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Abstract

An Adaptive Block Truncation Coding Scheme and Its

Data-Driven Parallel Implementation

Xiaoyan Yu

In this dissertation, an adaptive block truncation coding (ABTC) scheme suit-

able for highly-parallel software implementation is proposed. ABTC is one of extended

schemes of the original block truncation coding (BTC), but it introduces a new classifi-

cation approach for adaptive coding and differential pulse coding modulation (DPCM).

Furthermore, its highly-parallel data-driven software implementation is discussed to

realize real-time video applications on small and low-power ubiquitous devices.

In the proposed ABTC scheme, two optimal threshold values are introduced to

identify a luminance block image as uniform block, normal block, or pattern block. One

is the sample first absolute central moment (AM), which denotes the dispersion from the

mean value in a 4x4 pixel block; another is the mean of absolute errors (MAE) between

the original pixel values and their decoded data in every block image, which is computed

with the simplified absolute moment block truncation coding (SAMBTC). In order to

achieve a better trade-off between the image quality and computational complexity,

different coding approaches are employed to compress/decompress three sorts of block

images. Moreover, to improve the compression efficiency, DPCM is utilized to remove

the redundancies existing in the intra- and inter-frame by variant prediction methods

with the negligible image distortion.

In the data-driven parallel implementation, the following techniques are utilized to
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achieve a high-throughput performance. First, hierarchical parallelism inherent in the

ABTC scheme is exploited to utilize the hardware resources at maximum. Second, the

computational complexity is decreased by taking full advantage of the compound oper-

ators involved in the current instruction sets. Also, associative temporal memories are

used to realize the distributed computation. Third, the SIMD-type (single-instruction-

multiple-data) packet is employed to accomplish the data-level parallelism (DLP) and

to decrease the pipeline processing load. Finally, static load balance is discussed for the

scalable implementation on the available processing resources such as processors and

memories.

Experimental evaluations of the proposed scheme were performed using standard

video sequences depicting variant amounts of motion and background activity. The

results illustrate that the proposed scheme can achieve reconstructed image sequences up

to around 37 dB with 60 compression ratio. Compared with previous scheme, over 1 dB

image quality gains can be obtained with the identical compression ratio. Furthermore,

evaluation result of DDMP implementation shows over 60 VGA frames per second on

average, which is around twofold as many as that of previous scheme.

key words data-driven, adaptive BTC, DPCM, parallel implementation
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Chapter 1

Introduction

1.1 Research Background

With the rapid development of networking and multimedia technology, digital video

can be found in a variety of application fields. These applications include wire-line and

wireless real-time conversational services, internet or local area network (LAN) video

streaming using Real-Time Protocol/Internet Protocol (RTP/IP), and storage formats

(e.g. digital versatile disk (DVD), digital camcorders, and personal video recorders.) [1].

In the networked digital video home (NDVH) scenario, the family members can access

the IP-based TV program, video on demand, video games, and interactive services via

WiFi, Bluetooth, Ethernet or Power line (Homeplug). Such kind of services can be

provided by the prevalent electronics such as digital TV sets and multimedia mobile

handheld devices. It can be imagined that video stream will appear in the cars soon.

In order to meet a wide variety of multimedia applications mentioned above, vari-

ous video coding standards have been developed by international standard organization

(ISO)/international electrotechnical commission (IEC) and international telecommuni-

cation union (ITU) over the past years. On the one hand, a family of motion picture

experts group (MPEG) coding standards like MPEG-1, MPEG-2 and MPEG-4 are

formed by ISO/IEC MPEG. On the other hand, a series of H.26x coding standards

as H.261 and H.263 are established by ITU telecommunication standardization sector

(ITU-T). Moreover, the emerging “Advanced Video Coding” standard known as ITU-
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1.1. RESEARCH BACKGROUND

Table 1.1 Basic features of video coding standards.

