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Abstract

This thesis is concerned with the analysis of statistical properties of speckle in synthetic aperture radar

(SAR) images, and its applications to extracting information on forests and to examining the validity of

speckle reduction in SAR images of dynamic sea surfaces.

The manifestation and origin of speckle in optical and SAR images, and the outline of the thesis are first

presented in Chapter 1. In Chapter 2, the fundamental statistical properties of speckle in general and speckle

in SAR images are described, followed by the theories of Gaussian and non-Gaussian statistics. The principal

difference between the Gaussian and non-Gaussian speckle is that the former does not contain information on

scattering objects, while the latter does. Thus, the Gaussian speckle, in general, is treated as noise (except

such techniques as speckle interferometry in astronomy, metallurgy and radar). Since the non-Gaussian

speckle does carry information on the scattering objects, it is used to extract the statistical properties on

the scattering objects. The frequently used non-Gaussian speckle models include the log-normal, Weibull,

gamma and K-distributions, and their probability density functions (PDF) and the corresponding parameters

are introduced using simulated speckle images. Several methods of parameter estimation are then described.

Before proceeding to the applications of SAR speckle, the SAR systems are introduced in Chapter 3.

In this chapter, the processes through which the point spread function (PSF) is produced are described

with the definition of spatial resolution both in the range (cross-track) and azimuth (along-track) directions.

Multilook processing is briefly illustrated, followed by the statistical properties of a random rough surface

and SAR images. In Chapter 4, SAR polarimetry is described to show its ability and inability in the analysis

of SAR images of vegetation, namely rice plants, and forests. The 3-component decomposition analysis for

full polarization data is carried out for Pi-SAR data over the Kojima rice fields and Tomakomai forests.

The results of rice fields show that double bounce scattering is observed in some rice fields at L-band, but

at X-band the backscatter is dominated by the surface scattering. For the Tomakomai forests, volume

scattering is the main scattering at L-band, while the backscattering is dominated by surface scattering at

X-band. Moreover, for the deciduous broadleaf trees and Japanese larch areas, volume scattering dominates

the backscattering when their leaves fall in winter. The polarimetric analysis described in this chapter shows
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ABSTRACT

that polarimetry is certainly useful for classifying different scattering processes (surface, double-bounce and

volume) and hence image classification, but it is difficult to extract information in a single scattering process,

e.g., biomass of rice plants and forest trees.

Applications of non-Gaussian SAR speckle in forestry are presented in Chapter 5. The purpose of the

study is to search the quantitative relation between tree parameters and high-resolution polarimetric SAR

data. The approach we have taken is to utilize the non-Gaussian texture information in the polarimetric

airborne Pi-SAR data over the coniferous forests in Hokkaido, Japan. The test areas of the Tomakomai

National Forests are dominated with conifers of four main species: Japanese larch, Todo-fir, Yezo-spruce

and Sakhalin-spruce. The radar cross section (RCS) in terms of forest parameters is first analyzed. It is found

that the both X- and L-band RCS increase as the forest parameters increase and saturate at certain RCS

levels. However, the X-band RCS data are not well correlated with forest parameters, and the saturation

levels are difficult to define. The L-band RCS saturation levels are found approximately to the biomass of

40 tons/ha, the tree age of 30 years, the basal area of 30 m2/ha, and the tree height of 8 m. The PDF

of image amplitude is then investigated, and among Rayleigh, log-normal, Weibull and K-distributions, the

K-distribution is found to fit best to the L-band data of all polarizations according to the Akaike information

criterion (AIC). The relations between the order parameter of K-distribution and tree parameters are then

investigated. It is found that the tree biomass correlated best with the order parameter. Moreover, the

order parameter increases consistently with biomass to approximately 100 tons/ha which is well beyond

the saturation limit of the L-band RCS. Thus, the regression curve of the order parameter in terms of tree

biomass can be used to estimate the biomass beyond RCS saturation level. To evaluate this K-distribution

empirical model, the ground truth data of 23 test sites were collected in August and September, 2005.

Comparison between the tree biomass predicted by the model and the ground truth data shows the model

accuracy of approximately 85%. It is concluded that, at least for the Hokkaido forests, this empirical model

is an effective and superior way of estimating forest biomass from polarimetric SAR data in comparison with

the conventional RCS model.

In Chapter 6, the interlook cross-correlation function (CCF) of Gaussian speckle is investigated in the

images of dynamic sea surfaces. Multilook processing is a well-known technique for speckle reduction by

dividing full aperture into several non-overlapped sub-apertures and the corresponding sub-images are formed

independently. Since the spackle patterns produced by this technique are uncorrelated between looks, the

speckle noise is reduced by addition of the sub-images on an intensity basis. It has been suggested that the

partially overlapped sub-apertures can produce uncorrelated speckle patterns in the sub-images of dynamic

ocean surfaces, and an extra look can be extracted for further speckle reduction. For testing this hypothesis, a
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general integral expression is derived and discussed for the CCF of speckle patterns in SAR images processed

by using partially overlapped sub-apertures of arbitrary Doppler center frequencies (or equivalent azimuth

times). It is shown that, under the white noise approximation for the backscattered field, the CCF of the

interlook speckle intensity patterns is given by the squared modulus of the autocorrelation function of the

amplitude weighting function of sub-apertures where the time lag is the center time difference. It is also

shown that the CCF of the interlook speckle patterns is independent of the surface coherence time of sea

surface. The partially overlapped sub-aperture therefore cannot be used to improve the speckle reduction

based on the conventional multilook processing with non-overlapping sub-apertures. The integral expression

for the intensity CCF is then evaluated for a rectangular weighting function, and comparison is made with

the JERS-1 L-band and RADARSAT-1 C-band SAR images of sea surface to test the theory. The CCFs

computed from the JERS-1 SAR data show excellent agreement with the theory, and good agreement is

obtained with the RADARSAT-1 data.

In Chapter 7, the conclusions of the present thesis are summarized and future studies are suggested.

The polarimetric analyses of rice fields and forests described in Chapter 4, the theories and experimental

results presented in Chapter 5 and Chapter 6 constitute new results in the field of radar remote sensing.
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Chapter 1

Introduction

1.1 Speckle and its Origin

When a fairly coherent beam of electromagnetic wave is either reflected from a randomly rough surface or

propagates through a medium that changes the phase of the incident wave randomly, a random intensity

distribution called “speckle” may be produced. This phenomenon was first observed in the field of optics

by Exner in 1877, who found a radially granular pattern within the bright central Fraunhofer ring [1]. In

the field of radar, the speckle or better known as “clutter” has been one of the major issues since the radar

was first used for ship detection. It should be noted at this stage that the term “speckle” is generally used

in the field of optics, while in the field of radar and acoustics, the random fluctuation in the signals, which

we call speckle in optics, is traditionally called “clutter” [2]. Both the terms describe the same physical

phenomenon, and in the present thesis, we use both the terms of “SAR speckle” and “SAR clutter” where

appropriate.

During the World War II, tremendous effort was made to develop radar and image analysis for obvious

military applications. The main purpose of early radar systems was target detection, and the work at the time

was concerned mainly on noise reduction [2]. The utilization of SAR speckle in information extraction as well

as speckle suppression started when the first spaceborne SAR was launched on board of the oceanographic

satellite SEASAT in 1978. After SEASAT Shuttle-borne SARs and several spaceborne SARs were launched,

and high-resolution airborne SARs were also developed by several countries. Accordingly, the study on

Gaussian and non-Gaussian speckle has become one of the major subjects in the SAR community.

Thus, in the field of optics, the basic work and applications of speckle began since the early 1960s when

the laser was invented and became commercially available [3], [4], but it was early 1980s when the research

on SAR speckle started, and it is still in a developing stage.

Fig.1.1 shows a laser speckle pattern, illustrating granular and noise-like random fluctuations. Since

speckle appears random, the best way to describe its property in quantitative manner is to use statistical

description.
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1.1 Speckle and its Origin INTRODUCTION

Figure 1.1: Far-field speckle pattern (courtesy of Prof. Kazuo Ouchi, Kochi University of Technology).

The origin of speckle is interference of coherent electromagnetic waves associated with the random nature

of scattering objects. If a coherent wave is incident on a random rough surface, the phases of the scattered

wave are proportional to the surface undulation. Therefore, if a surface is rough compared to the wave-

length of the incident wave, the phases of the scattered wave are randomly distributed in the 0-2π interval.

When these scattered waves from many scattering elements are combined at an image plane as in Fig.1.2,

the complex amplitude in a single image pixel is a coherent sum of many contributions from independent

scattering elements with random phases, and consequently a granular random speckle pattern is produced.

Figure 1.2: Physical origin of speckle for an imaging system.

Fig.1.3 illustrates the process of speckle formation in a simple manner. When an imaging system of finite

resolution is used to form the image of a rough surface, there may be many scatterers in one resolution cell,

and the value of each pixel in the image plane is the result of interference among many contributions within
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 (a) scatterers                                 (b) image

Figure 1.3: Speckle formation. The value of an image pixel (assume one pixel=one resolution cell) is determined by
the coherent sum of contributions from randomly distributed scatterers in a resolution cell on the surface.

the corresponding resolution cell, where “many” implies more than 5-8 scatterers to satisfy the central

limit theorem [5], [6]. The value of the pixel next to it is also a coherent sum of scattering elements in

the neighbouring resolution cell. However, these scattering elements are not correlated with those in other

resolution cells, and therefore the pixel values are statistically uncorrelated with each other. As a result, the

image of a rough surface becomes a speckle pattern consisting of random and statistically independent pixel

values.

1.1.1 Gaussian SAR Speckle

Fig.1.4 is an example of SAR speckle. The formation of speckle in SAR systems is the same as that

described with reference to Fig.1.3 where the lens is replace by a SAR imaging system. The image in Fig.1.4

is formed by the C-band (wavelength 5.7 cm, frequency 5.3 GHz) SAR on board of the Canadian satellite

RADARSAT-1. Fig.1.4(a) shows a speckle pattern in the image of a homogeneous field. The dark horizontal

linear feature on the left hand side of Fig.1.4(b) is an airport runway, the white semi-vertical line at the center

is a breakwater, and the quasi-periodic image on the right corresponds to ocean waves. The illuminating

(range of cross-track) direction is from right to left, and the azimuth (along-track) direction is from top to

bottom. The concrete break water gives strong backscatter and appears very bright because it is aligned

almost orthogonal to the illuminating direction. The surface of the airport runway is smooth giving little

backscatter, and appears dark in the image. These features are embedded in speckle, and because of this
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speckle noise it is difficult to extract information from this image, for example, to segment the runway, or

to measure the dominant wavelength of the ocean waves.

(a)                                            (b)
                                                                   (copyright CSA/RSI)

Figure 1.4: RADARSAT-1 SAR images of (a) a homogeneous area and (b) features embedded in speckle.

The homogeneous fluctuation in Fig.1.4(a) is closely approximated as Gaussian speckle. Gaussian speckle

itself does not carry information on the scattering surface except that there are many randomly distributed

scatterers within a resolution cell. However, if two slightly displaced Gaussian speckle patterns are formed on

a same image plane and re-radiated by a coherent beam, they yield an interference pattern. The technique

is known as “speckle interferometry”, and it is the basis of techniques such as the measurement of objects’

displacement and distortion [7], stellar speckle interferometry [8], and SAR interferometry [9], [10]. Other

applications include measurement of surface roughness [11], information processing [12], and of course,

speckle reduction [13]-[15].

1.1.2 Non-Gaussian SAR Speckle

Fig.1.5 is a X-band airborne Pi-SAR image of the Tottori dune. The dark area marked “A” is the sand dune

and the area “B” is water. There is little radar backscatter from these areas because the surface is smooth.

The area marked “C” is lawn on a golf course. Despite the difference in image intensity, the images appear

random and statistically uniform, corresponding to Gaussian speckle.

The areas marked “D”, “E” and “F” are forests. It can be seen that these images are different from

the homogeneous images of sand, water and lawn, as they have certain structures or “texture”. This type

of image fluctuation is called non-Gaussian speckle or clutter. The statistical properties of non-Gaussian

speckle contain information on the scattering objects because the texture is different among different forests.

This observation has lead the author to investigate the statistics of Gaussian and non-Gaussian speckle in
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SAR images, and their possible applications to information extraction described in this thesis.

For the description of non-Gaussian statistics, the textbooks by Oliver and Quegan [16], and Sekine and

Mao [17] provide excellent statistical treatments to extract information from non-Gaussian SAR speckle,

speckle suppression, image segmentation and classification.

Figure 1.5: X-band Pi-SAR image of the Tottori dune (courtesy of NICT).

1.2 Outline of Thesis

The outline of this thesis is illustrated in Fig.1.6. In Chapter 1, speckle phenomenon, its origin, applications

to SAR systems and the objectives of this research are introduced. In Chapter 2, statistical properties of

speckle patterns are described, where Gaussian and non-Gaussian speckles are introduced and explained

in detail using simulated images. Chapter 3 presents the SAR system, including the processes through

which the point spread function (PSF) also known as the impulse response function (IRF) is produced

from SAR raw data, multilook processing, SAR imaging process of extended objects. Chapter 4 presents

SAR polarimetry, including the results of alpha-entropy analysis over Pi-SAR Tomakomai forests and 3-

component decomposition analysis of Pi-SAR Kojima rice field and Tomakomai forests. The Chapter 5 and

5



1.3 Brief Summary of Each Chapter INTRODUCTION

6 present applications of SAR speckle to forestry and oceanography respectively. Finally, the conclusions of

this research are given in Chapter 7. In the following, brief summaries of chapters are presented.

Chapter 1
Introduction

Chapter 2
Statistical Properties 
of Speckle Patterns

Chapter 3
SAR Fundamentals

 

 

Chapter 6
Applications to Oceanography

Chapter 5
Applications to Forestry

 

 

Chapter 7
Conclusions

 

Chapter 4
Polarimetric Analysis

 

Figure 1.6: Structure of thesis.

1.3 Brief Summary of Each Chapter

1.3.1 Speckle Statistics

In Chapter 2, statistical analysis [5], [6] is used to describe the properties of speckle. Random roughness

of a surface and/or randomly distributed scatterers can cause random amplitudes and/or random phases in

the scattered complex wave which enters into the image plane. Therefore, this process can be considered as
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a “random walk” in the complex plane, and the resultant image complex amplitude is the sum of all the

steps. The result of the summation depends on the relative phases of each step and their amplitudes.

Since the phases vary randomly by more than 2π, they are uniformly distributed in the range of (0, 2π].

If the number of contributions is large enough, the summation of all the contributions leads to the image

amplitude to follow the Rayleigh distribution, and the intensity (the module square of amplitude) obeys the

negative exponential distribution. This type of speckle is called Gaussian speckle. However, if the number

of contributions is not large enough or the mean number follows some distributions, the speckle will be

non-Gaussian distributed.

Non-Gaussian speckle also arises from the summation of many contributions of random phases but the

amplitude varies in a order of or greater than the resolution scale. The non-Gaussian behaviour of forested

areas in Fig.1.5, for example, there may be many backscattered waves within a resolution cell, even if the

resolution cell is small (1.5 ×1.5m). Their phases are uniformly distributed, but the amplitude variation of

individual trees is larger than the resolution cell. The textural appearance of this amplitude variation yields

non-Gaussian behaviour of the forest images seen in Fig.1.5.

Detailed descriptions of the random walk problem, PDFs of speckle phase and amplitude is presented

in the first part of Chapter 2. The amplitude PDF of non-Gaussian speckle can be described by several

statistical models, including the log-normal, Weibull, gamma and K-distribution models, and these PDFs

and their moments are described with simulated data [18]-[28]. To estimate the statistical parameters of

these PDFs, three frequently used approaches are introduced, including the maximum likelihood method,

least square method and moment method [5], [6], [16].

1.4 SAR Systems

In this thesis, the study mainly focuses on speckle in SAR systems, and therefore it is important to understand

the principle of SAR imaging process, which is presented in Chapter 3. For a SAR system, its antenna

transmits coherent electromagnetic (EM) wave and receives the backscattered echoes from the targets on

the Earth. Each pixel of SAR image may be the result of the summation of the backscattering of many

scattering elements. Thus, the SAR speckle can also be described by the general theories given in Chapter

2 [16], [29]-[33].

The SAR imaging process is different from that of the conventional imaging radars. A conventional radar

is also called the “real aperture radar (RAR)” of which the resolution is determined by the pulse length

in the range direction and by the illuminating beam width in the azimuth direction. Much finer spatial
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resolution is achieved by SAR by “matched filtering”. The processes of forming a point image (PSF) and

extended objects by this matched filtering technique are described, followed by multilook processing which

can be used for speckle reduction as well as information extraction.

1.4.1 Polarimetric Analysis

Chapter 4 is concerned with SAR polarimetry. With rapid advance of SAR systems, resolution of spaceborne

SARs is increased, and most of modern airborne SARs can operate at multiple frequencies and at full

polarimetric mode. The information content is increased dramatically, and new techniques rather than

using just amplitude or intensity data of a single polarization. Polarimetry is an emerging technique to

quantify the scattering process (for example, surface scattering, double-bounce and volume scattering) and

to improve the accuracy of image segmentation and classification [34]-[37]. SAR polarimetry is not the main

theme of this thesis, but it is used to support to understanding the scattering mechanisms. For this reason,

polarimetric analysis is presented for the Pi-SAR images of the Okayama rice fields (typical example of low

vegetation) in Japan, and the Tomakomai forests in Hokkaido, Japan.

1.4.2 Forest Information Extraction from Non-Gaussian SAR Speckles

Chapter 5 and 6 are the applications of SAR speckle to forestry and oceanography respectively. SAR data

have been widely used in forestry study [38]-[58]. There are 1/3 of lands are covered by forests, and the

forests play an important role in carbon dioxide absorption, producing wood and influencing climate. Radar

data can be used to monitor forests, detect deforestation and estimate forest biomass.

Using speckle models to estimate the properties of unknown scenes from SAR data is an effective means of

extracting information. The scene characteristics can be related to the model parameters. In Chapter 5, the

relations between non-Gaussian distributed high-resolution polarimetric SAR images and forest parameters

are investigated.

There are substantial members of literatures relating forest parameters, in particular biomass, with radar

cross section (RCS). However, RCS is known to saturate with increasing biomass, and the saturation levels

vary with different radar parameters and forest species. Dobson et al [44] claimed the saturation limits of

100 tons/ha and 200 tons/ha for L-band and P-band respectively for the AIRSAR data of coniferous forests

at 40◦-50◦ incidence angles. While Imhoff [48] stated that the saturation levels are 20 tons/ha, 40 tons/ha

and 100 tons/ha for C-, L- and P-band AIRSAR data of mixed forests at 40◦-50◦ incidence angles.

The data we used in this study are Pi-SAR [59] polarimetric data of the Tomakomai forests [60] in

Hokkaido, Japan. X- and L-band data with all polarizations are available. Moreover, the ground truth data
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collected in 2002, 2003 and 2005 are available, which include tree height, diameter at breast height (DBH),

age, biomass and soil moisture. The RCS is estimated as a function of tree biomass estimated in 2002 and

2003, and the results show that at X-band, the RCS is largest for VV-polarization followed by HH- and

HV-polarizations; while at L-band it is largest for HH-polarization followed by VV- and HV-polarizations.

There are no clear biomass saturation levels at X-band, but the L-band saturation level may be defined

approximately as 40 tons/ha for our datasets [54]. This technique of estimating forest biomass from the

RCS is well known [43]-[49].

The next step is to search a statistical model that fits best to the forest images, and to find a best

statistical parameter which relates the forest parameter(s). As a result, the K-distribution is found to

fit best, and the order parameter of the K-distribution has a highest correlation with the forest biomass.

The regression curve is then derived to quantify the order parameter as a function of the forest biomass

measured in 2003 and 2004. The accuracy of this empirical model is investigated by comparing the biomass

predicted by the model and the biomass measured during the summer of 2005, yielding the model accuracy of

approximately 85%. This empirical model can be used to estimate the coniferous forest on a fairly flat ground

in Hokkaido, Japan. Applicabilities to forests on sloped grounds, forests of mixed species and broadleaf trees

and to forests not in Hokkaido are not known, and remain as the subjects of future studies. It should be

emphasized that there are some reports that suggest the utilization of non-Gaussian texture in retrieving

forest parameters from SAR data [57], [58]. However, there is no work reporting the quantitative relation

between the parameters of non-Gaussian SAR images and forest parameters, except the relation of RCS.

1.4.3 Speckle Reduction in SAR Images of Sea Surface

In Chapter 6, multilook processing for dynamic sea surfaces with partially overlapped sub-apertures is

investigated. Applications of SAR data to oceanography are very popular topics [61]-[76], since 2/3 of our

planet is covered by ocean that plays an important role in the global climate and ecosystem. Since the first

spaceborne SAR, SEASAT-SAR, was launched in 1978, SAR data have been used to develop sea monitoring

systems. SAR data can be used to estimate ocean wave parameters, such as direction and wavelength. It

can also be used to study internal waves and detect oil slicks. Further, ship detection is also an important

issue [75].

Speckle makes it difficult to detect edges, objects of small sizes, and objects that have small RCS. To

reduce the speckle in SAR image, multilook processing is frequently used. In the previous study [75], a new

ship detection algorithm based on multilook processing was proposed. In this technique, ships “invisible”

to radar can be detected by calculating the cross-correlation function between the sub-images. Since the
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deterministic ships’ images are correlated and the random images (speckle) of sea surface are uncorrelated,

the CCF of ships’ images has larger correlation values than those of uncorrelated speckle sub-images. The

sub-apertures used in this study are non-overlapping to each other. However, a theory was proposed that

if the scene coherence time shorter than the sub-aperture integration time were to enter the speckle cross-

correlation, then a partially overlapped extra look can be obtained, where speckle patterns in all looks are

uncorrelated to each other [71]. If this were true, then an extra look can be used for further reduction of

speckle, and to improve the accuracy of ship detection. To check this assumption, a theory is developed,

and the cross-correlation functions are computed using the JERS-1 [77] and RADARSAT-1 [78] images over

the coastal areas of Japan. The result shows that, as predicted by the theory, the CCF of speckle between

sub-images processed with partially overlapped sub-apertures is independent of the coherence (decorrelation)

time of the sea surface caused by the random motion of small-scale waves [76].

1.5 Publication List

The followings are the publications based the research carried out under this project.

Refereed Papers:

• H.Wang, K.Ouchi, M.Watanabe, M.Shimada, T.Tadono, A.Rosenqvist, S.A.Romshoo, M.Matsuoka,

T.Moriyama, and S.Uratsuka, “In Search of the Statistical Properties of High-Resolution Polarimetric

SAR Data for the Measurements of Forest Biomass beyond the RCS Saturation Limits,” IEEE Trans.

Geosci. Remote Sens. Lett., (to be published in October issue, 2006).

• K.Ouchi, H.Wang, N.Ishitsuka, G.Saito, and K.Mohri, “On the Bragg Scattering Observed in L-band

Synthetic Aperture Radar Images of Flooded Rice Fields,” IEICE Trans. Commun., vol.E89-B, no.8,

pp.2218-2225, 2006.

• K.Ouchi and H.Wang, “Interlook cross-correlation function of speckle in SAR images of sea surface

processed with partially overlapped subapertures,” IEEE Trans, Geosci. Remote Sens., vol.43, pp.695-

701, Apr. 2005.

