 

anions and 1:1 complexation stoichiometry with the monovalent anions.  

In CD titration experiments, the DMAB signaling subunit successfully exhibited 

the complexation information of host 9 with divalent anions in terms of the exciton 

chirality method. Anions, such as SO4
2-, HPO4

2- and AMP2- as well as H2P2O7
2- and 

H2PO4
-, all of which have strong affinities to host 9, gave negative first and positive 

second Cotton effect peaks for SO4
2-, HPO4

2-, and AMP2-, while simple decreasing 

intensity for H2P2O7
2- and H2PO4

- in CD titration profiles. In contrast, in the case of 

ClO4
- having quite weak coordination affinity to host 9, the CD titration profile hardly 

showed intensity changes. The observation of the negative first and positive second 

Cotton effect peaks in the 2:1 complexes clearly indicated that the two DMAB signaling 

subunits were arranged with negative chirality (counterclockwise) rather than positive 

chirality (clockwise) in the corresponding 2:1 complexes. Thus, the combination of the 
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DMAB signaling subunit and the chiral guanidinium binding subunit provides detailed 

complexation information on the titration profiles of host 9 with anions as well as on the 

absolute configuration of 2:1 complexes of host 9 with the divalent anions using CD 

spectroscopy. 

In fluorescence titrations, the DMAB group in host 9 as a signaling subunit 

successfully showed distinctive LE and TICT fluorescence responses on recognizing a 

variety of divalent and monovalent anions. Anions, having strong binding affinities to 

host 9, for instance, SO4
2-, HPO4

2-, AMP2-, and H2P2O7
2-, broke the present 

intramolecular hydrogen bonding in host 9 to make the rotation easy and hence gave a 

TICT state from the LE state, which caused the increasing intensity of TICT emission 

concomitant with the decreasing intensity of LE emission in the 2:1 complexation. 

Meanwhile, host 9 showed the successive 2:1 and 1:1 complexation stoichiometry with 

the divalent anions as well as 1:1 complexation stoichiometry with the monovalent 

anions, which are highly consonant with the conclusions obtained in 1H NMR titrations. 

In addition, the active participation of lipophilic countercation tetrabutylammonium 

(TBA) ion and large residue in AMP strongly increased and decreases, respectively, the 

LE and TICT intensity changes in the 1:1 complexation via varying the 

microenvironmental polarity around the signaling subunit.  

Therefore, the rational design of the signaling principle introduced in Chapter 2 

provided not only quantitative information about binding constants but also detailed 

understanding of the complexation behavior such as stoichiometry of the complexation, 

chiral sense of the 2:1 complexes, and participation of a countercation and a hydrophilic 

group in the coordination process. Thus, the investigation presented in the thesis allows 

us to clearly understand the scope and the limitations of the DMAB signaling subunit on 
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recognizing a variety of anions. The DMAB group is proved to be a versatile signaling 

subunit by means of 1H NMR, CD, and fluorescence spectral studies.   

 

The author has also focused on the investigation of complexation behavior of 

4-(N,N-dimethylammino)benzoic acid (10) with a variety of anions in terms of UV-vis 

and fluorescence spectroscopic studies. The availability of chromogenic and fluorogenic 

reagents applied as potential anion receptors and the versatility of the DMAB signaling 

subunit have been discussed. Host 10 has an acidic hydrogen atom as well as an 

aromatic moiety. Thus, it was rationally assumed that the acidic hydrogen atom would 

be transferred to guest anions to make complexes and the aromatic 

4-(N,N-dimethylammino)benzoate (DMAB) as a signaling subunit would show spectral 

response upon complexation with guest anions. The basicity and the charge density of 

anions would be the main factors to influence the complexation behavior of host 10 

toward anions. All of the results obtained in UV-vis and fluorescence titrations are 

consistent with the strategy.     

In UV-vis titrations, host 10 exhibited strong affinities and high binding selectivity 

toward divalent anions (HPO4
2- and SO4

2-) over monovalent anions (H2PO4
-, HSO4

-, 

ClO4
-, BF4

-, PF6
-, and NO3

-) and divalent anion, H2P2O7
2-. The UV-vis titration profiles 

obviously distinguished the complexation behavior of host 10 with HPO4
2- and SO4

2- 

from that with the monovalent anions and H2P2O7
2-. The binding constants of host 10 

for HPO4
2- and SO4

2- (HPO4
2- and SO4

2-: log K2 > 10) were quite larger than those for 

H2P2O7
2- as well as the monovalent anions (log K1 = 3.4-4.8). The binding stoichiometry 

of host 10 with HPO4
2- and SO4

2- turned out to be 2:1, while those with H2PO4
-, HSO4

-, 

ClO4
-, BF4

-, PF6
-, and NO3

-, and H2P2O7
2- turned out to be 1:1. The combination of the 
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basicity and negative charges of anions played a crucial role in influencing the 

selectivity of host 10 toward anions. 

In fluorescence titrations, host 10 showed dual fluorescence emissions from LE 

and TICT states. Upon titrations, host 10 also exhibited strong affinities and high 

binding selectivity toward divalent anions (HPO4
2- and SO4

2-) over monovalent anions 

(H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and NO3

-) and H2P2O7
2-. Host 10 gave rise to 2:1 

complexation stoichiometry with HPO4
2- and SO4

2- and 1:1 complexation stoichiometry 

with H2PO4
-, HSO4

-, ClO4
-, BF4

-, PF6
-, and NO3

-, and H2P2O7
2-. Meanwhile, the 

Stern-Volmer plots of TICT intensity also indicated that host 10 exhibited strong 

affinities and high binding selectivity toward divalent anions (HPO4
2- and SO4

2-) over 

the monovalent and divalent anion, H2P2O7
2-, which was consistent with the results of 

LE and TICT titrations. Thus, all of results obtained from UV-vis, fluorescence, and 

Stern-Volmer showed good agreement about the complexation behavior of host 10 

toward a variety of anions.  

The designed new signaling methodology introduced in Chapter 3 indicates that 

the simple and commercially available 4-(N,N-dimethylammino)benzoic acid (10) is 

capable of being a new class of chromogenic and fluorogenic hosts and the DMAB 

group is versatile to be a signaling subunit for anion recognition.    

 

In conclusion, the artificially synthesized host 9 and commercially available host 

10, both of which having 4-(N,N-dimethylamino)benzoate group as a signaling subunit, 

have been developed and applied for anion recognition. The 4-(N,N-dimethylamino)- 

benzoate group has been found out to be one of the versatile signaling subunits for 

anion sensing in terms of 1H NMR, CD, UV-vis, and/or fluorescence spectroscopic 

studies. The promising signaling methodology would open a new prospect in the field of 
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anion recognition chemistry. 
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