Transform MC Additional Motion Target

MC Block Size Accuracy Prediction Modes Applications

MPEG-1 8x8 DCT -pel -B-Frames Storage of compressed

(1993) 16x16 video on CD

MPEG-2 8x8 DCT -pel -B-Frames Digital TV signals

(1995) 16x16, 8x16 -Interlace around 4-6 Mb/s

MPEG-4 8x8 DCT -pel -B-Frames Very low bit rates and

(2000) 8x8, 16x16 -Interlace providing object-based

-Global MC functionalities

H.261 8x8 DCT 1-pel -B-Frames Digital video telephone

(1993) 16x16 signals over ISDN

H.263 8x8 DCT -pel -B-Frames Video-telephone signals

(1995) 8x8 8x16 at low bit rates

H.264 4x4 -B-Frames, All application

AVC 16x16, 16x8 1
8 -pel -In-loop domains over a broad

(2002) 8x8,8x4,4x4 deblocking filter range of bit rates

-CAVLC/CABAC

T Recommendation H.264 and as ISO/IEC MPEG4 Part 10 is standardized by both

ITU-T and ISO/IEC. The basic features of the developed coding standards are shown

in Table 1.1 [2]. As illustrated in Table 1.1, 8x8 DCT is utilized in the existing stan-

dards except for H.264. To reduce the computational complexity of transform, the 4x4

integer DCT is used in H.264 standard. Furthermore, it can be seen from Table 1.1

that the latest coding standards like MPEG-4 and H.264 become more complex than

the former ones such as MPEG-1/MPEG-2 and H.261/H.263 for the improvement of

2



1.1. RESEARCH BACKGROUND

coding efficiency. It can also be derived that each of earlier standards is targeted at

some special application field, while the latest ones own a broad range of application

domains through increasing functional modules.

Even though 2-D video stream has been penetrated into so many fields, establishing

a practical video communication system is still so expensive for us due to high hardware

cost. Since the hardware cost of video codec system is critical to broaden video commu-

nication applications, it must be minimized. Currently, there are two alternative ways

to reduce the chip count, system-on-chip (SoC) or system-in-package (SiP) solution.

Both approaches have merits and accomplish the goal. SoC ultimately offers the lowest

silicon cost, but SiP approach enables more flexibility, which is potential to re-use exist-

ing software, development tools across a range of models. Each of them available with

the advent of deep sub-micron LSI fabrication has been a better cost-effective solution

for video communication system on ubiquitous devices such as mobile phone and laptop.

This is because they can reduce the wire length and system size so as to diminish the

power consumption. Power saving is a critical feature for the battery-powered portable

devices. Moreover, communication overhead between chips can be eliminated to achieve

a higher processing power than system composed of independent component elements.

It is the superior features of SoC and SiP that the current multimedia mobile devices

such as smart mobile phone have been built on it. For instance, media-embedded pro-

cessor (MeP) SoC developed by Toshiba [3] is targeted at digital signal processing such

as video and audio.

In order to realize a flexible embedded system-on-chip (SoC) system, it is important

to develop a fast video codec system which flexibly operates on a programmable SoC sys-

tem. While emerging coding standards shown in Table 1.1 endure heavy computational

complexity, it is hard to realize a flexible real-time coding on SoC by software solutions.

Consequently, to develop a simple and fast video codec system without complex func-

3



1.2. MODERN VIDEO CODING ALGORITHMS

tions such as the motion estimation and compensation, many application specific IC

(ASIC) chips and intellectual property (IP) LSI building blocks dedicated to an image

codec such as Motion-JPEG [4] and Motion-JPEG2000 [5] have been developed. How-

ever, their operating functions cannot be changed flexibly because they are hardwired.

Even though today’s CPU speed has been improved greatly by increasing clock rate, to

establish a powerful software implementation platform which can empower the emerging

complex coding standards to realize a real-time video coding on the flexible SoC is still

not easy. This is because in this way the system intends to suffer from the clock skew

problem and incremental power consumption associated with the synchronous clock dis-

tribution. Consequently, it it more difficult to continuously increment CPU speed by

taking advantage of increased clock rate.

Alternatively, a video coding scheme and its software parallel implementation are

considered together to design a video codec system on the flexible SoC. When design-

ing the video codec system, both simplification and parallelization of the video coding

scheme are performed simultaneously in order to reach a desired throughput perfor-

mance for embedded video applications. Using algorithm/implementation co-design

approach for developing SoC system, the design period is reduced too much compared

with the algorithm design independent from its implementation. It can be therefore

derived that this co-design method is more cost-effective than the independent design

for the coming multi-functional and flexible SoC.