Conference Proceedings:

• H.Wang, K.Ouchi, M.Watanabe and M.Shimada, “Biomass Estimation Algorithm of Coniferous Forests

Based on Statistical Texture Analysis Approach of High-Resolution Polarimetric SAR Data and Its

Evalution,” Proc. PIERS, Tokyo, Japan, Aug. 2006.

10



1.5 Publication List INTRODUCTION

• H.Wang, K.Ouchi, N.Ishitsuka, G.Saito and K.Mohri, “Analysis of Bragg Scattering Phenomenon

Observed in L-band SAR Images of Machine-Planted Rice Paddies,” Proc. PIERS, Tokyo, Japan,

Aug. 2006.

• H.Wang, K.Ouchi, M.Watanabe and M.Shimada, “On the Accuracy of the Empirical Model for Esti-

mating Forest Biomass from K-Distributed SAR Image,” IEICE Tech.. Rep., SANE2006-57 (2006-05),

Kochi, Japan, pp.1-6, May, 2006.

• K.Ouchi, H.Wang, N.Ishitsuka, G.Saito and K.Mohri, “Analysis of the Bragg Resonance Scattering

in L-band JERS-1 SAR and Pi-SAR Images of Rice Paddies,” Proc. WSANE 2006 (Workshop for

Space, Aeronautical and Navigational Electronics), Xi’an, China, IEICE Tech.. Rep., SANE2006-20,

vol. 106, no. 1, pp.103-108, Apr., 2006.

• H.Wang, K.Ouchi, M.Watanabe and M.Shimada, “On the Accuracy of Empirical Relation Between

Forest Biomass and Order Parameter of K-Distribution in Pi-SAR Images,” Proc. WSANE 2006

(Workshop for Space, Aeronautical and Navigational Electronics), Xi’an, China, IEICE Tech.. Rep.,

SANE2006-21, vol. 106, no. 1, pp.109-114, Apr., 2006.

• H.Wang, K.Ouchi, M.Watanabe and M.Shimada, “Biomass Estimation Algorithm of Coniferous Forests

Using Empirical Relation Between K-distribution in High-Resolution polarimetric SAR Images and

Forest Biomass,” Proc. SANE 2006 General Conf., Tokyo, Japan, Mar. 2006.

• H.Wang, K.Ouchi and M.Watanabe, “Evaluating the Biomass Estimation Algorithm of Coniferous

Forests Based on Statistical Texture Analysis Approach of High-resolution Polarimetric SAR Data,”

Proc. SAR Workshop 2006, Sendai, Japan, Jan. 2006.

• H.Wang, K.Ouchi, M.Watanabe, M.Shimada, T.Tadono, A.Rosenqvist, S.A.Romshoo, M.Matsuoka,

T.Moriyama, and S.Uratsuka, “The dependence of forest biomass on the order parameter of K-

distribution of high-resolution airborne polarimetric SAR images of forests,” Proc. PIERS, Hangzhou,

China, Aug. 2005.

• H.Wang and K.Ouchi, “A study on the relation between ocean surface coherence time and speckle cross-

correlation in multilook SAR images produced by partially overlapped subapertures,” Proc. PIERS,
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• H.Wang and K.Ouchi, “The Relation Between the Order Parameter of K-Distribution in High-Resolution
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Chapter 2

Statistical Properties of Speckle
Patterns

As mentioned in the previous chapter, speckle plays an important role in many fields where scattering of

coherent electromagnetic wave is involved. Before proceeding to the utilization of speckle, it is necessary to

understand the fundamental statistical properties of speckle patterns. In this chapter, both Gaussian and

non-Gaussian statistics are introduced, and the corresponding speckle patterns are simulated. We mainly

focus on first-order statistical properties of speckle amplitude, such as the PDF, variance and moments.

Here, the term “first-order” means the statistical properties at a single point in space or for time-varying

speckle in the space-time domain. The term “second-order” implies the statistical properties at two points,

autocorrelation function (ACF), for example. It is known that the second-order statistics contain more

information on scattering objects [16], but to extract information, large areas of same statistics are required

as compared with the first-order statistics. The measurement accuracy may be questioned for small areas

such as the Tomakomai forests. However, it is an interesting future work to investigate the applicability of

the second-order statistics to the Tomakomai Pi-SAR data. The second-order statistics of Gaussian speckle

are discussed in Appendix A. The non-Gaussian statistical models introduced in this chapter are the log-

normal, Weibull, gamma, and K-distribution, and the latter three distributions can be used to describe both

amplitude and intensity speckle, while log-normal distribution is often used to fit amplitude images with

strong spatial variation, such as urban areas.

Due to the fact that the physical origin and statistical properties of speckle is are essentially the same in

any fields where speckle phenomena occur, the theories described in this chapter can be applied to any of

these fields, including SAR.

2.1 Statistics of Gaussian Speckle

The complex speckle images contain both amplitude and phase information, and each pixel can be represented

by the complex number |A|eiφ, where A is the amplitude and φ is the phase. Speckle has noise-like appearance

as such it can either be treated as noise or source of information in interferometry. Three assumptions have
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to be made for speckle formation. The first is that scatterers in each resolution cell are randomly distributed,

the second is that the phase φk and amplitude Ak of the scattered wave are independent to each other, and

the third is that the number of these scatterers satisfies central limit theorem [5]. That is, one pixel consists

of many random contributions from independent scatterers. For example, these conditions are satisfied when

a laser beam of light illuminates a rough surface, and radio wave of a finite width illuminates a terrain or

sea surface.

2.1.1 Random Walk

Because the incident beam interacts with randomly distributed scatterers, the scattered field in space and

time is also random in amplitude and phase. Then this process can be described by the random walk in

a complex plane, which is shown in Fig.2.1, and the resultant vector sum can be given by the following

summation [3]

A = |A|eiφ =
1√
N

N∑

k=1

|Ak|eiφk (2.1)

where N is the number of phasor components in the random walk, that is, the total number of scatterers

falling in a single pixel in the SAR image. |Ak|/
√

N and φk are the amplitude and phase of the scattered

wave from the kth scatterer, or they can be considered as the length and direction of step k. Because the

scatterers are randomly distributed, the amplitude |Ak|/
√

N is also random, and phase φk is uniformly

distributed in [-π, π).

Re

Im

A

N

A
k

Figure 2.1: Random walk in the complex plane.
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2.1.2 First-Order Amplitude Distribution

Let Ar and Ai denote the real and imaginary part of the complex amplitude respectively. Their ensemble

averages can then be given by

〈Ar〉 =
1√
N

N∑

k=1

〈|Ak|〉 〈cos φk〉 = 0

〈Ai〉 =
1√
N

N∑

k=1

〈|Ak|〉 〈sin φk〉 = 0 (2.2)

respectively. Because the phase φk is uniformly distributed over the interval [-π, π), the ensemble averages

of sine and cosine are equal to 0. In a similar way, we can also get

〈
A2

r

〉
=

1
N

N∑

k=1

N∑

k′=1

〈|Ak||Ak′ |〉 〈cos φk cos φk′〉 (2.3)

The phases of different scatterers are independent to each other, so that 〈cos φk cos φ′k〉 = 0 when k 6= k′.

Then, for the real part,

〈
A2

r

〉
=

1
N

N∑

k=1

〈|Ak|2
〉 〈

cos2 φk

〉

=
1
N

N∑

k=1

〈|Ak|2
〉 1

2
〈cos 2φk + 1〉

=
1

2N

N∑

k=1

〈|Ak|2
〉

(2.4)

and for the imaginary part,

〈
A2

i

〉
=

1
N

N∑

k=1

N∑

k′=1

〈|Ak||Ak′ |〉 〈sin φk sinφk′〉

=
1

2N

N∑

k=1

〈|Ak|2
〉

(2.5)

The correlation function of real and imaginary part is

〈ArAi〉 =
1
N

N∑

k=1

N∑

k′=1

〈|Ak|2
〉 〈cos φk sinφk′〉

= 0 (2.6)

15



2.1 Statistics of Gaussian Speckle STATISTICAL PROPERTIES OF SPECKLE PATTERNS

Since the central limit theorem is satisfied, Ar and Ai become asymptotically Gaussian as N → ∞. The

PDF of the real and imaginary parts can be given by [3]

p (Ar, Ai) =
1

2πσ2
exp

(
−A2

r + A2
i

2σ2

)
(2.7)

where

σ2 = lim
N→∞

1
N

N∑

k=1

〈
A2

k

〉

2
(2.8)

The speckle following this PDF is called Gaussian speckle. As mentioned before, for low resolution imaging

data, the images of random rough surfaces tend to have the statistics of Gaussian speckle.

2.1.3 Phase and Intensity Distributions

In this subsection, we will derive the PDFs of the speckle phase and intensity. The intensity and phase are

given by

I = A2
r + A2

i (2.9)

φ = arctan (Ai/Ar) (2.10)

respectively. Their joint PDF can be expressed by transformation (2.7)

p (Ar, Ai) = p (I, φ) J

(
I, φ

Ar, Ai

)
(2.11)

where J is the Jacobian of the transformation, which is defined by [5]

J

(
I, φ

Ar, Ai

)
=

∣∣∣∣∣∣∣
∂I/∂Ar ∂I/∂Ai

∂φ/∂Ar ∂φ/∂Ai

∣∣∣∣∣∣∣
(2.12)

In orthogonal coordinate, the relations

Ar =
√

I cos φ

Ai =
√

I sinφ (2.13)
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are satisfied. By substituting (2.7) in (2.11), we get

p (I, φ) =
1

4πσ2
exp

(
− I

2σ2

)
rect

(
φ

2π

)
: I ≥ 0 (2.14)

The marginal density function of the phase is deduced from

p (φ) =
∫ ∞

0

p (I, φ) dI

=
1
2π

rect
(

φ

2π

)
(2.15)

Similarly, the marginal density function of the intensity is given by

p (I) =
∫ 2π

0

p (I, φ) dφ

=
1

2σ2
exp

(
− I

2σ2

)
(2.16)

The nth moment of speckle intensity is defined as

〈In〉 =
∫ ∞

0

Inp (I) dI

= n!
(
2σ2

)n
(2.17)

Then the variance can be deduced as

σ2
I =

〈
I2

〉− 〈I〉2

= 2
(
2σ2

)2 − (
2σ2

)2

= 〈I〉2 (2.18)

As can be seen from equation (2.18), the standard deviation σI of speckle intensity is equal to the mean

intensity.

Substituting equation (2.17) with n = 1 in (2.16), we can get

p (I) =
1
〈I〉 exp

(
− I

〈I〉
)

(2.19)
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By changing intensity into amplitude,

p (|A|) =
2|A|
〈|A|2〉 exp

(
− |A|2
〈|A|2〉

)
(2.20)

Equation (2.20) is known as the Rayleigh distribution.

2.1.4 Simulation of Gaussian Speckle

To develop and test algorithms, simulation can be a useful technique, in which the parameters can be changed

as we wish. Gaussian speckle is simulated in this subsection.

There are several ways to simulate Gaussian distributed clutter, including, for example, Monte Carlo

method [5], or analytically solving some distributions by calculating the inverse function. Furthermore, the

Rayleigh and negative exponential distributions can be formed based on the random walk [3]. In this study,

the “random walk” approach is used.

Fig.2.2 shows simulation results. In (b) and (c), the amplitude and intensity are normalized by the mean

intensity. As can be seen, the distributions of the simulated data are in good agreement with the theoretical

values.

2.1.5 Limitations of Gaussian Distribution

Gaussian speckle is formed based on the assumption that there exist more than 5-8 randomly distributed

scatterers in a resolution cell. In real situations, however, the number of scatterers N may be small because

of very fine spatial resolution of the imaging system. A small number of scatterers within a resolution cell

lead to speckle images which do not obey Gaussian statistics. Non-Gaussian speckle may also be formed

by many scatterers, but the amplitudes are correlated, varying slowly within a resolution cell. In order to

describe such non-Gaussian fluctuations, various statistical models are introduced, and 4 frequently used

models are introduced in the following section.

2.2 Statistics of Non-Gaussian Speckle

The non-Gaussian distributions of interest are the log-normal, gamma, Weibull and K-distribution. These

distribution functions are often used in the fields of optics, acoustics and radars. With rapid advance of the

radar technology, the spatial resolution is increased considerably. The most of airborne SARs today have

resolution of order of or smaller than a meter or two, and they can distinguish the structures of scattering
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Figure 2.2: Simulated Gaussian speckle and its distributions; (a) is the speckle amplitude image; (b) shows the
amplitude distribution and Rayleigh distribution; (c) shows the intensity distribution and negative exponential dis-
tribution; (d) shows the phase distribution and the uniform distribution. In (b), (c) and (d), the squares denote the
simulated data, while the theoretical distributions are shown by the solid curves.

objects. These structures appear as “texture” in SAR images. To describe these non-Gaussian texture, it

is, of course, better to used statistical models of multiple parameters instead of a single parameter. On the

other hand, models of a single parameter is attractive for its simplicity. The log-normal and Weibull are the

distributions with two parameters that have been widely applied, for example, to land clutter of built up

areas and sea clutter [17], [20], [79].

The log-normal distribution is defined by

P (x) =
1

x
√

2πVar

exp
[
− (lnx− µ)2

2Var

]
(2.21)

where x is a generic observable, and µ and Var are the mean and variance of lnx. The expected value and

nth normalized moment of log-normal distribution are given respectively by

〈x〉 = exp
[
µ +

Var

2

]

x(n) =
〈xn〉
〈x〉n
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= exp
[
n(n− 1)

Var

2

]
(2.22)

The disadvantage of log-normal distribution is that it always has a poor performance to describe intensity

clutter, although it is often used to represent areas with strong spatial variation.

The Weibull distribution is given by

P (x) =
cxc−1

bc
exp

[
−

(x

b

)c]
(2.23)

where b is a scaling parameter, and c is the shape parameter. The mean and nth normalized moment of this

distribution are

〈x〉 = bΓ
(

1 +
1
c

)

x(n) =
Γ (1 + n/c)
Γn (1 + 1/c)

(2.24)

when c = 1 and c = 2, the Weibull distribution becomes identical to a negative exponential and a Rayleigh

PDF respectively. Fig.2.3 shows the Weibull distribution for several different shape parameters.

For radar images, the following product model can be used.

I = σn (2.25)

where I is the observed intensity, σ is the underlying RCS, and n is multiplicative noise. The RCS and noise

are statistically independent to each other. For intensity image, the PDF of the noise contribution n is

P (n) = exp (−n) (2.26)

In the previous studies on speckle over sea surface, Ward [19] found that the backscatter from swells of

a large spatial scale followed the gamma distribution given by

P (σ) =
(

ν

〈σ〉
)ν

σν−1

Γ(ν)
exp

[
− νσ

〈σ〉
]

(2.27)

where ν is order parameter, and the moments are given by

〈σn〉 =
( 〈σ〉

ν

)n Γ(n + ν)
Γ(ν)

(2.28)
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By combing the noise PDF with the gamma PDF, the PDF of the resultant image intensity is given by [16]

P (I) =
∫ ∞

0

P (I | σ)P (σ)dσ

=
2

Γ(ν)

(
ν

〈I〉
)(1+ν)/2

× I(ν−1)/2Kν−1

[
2

(
νI

〈I〉
)1/2

]
(2.29)

where Kν−1[·] is the modified Bessel function of order ν − 1. The normalized nth moments are given by

〈In〉
〈I〉n = Γ(1 + n)

Γ(ν + n)
νnΓ(ν)

(2.30)

It can be seen that the normalized variance is
〈
I2

〉
/ 〈I〉2 = 1 + 2/ν. The order parameter ν which fits best

to data can be estimated by using this relation.

From the relation A =
√

I, the amplitude PDF can be derived, which also follows the K-distribution

given by

P (A) =
∫ ∞

0

P (A|σ)P (σ)dσ

=
4

Γ(ν)

(
ν

〈I〉
)(1+ν)/2

×AνKν−1

[
2A

(
ν

〈I〉
)1/2

]
(2.31)

and the moments are:

〈An〉 = 〈I〉n/2 Γ(1 + n/2)
Γ(ν + n/2)
νn/2Γ(ν)

(2.32)

The normalized amplitude variance can be deduced from equation (2.32) when n = 2.

K-distribution can also be deduced from another view aspect: assuming that the number of scatterers

in each resolution cell is a variable which follows Poisson distribution; Further, considering the “expected

number of scatterers” as a variable which obeys gamma distribution, the image is then K-distributed [26].

Moreover, as discussed in previous section, if the number of scatterers in each resolution cell is large enough

and approximately constant, the image is then Gaussian distributed.

2.2.1 Simulations of Non-Gaussian Speckle

There are many open literatures describing the simulation of non-Gaussian clutter, such as the memoryless

nonlinear transformation (MNLT) method which provided an easy way by mapping the Gaussian distribution

into non-Gaussian PDFs and then solving the equation numerically [80]. Moreover, Davidson [81] provided
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an excellent work in simulating non-Gaussian clutter. Oliver [16] used a method of convolving a gamma-

distributed clutter with a band-limited function (PSF for example) to produce a K-distributed clutter.

Blacknell [82] presented an approach of using moving average filters to uncorrelated gamma clutter to

produce a correlated K-distributed clutter.

The simulation results are given in Fig.2.3-Fig.2.5. Because the PDF of simulated data and the theoretical

curves cannot be identified, only the true parameters and estimated parameters are given in each figure.

2.3 Parameter Estimation

Parameter estimation plays a very important role in model fitting, and there are three frequently used

methods: maximum likelihood method (MLE), least square method (LSM), and moment method (MOM)

to estimate the parameters of Weibull and K-distributions.

2.3.1 Maximum Likelihood

The method of maximum likelihood is a popular approach of probability analysis for parameter estimation.

In this section, likelihood method is introduced first, and MLE is then described, followed by parameter

estimation for the Weibull and K-distribution.

Likelihood Method

In the likelihood method, given a parameter vector θ, while x = (x1, x2, ..., xn) denotes data set, the likelihood

function of θ is the same function as the joint probability distribution p(x, θ) of x and θ. That is to say, we

can write the joint density as [25]

L =
n∏

i=1

pxi(xi, θ) (2.33)

With x fixed to the data set and p(x, θ) is a function of θ, then p(x, θ) can be called the likelihood function

of θ. Usually, likelihood function is denoted as L(θ) = p(x, θ). In fact, L(θ) is also a function of x, because

x is the samples from the measurements.

When

L(θ1) > L(θ2) (2.34)

We can say θ1 is better estimation then θ2, because it has a larger probability for certain x.
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Figure 2.3: Simulated Weibull distributed clutter and PDF with different parameters.
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Figure 2.4: Simulated gamma distributed clutter and PDF with different parameters.
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Maximum Likelihood

We say θ̂ is a maximum likelihood estimate of θ ∈ Θ, if:

L(θ̂) = max
θ∈Θ

L(θ) (2.35)

That is to say, MLE is given by maximizing the likelihood function. To get a MLE parameter, for one

parameter case, we can differentiate the likelihood equation, that is,

d

dθ
L(θ) = 0 (2.36)

and also for multi-parameter case,

∂ lnL

∂θ1
= 0

∂ lnL

∂θ2
= 0

...

∂ lnL

∂θn
= 0 (2.37)

As given in equation (2.37), for multi-parameter equation, to simplify the operation, logarithm of the

equation is used to take partial differentiation.

MLE for Weibull and K-Distribution

Consider the Weibull PDF given in equation (2.23). The likelihood function is [83]

L(x1, . . . , xn; c, b) =
n∏

i=1

c

b

(xi

b

)c−1

exp
(
−

(xi

b

)c)
(2.38)

On taking the logarithms of equation (2.38), differentiating with respect to b and c in turn and equating to

zero, the estimating equations can be obtained as

∂ lnL

∂c
=

n

c
+

n∑

i=1

lnxi − 1
b

n∑

i=1

xb
i lnxi = 0 (2.39)

∂ lnL

∂b
= −n

b
+

1
b2

n∑

i=1

xb
i = 0 (2.40)
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By combining above equation (2.39) and (2.40) and eliminating b, we get

∑n
i=1 xc

i lnxi∑n
i=1 xc

i

− 1
c
− 1

n

n∑

i=1

lnxi = 0 (2.41)

To solve this equation, Newton-Raphson method is used. Once c is determined, b can be estimated using by

the following equation.

b =
∑n

i=1 xc
i

n
(2.42)

The PDF of K-distribution is given by equation (2.31), by taking the logarithm of the PDF, we can get

[25]

lnL = −n ln Γ(ν) + n

(
ν + 1

2

)
ln

(
ν

〈I〉
)

+ ν
n∑

i=1

lnAi +
n∑

i=1

lnKν−1

[
2Ai

(
ν

〈I〉
)1/2

]
(2.43)

It is difficult to calculate the differentiation of the modified Bessel function, so that a different approach is

adopted. In this approach, the value of ν is changed step by step within one large range, and hence the

largest value of equation (2.43) can be easily obtained. Although this algorithm has low computing efficiency,

it is simple and works well.

Introduction of Newton-Raphson Method

Given a complicated equation y = f(x), it is generally difficult to finding the root using normal methods

such as solving the equation. However, we can use a discrete method known as the Newton-Raphson. In this

method, the value of x is given by the previous known value of x subtracted by the function itself normalized

by its derivative as follows.

xn+1 = xn − f(xn)
f ′xn

(2.44)

where, xn is the current known x value, f(xn) denotes the value of the function at xn, and f ′(xn) is the

derivative at xn, while xn+1 represents the next x value that you are trying to find. To end this loop, you

have to set a certain condition, for example xn+1 − xn ≤ 0.001.
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2.3.2 Least Square

Least square method is a commonly used method in finding a regression curve to fit best to a given set of

points by minimizing the sum of the squares of the offset of the points from the curve. The sum of the

squares of the offsets is used instead of the offset absolute values because this allows the residuals to be

treated as a continuous differentiable quantity. Here we only give the final result of this method for the

Weibull distribution, since the detailed derivation can be found in any open literature.

c =

{
n ·∑n

i=1 (lnxi) ·
(
ln

{
ln

[
1

1− i
n+1

]})}
−

{∑n
i=1 ln

(
ln

[
1

1− i
n+1

])
·∑n

i=1 lnxi

}

{n ·∑n
i=1(lnxi)2} − {

∑n
i=1 (lnxi)}2

b = exp
(
Y − x/c

)

x =
1
n

n∑

i=1

ln

[
ln

(
1

1− i
n+1

)]

Y =
1
n

n∑

i=1

lnxi

(2.45)

where b and c are estimated scaling parameter and shape parameter of Weibull distribution, respectively. x

and Y are used to simply the equation.

2.3.3 Moment Fit

The approach of moment is another technique commonly used in the field of parameter estimation. However,

it requires a large sample number to obtain an accurate result. For a set of data x1, x2, . . . , xn, which obey

the distribution given by p(x), the nth moment can be given by [5]

〈xn〉 =
∫ ∞

0

xnp(x)dx (2.46)

or, in a discrete form,

〈xn
k 〉 =

∞∑
0

xn
kPn, k = 1, 2, . . . (2.47)

If the sample number is large (> 104, for example), the moment approach is a good method to estimate the

parameters of the Weibull and K-distributions. The results have been already given in equation (2.24) and

equation (2.30) for the Weibull and K-distribution respectively.
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2.4 Summary

Gaussian speckle is formed when a resolution cell of an imaging system contains many coherent contributions

from randomly distributed scatterers. This process of speckle formation can be considered as a result of

the random walk in the complex plan, that is, the resultant vector is the summation of many random

steps which have random length (amplitude) and directions (phases). Due to the summation of random

vectors, the phase of image complex amplitude is uniformly distributed in [0, 2π). The amplitude of such

Gaussian speckle is shown to obey the Rayleigh distribution, and the intensity and phase obey negative

exponential and uniform distributions respectively. This Gaussian speckle is often seen in the images of

uniformly distributed surfaces such as dense rainforests and flat grass fields produced by SAR systems of

coarse resolution (order of or larger that 10 m).

With rapid advance of SAR technology in recent years, the resolving power of SAR has improved con-

siderably, and the most of airborne SARs today have resolution capability in the order of or less than a few

meters. Consequently, there appear occasions that a single pixel contains small number of scattering ele-

ments, and hence the clutter images no longer obey Gaussian statistics. To model such high-resolution SAR

clutter, non-Gaussian PDFs are introduced. Among various non-Gaussian models, log-normal, Weibull,

gamma and K-distributions are frequently used PDFs. The log-normal distribution has two parameters,

mean and variance of the logarithm of image values. The Weibull distribution also has two parameters

called the shape parameter and scattering parameter, and the Weibull distribution becomes identical to the

negative exponential and Rayleigh PDFs when the shape parameter is equal to 1 and 2 respectively. Thus,

the Weibull distribution is a versatile PDF and it has been widely used in the fields of optics, acoustics

and radars. The K-distribution can be generated by the product of the gamma distributed speckle and

the multiplicative noise. The K-distribution becomes the Rayleigh distribution when its order parameter

increases to infinity.

Speckle simulation plays an important role in developing image process algorithm, filtering and image

analyses. In this chapter, Gaussian and non-Gaussian speckle are simulated to illustrate their statistical

properties. In order fit a model to actual image data, techniques of parameter estimation are discussed,

including MLE, least square, and MOM methods.
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Chapter 3

SAR Fundamentals

In order to apply the statistical properties of speckle to analysis of and information extraction from SAR

images, SAR image forming processes are introduced in this chapter. SAR is an imaging radar which

produces high-resolution two-dimensional radar images by synthesizing a large aperture in the azimuth

(along-track) direction using a small antenna on board of an aircraft or satellite, and by using a pulse

compression technique in the range direction [16], [29]-[33].

Attempts to acquire information on natural resources in the global scale from SAR data started since the

launch of the civil SAR system, SESAT-SAR in 1978. Since then, abundance of experiments and research

have been carried out and much progress has been made in the fundamental research, algorithm development,

image analysis and applications to many fields of geoscience. Synthetic aperture processing is a very mature

technique now, but extracting information from SAR data and true practical utilization for benefiting our

society are still in developing stage.

In this chapter, radar system parameters are introduced first. Then the techniques of pulse compression

and aperture synthesis used in SAR system to achieve high resolution are presented, followed by multilook

processing. The image forming processes of a point target are extended to a convolution model to describe

the images of extended scenes.

3.1 SAR System Parameters

SAR data are complex images produced from the return echoes interacted between microwave and targets,

and as such they are dependent on the system parameters and target characteristics. To extract information

from SAR data, the system parameters should be understood first. The common system parameters are

described in the following subsections.
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3.1.1 Geometry of SAR System

Fig.3.1 shows the basic geometry of a radar system [16], [29], [30]. A platform at an altitude h carries a

side-looking radar antenna that illuminates the Earth’s surface with pulses of electromagnetic radiation.

The direction of platform traveling is known as the azimuth direction, and the slant-range direction is from

the antenna pointing to the target, while ground-range direction is the slant-range direction projected on the

Earth’s surface. The parameter R0 is the shortest distance from the radar to the target and it is precisely

measured from the time interval between pulse transmission and reception. The minimum and maximum

ranges are called near-range and far-range respectively. Swath width is the image width corresponding to

the width from the near-range to far-range. The incidence angle θi is defined as the angle between the

slant-range direction and a direction perpendicular to the Earth’s surface from the platform. The incidence

angle varies depending on the image position, and the generally quoted incidence angle (nominal incidence

angle) is that at the center of the image swath. The incidence angle is an important parameter for its impact

on the radar backscatter and geometrical effects.
slant-range 
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   direction 
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platform

azimuth direction
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o
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0
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Figure 3.1: Illustration of SAR geometry.
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3.1.2 Signal Parameters

There are three important parameters that describe radar transmitted pulses characteristics, and they are

pulse length τp, bandwidth B and pulse repetition frequency (PRF) [16]. Since the pulse transmission and

reception times cannot overlap, the swath width is restricted by the PRF as

slant-range swath width <
c

2× PRF
(3.1)

must hold. The other important signal parameter is wavelength λ , which is related to the radar carrier

frequency f0 (in Hz) by

λf0 = c (3.2)

where c is the speed of light.

Table 3.1 lists the radar bands and corresponding frequencies. Since the interaction between targets and

microwave is dependent strongly on the wavelength, a suitable wavelength is selected for a given purpose.

For example, longer wavelengths, such as L- or P-band are more useful to study forests than shorter X- and

C-bands, because the radio wave of longer wavelengths can penetrate deeper in the forest interior, providing

more information on the forests. Further, the surface roughness is, to a given wavelength, is “effective”

roughness, that is, it is defined relative to the radar wavelength. For example, for a surface of average

undulation of 5 cm is considered as “rough” for X-band microwave of wavelength 3 cm, while it is “smooth”

for L-band microwave of wavelength 25 cm. Thus, a same surface may lead to different appearances in radar

images.

Table 3.1: Common frequency bands for radar systems (modified from radar handbook [33]).

Radar band Frequency - f0 Used in ITU region 2
VHF 30∼ 300 MHz 138∼144 MHz

216∼225 MHz
UHF 300∼ 1000 MHz 420∼450 MHz

890∼942 MHz
L 1000∼ 2000 MHz 1215∼1400 MHz
S 2000∼ 4000 MHz 2300∼2500 MHz

2700∼3700 MHz
C 4000∼ 8000 MHz 5250∼5925 MHz
X 8000∼ 12000 MHz 8500∼10680 MHz
Ku 12∼ 18 GHz 13.4∼14.0 GHz

15.7∼17.7 GHz
K 18∼ 27 GHz 24.05∼24.25 GHz
Ka 27∼ 40 GHz 33.4∼36.0GHz
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3.2 SAR Imaging of Point Target

3.2.1 Real Aperture Radar

The most imaging radars, including real aperture radars (RAR) and SAR, achieve high resolution in the

range direction by using the pulse compression technique. Before the pulse compression technique was

invented, conventional rectangular pulses without frequency modulation were used to produce radar images.

In this section, the processes through which a point spread function (PSF) and resolution in the range

direction are first described.

Consider a side-looking radar transmitting a square pulse of width τp toward a point scatterer “A” and

“B” separated by a distance ∆Y on the ground-range direction as shown in Fig.3.2. The images of the point

scatterers, in principle, take the same rectangular form but with reduced amplitude. The image position is

the time taken for the pulse to travel the two-way distance between the antenna and the scatterer, and it is

given by 2RA/c for the scatterer “A” and 2RB/c for the scatterer “B”, where RA and RB are the slant-range

distances from the antenna to the scatterer “A” and “B” respectively, and “c” is the speed of light. If the

two point images are separated by the time longer than the pulse width, they can be distinguished. If

they overlap, then the two point scatterers cannot be resolved. The time resolution is defined as the time

duration when the two point images are just separated. This time resolution is the pulse duration τp, and

the ground-range spatial resolution can be deduced from the relation 2∆Y sin θi/c = τp, where θi is the

incidence angle as illustrated in Fig.3.2. Thus, the spatial resolution in the ground-range direction is defined

as

∆Y =
cτp

2 sin θi
(3.3)

For example, a RAR with pulse duration τp = 0.1µs operating at an incidence angle θi = 30◦ has the

resolution ∆Y = 30 m, and ∆Y = 3 m with τp = 0.01µs. For radars with square pulses, shorter the

pulse duration is, finer the resolution becomes. The resolution also becomes coarse as the incidence angle

decreases, and ∆Y →∞ in the limit of θi → 0. This is the reason why the imaging radar is side-looking.

In the azimuth direction, the resolution is determined by the beam width. As shown in Fig.3.3, the signal

from the scatterer “A” is just separated from the signal from “B” is when the two scatterers are separated

by the distance over a half the azimuth beam width L0. The azimuth resolution of real aperture radars is

defined by

∆X = L0/2 (3.4)
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Figure 3.2: Illustrating range imaging process and resolution of a conventional radar with square pulses.

Figure 3.3: Illustrating azimuth resolution of a conventional radar.

For the JERS-1 SAR, the antenna length in azimuth is 12 m, wavelength λ = 0.235 m, the slant-range

distance R = 750 km, the azimuth resolution becomes ∆X ' 15 km if it is operated as a RAR.

Thus, for real aperture radars operating with square pulses, finer range resolution may be achieved by

using pulses of shorter duration. For spaceborne systems, however, the available electric power is limited and

it is difficult to transmit series of short pulses of high power to achieve desirable resolution. The overcome

difficulty, a technique known as “pulse compression” [84] is used to obtain fine resolution. In this technique,
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a sequence of frequency modulated (FM) or “chirp” pulses of long duration is used and the received signals

are suitably processed to yield fine range resolution. The most of imaging radars today employ the pulse

compression technique, including RAR and SAR.

In the azimuth direction, fairly fine resolution can be achieved for airborne radars by using a long antenna,

but spaceborne radars such as JERS-1 SAR cannot be operated as RAR because of the limitation to the

antenna size and hence very coarse resolution. In order to obtain fine azimuth resolution, the technique

known as “aperture synthesis” [29] is adopted for the modern airborne and spaceborne radars. Indeed, the

name “synthetic aperture radar” stems from this technique of synthesizing an imaginary large aperture using

a small antenna. In the following, the techniques of pulse compression in the range direction and aperture

synthesis in the azimuth direction are described in detail.

3.2.2 SAR Signal and Matched Filtering in Range Direction

In SAR systems, the transmitted microwave has the form [16], [29], [30]

st(τ) = s0 exp(iωcτ +iατ2) : |τ | ≤ τp/2 (3.5)

where s0 denotes the amplitude, ωc denotes the centre radian frequency, α is the FM (chirp) rate, and τ is

the time variable in the slant-range direction. Without a loss of generality, a complex expression is used in

equation (3.5). In practice, the transmitted and received pulses are in a real form, but after pulse reception

the real signal is transformed into a complex signal by filtering. It should be noted that in many fields

of science and engineering, complex expressions are adopted and real component is taken from the final

expression because of the mathematical complexity of using trigonometric functions. The instantaneous

frequency can be derived from

f(τ) =
1
2π

d(ωcτ +ατ2)
dt

= fc +
ατ

π
(3.6)

and the signal bandwidth can be given as

BR = |α|τp/π (3.7)

The pulse given by equation (3.6) is known as FM pulse, and it is also referred to as chirp pulse. The

frequency of this chirp pulse varies linearly in time with the gradient α/π. Fig.3.4 illustrates the FM pulse
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f (τ) = fc+ατ/π

st(τ)=s0 exp(iωcτ+iατ2)

-τp/2 ττp/20
(a)

(b)
τp/2 τ

-τp/2

0

Figure 3.4: Illustrating (a) the real component of the phase of a FM pulse and (b) instantaneous frequency with
ω0 = 0.

when the center frequency is 0 Hz.

The received signal from a point scatterer takes a same form as the transmitted signal but with reduced

amplitude. The signal received from a point scatterer at the distance R0 can be written as

s(τ) = S0s(τ−2R0/c)

= S0rect ((τ−2R0/c)/τp) exp
(
iωc(τ−2R0/c)+iα(τ−2R0/c)2

)
(3.8)

where 2R0/c is the two-way delay time, and

rect(
τ

τp
) = 1 : when− τp

2
≤ t ≤ τp

2

0 : otherwise (3.9)

The term exp(−iωcτ) is mixed down to zero at the pre-processing stage, so that the received signal becomes

s(τ) = S0s(τ−2R0/c)
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= S0rect ((τ−2R0)/τp) exp
(−i2kR0+iα(τ−2R0/c)2

)
(3.10)

where k = 2π/λ is the wavenumber. The received signal is then correlated with a reference signal which is

a complex conjugate of the transmitted signal,

sr(τ)=rect(τ/τp) exp(−iατ2) (3.11)

The complex amplitude of the point image is give by the correlation integral

sR(τ ′)=
∫ ∞

−∞
sr(τ ′+τ)sr(τ)dτ (3.12)

where τ ′ is the time variable in the image plane. Because the phase of the reference signal is “matched”

to that of the transmitted signal, the correlation process of equation (3.12) is called “matched filtering” in

time domain. In real SAR processors, the matched filtering is carried out in the frequency domain, i.e., the

received signal is Fourier transformed, multiplied by the reference spectrum which is the Fourier transform

of the reference signal, and finally the resultant image spectrum is inverse Fourier transformed to produce

the image in time (or equivalent space) domain.

Equation (3.12) for τ > 0 can be evaluated readily to obtain [30]

sR(τ ′)=S0 exp(−i2kR0)(τp−|τ ′−2R0/c|)sinc (α(τ ′−2R0/c)(τp−|τ ′−2R0/c|)) (3.13)

where sinc(z) = sin(z)/z. The image coordinate of equation (3.13) is centered at the antenna (the time of

pulse transmission). It is convenient to change the center to the center of the slant-range as

τR =τ ′−2R0/c (3.14)

Equation (3.13) can then be written in a simple form

sR(τR)=S0 exp(−i2kR0)(τp−|τR|)sinc (ατR(τp−|τR|)) (3.15)

This is the complex amplitude of a point image, called the point spread function (PSF) or impulse response

function (IRF). The intensity PSF is given by

|sR(τR)|2 = |S0|2(τp−|τR|)2sinc2 (ατR(τp−|τR|)) (3.16)
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Fig.3.5 shows the intensity PSF.
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Figure 3.5: Intensity point spread function in the range direction.

3.2.3 Range Resolution

The generally accepted definition for SAR resolution is the -3 dB criterion for two-point resolution. The

two-point resolution defines the ability of distinguishing the images of two neighbouring point scatterers.

According to the -3 dB criterion, the size of the resolution cell ∆τR is defined as the distance between two

PSFs when the peak of the sum of the two PSFs equals the peak value of a single PSF. In equation (3.16),

this distance corresponds to that from the center of the PSF to the position where the PSF has the -3 dB

value if the peak value is set to 0 dB. The Rayleigh criterion defines the two point resolution as the distance

between the two PSFs when the center of a PSF is at the first zero of the other PSF. In practice, the -3 dB

resolution is often approximately by the Rayleigh resolution. The resolution cell ∆τR based on the Rayleigh

criterion can be deduced by solving

α∆τR(τp−|∆τR|)=π (3.17)

and assuming τpBR ¿ 1 (BR = |α|τp/π). The result is

∆τR =1/BR (3.18)

and in terms of the ground-range variable Y in the image plane (Y = cτR/(2 sin θi)), the range PSF is

expressed as

|sR(Y )|2 = |S0|2sinc2(πY/∆Y ) (3.19)
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and the resolution cell is defined by

∆Y =
πc

2|α|τp sin θi
(3.20)

For the JERS-1 SAR, the range resolution cell is 16 m. For the airborne Pi-SAR, the range resolution is 1.5

m and 3 m at X-band and L-band respectively.

3.2.4 Aperture Synthesis in Azimuth Direction

In the preceding subsection, the range PSF is derived for a point scatterer at a fixed range R0. However,

the SAR antenna transmits and receives series of pulses as it travels in the azimuth direction. As shown in

Fig.3.6, consider that the antenna on board of the satellite or aircraft platform at an arbitrary azimuth time

t transmits and receives signals from a point scatterer at the distance R, where va is the platform velocity.

The distance R0 is the slant-range distance when the antenna is nearest to the scatterer.

The recieved signal given by equation (3.8) is

s(τ)=S0rect ((τ−2R0)/τp) exp
(
iωc(τ−2R0/c)+iα(τ−2R0/c)2

)
(3.21)

The last exponential term is used to process the range component of the signal from a scatterer at a fixed

position R0. For azimuth aperture synthesis, the azimuth time dependence of the first exponential term of

equation (3.21) is used. The azimuth component of the received signal can be written as

sr(t)=S0 exp(−i2kR(t)) (3.22)

where k = 2π/λ = ωc/c as before, and unnecessary terms have all been absorbed in S0. Note that the

received signal is now a function of t. The slant-range distance R(t) can be deduced from

R(t)=(R2
0+x2)1/2 (3.23)

where the azimuth spatial variable x is given by

x = vat (3.24)

Here, we assume the Earth is flat. This assumption is valid for airborne SARs, but it is not for spaceborne
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R
0

travel sp
eed va

x

y
R

t=t

platform

t=0

x, y

Figure 3.6: Illustrating a geometry of a point scatterer and the platform at different azimuth times.

SARs as described in [30]. In general, R À x then equation (3.23) can be approximated as

R(t) = [R2
0 + x2]1/2

≈ R0

[
1 +

x2

2R2
0

]1/2

= R0

[
1 +

(vat)2

2R2
0

]1/2

(3.25)

The recieved signal then becomes

s(t)=S0 exp
(
−i2kR0−ik

(vat)2

R0

)
(3.26)

Then the instantaneous frequency of the return signal can be given by differentiating the Doppler phase

φ(t) = −2kr(t) as

f(t) =
1
2π

dφ(t)
dt

=
2v2

a

λR0
t

=
β

π
t (3.27)
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where β is the Doppler constant, and β/π is the Doppler rate given by

β = −2πv2
a

λR0
(3.28)

In a same way as for the range processing, the image complex amplitude in the azimuth direction is given

by correlating the received signal of equation (3.26) with a reference signal sr(t). This reference signal is the

complex conjugate of the received signal defined by

sr(t)= rect(t/τA) exp
(
ik

(vat)2

R0

)
(3.29)

where the constant term is ignored, and

rect(
t

τA
) = 1 : when− τA

2
≤ t ≤ τA

2

0 : otherwise (3.30)

Equation (3.30) is the weighting function for the synthesized aperture, and τA is the integration time taken

to synthesize the aperture. The time of aperture synthesis is related to the synthetic aperture length LA by

LA =vaτA (3.31)

The correlation integral is

sA(t′)=
∫ ∞

−∞
s(t′+t)sr(t) dt (3.32)

where t′ is the time variable in the image plane. The integral can easily be evaluated to yield the complex

PSF in the azimuth direction of the form

sA(t′) = S0 exp
(−iβt′2

)
sinc (πBDt′) (3.33)

where S0 is a constant, and BD is effective Doppler bandwidth which is given by

BD = |β|τA/π

=
2v2

a

λR0
τA (3.34)
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The intensity PSF is

|sA(t′)|2 = |S0|2sinc2 (πBDt′) (3.35)

3.2.5 Azimuth resolution

The intensity PSF can be expressed in terms of the image spatial variable X = vat′ in the azimuth direction

as

|sA(X)|2 = |S0|2sinc2 (πX/∆X) (3.36)

where ∆X is the spatial resolution cell defined as

∆X =
λR0

2LA
(3.37)

and the time resolution can be given by

∆tA =
1

BD
(3.38)

Further, as a rule of thumb, the angle of -3 dB beam width of an antenna with length DA is

Ψ ' λ/DA (3.39)

the corresponding distance or the synthetic aperture length can be given by

vaτA = LA = λR0/DA (3.40)

by substituting equation (3.40) into (3.37), the azimuth resolution can also be given by

Ra =
DA

2
(3.41)

Thus, in principle, the nominal azimuth resolution cell is half the azimuth antenna length. The antenna

length of JERS-1 SAR is 12.0 m, and therefore the resolution cell is 6.0 m. The same resolution value can

be obtained by substituting the radar parameters into equation (3.37).
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3.3 Examples of SAR Systems Parameters

The successful launch of SEASAT in 1978 opened a spaceborne SAR era, and many satellite SARs were

launched providing abundant information of the Earth. Table 3.2 lists several satellite SAR systems param-

eters. In this thesis, among the satellite SAR systems, JERS-1 SAR and RADARSAT-1 data are used to

verify the theory proposed in chapter 6.

Table 3.2: Examples of system parameters of spaceborne SARs (modified from [30]).

Satellite SEASAT JERS-1 RADARSAT-1 ENVISAT ALOS
Country/Organization NASA Japan Canada ESA Japan
Launch year 1978 1992 1995 2002 2006
Altitude (km) 790 568 800 800 691
Az antenna length (m) 10.7 12.0 15.0 10.0 8.9
Rg antenna length (m) 2.2 2.2 1.6 1.3 3.1
Center frequency (GHz) 1.275 1.275 5.3 5.331 1.27
Wavelength (cm) 23.5 23.5 5.7 5.6 23.6
Band L L C C L
Polarization HH HH HH VV or HH full
Off-nadir angle 23◦ 35◦ 20◦-50◦ 14◦-45◦ 21◦, 34◦, 43◦

Rg resolution (m) 25 18 30 30 7-100
Swath width (km) 100 75 45-500 100-400 20-350

In addition to spaceborne SAR systems, airborne SARs are developed by many countries. Spaceborne

SARs are useful for covering large areas (order of 100 km) with intermediate resolution (order of 6-20 m),

while airborne SARs can cover smaller areas (order of 10 km swath) with higher resolution (order of 1 m). The

airborne Pi-SAR data are also used in this thesis and applied to estimate forest parameters. The Pi-SAR was

developed jointly by NICT (National Institute of Information and Communications Technology) and JAXA

(Japan Aerospace Exploration Agency) [59]. It is equipped with fully polarimetric and interferometric X-

band (frequency 9.55 GHz, wavelength 3.14 cm), and polarimetric L-band (frequency 1.27 GHz, wavelength

23.6 cm) antennas, capable of producing imagery with nominal spatial resolution of 1.5× 1.5 m at X-band

and 3× 3 m at L-band for 4 looks in the azimuth direction as listed in Table 3.2 .

3.4 Multilook Processing

3.4.1 Concept of Multilook Processing

In the azimuth imaging process described in the previous section, the synthetic aperture length is taken as a

maximum available length, and the image is termed as a “single-look” or “full-look” image. As a result, the
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resolution in the azimuth direction is generally finer than that in the ground-range direction. For example

the resolution cell of JERS-1 SAR is 18 m in the range direction, while the full-look azimuth resolution cell

is 6 m. The single-look image may be inconvenient for visual display and image analysis. To equalize the

azimuth resolution to range resolution, a technique called “multilook processing” is used. In this processing

scheme, a full synthetic aperture is divided into two or more sub-apertures and the corresponding sub-images

are produced individually. Because the full aperture is divided, the resolution is reduced by the same factor,

e.g., the resolution cell of N-look sub-images is 1/N times the full-look resolution.