1.2 Modern Video Coding Algorithms

Since a stream video involves a huge amount size of entropy information, it is im-

portant to minimize the size of digital video to custom storage device or networking

bandwidth while keeping the best image quality. In order to decrease the adoption size

4



1.2. MODERN VIDEO CODING ALGORITHMS

������� ���	���

����
��

	����	��
����	��	����

�������

Fig. 1.1 Video codec block diagram.

of digital video across a wide range of embedded applications, a video codec system

shown in Fig. 1.1 [2] is required. It can be observed that the codec system involves a

complementary pair of systems, an encoder and a decoder. The encoder converts the

source data into a compressed form (occupying a reduced number of bits) prior to trans-

mission or storage and decoder converts the compressed form back into a representation

of the original video data. With regard to establishment of the codec system, a coding

algorithm and its implementation platform are essential. In order to achieve a sat-

isfactory reconstructed image with the bandwidth limitation of transmission channel,

an efficient coding algorithm should be robust to remove the redundant information

inherent in the image and consecutive images. To this end, great efforts have been

made to develop efficient coding algorithms to meet continuously emerged multimedia

applications during the past decades.

Image/video coding has been studied for around half of century since 1950s and

1960s with spatial differential pulse coding modulation (DPCM) coding of images. Along

with the increase in multimedia applications of consumer products, a sequence of video

coding standards shown in Table 1.1 have been developed for different target applica-

tions. It can be derived that coding approaches such as spatial-frequency transform and

motion compensation (MC) are continually evolved for better coding gains. Generally

speaking, the primary modules of the coding standards include image transformation,

motion estimation/compensation and entropy coding.

In order to remove the redundancy inherent in the image or residual image after

5



1.2. MODERN VIDEO CODING ALGORITHMS

prediction, image transformation is utilized. Image transformation is targeted to extract

the low-frequency entropy and remove the high-frequency one so as to reduce the image

size. This is based on the characteristics of Human Vision System (HVS). Human is

more sensitive to the low frequency information than the high frequency one. Concerning

image transformation, three techniques widely used in the modern coding standards are

discussed below.

The first is block-based discrete cosine transform (DCT), introduced by Ahmed et

al. [6] in 1974 for intra-frame coding. Since then, subsequent image and video coding

standards like JPEG, MPEG1 and MPEG2 include DCT to remove the redundancies

existing in the image or residual image after prediction. The second is discrete wavelet

transform (DWT) technique used for image and video coding starting in the 1980s.

Nowadays, DWT provides the core technology for the MPEG4 texture coding standard

and JPEG2000 still image coding standard. DWT has been proved significant coding

gains compared with DCT at the cost of more complexity. The third is Hadamard

transform used for the newest coding standard H.264/MPEG 4 part 10. Hadamard

transform is an approximation of 4x4 DCT but it uses the integral transform for simpli-

fication of computation at the cost of loss of accuracy. Moreover, the Hadamard coding

intends to result in around 20% increase of the access frequency. Also, at the decoder,

it increases the decoding time up to 5% [7].

Motion estimation and compensation (ME/MC) technique is widely utilized to re-

move the inter-frame redundancies inherent in the consecutive frames. ME/MC started

in the 1970s and matured into practical technology around 1985 with the advent of the

basic hybrid block-based motion compensation/DCT systems (MC/DCT). MC/DCT

coding strategies are implemented in all of today’s ISO/IEC MPEG and ITU video

coding algorithms [8].

MC/DCT technology provides a significant compression gain versus pure intra-

6



1.2. MODERN VIDEO CODING ALGORITHMS

frame DCT coding (i.e., JPEG) for video compression. The major video coding stan-

dards released since the early 1990s such as H.261, H.263, MPEG-1, MPEG-2, MPEG-4

visual and H.264, have been based on the identical basic MC/DCT design (or model).

These video coding standards implemented the similar set of basic encoding and de-

coding functional modules although there are many differences of details between the

standards and implementations.

In order to increase the coding gains, much more complexity is added to the encoder

which has to perform motion estimation and compensation (MC). Recent extensions of

the basic MC/DCT approach (i.e., those standardized with H.263, MPEG-1/2/4, H.264)

have further improved compression efficiency at the expense of more complex encoders

and decoders.