Other purpose of multilook processing is speckle reduction. Since the sub-images are produced by non-

overlapping sub-apertures independently, speckle is uncorrelated between looks. Addition of multilook im-

ages on an intensity basis, therefore, reduces speckle noise by the factor 1/
√

N . Because N-look images

require processing the raw SAR data by N times, the computing time is longer than the single-look process-

ing. The same effects can be obtained by averaging azimuth pixels in a single-look intensity image. This

multilook by “pixel averaging” is adopted for general SAR image formats. Multilook processing also affects

the statistical properties of SAR images. The amplitude and intensity PDFs of K-distribution of multilook

processed image are given in Appendix B. The effects on speckle reduction and resolution degradation are

same for both the processing schemes only for stationary surfaces. If the surface is moving, then the multi-

look images may differ from the speckle-averaged images. To distinguish the two, multilook processing by

sub-apertures is called “split-look” processing. In this thesis, multilook or split-look processing is used to

examine the inter-look speckle cross-correlation in the images of dynamic ocean surface, and therefore, it is

useful to summarise the imaging process of a point scatterer by multilook processing.

3.4.2 Multilook Point Spread Function

For N-look processing, the reference signal is set as

sr(t)=rect[(t− τn)/(τA/N)] exp
(
ik

(vat)2

R0

)
(3.42)

where

rect[(t− τn)/(τA/N)] = 1 : −τA/(2N) ≤ t− τn ≤ τA/(2N)

= 0 : otherwise (3.43)
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In these equations, τn is the center time of look n sub-aperture, given by

τn =
τA

2N
(2n−N − 1) (3.44)

x

y

t=0

t= 
A/2

look 1
look 2

platform direction

t=- 
A/2

point scatterer

Figure 3.7: Illustrating multilook processing by dividing a full synthetic aperture into 2 sub-apertures.

Fig.3.7 is a illustration of 2-look processing, where the raw data in [-τA/2, 0] is selected by the look 1

sub-aperture to form a look 1 image and look 2 image is formed by the raw data in [0, τA/2] selected by the

look 2 sub-aperture. As shown in Fig.3.7, if N = 2 for example, the integration time of each sub-aperture is

τA/2, the center time τn = (τA/4)(2n − 3), and therefore τ1 = −τA/4 and τ2 = τA/4 for look 1 and look 2

respectively.

The PSF of multilook can be deduced by the correlation between the received signal of equation (3.26)

and the sub-reference signal of equation (3.42) in the same way as for the single-look PSF.

s(n)(t′) = S0

∫ τA/(2N)+τn

−τA/(2N)+τn

exp(i2βt′t)dt

= S0 exp(i2βτnt′)sinc(πBDN t′) (3.45)
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where BDN is N-look Doppler bandwidth given by

BDN = (|β|/π)
(τA

N

)

=
2v2

a

λR0

(τA

N

)
(3.46)

and the spatial resolution is

∆XN =
λR0

2va(τA/N)
(3.47)

It can be seen from equation (3.46) and (3.47) that the multilook processing splits the full bandwidth into

equal N pieces, and therefore the spatial resolution N-look image is reduced to 1/N times the resolution of

the single look image.

Fig.3.8 shows simulated single and multilook (2×2, 3×3, 4×4) images. In each image, the lower one is

a speckle image only, and the upper one includes periodic intensity variation. As can be seen, as the look

number increases, the speckle is reduced but at the expense of loss of resolution.

Figure 3.8: Simulated speckle images in different looks.

46



3.5 SAR Imaging of Extended Objects SAR FUNDAMENTALS

3.5 SAR Imaging of Extended Objects

The response of an isolated point target and system resolution were discussed in the previous sections.

We now consider how the two dimensional SAR image is formed, that is, how the backscattered field of a

scattering object is translated into image complex amplitude.

t-x/va
t=0

t=t

r R0

R

H

(0, 0)

(x, y)
ground-range

azimuth

θ0θi

Figure 3.9: Illustrating a point scatterer of height H at a surface position (x, y).

3.5.1 Convolution Model

The image complex amplitude of an extended surface can be regarded as an assembly of many PSFs of

different heights and scattering amplitudes. Let
√

σ(x,R) be the scattering amplitude of a point scatterer

of height H at the surface position (x,R) as in Fig.3.9. Thus, for a continuous scattering surface, the

two-dimensional image complex amplitude is given by the convolution of the two-dimensional PSFs and the

complex backscattered field as

A(t′, τ ′) = A0

∫∫ ∞

−∞

√
σ(x,R) exp(−i2kR)sA(t′ − x/va)sR(τ ′ − 2R/c) dxdR (3.48)

47



3.5 SAR Imaging of Extended Objects SAR FUNDAMENTALS

Figure 3.10: Approximation for the slant-range distance.

where A0 is normalized constant, and

sA(t′ − x/va) = exp(iβ(t′ − x/va)2)sinc(βTA(t′ − x/v − a)) (3.49)

sR(τ ′ − 2R/c) = exp(iα(τ ′ − 2R/c)2)sinc(ατ0(τ ′ − 2R/c)) (3.50)

are the complex PSFs in the azimuth and slant-range directions respectively. It is convenient to express the

image complex amplitude in terms of spatial variables rather than temporal variables. Using the transfor-

mation

X = vat′

Y sin θi = cτ ′/2−R0 (3.51)

the image complex amplitude can be expressed in a simple convolution integral

A(X, Y )=A0

∫∫ ∞

−∞
a(x, y)EAR(X−x, Y −y) dx dy (3.52)

where a is the complex backscattered field

a(x, y)=
√

σ(x, y) exp(iψ(x, y)) (3.53)
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where ψ is the phase that can be approximated as (see Fig.3.10)

ψ(x, y) = −2k[H(x, y) cos θi − y sin θi] (3.54)

and EAR is the two-dimensional PSF defined by

EAR(X, Y )=sA(X)sR(Y ) (3.55)

It should be noted that all unwanted terms are absorbed in the constant term A0. Equation (3.52) is the

fundamental convolution model to describe the SAR image complex amplitude in terms of the backscattered

field.

3.5.2 Image Intensity and Ensemble Average

The image intensity is simply the modulus square of the complex amplitude of equation (3.52) as follows.

I(X, Y ) = |A(X, Y )|2

= I0

∫∫∫∫ ∞

−∞
a(x1, y1)a∗(x2, y2)EAR(X − x1, Y − y1)

·E∗
AR(X − x2, Y − y2) dx1dx2dy1dy2 (3.56)

In practice, the intensity image contains speckle. To describe such randomly fluctuating image intensity,

equation (3.56) is not adequate, and it is convenient to express the image structure by an ensemble average.

The backscattered field can be considered as composed of the deterministic and random components. An

example of the deterministic component is the scattering amplitude and height of large-scale ocean waves,

where “large-scale” implies “large compared with a resolution cell”. The random component arises from

small-scale capillary waves that are distributed randomly in space (and in time). In order to evaluate the

random component statistically, the following assumptions are made.

1 the scattering amplitude
√

σ(x1, y1) and phase ψ(x1, y1) at a position (x1, y1) are statistical independent.

This implies that the phase changes irrespective with the amplitude change.

2 the scattering amplitude
√

σ(x1, y1) and phase ψ(x1, y1) are statistically uncorrelated with
√

σ(x2, y2)

and ψ(x2, y2). This implies that the backscattered field is δ-correlated.

3 there are many randomly distributed scatterers within a resolution cell and phases are uniformly dis-

tributed over [−π, π). This assumption is used to describe speckle formation in the previous chapter.
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The scattering model that satisfies these conditions is known as “(Gaussian) white noise model”.

The ensemble average of the backscattered field is then given by

〈a(x1, y1)a∗(x2, y2)〉=〈
√

σ(x1, y1)
√

σ(x2, y2)〉 δ(x1−x2, y1−y2) (3.57)

The ensemble average of the image intensity is given by

〈I(X, Y )〉=I0

∫∫ ∞

−∞
〈σ(x, y)〉 |EAR(X−x, Y −y)|2 dx dy (3.58)

Thus, the speckle-averaged ensemble average of image intensity is given by the convolution of the ensemble

average of the backscatter radar cross section, σ, with the two-dimensional intensity point spread functions.

3.6 Summary

In this chapter, the processes through which the PSF is produced from SAR raw data are summarised.

The pulse compression technique using a matched filter for frequency modulated pulses is used to achieve

fine resolution in the range direction. In the azimuth direction, the technique of aperture synthesis is used

to construct am imaginary long aperture to produce fine azimuth images. Multilook processing is also

described for it is applied to the speckle analysis from moving sea surfaces in Chapter 6. This processing

technique is applied to image formation in the azimuth direction for the two purposes: to equalize the finer

azimuth resolution to the resolution in the range direction, and to reduce speckle noise. In the final part,

the principal theory of the convolution model is illustrated to describe the image complex amplitude of an

extended surface. The SAR fundamentals given in this chapter serve as a foundation for understanding and

analysing SAR images.
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Chapter 4

Polarimetric Analysis

Conventional SAR systems use the microwave of only single polarization for transmitting and receiving

signals. This type of SAR systems is called “non-polarimetric SAR”. For example, a HH polarized system

means that the antenna used for transmission and reception is linearly horizontally polarized. For non-

polarimetric SAR, only a single scattering coefficient is measured for a specific combination of transmitted

and received polarization. Therefore, the target information which can be attained from the polarization

properties is unavailable. To find the polarimetric information of the scattered wave, polarimetric SAR

systems are developed and most of modern airborne SARs today are in a full polarimetric mode. Among

spaceborne SARs, the ENVISAT-ASAR is operating at a dual-polarization mode (HH and VV), and the

ALOS-PALSAR has a single-, dual- and full polarimetric mode. The Pi-SAR data are fully polarimetric for

both X- and L-bands [59].

SAR polarimetry is a popular emerging technique for extracting potential information contained in the

polarimetric data, which cannot be attained from single-polarization data. It is certainly useful in analysing

different scattering processes and image classification. Although the study reported in this thesis is not

directly related SAR polarimetry, polarimetric analyses are presented in this chapter because it can help to

understand the scattering mechanisms from vegetated and forested scenes. The data used for polarimetric

analyses are the Pi-SAR images of the rice fields in Okayama, and Tomakomai forests in Hokkaido, Japan.

In the first part of this chapter, the fundamentals of electromagnetic wave polarization is introduced,

followed by the description of the well known techniques of the alpha-entropy and three-component decom-

position analyses, and finally the results and discussions are presented for the Pi-SAR data of the rice fields

and forests.

4.1 Polarization of Electromagnetic Wave

Electromagnetic (EM) wave is a transversal wave whose electric and magnetic fields are perpendicular to the

propagation direction. Since the magnetic field vector is orthogonal to electric filed, and can be calculated
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from the electric field vector easily, we will only focus on electric field vector. To illustrate the polarization

states of EM waves, plane wave is introduced. A plane wave is a constant-frequency wave whose wavefronts

are infinite parallel planes normal to the phase velocity vector. In general case, the trace of the tip of the

electric field within a plane is an ellipse, which means the EM wave is elliptically polarized, and the special

cases are linearly and circularly polarizations [34].

To describe the EM wave polarization, a coordinated system and a reference propagation direction are

needed. Since most of the fully polarized radars use two orthogonal linear polarized antennas, the Cartesian

coordinate system is used as in Fig.4.1, where z is the direction of propagation. The corresponding electric

field is located in x− y plane, where ~Ex and ~Ey are the x-component and y-component of the electric vector

respectively. The complex amplitudes are Êx/y = Ex0/y0 · eiδx/y . Fig.4.1 shows the propagating EM wave

whose electric field combined by two orthogonal components, and the EM wave can be represented by [16].

The electric field vector can be written as

E

x

y

z

Figure 4.1: Illustrating the propagation of an electromagnetic plane wave. The trace of the tip of the electric field
is also shown.

~E(z) = Ex(z)~ex + Ey(z)~ey (4.1)

where ~ex and ~ey are unit vectors parallel to x- and y-axis respectively, and

~Ex(z) = ~Exeikz = Ex0e
ikzeiδx~ex

~Ey(z) = ~Eyeikz = Ey0e
ikzeiδy~ey (4.2)

Therefore, the instantaneous values of ~Ex(z, t), ~Ey(z, t) are

~Ex(z, t) = Ex0 cos(ωt− kz + δx)
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~Ey(z, t) = Ey0 cos(ωt− kz + δy) (4.3)

respectively. The general case is elliptical polarization, where Ex0 6= 0, Ey0 6= 0 and δy − δx = δ0 6= 0. Then

we may rewrite (4.3) as

~Ex(z, t) = Ex0 cos(ωt− kz)

~Ey(z, t) = Ey0 cos(ωt− kz + δ0) (4.4)

To eliminate the term (ωt− kz), expand (4.4) into

~Ex(z, t)
Ex0

cos(δ0) = cos(ωt− kz) cos(δ0)

~Ey(z, t)
Ey0

= cos(ωt− kz) cos(δ0) + sin(ωt− kz) sin(δ0) (4.5)

By using the relation of trigonometric functions, the result can be given as

(
Ex(z, t)

Ex0

)2

+
(

Ey(z, t)
Ey0

)2

− 2
(

Ex(z, t)Ey(z, t)
Ex0Ey0

cos(δ0)
)

= sin2(δ0) (4.6)

which is an ellipse equation with an inclination angle ψe such that

tan(2ψe) =
2Ex0Ey0

E2
x0 − E2

y0

cos(δ0) (4.7)

Up to here, it can be seen that the polarization parameters can be represented by the ellipse parameters.

This ellipse is called “polarization ellipse” as shown in Fig.4.2 The ellipticity angle is given by

χ = arctan
(
±aξ

aη

)
(4.8)

where aξ and aη are the major and minor semi-axes of the ellipse. χ specifies the direction of rotation.

Assuming that the observation is in the propagation direction, the polarization is called the left handed

elliptical polarization for x > 0 and right handed elliptical polarization for x < 0. Moreover, the following

relations exist,

sin(2ξ) = sin(2αe) sin(δ)

sin(2ψe) = tan(2αe) cos(δ) (4.9)
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where the auxiliary angle αe is defined as

tan(αe) =
Ey0

Ex0
(4.10)

As mentioned before, there are two limiting cases of elliptical polarization and they are circular polar-

ization and linear polarization. If major and minor axes of the ellipse are equal, that is, Ex0 = Ey0 and

the phase difference δ0 = ±π/2 + 2nπ, where n = 0,±1,±2, . . ., then elliptical polarization become circular

polarization. If the phase angle difference is 0 (δ0 = 0), then the trace of the tip of the electric field will be

a straight line, that is, the wave is linearly or plane polarized. The modulus of ~Ex(z, t) is then given by

| ~Ex(z, t)| =
√

E2
x0 + E2

y0 · cos(kz + ωt− δ0) (4.11)

In this case, equation (4.7) can be simplified as

tan(ψ) =
Ey0

Ex0
(4.12)

x

y

 aη

z
Ex0

Ey0

ψe

χ

αe

ξ
m

ajo
r a
xis

m
inor axis

η

aξ

E

Figure 4.2: Polarization ellipse in x − y plane and EM wave propagates along z−axis direction, with inclination
angle ψe, ellipticity angle χ, and auxiliary angle αe.

54



4.2 Parameters in Polarimetry POLARIMETRIC ANALYSIS

4.2 Parameters in Polarimetry

4.2.1 Scattering Matrix

When the EM wave is linearly polarized, the two orthogonal components are horizontal (H) and vertical (V)

polarization. By using Smn = |Smn|eiφmn , where m,n ∈ {h, v} to denote the complex scattering amplitude,

where m is the polarization state of transmitted wave and n means the received polarization state. Shh

and Svv are called co-polar and Shv and Svh cross-polar components. Since reciprocity theorem will hold for

monostatic systems and reciprocal media, Shv = Svh. The received field with a distance R can be considered

as a linear transformation, and the backscattered wave is then given by [16], [34]




Esh

Esv


 =

eikR

R




Shh Shv

Svh Svv







Eih

Eiv


 (4.13)

The second term in the right part of the above equation is named as scattering ([S]-) matrix, and sometimes

it is also referred as Johnes matrix. The scattering matrix contains 8 independent parameters, including 4

different polarization combinations and their phases. The phases are relative and hence they are expressed

with respect to the phase of a particular polarization signal. In general, this reference phase is taken as

that of the HH-polarization signal. In this thesis, we assume that all the targets are reciprocal (Shv =Svh)

because SAR is a monostatic radar. Therefore, there are five independent parameters in the [S]-matrix.

They are three complex amplitudes Shh, Svv, Shv and two phase differences φhh−φhv and φhh−φvv.

4.2.2 Scattering Vector

We can use one complex vector ~q which contains complete information of [S]-matrix to describe the scattering

process. It is given by

[S] =




Shh Shv

Svh Svv


 → ~q =

1
2
Trace([S]Ψ) = [k0, k1, k2, k3]T (4.14)

where Trace(·) means the sum of the diagonal elements of the matrix, T means a transpose of a matrix,

and Ψ is a 2×2 complex basis matrix under a Hermitian inner product. There are widely used two bases,
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Borgeaud basis and Pauli basis. The Borgeaud basis is given by [34]

ΨB = 2








1 0

0 0


 ,




0 1

0 0


 ,




0 0

1 0


 ,




0 0

0 1








(4.15)

The corresponding complex vector ~qB is straightforward, and it is given by

~qB = [Shh, Shv, Svh, Svv]T (4.16)

Pauli basis is

ΨP =
√

2








1 0

0 1


 ,




1 0

0 −1


 ,




0 1

1 0


 ,




0 −i

i 1








(4.17)

The corresponding vector ~qP is then

~qP =
1√
2
[Shh + Svv, Shh − Svv, Shv + Svh, i(Svh − Shv)]T (4.18)

The coefficients in the above two bases, 2 and
√

2, are used to normalize their corresponding vectors.

Moreover, according to the reciprocity assumption, Shv = Svh, and the vector ~qP can be simplified as

~qP =
1√
2
[Shh + Svv, Shh − Svv, 2Shv]T (4.19)

4.2.3 Coherence Matrix

The scattering matrix is used to describe the scattering process of individual targets. However, for SAR

system, the resolution cell is always larger than the radar wavelength, leading to the [S]-matrix in one

resolution cell consisting of many [S]i. Therefore, a coherence matrix is introduced to deal with the statistical

effects. The coherent matrix is given by the product of the vector ~q and its conjugate of the transposed

vector ~q∗ [16]. For the latter use, only the coherence matrix corresponding ~qP is given here. Using equation

(4.19), the coherent matrix is given by

[T ] =
〈
~qP ~q∗TP

〉
=

1
2




〈|A|2〉 〈AB∗〉 〈AC∗〉
〈A∗B〉 〈|B|2〉 〈BC∗〉
〈A∗C〉 〈B∗C〉 〈|C|2〉




where





A = Shh + Svv

B = Shh − Svv

C = 2Shv

(4.20)
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where 〈·〉 denotes a spatial ensemble average as before.

4.2.4 Alpha-Entropy Analysis

The alpha-entropy approach is based on the eigenvector analysis of the coherency matrix (4.20), where

the alpha angle is related to the target scattering type with 0◦ ≤ α ≤ 90◦, and the entropy describes the

randomness of a scattering process. Because the coherency matrix is Hermitian, positive and semidefinite,

it can always be diagonalized by using unitary similarity transformation. Thus, the coherency matrix can

be diagonalized as [35]

〈[T ]〉 = [U3][Λ][U3]∗T = [U3]




λ1 0 0

0 λ2 0

0 0 λ3




[U3]∗T (4.21)

where [Λ] is the diagonal eigenvalue matrix of [T] and the real eigenvalues satisfy λ1 ≥ λ2 ≥ λ3, and the

unitary matrix [U3] is given by

[U3] =




cos(α1) cos(α2) cos(α3)

sin(α1) cos(β1)eiδ1 sin(α2) cos(β2)eiδ2 sin(α3) cos(β3)eiδ3

sin(α1) cos(β1)eiγ1 sin(α2) cos(β2)eiγ2 sin(α3) cos(β3)eiγ3




(4.22)

The polarimetric scattering entropy H is defined by

H =
n∑

i=1

(−Pi logn Pi) where Pi =
λj∑n

j=1 λj
(4.23)

where n = 3, and 0 ≤ H ≤ 1. For example, if H = 0, it means that only λ1 6= 0 and the scattering type is

deterministic, while all the eigenvalues are equal when H = 1.

The alpha angle is always given by the average

ᾱ = P1α1 + P2α2 + P3α3 (4.24)

Since the alpha angle and entropy describe the scattering mechanism, this approach can be used in practical

remote sensing applications, such as the classification of targets based on different scattering mechanisms.

The α−H plane is often used for image classification as shown in Fig.4.3, where the data always fall within

the inner curve (left side of the curve). The divided zones correspond to the following scattering processes
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[35].
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Figure 4.3: Feasible region in α−H plane for random media scattering problems [35].

• Zone 1: High Entropy Multiple Scattering

Double bounce mechanisms in a high entropy environment can still be distinguished in this region.

This mainly occurs in forests and vegetation with well developed branches and crown structure.

• Zone 2: High Entropy Vegetation Scattering

Scattering from forest canopies lies in this region, and the scattering from some types of vegetated

surfaces with random highly anisotropic scattering elements as well.

• Zone 3: High Entropy Surface Scatter

The surface scattering mechanism cannot be identified when H > 0.9, and this zone is not within the

feasible region in the α−H plane.

• Zone 4: Medium Entropy Multiple Scattering

This zone accounts for dihedral scattering with moderate entropy. For example, double bounce mech-

anisms occur when P- or L-band EM propagation through forest canopy.

• Zone 5: Medium Entropy Vegetation Scattering

Scattering from vegetation surfaces with anisotropic scatterers and moderate correlation of scatterer

orientations occurs in this zone.

• Zone 6: Medium Entropy Surface Scatter

The change of the surface roughness leading to the increase in entropy is shown in this zone. For

example, surface scattering from low vegetation.
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• Zone 7: Low Entropy Multiple Scattering Events

Low entropy double or ’even’ bounce scattering events occur in this zone, arising from isolated dielectric

and metallic dihedral scatterers like buildings and man-made structures.

• Zone 8: Low Entropy Dipole Scattering

Strongly correlated mechanisms having a large imbalance between hh- and vv-polarizations occur in

this zone.

• Zone 9: Low Entropy Surface Scatter

In this zone, low entropy surface scattering, such as scattering from water surface, sea ice as well as

smooth land surface, dominates the scattering process.

4.2.5 Application to Pi-SAR Data of Tomakomai Forests

Figure 4.4: Pi-SAR L-band color composite image of Tomakomai forests acquired on the 7th of November, 2002.
The red, green and blue colors correspond respectively to the HH-, HV- and VV-polarization data

Fig.4.4 is the Pi-SAR composite color image of the Tomakomai forests located in Hokkaido, Japan,

acquired in November the 7th, 2002. The red, green and blue colors represent respectively to the HH-, HV-

and VV-polarization data. In Fig.4.4, the illuminating (range) direction is from bottom to top, and the

flight (azimuth) direction is from left to right. The alpha-entropy analysis is applied to the data with the

moving window size of 9×9 and 20×20 pixels. The results are given in Fig.4.5.

It can be seen from Fig.4.5 that the pixels fall into the region 1, 2, 4, 5 and 6, and region 1, 2, 5 and 6

for 9×9 and 20×20 pixels moving window size respectively. It is because most of this area is dominated by

forests with some roads and clear-cut areas. As the moving window size becomes large, the pixels belonging

to non-forests tend to be smoothed out. From the results, it can be concluded that the α−H analysis can be

a useful technique to distinguish different scattering mechanisms, such as those from forest, water or urban

areas. However, it is difficult to quantify the amount of the scattering within a same scattering mechanism.
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Figure 4.5: The results of α−H analysis of the Pi-SAR Tomakomai forests data with the moving window size (a)
9×9 pixels, (b) 20×20 pixels.

4.2.6 Three-Component Decomposition

Another polarimetric analysis is the three-component decomposition proposed by Freeman and Durden [36].

In this technique, image pixels are decomposed into 3 scattering mechanisms, namely, surface (single-bounce)

scattering, double-bounce and volume scattering (the 4th component of helix scattering is included in the

recent work [37]). Briefly, the analysis is carried out in the following manner.

The three-component decomposition analysis states that under the condition 〈SHHS∗HV 〉 ' 〈SV V S∗HV 〉 '
0, the following 3 equations with 4 unknown parameters a, b, fs, fd can be deduced.

〈|SHH |2〉=fs|b|2+fd|a|2+fv

〈|SV V |2〉=fs+fd+fv

〈SHHS∗V V 〉=fs b+fd a+fv/3 (4.25)

where the angular brackets indicates taking an ensemble average. In equation (4.25), fs and fd are the surface

and double-bounce contributions, and fv is the volume scattering contribution given by fv = 3〈|SHV |2〉.
Equation (4.25) cannot be solved unless one of the unknown parameters is known. It is possible to assume

that the surface scatter is dominant and put a =−1, if the real term of 〈SHHS∗V V 〉 is positive. If the real

term of 〈SHHS∗V V 〉 is negative, then the double-bounce is dominant with b=1. Once the values of a, b, fs, fd

are known from equation (4.25), the power of surface scattering, double-bounce and volume scattering can
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be estimated from

Ps =fs(1+|b|2)

Pd =fd(1+|a|2)

Pv =8fv/3 (4.26)

where Ps and Pd are the powers of the surface and double-bounce scattering respectively, and the power of

the volume scattering Pv can be estimated directly from the cross-polarization contribution fv =3〈|SHV |2〉.

4.2.7 Application to Kojima Rice Fields [85]

Color composite L-band (left) and X-band (right) Kojima images shown in Fig.4.6 were acquired on the 13th

of July 1999, where red, green and blue denote HH-, HV- and VV-polarizations respectively. The results

of the decomposition analysis are shown in Fig.4.7. The double-bounce, volume and surface scatterings are

represented by red green and blue respectively. The azimuth and range directions are from top to bottom

and from right to left respectively, and the incidence angle at the scene center is 38.4◦. At the time of data

acquisition in July, the rice plants were grown to their height approximately 50 cm with irrigation water

underneath.

Figure 4.6: Pi-SAR L-band (left) and X-band (right) image of Kojima district, Okayama, Japan. The azimuth
direction is from top to bottom and the range direction is from right to left. The image of size approximately 4 km
in both directions was acquired on the 13th of July 1999, and the rice plants were almost fully grown with irrigation
water underneath.

In the L-band result, the vertical red lines in the district marked “A” correspond to irrigation canals and
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narrow roads with canals alongside as shown in Fig.4.8. These lines are at right angles to the radar illumi-

nation direction, so that the strong double-reflection, similar to the double-reflection by corner reflectors,

occurs between the water surface and canal banks. There are several blue linear features along irrigation

canals indicating the surface scattering from the canal banks with their sides facing toward the radar. The

surface scattering can also be seen along the canals in the district “B”. These canals are closely, but not

exactly, at right angles to the radar illumination direction. The canals and roads in the districts “C” and “D”

are not at right angles to the radar illumination direction, and hence the double-bounce is not a dominant

scattering mechanism in these districts. Small red images along the roads are the result of double-bounce

between house flanks and ground, and between the water surface and the bridge connecting the district “A”

and “C” at lower left.

Figure 4.7: The decomposition analysis of L- (left) and X-band (right) Pi-SAR image of the Kojima district in
Fig.[4.6].

The bright red areas inside the white circles indicate the double-bounce scattering which gives rise to

the Bragg scattering. The backscattered power from the branches that do not satisfy the Bragg condition is

very weak. The white square areas indicate lotus ponds as shown in Fig.4.9. In July, lotus plants are almost

fully grown to their height of 150-170 cm with stalk diameter of 2-3 cm and circular leaves of diameter about

70 cm. They are cultivated in ponds, and stalks are distributed randomly. The backscatter from the lotus

ponds is a result of the double-bounce between the water surface and stalks, and between leaves and/or

stalks.
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Figure 4.8: Irrigation canal and a narrow road alongside in the Kojima district.

Figure 4.9: Lotus ponds in the Kojima district.

The L-band decomposition result can be compared with the X-band decomposition result shown in the

right part of Fig.4.7. Fig.4.10 shows the regularly planted rice plants in Kojima district. At X-band, the

backscattering from rice fields is dominated by the surface scattering from the leaves of rice plants on the

crown part. The volume scattering is caused mainly from tall vegetation including shrubs, reeds and lotus

plants. The double-bounce scattering is only due to the house flanks and ground, and also the bridge at

lower left. The effect of double-bounce from the canals is reduced considerably, because plants on the canal

banks are “rough” for X-band microwave, yielding diffuse scattering (but they are “smooth” at L-band).

From the above results, the applicability of the 3-component decomposition analysis is clear. For polari-

metric data containing different objects such as houses, canals, roads and low vegetation of rice plants, the
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images can be classified based on the different scattering mechanisms. However, for the case of a single scat-

tering mechanism, for example, forests, it becomes difficult to use the decomposition analysis as described

in the following subsection.

Figure 4.10: Regularly planted rice plants in the Kojima district. The upper image shows bunches of plants after
harvesting. The lower image shows fully grown rice plants in the same field.

4.2.8 Application to Tomakomai Forests

The 3-component decomposition analysis is applied to the Pi-SAR L- and X-band data over the Tomakomai

forests. Fig.4.11 shows the decomposition result of the L-band data shown in Fig.4.4. In the composite color

image shown in Fig.4.11 and the right image of Fig.4.12, the double-bounce, volume and surface scattering

mechanisms are represented by red, green and blue respectively. It can be seen from Fig.4.11 that the

image appears green in most of the areas, indicating that the volume scattering is the dominating scattering

mechanism for L-band data. The surfaces of clear-cut areas and roads are smooth in comparison with the
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radar wavelength, and the backscattered energy is very little. Hence, both the intensity image and the

decomposed image appear dark. There are 3 very bright point-like images in the dark clear-cut areas on

the center right of Fig.4.11. These small areas appear as red in the decomposition analysis, they are corner

reflectors.

The X-band color composite image and the decomposed image are shown in Fig.4.12. Color designation

in these images is same as that in the L-band data. The size of the X-band image is smaller than that of

the L-band image. It can be seen from the right image of Fig.4.12 that volume scattering is the dominant

scattering mechanism in most of the areas, but some areas indicate surface scattering. The Pi-SAR images

were acquired in November, so that the leaves of deciduous trees such as larch and broadleaf already had

fallen, leaving only branches and trunks. The X-band microwave can then penetrate into the interior of

forests, and volume or more precisely multiple scattering among branches (and/or trunks) occur. For non-

deciduous trees, the X-band microwave cannot penetrate into the forests, and surface scattering is dominant

in these forests. It appears, therefore, that although the decomposition analysis is not useful in extracting

forest parameters of a same type, it may be possible to distinguish the difference between deciduous and

non-deciduous forests from the X-band data in winter.

Figure 4.11: The 3-component decomposition analysis of L-band Pi-SAR image of the Tomakomai forests in Fig.[4.4],
where the color is designated as “double : volume : surface = R : G : B”.

Figure 4.12: Pi-SAR X-band RGB image (left) and the decomposition result (right) of the Tomakomai forests. The
HH-, HV- and VV-polarization images are represented by red, green and blue respectively in the left RGB image,
and the color designation in the right image is same as Fig.[4.11].
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4.3 Summary

A full polarimetric SAR has become very popular in recent years because the fully polarimetric data contain

more information than the single polarization data. In this chapter, the basic theory of polarimetry, alpha-

entropy analysis and 3-decomposition analysis are described. The polarimetric analysis is not the main theme

of this thesis, but the technique can certainly be useful for classifying the different scattering mechanisms.

After summarising the principle of polarization, the α-entropy analysis is developed, based on the eigen-

vector analysis of coherence matrix. The α-entropy analysis is used to Pi-SAR data over the Tomakomai

forests, but this technique is found to be not very useful to extract the physical parameters of forests. The

three-component decomposition analysis is then introduced and used for the Pi-SAR data over the Okayama

rice fields and Tomakomai forests. For the Okayama data, double bounce scattering is observed in some rice

fields for L-band data, but X-band backscatter is dominated by the surface scattering. For the Tomakomai

forests, volume scattering is the main scattering mechanism at L-band. Since X-band microwave can not

penetrate deep inside the forests, X-band backscatter is dominated by surface scattering. Initially, we made

the polarimetric approach to extracting forest information. In conclusion, we found that the polarimetric

analyses are not useful to extract the quantitative values of the forest parameters such as biomass. However,

there appear a new result that deciduous and non-deciduous forests may be classified using the 3-component

analysis in polarimetric SAR data in winter.
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Chapter 5

Applications to Forestry

The applications of non-Gaussian SAR speckle statistical properties to forestry are discussed in this chapter.

The data used here is high-resolution polarimetric Pi-SAR images over the Tomakomai forests in Hokkaido,

Japan. Before analyzing the data, the study areas description and the ground truth data collection are

presented. The location of the study areas and the climate of Sapporo are briefly introduced, followed by

the introduction of the main tree species in the study areas. Then, the approach of measuring ground truth

data is presented, and the formulae of calculating tree biomass in Hokkaido and the calculated biomass

results are given. The ground truth data include 2002, 2003 and 2005 measurements.

The quantitative relations between high-resolution Pi-SAR data and forest parameters are then investi-

gated. The regression curve of forest biomass and the order parameter of K-distribution is derived, where

the ground truth data collected in 2002 and 2003 are used. To evaluate the accuracy of this regression curve,

the ground truth data collected in 2005 are used to compare with the model prediction. The regression is

then updated by using all the ground truth data, and the updated regression is used to classify the biomass

around the test sites. Finally, summary and further work are given.

5.1 Study Area Description

5.1.1 Location

The study areas are in Tomakomai located in Hokkaido, Japan. Hokkaido is in the northernmost part of

Japan, extending from 139◦20’ E to 148◦53’ E, 41◦ 21’ N to 45◦33’ N, and it is the largest island surrounded

by the Sea of Ohotsk, the Japan Sea, and the Pacific Ocean, as shown in Fig.5.1. Further, Hokkaido is the

largest prefecture of Japan, and its area is 83,452 km2 (including 5,036 km2 of the Northern Territories),

accounting for 22% of Japan’s total area.

Tomakomai is marked by red solid circle in Fig.5.1. The forests used for this study in Tomakomai are

located in a part of the well-managed national forests. Fig.5.2 shows the 4-look Pi-SAR L-band image of a

part of the Tomakomai national forests (scene center: 42◦44’ N, 141◦30’ E) acquired in November the 7th
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2002. The incidence angles are respectively 38.4◦, 44.1◦, and 48.6◦ at the near-range, center, and far-range

of Fig.5.2, and the image size is approximately 8.9 km in azimuth (from left to right) and 4.3 km in range

(from bottom to top) directions. In the present analysis, the single-look images in full resolution of 3 (range)

× 0.75 (azimuth) m are used. The multi-look image shown in Fig.5.2 is only for the purpose of visualization

in a map scale. The marked areas in Fig.5.2 are the test sites where the ground truth data were measured

in 2002 and 2004 [53].

Tomakomai

Sea of Japan

Pacific Ocean

Sea of Ohotsk

Figure 5.1: The map of Hokkaido which is the northernmost part of Japan and surrounded by Sea of Japan, Sea of
Ohotsk and Pacific Ocean, and Tomakomai is marked by the red solid circle.

5.1.2 Climate

The climate of Hokkaido is located in the temperate zone and the sub-arctic zone. Though there is difference

between each part of Hokkaido, the difference is not so large and Tomakomai is close to Sapporo, which is

the capital of Hokkaido prefecture. Thus, the monthly average temperature, relative humidity, and rainfall

of Sapporo from year 1961 to 1990 are given in Table 5.1. Due to the fact that it is the northernmost part

of Japan, it is generally cooler in summer (20.2◦C and 21.7◦C in July and August, respectively) and cold,

snowy and blustery in winter (-4.6◦C average in January). It can be seen from Table 5.1 that the rainfall is

abundant with annual average 1129.6mm, and the monthly average rainfall is over 90mm from August to the

next year February, where August and September are the peak months of rainfall. Furthermore, the snow

starts from middle of October to April with sub-freezing average temperatures from December to March,
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Figure 5.2: Pi-SAR L-band image of the Tomakomai forest acquired in November the 7th 2002, and 19 test sites as
marked. The illuminating (range) direction is from bottom to top, and the flight (azimuth) direction is from left to
right. Enlarged images of a part of each site are shown in Appendix C.

and the depth of the snow in Japan sea side may reach three meters. The average rainfall of November,

December and January is 102mm, which also means that the snowfall is abundant. Table 5.1 also shows

that the annual average relative humidity is 71%, which is not so high as in the other parts of Japan.

Table 5.1: Monthly average meteorologic parameters of Sapporo from year 1961 to 1990. (modified from
[86]).

parameters Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
temperature
(◦C) -4.6 -4.0 -0.1 6.4 12.0 16.1 20.2 21.7 17.2 10.8 4.3 -1.4
relative
humidity(%) 72 71 69 64 67 75 78 78 74 69 68 71
rainfall
(mm) 107.6 94.1 81.8 62.3 54.8 66.4 68.7 142.0 137.7 115.6 98.5 100.1

5.2 Ground Truth Data

Ground truth data play a crucial role in relating remote sensed data to practical application. The ground

truth data used in this thesis were collected in 2002, 2003, and in August and September of 2005. The

biomass results are given in Table 5.3 and Table 5.4.

5.2.1 Tree Species

Due to cold weather and heavy snow lasting long time in Hokkaido, the conifer is the dominating tree species.

The main conifer species are Japanese larch (in Japanese “karamatsu”), Todo-fir (in Japanese “todomatsu”),
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Figure 5.3: The map of compartments in the Tomakomai forests, showing planting times and tree species with
yellow (Japanese larch), green (Todo-fir), blue (Yezo-spruce) and red (Sakhalin-spruce).

Figure 5.4: The pictures of Todo-fir and its leaves, trunk, flowers, and fruits [87].
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Figure 5.5: The pictures of Sakhalin-spruce and its leaves, trunk, flowers, and fruits [87].

Figure 5.6: The pictures of Yezo-spruce and its leaves, trunk, flowers, and fruits [87].
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Figure 5.7: The pictures of Japanese larch and its leaves, trunk, flowers, and fruits [87].

Table 5.2: Characteristics of main coniferous species in Tomakomai. (modified from [87]), where GBH means
girth at the breast height; L is the length; W is the width; M means male, while F denotes female.

Sakhalin/Todo-fir Sakhalin-spruce Yezo-spruce Japanese larch
Japanese name Todomatsu Akaezomatsu Ezomatsu Karamatsu

general evergreen, evergreen, evergreen, deciduous,
characteristics H: 20∼30m, H: 30∼40m, H: 30∼40m, H: 20∼30m,

GBH: 60∼100cm GBH: 80∼100cm GBH: 100∼150cm GBH: 60∼100cm
L: 1.5∼3cm, L: 0.5∼1.2cm, L: 1∼2cm, L: 2∼4cm,
W: 2∼3mm, W: about 1mm, W: 1.5∼2mm, W: about 2mm,

leaf bifurcate tip, rhombus cross section, flat cross section, 20∼40 leaves
reverse white stoma sharp tip two white stoma spiral cluster

trunk hoary, smooth deep brown, dust color dust color
thin scale thin scale vertical crack

M: oval, ≈7mm M: ≈1.5cm M: oval, 1.5∼2cm M: oval, adown
flower F: vertical, 2∼3cm F: fuchsia, ≈3cm F: vertical, F: vertical or

vertical 2∼2.5cm, magenta horizontal
fruit cylinder, L: 5∼8cm column, L: 5∼8cm column, L: 4∼8cm oval, L: 2∼3cm

girth: 2∼3cm girth ≈ 2.5cm girth: 2∼3cm
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Sakhalin-spruce (in Japanese “akaezomatsu”) and Yezo-spruce (in Japanese “ezomatsu”) [87]. Fig.5.3 shows

the map of compartments in the Tomakomai forests. In the map, the “age” (planting time) of trees are

quoted, and yellow, green, blue, and red colors indicate Japanese larch, Todo-fir, Yezo-spruce and Sakhalin-

spruce respectively. Fig.5.4-Fig.5.7 show the images of leaves, trunks, flowers, and fruits of these tree species.

Moreover, Table 5.2 shows the general characteristics and common features of leaf, trunk, flower, and fruit

of the four major species. The tree species can be distinguished from Fig.5.4-Fig.5.7 or from Table 5.2, and

the summaries are given as follows.

• Todo-fir: leaves are soft and with two branches at the tip, and it can also be distinguished by the

cortex.

• Sakhalin-spruce: leaves are short with rhombus-like cross section, and its trunk is in deep brown.

• Yezo-spruce: leaves are long compared to Sakhalin-spruce, and leaf cross section is flat. Trunks are in

dust color.

• Japanese larch: leaves are 20∼40 pieces cluster together with spiral shape.

5.2.2 Ground Truth Data

The marked areas in Fig.5.2 are the test sites where the tree parameters including height, basal area and

GBH were measured in 2002 and 2003, while the tree parameters in the 23 marked areas in Fig.5.8 were

measured in August and September, 2005. At each test site, a sample stand of size 20× 20m was selected,

and all trees of diameter greater than 5 cm within the stand were measured. Further, in each sample stand,

one sub-sample stand with the size of 10 × 10m was selected, and the number of branches, diameters and

height of small trees of diameter less than 5 cm were measured. Soil moisture was also measured at the four

corners of each stand, four points between corners and at the center.

Figure 5.8: The marked areas are the 23 test sites measured in August and September, 2005, and the image was
acquired in November 7th, 2002.
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Fig.5.9 shows the measurement of tree height and GBH. Usually, one group consists of three people, and

one measures the tree height by using the laser distance measure, and the other measures the GBH, while

the 3rd person records the data. As can be seen from Fig.5.9, the true tree height is the sum of the measured

height and the height of the person up to eyes. There is another traditional method to measure tree height

from the distance to the trunk and the corresponding angle to the tree top. This method was used in the

first half of data collection in August, 2005.

Figure 5.9: Measuring tree height and girth at the breast height. The laser distance measure shown in the right top
corner is used to measure tree height.

5.2.3 Biomass Calculation

For computing the tree biomass, the GBH of each tree was first converted to the diameter at breast height

(DBH). Then the trunk volume of each tree was calculated by using the empirical formulas derived for the

forests in Tomakomai area [60]. The conversion formulas are given as follows.

For Yezo-spruce and Sakhalin-spruce:

log V = −4.0744 + 1.824080 log DBH + 0.934568 log Ht (DBH < 50cm)

= −4.5137 + 1.568947 log DBH + 0.842787 log Ht (50cm ≤ DBH) (5.1)
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For Todo-fir:

log V = −4.0971 + 1.681121 log DBH + 1.131348 log Ht (5.2)

For Japanese larch and broadleaf tree:

log V = −4.068644 + 1.756152 log DBH + 0.906210 log Ht (DBH < 10cm)

= −4.335395 + 1.903051 log DBH + 1.025410 log Ht (10cm ≤ DBH < 20cm)

= −4.441199 + 1.853014 log DBH + 1.166956 log Ht (20cm ≤ DBH < 30cm)

= −4.332596 + 1.848675 log DBH + 1.088954 log Ht (30cm ≤ DBH) (5.3)

In these formulas, V (m3) is the trunk volume, and Ht denotes the tree height.

Table 5.3: Main tree species and average biomass of the test sites. Measurements at sites 1-12 were made in
2002, and those at sites 13-19 in 2003. The numbers in the brackets are the percentage of dominant species.

site species biomass site species biomass
1 Japanese larch (75.4) 83.7 11 Japanese larch (94.0) 57.4
2 Yezo-spruce (97.9) 64.2 12 scots pine (98.0) 70.4
3 Japanese larch (86.0) 57.2 13 Sakhalin-spruce (73.3) 99.5
4 Todo-fir(55.2) 40.5 14 Sakhalin-spruce (100.0) 0.9
5 conifer 47.6 15 Japanese larch (72.2) 40.1
6 Japanese larch (83.4) 65.2 16 Sakhalin-spruce (89.9) 66.7
7 Japanese larch (95.9) 83.6 17 Sakhalin-spruce (100.0) 30.5
8 Sakhalin-spruce (94.2) 84.4 18 Sakhalin-spruce (100.0) 5.1
9 Todo-fir(90.0) 83.5 19 Sakhalin-spruce (100.0) 13.4
10 Sakhalin-spruce (63.9) 34.0 totoal 1027.9

To compute the above-ground tree volume, the calculated trunk volume V is multiplied by the expansion

factor of 1.36 defined by the ratio of total above-ground biomass to the trunk biomass. Finally, the above-

ground volume is converted to the above-ground biomass by using tree density of each species, and they are

0.391 g/cm3 for Sakhalin-spruce, 0.314 g/cm3 for Yezo-spruce, 0.329 g/cm3 for Todo-fir, 0.444 g/cm3 for

Japanese larch, and 0.453 g/cm3 for broadleaf trees. Furthermore, in the Tomakomai forests, the tree height

increases 25 cm/year on average and the annual biomass increase is approximately 1.3 tons/ha. Thus, the

final results were subtracted 3.9 tons/ha from the 2005 measurements to yield the biomass at the time of

Pi-SAR data acquisition in 2002.

Table 5.3 shows the tree species and calculated biomass results of the 2002 and 2003 measurements,

where the 2003 data are the measured data subtracted annual average biomass increment 1.3 tons/ha, and
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Table 5.4: Ground truth data collected in August and September, 2005.

site species biomass site species biomass
1 Japanese larch 50.8 13 Sakhalin-spruce 36.5
2 Japanese larch 107.9 14 Sakhalin-spruce 79.3
3 Sakhalin-spruce 85.6 15 Sakhalin-spruce 97.2
4 Japanese larch 111.8 16 Sakhalin-spruce 97.4
5 Sakhalin-spruce 71.9 17 conifer 52.4
6 Todo-fir 43.8 18 Japanese larch 121.0
7 Sakhalin-spruce 161.3 19 Sakhalin-spruce 66.8
8 Sakhalin-spruce 67.5 20 Yezo-spruce 0.1
9 Todo-fir 71.6 21 Sakhalin-spruce 56.9
10 Todo-fir 79.6 22 Sakhalin-spruce 46.1
11 Sakhalin-spruce 126.7 23 Sakhalin-spruce 125.3
12 Sakhalin-spruce 97.5 totoal 1855.1

the percentage of the main tree type in each test site is also given. Table 5.4 gives the results of the ground

truth collection in August and September, 2005.