For example, the latest H.264/AVC standard provides gains in compression effi-

ciency of up to 50% over a wide range of bit rates compared to previous standards [7].

The superior performance of H.264 to its predecessors is attributed to a number of rela-

tively new technical improvements adopted, such as 1
4 pixel inter-frame comparison on

blocks ranging from 4x4 to 16x16 pixels. Nevertheless, the complexity of H.264 decoder

is about four times that of MPEG-2 decoder and two times that of MPEG-4 decoder

(Visual Simple Profiles) [7].

In addition to aforementioned two techniques, the third significant task is entropy

coding used to remove the statistical redundancies. Three sorts of entropy coding ap-

proaches with diverse computational complexity and coding efficiency have been ex-

ploited so far. The simplest one is variable length coding (VLC) widely utilized in the

earlier MPEG and H.26x coding algorithms. The second one is context-adaptive vari-

able length coding (CAVLC) used in the baseline and extended profile of H.264, which

can produce higher coding efficiency than VLC at the cost of more complexity. The

third one is context-adaptive binary arithmetic coding (CABAC) used in main file of

7



1.2. MODERN VIDEO CODING ALGORITHMS

H.264, which reduces the bit rate up to 16% at the exchange of an access frequency in-

crease from 25 to 30% compared to a single reversible VLC table for all syntax elements

[2].

Besides the image and video coding standards mentioned above, digital signal cod-

ing techniques include the block truncation coding (BTC) [9], vector quantization (VQ)

[10] and fractal image coding [11]. BTC was originally developed at Purdue Univer-

sity. Since BTC has the advantages including the preservation of signal pixel resolution

and edges and low computational complexity, it is extensively used in many image

compression applications [12]. Vector quantization [10] is another simple image coding

technique. For image compression using VQ, a macro block of pixels is approximated

by the maximum-likelihood pattern in the codebook, where typical patterns occurring

in video images are stored as templates, and only the code of the best matched pattern

is transmitted. At the decoder, the corresponding pattern in the codebook will be used

to reconstruct this block image. Since the pattern matching is a very computationally

expensive process, VQ is asymmetric in compression and decompression operations.

Thus VQ is so far suitable only for one-way video transmission in portable applications.

As for fractal image compression techniques, there are some attractive advantages such

as resolution independence, fast decoding and very competitive rate-distortion curves.

Despite the advances made, the long encoding time still remains the main drawback of

this technique [11]. So it may not be suitable for real-time communication applications

such as person-to-person teleconferencing.

From the development history of image and video coding, it can be derived that

the existing coding standards focus on the decrease of bit rate and a broad range of ap-

plications. As a consequence, the higher coding efficiency of the latest coding standards

like H.264 than their predecessors is obtained by adding several unpredicted elements.

Nevertheless, these unpredicted elements tend to increase the implementation complex-
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ity. Also, the coding standards were proposed for the sake of generic application fields,

thus the image characteristics of a specific application were omitted. Accordingly, as

for a specific application, the existing coding standards may not be a best cost-effective

solution. On the other hand, given that a video coding scheme is exploited with the

consideration of specific features inherent in a target application, it will achieve a bet-

ter trade-off between the computational complexity and coding efficiency because of its

adaptive coding based on the image characteristics.

1.3 Existing Video Implementation Techniques

Table 1.2 Platform comparison.

Platform Performance Power Flexibility Choices Development

Efficency of CODECs Cost

Dedicated best best poor - higher

hardware

Reconfigurable better better good limited high

hardware choice

DSP or media good good good limited medium

processor choice

General purpose medium poor best wide low

processor (e.g. PC) good

With the formation of numerous coding algorithms, a number of implementation

techniques have been proposed for a wide variety of video applications. These ap-

proaches are generally categorized into four groups shown in Table 1.2: general pro-

grammable processor, special-purpose programmable processor, reconfigurable proces-
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sor, and dedicated hardware (Full custom LSI).

A programmable solution is that all of coding modules composed of video codec

system are implemented by the software [13]. The software is then executed on a

programmable implementation platform such as general-purpose processor (GPP) and

special-purpose programmable processor like media processor.