5.3 RCS and Forest Parameters

5.3.1 RCS and Tree Biomass

The relation between RCS and forest parameters have been reported by several authors, and the results show

that the RCS increases with forest biomass and saturates at certain biomass values. The saturation levels

change with tree species and radar wavelength [44], [45], [48]. Dobson et.al. [44] show that for coniferous

forests the RCS saturation levels at L- and P-bands are in the regions of 100 and 200 tons/ha respectively at

radar incidence angles of 40◦-50◦, and Imhoff [48] indicates the saturation levels of 20, 40 and 100 tons/ha

at C-, L- and P-bands respectively for both the Hawaii broadleaf forests and combined forests of conifer and

broadleaf.

The RCS is first estimated as a function of tree biomass as shown in Fig.5.10 for the X- and L-bands

data. Despite the limited number of test sites, a clear trend can be observed. At X-band, the RCS is largest

for VV-polarization followed by HH- and HV-polarizations. The solid lines are the regression curves fitted

using third-order polynomial to the corresponding data. The correlation coefficients are -0.02, 0.32 and

0.36 for the HH-, VV- and HV-polarizations respectively. At L-band the RCS is largest for HH-polarization

followed by VV- and HV-polarizations, and the corresponding correlation coefficients are 0.52, 0.79 and 0.82

respectively. The X-band RCS does not show strong correlation with biomass at all polarizations. While

the L-band RCS has higher correlation, in particular, at HV-polarization with steady increase in RCS with
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biomass up to certain levels. These trends are in agreement with some previous results [41], [44], [45], [48].

There are no clear biomass saturation levels at X-band, but the L-band saturation level may be defined

approximately as 40 tons/ha for the Pi-SAR data of the Tomakomai forests [54]. The forest biomass beyond

this saturation limit cannot be estimated from the RCS values.

Figure 5.10: The RCS as a function of forest biomass for X-band (left graph) and L-band (right graph) data. The
curves are fitted using third-order polynomial to the corresponding polarization data points.

5.3.2 RCS and Tree Age
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Figure 5.11: The RCS as a function of forest age for X-band (left graph) and L-band (right graph) data. The curves
are fitted using third-order polynomial to the corresponding polarization data points.

The RCS is also estimated as a function of tree age as shown in Fig.5.11 for the X-band and L-band data.

Third order polynomial fitting is also used here. At X-band, the correlation coefficients are 0.55, 0.68 and

0.72 for HH-, VV- and HV-polarizations respectively, showing no clear trend for X-band data. At L-band,

the RCS increases with the tree age up to about 30 years old, and beyond this age the RCS saturates.
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The correlation coefficient for HH-, VV- and HV-polarizations are 0.79, 0.89 and 0.95, respectively. Again,

L-band data show stronger correlation than X-band data, and HV-polarization has the highest correlation

coefficient at both X- and L-bands. Thus, age of trees can be estimated from L-band RCS at HV-polarization

up to around 30 years old with certain accuracy.

5.3.3 RCS and Basal Area

The relations of X- and L-band RCS and basal area are shown in Fig.5.12, and the data are also fitted

using third order polynomial. The correlation coefficients are 0.57, 0.58, and 0.62 for X-band HH-, VV- and

HV-polarizations respectively, and the corresponding L-band correlation coefficients are 0.77, 0.94 and 0.95

respectively. L-band data again show stronger correlation with the saturation level at around 30m2/ha.
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Figure 5.12: The RCS as a function of the basal area for X-band (left graph) and L-band (right graph) data. The
curves are fitted using third-order polynomial to the corresponding polarization data points.

5.3.4 RCS and Tree Height

Fig.5.13 shows the relations of X- and L-band RCS and mean tree height with the regression curves fitted

using third order polynomial. At X-band, the correlation coefficients are 0.20, 0.40 and 0.47 for HH-, VV-

and HV-polarizations, and at L-band the corresponding correlation coefficients are 0.64, 0.76 and 0.83. Yet

again, L-band data have higher correlations and HV-polarization dataset correlates best for both bands.

The saturation level of L-band data can be defined approximately as 8 m for all polarizations.

5.3.5 The Limitations of RCS and X-band Data

As can be seen from the above relations between RCS and forest parameters, X-band data do not have strong

correlations, for the reason that X-band microwave cannot penetrate the interior of forests and backscattering
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Figure 5.13: The RCS as a function of mean forest height for X-band (left graph) and L-band (right graph) data.
The curves are fitted using third-order polynomial to the corresponding polarization data points.

is dominated by surface scattering from the crown part of trees. An evidence of surface scattering from the

Tomakomai forests is already shown by the 3-component decomposition analysis of polarimetric data shown

in Fig.4.12. The surface of tree crowns are rough for X-band microwave, and therefore the RCS does not

depend strongly on the tree parameters.

There is a certain trend of increasing RCS at L-band with increasing values of all tree parameters. Unlike

X-band microwave, L-band microwave with longer penetration depth can enter into the interior of forests,

and therefore volume scattering dominates as proven by the decomposition analysis shown in Fig.4.11. With

increasing tree biomass, the forests become dense, and surface scattering become dominant at the saturation

level. Thus, beyond this saturation limit the forest parameters cannot be retrieved from the RCS data.

Since the L-band data contain more information on the forests as compared with X-band data [54], only the

L-band polarimetric data are used for statistical analysis in this thesis.

5.4 Texture Analysis

As mentioned before, a high-resolution SAR can resolve targets characteristics to some extent. Reflecting

the structure of forests, for example, the SAR images of forests appear “textured”, i.e., the images show

fluctuations associated with tree structures, and the scales of fluctuations are longer than the SAR resolution

cell as illustrated in the Pi-SAR image of the Tottori dune in Fig.1.5. The utilization of texture information

for forest information extraction has previously been suggested by several authors [16], [24], [27], [28],

[57], [58]. However, no detailed analysis has been reported to show the quantitative relation between the

parameters of texture and ground-truth data as reported in this thesis.

In Chapter 2, both Gaussian and non-Gaussian models were introduced, and texture can be described
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by non-Gaussian models. When the dataset is fitted by the models, it is necessary to select a model to fit

best to the data. In this thesis, the Akaike information criterion (AIC) [17], [79], [88] is used to select the

best fitted model.

5.4.1 Model Selection by AIC

For a given model, AIC is defined by [88]

AIC = −2× (maximum logarithmic likelihood) + 2× (number of free parameters) (5.4)

The model which minimizes the AIC (MAICE) is regarded as the optimal one to fit a given dataset.

Equation (5.4) is applied to the Rayleigh, log-normal, Weibull and K-distributions for all the polarization

data of all the selected test sites, and the results are shown in Table 5.5-Table 5.7.

Table 5.5 shows the AIC results of HH-polarization data. The AIC values of K-distribution are the

smallest in each test site group, that is, K-distribution is the best model among 4 models for HH-polarization

datasets of all test sites. The AIC results of Weibull distribution are close to those of K-distribution, followed

by the Rayleigh distribution. The log-normal distribution does not fit the data.

Table 5.6 and Table 5.7 show the AIC results of VV- and HV-polarizations data, respectively. It can be

seen from both tables that the K-distribution is the optimum PDF in 18 of 19 test sites, and the Weibull

distribution only fits best to the data of test site 4. Again, the log-normal distribution does not fit the

datasets. The differences of AIC between the Weibull distribution and K-distribution are not large for

several datasets, such as test site 6, 11 and 15.

Fig.5.14 shows an example, where the PDF of the test site 6 is plotted as a function of image amplitude

normalized by the mean. The upper left, upper right and lower graphs correspond respectively to the HH-,

VV- and HV-polarizations, and the scale of the vertical axes is the (natural) logarithm of relative number

of pixels. As can be seen, the difference of the PDFs lies in their tail parts [30]. It can be seen from Fig.5.14

that the K-distribution fits best to the data. However, it should be emphasized that the Weibull distribution

also shows good fit as can be seen in Fig.5.14. These results are in agreement with the results of AIC

analysis.

5.5 K-Distribution and Forest Parameters

As shown in the preceding section, the K-distribution is the best model among the 4 models considered in

the study for all the polarization datasets, and therefore, only the parameter of K-distribution is related
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Table 5.5: AIC results of Rayleigh, log-normal, Weibull and K-distributions of HH-polarization

probability density functions probability density functions
site Rayleigh log-normal Weibull K site Rayleigh log-normal Weibull K
1 18507 20205 18446 18396 11 11281 11985 11155 11067
2 30006 33172 29963 29927 12 8634 9222 8578 8534
3 21346 23573 21258 21235 13 17255 18964 17226 17285
4 6127 6520 6027 6004 14 37018 38874 36466 36139
5 7229 7743 7138 7111 15 4255 4623 4257 4230
6 13079 13968 13006 12932 16 6321 6915 6315 6287
7 19081 21060 19028 19018 17 5283 5778 5274 5296
8 16776 18216 16735 16669 18 9100 9568 9006 8925
9 13598 15020 13558 13538 19 3678 3897 3632 3604
10 17948 19055 17778 17653

Table 5.6: AIC results of Rayleigh, log-normal, Weibull and K-distributions of VV-polarization

probability density functions probability density functions
site Rayleigh log-normal Weibull K site Rayleigh log-normal Weibull K
1 18074 19974 18055 18021 11 10816 11796 10774 10741
2 30092 33502 30034 30009 12 8238 9147 8229 8227
3 21360 23178 21289 21227 13 17089 18851 17075 17053
4 6049 6599 5970 5985 14 34291 37457 34227 34127
5 7274 7716 7179 7157 15 4311 4750 4304 4296
6 12662 13931 12633 12614 16 6340 6902 6335 6324
7 19037 21006 18990 18987 17 5487 6028 5441 5435
8 16662 18351 16623 16601 18 8742 9510 8702 8669
9 13443 14734 13427 13400 19 3485 3702 3484 3446
10 16951 18448 16935 16870

Table 5.7: AIC results of Rayleigh, log-normal, Weibull and K-distributions of HV-polarization

probability density functions probability density functions
site Rayleigh log-normal Weibull K site Rayleigh log-normal Weibull K
1 18035 19822 18026 18000 11 10762 11769 10728 10713
2 30179 33290 30121 30096 12 8394 9126 8371 8332
3 21227 23127 21170 21103 13 17113 19074 17093 17088
4 5989 6693 5929 5950 14 37348 38931 36723 36352
5 7048 7578 7000 6970 15 4451 4807 4425 4410
6 12864 14183 12806 12798 16 6245 6837 6247 6225
7 18939 20889 18901 18873 17 5393 5897 5364 5345
8 16531 18217 16507 16478 18 9052 9507 8971 8868
9 13497 14849 13472 13449 19 3701 3810 3662 3611
10 17491 18877 17399 17314
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Figure 5.14: The estimated PDFs of L-HH (upper left graph), L-VV (upper right graph) and L-HV (bottom graph)
image amplitudes of the test site 6 as a function of the amplitude normalized by the mean. The vertical axis is the
relative number of pixels in the logarithmic scale. The PDF which fits best to the data is sought among the Rayleigh,
log-normal, Weibull and K-distributions.

to the forest parameters here. A mention should be made that the reason why the Weibull distribution is

not considered is because the Weibull distribution has two parameters and they only vary in a small range.

Nevertheless, this can be an interesting future research subject.

In Chapter 2, the approaches to estimate the model parameters, including the Weibull and K-distributions,

were given. In this thesis, the moment method is used to estimate the order parameter of the K-distribution.

The nth moment of the K-distribution given by equation (2.30) for single-look data can be written as

〈In〉
〈I〉n =

n! Γ(n+ν)
νnΓ(ν)

(5.5)

The bias and variance of the estimated ν need to be considered when K-distributed texture is described.

The most convenient way to present the results is in the form of relative bias and variance of equation (5.5)

when n is equal to 2. The relative bias and variance are given respectively by [16]

〈∆ν〉
ν

=
ν

N

(
1 +

1
ν

)(
1 +

6
ν

)
(5.6)
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and

〈δν2〉
ν2

=
ν2

N

(
1 +

1
ν

)(
1 +

4
ν

)(
1 +

5
ν

)
(5.7)

Since there are a large number of image pixels in each test site, both the relative bias and variance take

very small values. For the errors or uncertainties of estimates, the square root of 〈δν2〉 is used for the error

bar in the regression curve shown in Fig.5.17.

5.5.1 Order Parameter and Biomass

Figure 5.15: Order parameter of K-distribution as a function of tree biomass for the HH- (left) and VV- (right)
polarizations data. The correlation coefficient is 0.64 and 0.75, respectively. The lines are fitted by third-order
polynomial to the corresponding data points.

Figure 5.16: Order parameter of K-distribution as a function of tree biomass for the HV-polarization data. The
correlation coefficient is 0.89. The lines are fitted by third-order polynomial to the corresponding data points.

Fig.5.15 and Fig.5.16 illustrate the order parameter of the K-distribution as a function of tree biomass
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for the L-band co- and cross-polarization data. As can be seen from the figures, the general trend is that

the order parameter increases with increasing biomass for all polarization data. The HH-polarization data

in Fig.5.15 are rather scattered, and the VV-polarization data are less scattered. The correlation coefficients

for the HH- and VV-polarization data are 0.64 and 0.75 respectively.

The best relation between the order parameter of the K-distribution and the tree biomass can be seen in

the HV-polarization data in Fig.5.16 with the correlation coefficient of 0.89. A significant feature of Fig.5.16

is that the order parameter increases with biomass well beyond the RCS saturation limit keeping high

correlation. As can be seen in the right graph of Fig.5.10, RCS saturates at about 40 tons/ha for the L-band

co- and cross-polarization data. While, the order parameter shown in Fig.5.16 increases to approximately

100 tons/ha and possibly beyond. Thus, the order parameter of the K-distribution for high-resolution SAR

images, in particular cross-polarization images, of forests can be an effective parameter to estimate the tree

biomass in a wide range of values. Another advantage of using the order parameter is that it does not

require absolute RCS values since the statistical distribution depends on the amplitude relative to the mean.

The disadvantage is that the approach based on the non-Gaussian statistics requires high-resolution SAR

images. As the size of SAR resolution cell increases, it becomes difficult to image fine features of forests, and

the amplitude statistics tend to become Gaussian. The order parameters and regression curves computed

in Fig.5.15 and Fig.5.16 are certainly dependent on the SAR resolution as well as the tree biomass (and

species), but their dependence on resolution is not known at this stage.

The order parameter of the K-distribution in the cross-polarization data has higher correlation with the

tree biomass than the co-polarization data, because the L-band microwave with relatively long wavelengths

can penetrates into the interior of forests, and substantial amount of backscatter is caused by multiple

(volume) scattering by branches and trunks. The high sensitivity of the cross-polarization data to the

forest parameters, particularly biomass, has also been known for some time [40], [43], [45], [50]. The cross-

polarized backscatter at L-band comes from the volume scattering by multiple reflection, giving rise to strong

dependence on the associated forest biomass. Accordingly, the order parameter of the K-distribution is more

sensitive to the forest biomass at HV-polarization than co-polarization data.

Fig.5.17 is same as Fig.5.16 but for two different tree species. Errorbars are added to show the confidence

of estimates and also because only the regression model based on the HV-polarization data is used for

estimating the biomass of other plots. In the figure, Sakhalin-spruce is represented by black circles, and

crosses correspond to other conifers. It can be seen from Fig.5.17 that the order parameters for the single

species of Sakhalin -spruce is less scattered than for the mixed species of conifers. For Sakhalin-spruce alone,

a higher correlation coefficient of 0.92 is obtained. It appears, therefore, the species and structural difference
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Sakhalin-spruce
Other conifer

Figure 5.17: Order parameter of K-distribution as a function of forest biomass for the HV-polarization data. The
correlation coefficient is 0.89. The black circles are the order parameters of Sakhalin-spruce forests. The correlation
coefficient is 0.92. Third-order polynomial is used to fit the regression curve.

are the important factors in radar backscatter from coniferous forests, and they may well be the source of

uncertainties in the regression curve.

The regression curve shown in Fig.5.17 takes a form

ν =a0+a1B+a2B
2+a3B

3 (5.8)

where aj (j = 0, 1, 2, 3) are found to be 3.1574, 0.1248, -0.0011 and 1.4124×10−5, respectively. ν is order

parameter, and B denotes biomass.

5.5.2 Order Parameter and Tree Age

Fig.5.18 shows the scatter diagram of the order parameters of HH-, VV- and HV-polarizations data and

the tree age of each test sites (the regression curves are again fitted using third-order polynomial) with the

correlation coefficient 0.60, 0.58 and 0.65 respectively. The HV-polarization data has the highest correlation

coefficient among all the datasets. However, the results shown here are quite scattered.

5.5.3 Order Parameter and Basal Area

Fig.5.19 is the scatter diagrams for the order parameter of HH-, VV-, and HV-polarizations data as a function

of basal area with the correlation coefficients 0.71, 0.79 and 0.78 respectively. The VV- and HV-polarization

data have higher correlation coefficients than the HH-polarization.
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Figure 5.18: Order parameter of K-distribution as a function of tree age for the HH- (upper left graph), VV- (upper
right graph), and HV- (bottom graph) polarizations data. The correlation coefficients are respectively 0.60, 0.58 and
0.65. The lines are fitted by third-order polynomial to the corresponding data points.

It can also be seen that Fig.5.19 is less scattered than Fig.5.18. This may be because the basal area

is strongly correlated with forest biomass which shows the highest correlation coefficient among all forest

parameters.

5.5.4 Order Parameter and Tree Height

Fig.5.20 shows the relations of order parameter of HH-, VV-, and HV-polarizations data and mean tree height

with the corresponding correlation coefficients 0.49, 0.64 and 0.66 respectively. Again, the HV-polarization

data has the highest correlation coefficient. Since the tree height dose not contribute much to the RCS

fluctuation, it is not surprising that the order parameter does not correlate strongly with the mean tree

height.
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Figure 5.19: Order parameter of K-distribution as a function of basal area for the HH- (upper left graph), VV-
(upper right graph), and HV- (bottom graph) polarizations data. The correlation coefficients are respectively 0.71,
0.79 and 0.78. The lines are fitted by third-order polynomial to the corresponding data points.

Summary of the Section

The relations of order parameter of K-distribution and forest biomass were investigated in this section. The

results show that the order parameter correlates best with the forest biomass for HV-polarization dataset,

and it does not saturate as the tree biomass increases. It can be said that the regression curve shown in

Fig.5.17 can be used to estimate the forest biomass beyond the RCS saturation level.

5.6 Interpretation of Order Parameter and Biomass

Fig.5.21 illustrates the scattering mechanisms from forests at X-, C-, L- and P-bands, where surface scat-

tering is the dominant contribution to the radar backscatter at X/C-bands, while various contributions

are considered to arise from forest interior at L/P-bands. It has been known that longer wavelengths can
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Figure 5.20: Order parameter of K-distribution as a function of mean tree height for the HH- (upper left graph),
VV- (upper right graph), and HV- (bottom graph) polarizations data. The correlation coefficients are respectively
0.49, 0.64 and 0.66. The lines are fitted by third-order polynomial to the corresponding data points.

penetrate deeper in forests [39]-[41], [44]-[46], [48], [49]. At L-band, the incident microwave penetrates into

the interior of forests, and the dominant radar backscatter is due to volume scattering from branches in

the crown layer, multiple reflection from the ground to trunks and to branches, and surface scattering from

ground [38], [41], [42], [45]. In the limit of zero biomass shown in Fig.5.22 (a), the dominant backscatter

is due to the surface scattering from soil or small vegetation. If there is no undergrowth, and the surface

is rough and statistically homogeneous, then the image constitutes a well known Gaussian speckle pattern

which is described by the Rayleigh distribution, or the K-distribution of very large order parameters. It is

expected, therefore, that the order parameter would increase as the biomass becomes very small in Fig.5.17,

in particular for the lowest two biomass data. However, the surface was not statistically homogeneous at

the time of data acquisition described as follows.

The two data points of low biomass of 0.9 and 5.1 tons/ha in Fig.5.17 correspond to the stands 14 and
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Figure 5.21: Illustration of scattering mechanisms from forests for X/C- and L/P-bands.

18 respectively (see Table 5.3). Both the sites consists of Sakhalin-spruce trees planted in 1998 (stand 14)

and 1994 (stand 18), and the mean tree height of these two test sites are 0.9m and 2.5m respectively. Thus,

at the time of Pi-SAR data acquisition in 2002, both the forests consisted of very young trees of low biomass

and of some low vegetation. These young trees give rise to non-homogeneous radar backscatter and the

SAR images of highly non-Gaussian textures. They are certainly not statistically homogeneous surface to

yield SAR images of Gaussian speckle. This is the reason why the order parameter does not increase as

the biomass decreases to very small values in Fig.5.17. Even if very low biomass area leads to high order

parameter value, we can use RCS to check or estimate very low biomass cases.

For forests of small to moderate biomass shown in Fig.5.22 (b) and (c) respectively, trees are sparsely

distributed and a high-resolution SAR can, to some extent, resolve tree structures. The radar backscatter

in this case is due to the surface scattering, multiple reflection and volume scattering illustrated in Fig.5.21.

Discrete strong backscatter results from multiple reflection, and volume scattering from the crown layer

gives rise to the structure-dependent variation to the radar backscatter. Reflecting this backscatter of mixed

contributions, the image amplitudes are not distributed statistically homogeneous, i.e., the amplitude PDF

has a non-Rayleigh distribution, and the K-distributions of small order parameters describe such highly

fluctuating amplitudes.

For the forests of small biomass, the soil moisture and surface roughness are considered to take some

impact on the order parameter. If the surface is smooth and soil moisture is high, the multiple scattering

between the surface and small trees increases, while the surrounding speckle mean amplitude decreases.
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Figure 5.22: Interpretation of the regression curve between order parameter of K-distribution and different biomass,
(a) zero biomass, that is, bare soil; (b) low biomass; (c) moderate biomass; (d) high biomass.

Then, the image amplitudes corresponding to the trees increase, leading to non-Rayleigh distribution with

very large amplitude variance, and consequently the order parameter would become smaller. In the reversed

manner, the order parameter is expected to increase with increasing surface roughness and/or decreasing

soil moisture.

As the tree biomass increases and the forests become dense as shown in Fig.5.22 (d), the contributions

from the discrete multiple scattering and surface scattering decrease, and the radar backscatter is dominated

by the volume scattering from the crown layer. For example, the contributions of volume scattering in test

13 and test 14 are -4.0 dB and -10.2 dB, respectively. Accordingly, the SAR images tend to become Gaussian

speckle and the order parameter increases. In the limit of very dense forests with very large biomass, the

gaps among trees are filled with dense crown layer. The incident microwave can no longer penetrate to the

forest interior and the dominant backscatter comes from the statistically homogeneous crown layer. The

SAR images appear as a classical Gaussian speckle pattern, which can be described by the K-distribution of

very large order parameter, i.e., Rayleigh distribution. In practice, the K-distribution is nearly identical to

the Rayleigh distribution for ν∼30, and it becomes less sensitive to the order parameter of large values.

It is clear that the approach based on the non-Gaussian statistics requires high-resolution SAR images.
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As the size of SAR resolution cell increases, it becomes difficult to resolve fine features of forests, and the

amplitude statistics tend to become Gaussian. The order parameters and regression curves computed in

Fig.5.17 is certainly dependent on the SAR resolution as well as the tree biomass, species, and also radar

incidence angles. It can be conjectured that at small incidence angles deeper penetration of microwave

into the forests yields strong contribution from the multiple reflection between ground and tree trunks and

branches. With increasing incidence angles the contribution from the crown layer increases. The order

parameter of the K-distribution can then be expected to be small at smaller incidence angles for the forests

of same structures. In the present study, the difference in incidence angles for most test sites are not large

(40◦-44◦), and the effect of incidence angle is considered to be small. The quantitative dependencies of the

non-Gaussian statistics on SAR resolution and incidence angles are subjects of future investigation.

5.7 Accuracy of Regression Model

The accuracy of the regression curve of equation (5.8) to estimate needs to be investigated. For this purpose,

comparison is made between the biomass estimated by the regression model and the ground-truth biomass

collected in 2005 as listed in Table 5.4. Table 5.8 and Fig.5.23 are the results of the comparison. It can

be seen that the total biomass of the field data is 1855.1 ton/ha, and that estimated from the SAR data is

1898.8 tons/ha. The SAR measurement overestimated by 43.7 tons/ha. The average measurement accuracy

of individual plot is 85%. Further, it can also be seen that the differences of 4 test sites are over 20 tons/ha,

and 3 of them are underestimated.

The possible sources of large differences between the model prediction and ground-truth data are (1)

non-uniformity of forest stand, (2) undergrowth and (3) mixed species.

In (1), structural uniformity is tested by measuring at two plots in a same stand by two independent

groups. The test is carried out in two stands. The biomass difference is found to be 5.4% and 7.7%. The

statistically non-uniform tree structures may cause large fluctuations in the ground-truth data and model

prediction. In (2), there exist substantial differences in undergrowth. We have not taken the effect of

undergrowth into consideration. In (3), in some forest stands, there are mixed species of tall broadleaf trees

among conifer. It can be seen from Table 5.8 that the estimation errors of 4 stands are over 20 tons/ha,

and 3 of them are underestimated. It is probably because there are some very tall broadleaf trees in these

stands. These tall broadleaf trees yield highly non-Gaussian texture in the radar images with smaller order

parameters, and hence smaller biomass values than that measured on the ground.
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Table 5.8: Comparision between the ground truth data and the biomass estimated by regression curve (uint:
tons/ha). The numbers in the brackets are the percentage of difference.

site Species Field Data Model Prediction Difference
1 Japanese larch 50.8 68.6 17.8 (35.0)
2 Japanese larch 107.9 132.4 24.5 (22.7)
3 Sakhalin-spruce 85.6 61.8 -23.8 (27.8)
4 Japanese larch 111.8 102.1 -9.7 (8.7)
5 Sakhalin-spruce 71.9 71.5 -0.4 (0.6)
6 Todo-fir 43.8 55.3 11.5 (26.3)
7 Sakhalin-spruce 161.3 132.0 -29.3 (18.2)
8 Sakhalin-spruce 67.5 71.0 3.5 (5.2)
9 Todo-fir 71.6 80.6 9.0 (12.5)
10 Todo-fir 79.6 93.9 14.3 (18.0)
11 Sakhalin-spruce 126.7 124.5 -2.2 (1.7)
12 Sakhalin-spruce 97.5 110.5 13.0 (13.3)
13 Sakhalin-spruce 36.5 43.8 7.3 (20.0)
14 Sakhalin-spruce 79.3 94.6 15.3 (19.3)
15 Sakhalin-spruce 97.2 93.9 -3.3 (3.4)
16 Sakhalin-spruce 97.4 87.0 -10.4 (10.7)
17 conifer 52.4 67.9 15.5 (29.6)
18 Japanese larch 121.0 88.0 -33.0 (27.3)
19 Sakhalin-spruce 66.8 66.8 0.0 (0.0)
20 Yezo-spruce 0.1 0.0 -0.1 (100.0)
21 Sakhalin-spruce 56.9 67.4 10.5 (18.5)
22 Sakhalin-spruce 46.1 50.8 4.7 (10.2)
23 Sakhalin-spruce 125.3 134.3 9.0 (7.2)
total 1855.1 1898.8 43.7

 

Figure 5.23: The scatter diagram between estimated biomass and ground truth data. The solid line is the ideal
theoretical relation, and the broken line is the regression line from the actual data.
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5.8 Biomass Classification

Having proven the accuracy of the regression curve given by equation (5.8), a new regression model can be

developed by including the ground-truth data collected in 2005 as listed in Table 5.4. Fig.5.24 shows the

scatter diagram containing all ground-truth data and the new regression curve. The correlation coefficient

is 0.90, which is slightly higher than that in Fig.5.17. The regression curve is found to be

ν =a0+a1B+a2B
2+a3B

3 (5.9)

where the coefficients, from a0 to a3, are 3.6889, 0.0028, 0.0027 and -1.1996×10−5, respectively. ν is order

parameter, and B denotes biomass.
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Figure 5.24: Order parameter of K-distribution as a function of forest biomass for the HV-polarization data. The
correlation coefficient is 0.90. Third-order polynomial is used to fit the regression curve.

As mentioned before, Tomakomai forests are well-managed national forests with typical stand size 500m

× 500m. The stands around the test sites were selected from the Pi-SAR HV-polarization data and their

order parameters of K-distribution were estimated. The corresponding biomass can then be estimated by

this regression curve.

Fig.5.25 is the map of tree biomass around the Tomakomai test sites. The tree biomass of each site is

computed from the regression curve derived from the order parameter of the K-distribution in the cross-

polarisation data in Fig.5.24, i.e., equation (5.9). Though we could not compare the estimated biomass with

ground-truth data in the whole area, Fig.5.25 is a good example, highlighting the utilization of the order
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parameter of the K-distribution for tree biomass estimation.

biomass
(tons/ha)

Figure 5.25: Map of tree biomass around the Tomakomai test sites based on the regression curve of the order
parameter of the K-distribution derived from the cross-polarisation data shown in Fig.5.24.

5.9 Summary and Future Work

In this chapter, the non-Gaussian statistics described in previous chapters are applied to extracting forest

information from the high-resolution polarimetric Pi-SAR data over the Tomakomai forests in Hokkaido,

Japan. The forests of interest are conifers of four main species, including Japanese larch, Todo-fir, Yezo-

spruce and Sakhalin-spruce. Japanese larch is deciduous, and this is the reason why the decomposition result

of X-band data shows that volume scattering is the main scattering mechanism in November as can be seen

from Fig.4.12 in Chapter 4.

Ground-truth data collection was made in 2002, 2003 and 2005. There are 19 test sites were measured in

2002 and 2003, and 23 test sites in 2005. At each 20× 20 m2 plot, average tree height, age, basal area, DBH

and biomass are measured. The biomass calculation formulae for Hokkaido forests are used to calculate the

biomass.

The relations between RCS of X- and L-bands data and forest parameters are investigated for all the

polarizations, and the results show that at X-band, the RCS is largest for VV-polarization followed by

HH- and HV-polarizations; while at L-band it is largest for HH-polarization followed by VV- and HV-

polarizations. Both X- and L-bands RCS increase as the forest parameters increase and saturate at some

levels. However, X-band RCS data are not well correlated with forest parameters, and the RCS saturation

levels are difficult to define. The L-band RCS saturation levels are found approximately to the biomass of

40 tons/ha, the tree age of 30 years, the basal area of 30 m2/ha, and the tree height of 8 m.
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To search new parameters that relate to the forest biomass and other parameters beyond the RCS satu-

ration limits, the non-Gaussian texture analysis is considered. Since L-band data contain more information

than X-band, only L-band data are used for statistical analysis. The best fitted model, K-distribution, is

found by using the AIC among the Rayleigh, log-normal, Weibull and K-distributions. The order parameter

of K-distribution is then plotted as a function of forest parameters including biomass, tree age, basal area

and tree height. The results show that biomass has the highest correlation with the order parameter in the

cross-polarization data, and the regression curve is derived by using the third-order polynomial fitting. This

regression model is used to estimate the forest biomass and the estimated results are compared with the

ground truth data collected in 2005. The comparison shows that the estimation accuracy is 85%. Possible

reasons which may cause large uncertainty are considered, including the non-uniformity of forest structure,

undergrowth, and mixed species. Finally the regression model is updated by including all the ground truth

data, and using this new regression model, a map of biomass is produced for the forests around the study

area.

For the future work, the following subjects are considered.

• Effects of incidence angles and resolution on the image amplitude distribution.

• Scattering mechanisms that gives rise to the non-Gaussian distribution.

• Usage of high-resolution optical (IKONOS,QuickBird) images.

• Applications to change detection in forests.

• Applications using the ALOS-PALSAR data.

Figure 5.26: False colour composite optical image by QuickBird over Tomakomai forests acquired on 6th, Apr.,
2002.
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Fig.5.26 shows the QuickBird false colour image, and the tree species in the stands with the color marked

by the two white ellipses is Japanese larch, while the tree species in the area marked by the red quadrangle

is deciduous broadleaf. Moreover, the Japanese larch can also be identified by the X-band decomposition

result shown in Fig.4.12. It is am interesting future study to investigate whether these two approaches can

be merged to increase classification accuracy of tree species.

In September 2004, a typhoon caused considerable damage to the Tomakomai forests. An example is

shown in Fig.5.27. Some of fallen trees were cleared, and the areas were almost plain as in Fig.5.28. It

appeared that the difference in RCS between the forests before and after the typhoon damage is order of 1-2

dB in the Pi-SAR data. Polarimetric analysis may be a useful technique to detect such changes since there

is a certain difference in the forest structure.

Figure 5.27: Fallen trees caused by typhoon.

Figure 5.28: The fallen trees caused by typhoon were cleared.
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Chapter 6

Applications to Oceanography

6.1 Introduction

This chapter presents the theoretical development and experimental results on the interlook correlation of

Gaussian speckle in sub-images of dynamic ocean surfaces produced by multilook processing. The technique

of multilook processing is used for speckle noise reduction and equalization of two-dimensional resolution

scale in SAR imagery. It is based on incoherent addition of uncorrelated multilook intensity images produced

with non-overlapping sub-apertures (an equivalent result, for stationary surfaces, can be obtained by aver-

aging neighboring pixels in the full single-look intensity images), and a substantial number of publications

concerning this issue are available (e.g. [3], [14]-[16]). However, it is surprising to find that very little, is

reported in open literature on the interlook cross-correlation property between speckle patterns produced by

using partially overlapped sub-apertures. An exception is the theoretical study of Ouchi and Burge [61] who

describe the cross-correlation function (CCF) for Gaussian amplitude sub-aperture weightings. Their results

also show that the CCF is independent of a scene coherence time of randomly fluctuating sea surfaces, pro-

vided that the backscattered field is modeled as a Gaussian white noise. However, to date no experimental

data have been provided to support the theory. However, In the previous study [75] of ship detection by

the cross-correlation technique, it is experimentally shown that the interlook cross-correlation function of

speckle intensity in the RADARSAT-1 images of sea surface produced by partially overlapped sub-apertures

appears to be independent of the scene coherence time.

Fig.6.1 illustrates partially overlapped sub-image processing. Return signal from randomly moving sea

surface is subject to fade, i.e., the signal fluctuates with time, and the scene coherence time is around 0.01-0.2

s. These coherence times are shorter than SAR integration times. It may then be possible, by using partially

overlapped sub-apertures, to extract extra look sub-images whose speckle patterns are uncorrelated.

Thus, the purpose of this study is to report the theoretical study on the cross-correlation function of

intensity speckle patterns in terms of the center time difference of partially overlapped sub-apertures, and

the experimental results using real SAR data for comparison with the theory. In the first part of the
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full synthetic aperture raw data with fadefull synthetic aperture raw data with fade

     look 1 subaperture                look 2 subaperture

look 3 subaperturelook 3 subaperture

Integration time 1~2 s

signal correlation

time 0.01- 0.2 s

Figure 6.1: Illustration of multilook processing with partially overlapped sub-images over sea surface.

chapter, a general integral expression for the intensity CCF of speckle patterns produced through partially

overlapped sub-apertures at arbitrary center times is derived and discussed. An assumption is made that the

backscattered spatial field is modeled as being statistically “white”, so that the resultant speckle patterns

between sub-images produced by non-overlapping sub-apertures are spatially uncorrelated. Further, the

theory takes account of the random temporal fluctuation of the return signal from the sea surface. The

result shows that the interlook speckle CCF is proportional to the modulus square of the autocorrelation

function of the sub-aperture amplitude weighting function, where the time lag variable is the center time

difference. It is also shown that the interlook speckle CCF is independent of the temporal fade process of

the backscattered field. For simplicity, the theoretical treatment is given only in the azimuth direction since

the multilook processing is applied to the azimuth component. An analytic expression of the interlook CCF

is then derived from the integral equation for a rectangular amplitude weighting of sub-apertures. Finally,

this theoretical CCF is compared with those computed from the JERS-1 L-band SAR and RADARSAT-1

C-band SAR images over the coastal waters of Japan [76].

6.2 Basic Theory of Cross-Correlation Function

6.2.1 Siegert Relation

When a statistically homogeneous random rough surface is imaged by a SAR, a Gaussian speckle pattern,

inherent to coherent systems, is formed. As described in the previous chapters, the term “Gaussian” stems
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from the fact that the real and imaginary parts of the complex amplitude of the speckle field obey a Gaussian

PDF, provided that more than about 4 to 8 independent scatterers exist within a resolution cell to satisfy

the central limit theorem [6], [62]. It is well known that the amplitude and intensity fluctuations of such

speckle patterns are described by the Rayleigh and negative exponential PDFs respectively [3], [14], [16]. It

is also well known that the intensity CCF of Gaussian speckle patterns in the sub-images can be described

the Siegert coherence function [89]

〈I(X; τn) I(X; τn′)〉 = 〈I〉2 + |〈A(X; τn)A∗(X; τn′)〉|2 (6.1)

where the angular brackets indicate taking an ensemble average (expectation value), I(X; τn) is the intensity

at an image position X produced by the sub-aperture of center time τn, A is the image complex amplitude,

and the asterisk ∗ means taking complex conjugate. The relation of equation (6.1) is valid if the random

fluctuation in the image is a wide-sense stationary Gaussian process with 〈I(X; τn)〉=〈I(X; , τn′)〉. Equation

(6.1) shows that the intensity CCF is proportional to the modulus square of the autocorrelation function of

speckle amplitude. The deduction of one-dimensional Siegert relation is shown in Appendix A.

6.2.2 Image Complex Amplitude of Arbitrary Center Time

In order to evaluate equation (6.1), the expression for the image complex amplitude A(X; τn) needs to be

derived by taking into account the random temporal fluctuation of the scattering surface. It is important,

therefore, to start the analysis from the SAR image formation with an arbitrary azimuth center time as

follows.

A SAR antenna transmits a series of pulses and receives return signals as it propagates in the azimuth

direction. A signal received at an azimuth time t from a point scatterer at an azimuth surface position x is

given by

ss(x, t)=as(x)at(t|x) exp (−i2kr(x, t)) (6.2)

where k=2π/λ is the wavenumber, λ is the wavelength, and r(x, t) is the distance between the radar and the

scatterer. The scattering amplitude is factorized to the spatial field as(x) and its temporal change at(t|x),

where the temporal change is conditional upon the scatterer being observed at x, and it is a function of the

azimuth time t only [63]. Examples corresponding to this type of scattering objects include the sea surface

that is the subject of the present study, and forests on land under strong wind conditions.

It should be noted that, in practice, the amplitude of the return signal of equation (6.2) is weighted

by the illuminating azimuth beam pattern. This weighting is removed in equation (6.2), because in the
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SAR processor used for the study [90] the beam pattern is corrected during the image forming process. In

brief, the azimuth power spectrum is estimated first, and the amplitude of the image complex spectrum is

smoothed before taking inverse FFT to produce each look image. The Doppler offset varies with range, so

that the smoothing is required for each azimuth line at different range positions.

Similar as equation (3.25), the slant-range distance r can be approximated as follows.

r(x, t)=
√

R2
0+(vat−x)2

'R0+
(vat−x)2

2R0
(6.3)

In the expression, R0 is the slant-range distance when the radar is directly above (abeam of) the scatterer,

and va is the platform velocity. The return signal from an extended surface can then be given by substituting

equation (6.3) into equation (6.2), and integrating the return signal of equation (6.2) over the surface with

respect to the azimuth spatial variable x as

s(t)=E0

∫ ∞

−∞
as(x)at(t|x) exp

(
−i

kv2
a

R0
(t− x

va
)2

)
dx (6.4)

where the term exp(−i2kR0) has been absorbed in the constant E0. The complex amplitude of a look n

image can be produced by correlating the return signal of equation (6.4) with a sub-reference signal sr as

A(X; τn)=
∫ ∞

−∞
s

(
X

va
+t

)
sr(t) dt (6.5)

where the look n sub-reference signal is given by

sr(t; τn)=W

(
t−τn

τA

)
exp

(
i
kv2

a

R0
t2

)
dt (6.6)

In this expression, W is the amplitude weighting function centered at the azimuth time τn, and τA is the

integration time to synthesize the sub-aperture. Substituting equation (6.4) and equation (6.6) into equation

(6.5) yields the complex amplitude of the look n image

A(X; τn)=A0

∫ ∞

−∞
dx

∫ ∞

−∞
dtW

(
t−τn

τA

)
as(x)at

(
X

va
+t

∣∣x
)

· exp
(
−i

k

R0
(X−x)2

)
exp

(
−i

2kva

R0
(X−x)t

)
(6.7)

where A0 is a normalizing constant.
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6.2.3 General Integral Expression for CCF of Speckle Intensity

From equation (6.7), the amplitude CCF between the look n and look n′ images can be expressed as

〈A(X; τn)A∗(X; τn′)〉= |A0|2
∫∫ ∞

−∞
dx1dx2

∫∫ ∞

−∞
dt1dt2W

(
t1−τn

τA

)
W ∗

(
t2−τn′

τA

)

·〈as(x1)a∗s(x2)〉
〈

at

(
X

va
+ t1|x1

)
a∗t

(
X

va
−t2|x2

)〉

· exp
(
−i

k

R0

(
(X−x1)2−(X−x2)2

))

· exp
(
−i

2kva

R0
((X−x1)t1−(X−x2)t2)

)
(6.8)

In order to simplify the four-fold integral of equation (6.8), the backscattered field is modeled as being

statistically white. This assumption of a white noise approximation implies that the phases are random and

distributed uniformly over [0, 2π), and that they are uncorrelated to each other and to the amplitudes [3].

The autocorrelation function of the backscattered spatial field can then be approximated by the following

ensemble average.

〈as(x1)a∗s(x2)〉=〈σ〉 δ(x1−x2) (6.9)

where 〈σ〉 is the radar cross section, and δ is the Dirac delta function. The temporal correlation function

can be defined as [63]

〈at(t1|x1)a∗t (t2|x2)〉=γ(t1−t2)|x1=x2 (6.10)

which is a function of time difference between t1 and t2 only at a same surface position x1 =x2. In equation

(6.9) and equation (6.10), the spatial and temporal fluctuations as and at are wide-sense stationary stochastic

processes. Substituting equation (6.9) and equation (6.10) into equation (6.8), and integrating with respect

to x1, equation (6.8) can be simplified to

〈A(X; τn)A∗(X; τn′)〉= |A0|2〈σ〉
∫ ∞

−∞
dx

∫∫ ∞

−∞
dt1dt2W

(
t1−τn

τA

)
W ∗

(
t2−τn′

τA

)

·γ(t1−t2) exp
(
−i

2kva

R0
(X−x)(t1−t2)

)
(6.11)

where x=x2. The spatial extent of the statistically homogeneous surface is assumed to be large, then the

integration of equation (6.11) with respect to x can be approximated as

∫ ∞

−∞
exp

(
i
2kva

R0
(t1−t2)x

)
dx'c0 δ(t1−t2) (6.12)
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where c0 is a constant with an appropriate dimension. Then, integrating equation (6.11) with respect to t1

and putting t= t2, equation (6.11) reduces to the following simple integral.

〈A(X; τn)A∗(X; τn′)〉 = |A0|2
∫ ∞

−∞
W

(
t−τn

τA

)
W ∗

(
t−τn′

τA

)
dt (6.13)

where all constants have been absorbed in |A0|2.
The result of equation (6.13) states that the interlook CCF of speckle complex amplitudes in the sub-

images centered at azimuth center times τn and τn′ is given by the autocorrelation function of the amplitude

weighting function of sub-reference signals. The CCF of the intensity speckle patterns given by equation

(6.1) is therefore proportional to the modulus square of equation (6.13). It is important to emphasize that

the interlook cross-correlation property is dependent only on the sub-aperture weighting function, and it is

independent of the temporal correlation function of equation (6.10), provided that the backscattered spatial

field is a statistically white random process.

6.2.4 Interlook CCF for Rectangular Weighting Function

For a rectangular weighting function

W

(
t−τn

τA

)
= rect

(
t−τn

τA

)
= 1 : −τ

2
≤ t−τn ≤ τ

2

0 : otherwise (6.14)

the normalized intensity CCF is readily given by

C(∆τ) ≡ 〈I(X; τ1)I(X; τ2)〉
〈I〉2 −1

=
(

1−∆τ

τA

)2

(6.15)

where ∆τ = |τ1−τ2|≤ τ is the center time difference between the look 1 and look 2 sub-apertures. The two

speckle patterns in the sub-images are identical when ∆τ =0, and they are, of course, perfectly correlated. As

∆τ increases, the overlapping area of sub-apertures decreases and the speckle patterns start to decorrelate.

They decorrelate completely when the center time difference equals (∆τ = τ) or ∆τ is greater than the

integration time, since there is no overlapping area between two sub-apertures. When these uncorrelated

speckle patterns are added on an intensity basis, the speckle fluctuation reduces by the factor of 1/
√

N

where N is the number of uncorrelated speckle patterns. This is the basis of speckle reduction by multilook
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processing.

In spaceborne SARs such as ENVISAT, RADARSAT-1 and JERS-1 SAR, the integration times of a

full single look are approximately 0.5-2.0 s, so that the integration times of N -look sub-images are in the

range between 0.5/N and 2.0/N s, while the coherence (decorrelation) time of sea surfaces is in the order

of 0.05–0.1 s for L-band, and 0.05 s or less for C-band [64]-[70]. It has been suggested that if the interlook

speckle patterns were to decorrelate according to the sea surface coherence time (which is much shorter than

the integration time of a sub-aperture), sub-images with uncorrelated speckle patterns could be produced

through partially overlapped sub-apertures. Hence, an extra look sub-image could be extracted from the raw

data of full synthetic aperture length. For example, instead of two sub-apertures three partially overlapped

sub-apertures of the same bandwidth could be used to produce three sub-images with uncorrelated speckle

patterns [71]. However, this cannot be done for the case of Gaussian speckle, since, from the result of equation

(6.13) and equation (6.15), the CCF of intensity speckle patterns is independent of the scene coherence time.

The situation is different for scatterers that give rise to non-Gaussian intensity fluctuations [16], [61],

[72], [73]. It can easily be conjectured that the image of an isolated deterministic scattering object such

as a corner reflector or transponder must have high degrees of interlook correlation even if the center time

difference becomes very large. If the received signal from such a scatterer (elementary scattering object) has

temporal fluctuations within the integration time (for example, by randomly varying the return signal from

a transponder), the interlook correlation time would be shorter than the integration time. If, therefore, the

backscattered field is statistically “non-white” consisting of a few such randomly fluctuating scatterers, then

the fluctuations in image intensity obey non-Gaussian statistics, and the interlook CCF becomes dependent

on the scene coherence time. Analysis of such situation is given in the previous theoretical study [75], but it is

not the purpose of this thesis to examine the non-Gaussian speckle. Thus, we restrict the present discussion

to the case of Gaussian speckle fluctuations, where the CCF is a function only of the sub-aperture weighting

function and the interlook time difference, provided that the backscattered field is statistically white.

6.3 Experimental Results and Discussion

6.3.1 JERS-1 SAR Data

The JERS-1 SAR [77] was in operation from 1992 to 1998 at L-band (wavelength 0.235 m; frequency 1.275

GHz) in HH-polarization with nominal resolution of 6 m (full single-look) in azimuth and 18 m in ground-

range directions. It was designed for the global land observation, having the nominal off-nadir angle of 35◦

to reduce the foreshortening and layover effects, and hence it was considered as being not well suited for
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oceanic applications. However, under favorable conditions, the JERS-1 SAR data can be used to extract

oceanic information [74].

Figure 6.2: JERS-1 SAR intensity image of the Tsugaru Strait between the mainland Honshu and Hokkaido, Japan.
The size is approximately 68 km and 55 km in azimuth and range respectively. The white boxed areas marked “A”,
“B”, “C” and “D” of size 100× 100 pixels are used for the analysis.

Fig.6.2 shows the JERS-1 SAR intensity image of the Tsugaru Strait located between Hokkaido and

mainland (Honshu) Japan, and the image center is approximately at 41◦ 30’ N and 141◦ 17’ E, with data

acquisition time of 01:23 GMT on the 26th of June 1997. The ocean currents are strong in the strait flowing

from west to east (from “C” to “B” in Fig.6.2). According to the Japan Oceanographic Data Center, the

maximum current velocity at the area “C” in June is 4.6 knots (2.4 m/s) with mean velocity of 1.1 knots

(0.57 m/s). The database of the Japan Weather Association (JWA) show that at the time approximately

an hour and half prior to the data acquisition (00:01 GMT), the wind speed was 4.0 m/s from west at

the position marked “C” in Fig.6.2, and the ocean waves of mean wavelength 0.35 m, propagating toward

south-west with the period 3.7 s. The image size is approximately 68 km and 55 km in azimuth and range

directions respectively. In the image, no clear wave patterns are observed, and the image modulations over

the strait appear to be associated with wind and currents. The white boxed areas labeled as “A”, “B”, “C”

and “D” of each size 100×100 pixels are used to test the theory described in Section II. In order to compute

the interlook cross-correlation function, the total of 9 images of the same area are processed. The bandwidth

of the sub-reference signal is 400 Hz, and the Doppler center frequency is changed from -200 Hz to 200 Hz
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with interval of 50 Hz. The relation between the Doppler frequency fD and azimuth time t is given by

t=
λR

2v2
a

fD (6.16)

For this particular data set, the relative platform velocity is 7.3 km/s and slant-range distance is 697 km

with the incidence angle of 39◦ at the center of the image of Fig.6.2. Then, the azimuth integration time

of each sub-reference signal becomes 0.62 s and the interlook center time difference is 0.077 s. Both the

azimuth and range resolution cells of the sub-images are 18 m.

6.3.2 RADARSAT-1 SAR Data

The RADARSAT-1 SAR is currently in operation at the radar wavelength of 5.6 cm (5.3 GHz at C-band

HH-polarization) since its launch in 1995 [78]. Among several beam modes, the Standard Beam 1 is used in

this thesis, with its nominal incidence angle of 24◦, and the nominal azimuth (4-look) and range resolutions

of 28m and 25 m respectively.

Figure 6.3: RADARSAT single-look intensity image of the Kumano Sea, Japan. The size is 24 km and 60 km in
azimuth and range respectively. The white boxed areas marked “A”, “B”, “C” and “D” of size 100× 100 pixels are
used for the analysis.

Fig.6.3 shows the RADARSAT-1 intensity image over the coast of the Yoshino-Kumano National Park

and the Kumano Sea (image center: 33◦ 34’ N, 136◦ 00’) acquired at 21:05 GMT on the 28th of October

1998. The size is approximately 24 km in azimuth and 60 km in range, and the white boxed areas marked

as “A”, “B”, “C” and “D” of each size 100× 100 pixels are used for analysis.
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The meteorological data from the Japan Weather Association at the time three hours prior to the

RADARSAT pass show the wind speed of 3 m/s from the northwest and significant waveheight of 0.9 m

with period of 8 s, propagating from the southeast. A close inspection of the full scene shows the presence of

ocean waves in the deep sea in the south-east away from the center of Fig.6.3, but no clear wave images are

seen in the coastal sea shown in Fig.6.3, except some wind and frontal features and several ships with their

wake lines. The mean intensity is largest in “A” indicating the presence of some wind, and it is smallest in

“D” which is a wind-sheltered area.

In the present analysis, 11 sets of images are processed from the raw data using the sub-reference signal

having the bandwidth of 500 Hz and the center frequencies ranging from -250 Hz to 250 Hz with the center

frequency interval of 50 Hz. For the present data set, the slant-range distance is 983.5 km with the incidence

angle of 27◦ at the center of the image of Fig.6.3, and the relative platform velocity is 7.0 km/s. From these

parameters, the integration time of each look and interlook time difference are calculated as 0.28 s and 0.028

s respectively, and the azimuth and range resolution cells are 14 m and 25 m respectively.

6.3.3 Statistical Analysis of JERS-1 SAR Data

Before taking cross-correlation, the PDF of each area is estimated to ensure that the amplitude and intensity

fluctuations constitute a Gaussian speckle pattern. Fig.6.4 is the amplitude and intensity PDFs of the areas

“A” , “B” , “C” , and “D” in Fig.6.2, where the measured PDFs represented by the step line is in good

agreement with the Rayleigh and negative exponential distributions of the smooth curves.

The data points in Fig.6.5 are the CCF values of intensity speckle patterns as a function of center time

difference between two sub-apertures. It can be seen that the measured CCFs in the areas “A”, “B” and “C”

are in excellent agreement with the theoretical result of equation (6.15) indicated by the solid line, but the

measured CCF in the area “D” is slightly larger than the theoretical curve. Close inspection shows that this

is because there are some spatially correlated features in the image. The speckle image of the area “D” is

well behaved in terms of the single-point statistics since the amplitude PDF follows the Rayleigh distribution

as in Fig.6.4. However, the look 1 and 9 images of the area “D” shown respectively in the left and center

images of the bottom row of Fig.6.6 are not statistically homogeneous and the spatial features seem to retain

some correlation between look 1 and 9. The right image of each row shows the coherence image, i.e., a map

of correlation values, estimated by using 10 × 10 moving windows. The images are thresholded such that

the bright pixels correspond to the degree of coherence larger than 0.35. A certain number of pixels with

high degrees of coherence explain the discrepancy of the area “D” in Fig.6.5. Note that large-scale correlated

features visible in the left and center images in the bottom row of Fig.6.6 are not captured in the coherence
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Figure 6.4: The PDFs of speckle amplitude (left) and intensity (right) corresponding to the area “A”, “B”, “C”,
and “D” (from top to bottom) in the JERS-1 SAR image shown in Fig.6.2. In the left graphs, the vertical axis is the
relative number of pixels and the horizontal axis is the amplitude in digital number. In the right graphs, the vertical
and horizontal axes the normalized PDF and intensity by the mean intensity, respectively. The measured amplitude
and intensity PDFs represented by the step lines closely follow respectively the Rayleigh and negative exponential
distributions of the smooth curves.
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image, because of the small size of the moving windows.

Figure 6.5: The interlook cross-correlation function of the area “A”, “B”, “C” and “D” in the JERS-1 SAR image
shown in Fig.6.2 as a function of the center time difference. The solid line is the theoretical curve based on equation
(6.15).

The look 1 and 9 images of the area “A”, “B”, “C”, and “D” shown in the lower row of Fig.6.6 appear to

be statistically uniform with little correlation between looks. The coherence images on the right also indicate

that there are very small number of pixels with the degrees of coherence above 0.35. Thus, the correlated

spatial features are the main reason why the degree of interlook cross-correlation in the area “D” is higher

than the theoretical result of equation (6.15).

The look 1 to look 9 sub-images of the test areas in Fig.6.2 are shown in Fig.D1- Fig.D4 in the Appendix

D. In close inspection, it can be seen that the look 1 and look2 images are very similar, i.e., they are

correlated, and that the images tend to become different with increasing look difference. Similar features

can no longer be found between the look 1 and 9 images.

There are no simultaneous sea truth data on the scene coherence time, but in general the coherence time

is approximately 0.1 s or less as mentioned in the above section. Therefore, if the scene coherence time were

to enter the interlook cross-correlation function, then the interlook speckle patterns should have decorrelated

at time lags of similar order, and the measured CCF in Fig.6.5 should have had shorter correlation times

than the theoretical solid curve. The result shown in Fig.6.5 is an evidence that this is not the case, and the

interlook CCF of speckle patterns is independent of the random temporal fluctuation of the backscattered

field as predicted by equation (6.13) and equation (6.15), provided that the backscattered field is modeled

as a statistically white random process.
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Figure 6.6: The left and center images from top to bottom are respectively the look 1 and 9 images of the area “A”,
“B”, “C”, and “D” in Fig.6.2. The right images are the corresponding coherence images produced by cross-correlating
the look 1 and 9 images with moving windows of size 10 × 10 pixels, and thresholding by the correlation value of
0.35.
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Figure 6.7: The PDFs of speckle amplitude (left) and intensity (right) corresponding to the area “A”, “B”, “C”,
and “D” (from top to bottom) in the RADARSAT-1 SAR image shown in Fig.6.3. The other parameters are the
same as Fig.6.4.
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6.3.4 Statistical Analysis of RADARSAT-1 Data

Fig.6.7 is the amplitude and intensity PDFs of the area “A”, “B”, “C”, and “D” in the RADARSAT-1

image shown in Fig.6.3. Again, good agreements can be seen respectively between the measured PDFs and

Rayleigh and negative exponential distributions.

Fig.6.8 is the interlook cross-correlation function of the RADARSAT-1 test images as a function of center

time difference. The measured CCF values tend to over-estimate the theoretical curve mainly because

of spatially correlated features (although the features are not as clear as those in Fig.6.6). This spatial

correlation can be seen in Fig.6.9, where the left and center images are the look 1 and 11 images of the areas

“A”, “B”, “C”, and “D” (from top to bottom) in Fig.6.3, and the right is the coherence image estimated by

the same way as in Fig.6.6. Again, there exist some pixels of high correlation, explaining the discrepancy

between the theory and experimental results seen in Fig.6.8.

Figure 6.8: The interlook cross-correlation function of the area “A”, “B”, “C” and “D” in the RADARSAT-1 SAR
image shown in Fig.6.3 as a function of the center time difference. The solid line is the theoretical curve based on
equation (6.15).

The look 1 to look 11 sub-images of the test areas in Fig.6.3 are shown in Fig.D5- Fig.D8 in the Appendix

D. As in the Tsugaru images of Fig.D1- Fig.D4, gradual changes in speckle patterns with increasing look

number difference can be seen.

The CCF measurements given by Fig.6.8 provide a further support to the theoretical result of equation

(6.15) on the cross-correlation function of speckle intensity in the images produced by partially overlapped

sub-apertures.
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Figure 6.9: The left and center images from top to bottom are respectively the look 1 and 11 images of the area “A”,
“B”, “C”, and “D” in Fig.6.3. The right images are the corresponding coherence images produced by cross-correlating
the look 1 and 11 images with moving windows of size 10 × 10 pixels, and thresholding by the correlation value of
0.35.
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6.4 Summary

A general integral expression is derived for the intensity CCF of interlook speckle patterns in the sub-

images processed with partially overlapped sub-apertures, and a simple analytical expression is derived

for a rectangular sub-aperture weighting function. The results show that, for statistically white (spatially

homogeneous non-correlated) backscattered fields which give rise to the classical Gaussian speckle, the CCF

depends only on the amplitude weighting function and center time difference of sub-apertures; and that it is

independent of the temporal correlation properties of the backscattered fields. This theoretical conclusion is

supported by the JERS-1 L-band and RADARSAT-1 C-band SAR images over the coastal waters of Japan.
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Chapter 7

Conclusions

In this thesis, the statistical characteristics of speckle in SAR systems are investigated with applications

to forestry and oceanography. Gaussian speckle is formed as a result of random interference from many

coherent contributions within a resolution cell, and it does not carry information on the scattering objects.

Gaussian speckle is therefore often treated as unwanted noise. Non-Gaussian speckle, on the other hand,

arises from small number of scatterers, and hence it does carry information on the scattering objects. These

properties of Gaussian and non-Gaussian speckle patterns are described using simulated speckle as examples

in Chapter 2.

In order to understand SAR speckle, it is necessary to capture the concept of SAR image formation, and

the fundamentals of SAR systems are described in Chapter 3. In Chapter 4, the theory of SAR polarimetry

is described. Although polarimetry is not the main theme of this thesis, it is useful to distinguish the types

of scattering from different objects, and to provide a complementary support to understanding of speckle in

SAR images of low and high vegetation. The polarimetric analyses are applied to the airborne Pi-SAR data

over the rice fields and Tomakomai forests.

The applications of SAR speckle to forestry described in Chapter 5 are based on the high-resolution

polarimetric Pi-SAR data over the coniferous forests in Tomakomai, Hokkaido, Japan. The relations between

RCS of X- and L-bands data and forest parameters are first investigated. It is found that there are fairly

well-defined relations between RCS and tree parameters within limited ranges. The largest RCS at X-band

is VV- followed by HH- and HV-polarizations, and at L-band is HH- followed by VV- and HV-polarizations.

The L-band RCS saturation levels are found approximately to the biomass of 40 tons/ha, the tree age of

30 years, the basal area of 30 m2/ha, and the tree height of 8 m. However, X-band RCS saturation levels

are difficult to define. The L-band RCS data can therefore be used to estimate the forest biomass up to a

certain level.

Among the Rayleigh, log-normal, Weibull and K-distributions, the estimated PDFs of L-band image

amplitude are found to fit best to the K-distribution according to AIC. The correlation coefficient is then

estimated between the order parameter of the K-distribution and the forest parameters. The highest corre-
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lation is obtained between the order parameter of cross-polarization data and tree biomass, where the order

parameter increases consistently with increasing biomass for all polarizations. Thus, the order parameter of

the K-distribution in the cross-polarization data are used to estimate the forest biomass beyond the satura-

tion limits of the RCS measurements. The accuracy of the regression model based on the ground-truth data

collected in 2002 and 2003 is examined from the comparison of the model prediction with the ground-truth

data collected in 2005. As a result the accuracy of 85% is obtained. Finally, a new regression model is de-

veloped taking into account all ground-truth data, and a map of biomass in the forests around the test sites

is produced. The regression model developed in this study can certainly be used to estimate the biomass

of coniferous forests on fairly flat ground in Hokkaido. Applicability of the model to the forests on sloped

ground and forests consisting of broadleaf trees is not known.

The applications of SAR speckle to oceanography described in Chapter 6 are to examine the hypothesis

of partially overlapped multilook processing technique over dynamic sea surface. The general expression

is derived for the intensity CCF of interlook speckle patterns in the sub-images processed with partially

overlapped sub-apertures. It is shown that the interlook cross-correlation function of spackle intensity is

given by the modulus square of the autocorrelation function of the amplitude weighting function of sub-

apertures. For statistically white backscattered fields which give rise to classical Gaussian speckle, the

interlook CCF is independent of the scene coherence time of sea surface; and it is depends only on the

amplitude weighting function and center time difference of sub-apertures. To verify our theory, experiments

were carried out by using JERS-1 L-band and RADARSAT-1 C-band SAR data over the coastal waters of

Japan, and good agreement is obtained for both the data though small discrepancy is found to be caused

by locally correlated small features between looks.
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Appendix A

Siegert Relation

In chapter 2, we only discussed first-order statistical properties. First-order statistics describe the statistical

properties of a point in space or for time-varying speckle, in space-time. To describe the coarseness of the

spatial structure of speckle, the second-order statistics is necessary. The autocorrelation function (ACF)

is frequently used. For simplification, here only one dimension autocorrelation function is given. The

autocorrelation of complex amplitude is given by

〈A(x1)A∗(x2)〉 =
1
N

N∑

j=1

N∑

j′=1

〈a(xj)a∗(xj′)〉EA(X1 − xj)E∗
A(X2 − xj′) (A.1)

Here, we assume the speckle is Gaussian distributed. The phases are random and uncorrelated to each other.

Therefore, in equation (A.1), the items are zero for j 6= j′ and the contributions are only from the items

with j = j′. Equation (A.1) can then be simplified to

〈A(x1)A∗(x2)〉 =
〈σ〉
N

N∑

j=1

EA(X1 − xj)E∗
A(X2 − xj) (A.2)

Now, let’s deduce the ACF of image intensity. Again, only one dimension result is given. Since the intensity

is the module square of amplitude, the intensity ACF is the given by

〈I(x1)I(x2)〉 = 〈A(X1)A∗(X1)A(X2)A∗(X2)〉

=
1

N2

N∑

j,

N∑

j′,

N∑

j′′,

N∑

j′′′=1

〈a(xj)a∗(x′j)a(xj′′)a∗(xj′′′)〉

· EA(X1 − xj)E∗
A(X1 − xj′)EA(X2 − xj′′)E∗

A(X2 − xj′′′) (A.3)

Again, white noise approximation is used to simplify equation (A.3). The items in equation (A.3) are not 0

only for the following conditions:

1. when j = j′ 6= j′′ = j′′′, all together N(N − 1) items

2. when j = j′′′ 6= j′ = j′′ , all together N(N − 1) items
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SIEGERT RELATION

3. when j = j′ = j′′ = j′′′, all together N items

There are only N items satisfy condition 3, these items can be ignored for large N comparing to the items

of condition 1 and 2. Equation (A.3) then becomes

〈I(x1)I(x2)〉 =
1

N2

N∑

j 6=

N∑

j′=1

〈σ(xj)σ(xj′)〉[|EA(X1 − xj)|2|EA(X2 − xj′)2|

+EA(X1 − xj)E∗
A(X1 − xj′)EA(X2 − xj′)E∗

A(X2 − xj)] (A.4)

Further, because RCS is uncorrelated to space, that is,

〈σ(xj)σ(x′j)〉 = 〈σ(xj)〉〈σ(x′j)〉 = 〈σ〉2 (A.5)

Substituting equation (A.5) into equation (A.4), we can get

〈I(x1)I(x2)〉 =
〈σ〉2
N2

N∑

j 6=

N∑

j′=1

[
|EA(X1 − xj)|2|EA(X2 − x′j)

2|

+EA(X1 − xj)E∗
A(X1 − xj′)EA(X2 − xj′)E∗

A(X2 − xj)
]

(A.6)

It can be rewritten as

〈I(x1)I(x2)〉 =

∣∣∣∣∣∣
〈σ〉
N

N∑

j=1

|EA(X1 − xj)|2
∣∣∣∣∣∣

2

+

∣∣∣∣∣∣
〈σ〉
N

N∑

j=1

EA(X1 − xj)E∗
A(X2 − xj)

∣∣∣∣∣∣

2

(A.7)

By using equation (A.2), the intensity ACF can be expressed as

〈I(X1)I(X2)〉 = 〈I〉2 + |〈A(X1)A∗(X2)〉|2 (A.8)

It can be seen from equation (A.8) that the intensity ACF depends only on the spatial difference X ′, and

equation (A.8) is called Siegert relation.
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Appendix B

K-distribution of Multilook Images

The disadvantage of Weibull distribution is that it cannot be used to describe multilook data. However, K-

distribution does not have this limitation. For N -look intensity image, the PDF of the speckle contribution

n is

P (n) =
NNnN−1

Γ(N)
exp [−Nn] (B.1)

By combing the noise PDF with the Gamma RCS PDF, and the image intensity PDF can be given by [16]

P (I) =
∫ ∞

0

P (I | σ)P (σ)dσ

=
2

Γ(N)Γ(ν)

(
Nν

< I >

)(N+ν)/2

× I(N+ν−2)/2Kν−N

[
2

(
νNI

〈I〉
)1/2

]
(B.2)

where Kν−N [·] is the modified Bessel function of order ν −N . The normalized nth moments are given by

〈In〉
〈I〉n =

Γ(N + n)
NnΓ(N)

Γ(N + n)
νnΓ(ν)

(B.3)

The corresponding amplitude distribution is then given by

P (A) =
∫ ∞

0

P (A|σ)P (σ)dσ

=
4

Γ(N)Γ(ν)

(
Nν

〈I〉
)(N+ν)/2

×AN+ν−1Kν−N

[
2A

(
νN

〈I〉
)1/2

]
(B.4)

and the moments are:

〈An〉 = 〈I〉n/2 Γ(N + n/2)
Nn/2Γ(N)

Γ(ν + n/2)
νn/2Γ(ν)

(B.5)

The above equation is equal to normalized amplitude variance when n = 2.
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Appendix C

L-Band Cross-Polarization Images of
Tomakomai Test Sites

site 1 site 2 site 3

site 4 site 5 site 6

site 7 site 8 site 9

Figure C.1: L-band cross-polarization images of Tomakomai test sites 1-9. The size of each image is 100×100 pixels.
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L-BAND CROSS-POLARIZATION IMAGES OF TOMAKOMAI TEST SITES

site 10 site 11 site 12

site 13 site 14 site 15

site 16 site 17 site 18

site 19

Figure C.2: L-band cross-polarization images of Tomakomai test sites 10-19. The size of each image is 100×100
pixels.
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Appendix D

Sub-Images of Tsugaru Strait and
Kumano Sea

look 1 look 2 look 3

look 4 look 5 look 6

look 7 look 8 look 9

Figure D.1: Sub-images of area A in Fig.6.2.

126



SUB-IMAGES OF TSUGARU STRAIT AND KUMANO SEA

look 1 look 2 look 3

look 4 look 5 look 6

look 7 look 8 look 9

Figure D.2: Sub-images of area B in Fig.6.2.
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SUB-IMAGES OF TSUGARU STRAIT AND KUMANO SEA

look 1 look 2 look 3

look 4 look 5 look 6

look 7 look 8 look 9

Figure D.3: Sub-images of area C in Fig.6.2.
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SUB-IMAGES OF TSUGARU STRAIT AND KUMANO SEA

look 1 look 2 look 3

look 4 look 5 look 6

look 7 look 8 look 9

Figure D.4: Sub-images of area D in Fig.6.2.
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SUB-IMAGES OF TSUGARU STRAIT AND KUMANO SEA

look 1 look 2 look 3

look 4 look 5 look 6

look 7 look 8 look 9

look 10 look 11

Figure D.5: Sub-images of area A in Fig.6.3.
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SUB-IMAGES OF TSUGARU STRAIT AND KUMANO SEA

look 1 look 2 look 3

look 4 look 5 look 6

look 7 look 8 look 9

look 10 look 11

Figure D.6: Sub-images of area B in Fig.6.3.
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SUB-IMAGES OF TSUGARU STRAIT AND KUMANO SEA

look 1 look 2 look 3

look 4 look 5 look 6

look 7 look 8 look 9

look 10 look 11

Figure D.7: Sub-images of area C in Fig.6.3.
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SUB-IMAGES OF TSUGARU STRAIT AND KUMANO SEA

look 1 look 2 look 3

look 4 look 5 look 6

look 7 look 8 look 9

look 10 look 11

Figure D.8: Sub-images of area D in Fig.6.3.
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