The flexibility of implementation techniques is significant as video coding stan-

dards are continuously evolving along with the rapidly changeable user’s requirements.

Software implementation techniques provide the maximum flexibility among existing

approaches since the software update or function modification can be readily performed

using a easy-to-use programming tool. Again, programmable solutions enable to ad-

dress the need of new applications quicker than full custom LSI. This derives from the

fact that refinement of the algorithms and increase of their competitive edge can be ac-

complished by modifying the source code. Hence its development cycle period is shorter

than that of hardware solutions so that it can meet the short time-to-market (TTM)

requirement well.

Although GPPs have been used for a wide range of devices including PC, consumer

electronics (CE) (set-top-boxes, video recorder etc.), personal digital assistance (PDA),

cell phones, and so on, software solutions on GPPs suffer from the low speed and low

power efficiency compared to hardware solutions. This is because their architecture

of GPPs is not well suitable for video processing. Even though hardware acceleration

units such as Intel’s MMX/SSE2 [15] have been introduced to boost multimedia appli-

cations, limited register spaces of GPPs are still not suitable for very heavy dataflow

task. Moreover, the latest video coding algorithms become more complex than their

predecessors for ever-increasing coding efficiency, so that software solutions for them on

GPP are hard to meet the deadline constraint of real-time applications. This is one of

main reasons why complex video codec systems such as MPEG4 and H.264 are generally

10
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implemented by the hardware solutions.

To improve the performance of software implementation, special-purpose pro-

grammable processors such as media processors (MPs) or digital signal processors

(DSPs) have been developed for multimedia applications. Media processor (MP)

evolved from DSP is a platform targeted at digital media processing such as video

and audio. Since MP utilizes the dedicated instruction sets and custom cache mem-

ories, it can achieve a faster speed than GPP. Moreover, for the sake of supporting

various applications, MP provides configurability that allows selection of required

functions from predefined elements such as cache size, optional instructions to improve

functionality and performance through the addition of dedicated hardware modules.

Furthermore, MP can better cope with rapidly changeable market requirements in the

short time-to-market. This is because the instruction sets of the MP can be easily

altered for new market requirements without any side-effect for other applications. On

the other hand, if general-purpose processors do this, other applications will be affected

due to their widespread application targets.

The popular media processors include media embedded processor (MeP) produced

by Toshiba [3], Open Media Application Platform (OMAP) fabricated by Texas Instru-

ment(TI) [16], and Blackfin provided by Analog Device (AD) [17]. It is well known

that power efficiency is critical for product popularization of battery-powered devices

such as mobile phone and laptop. In order to meet the power-saving requirements, ad-

ditional software is needed for media processors to control the clock speed and voltage

based on the tasks at hand. As a consequence, an additional overhead is added, albeit

this approach can improve the power efficiency of media processors. Software imple-

mentation on Von Neumann-type processors tends to consume excessive power due to

control-driven scheme and clock synchronized circuit, thus a more robust programmable

implementation platform must be exploited for multimedia applications.
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In order to meet the stringent requirements of real-time applications on mobile de-

vices, hardware solutions have been adopted for video codec systems. This is due to the

fact that they can achieve better performance and power efficiency than software solu-

tions. In terms of the hardware solutions, both reconfigurable hardware and dedicated

hardware are widely used for multimedia application fields so far.

The typical reconfigurable hardware implementation includes field-programmable

gate array (FPGA) and complicated programmable logic device (CPLD). FPGA (or

CPLD) consists of configurable logic blocks (CLBs) that implement various logical func-

tions. For the sake of flexibility, the behavior of digital logic circuits can be described

by a hardware description language (HDL) such as VHDL or Verilog. Next, the soft-

ware description of a circuit can be synthesized using a synthesis tool, and then it can

be programmed on FPGA chip that realizes the circuit. Moreover, modification of the

circuit design can be realized by changing the HDL source code, and then modified

hardware design can be reprogrammed on FPGA chip. In general, FPGA or CPLD

design requires several weeks of engineering efforts instead of months because of no final

fabrication process. Thus a product development cycle using FPGA is shorter than that

of full custom LSI solutions. Nevertheless, video coding standards contain several com-

plex computation modules such as motion estimation and compensation (ME/MC), so

that a multimedia system built on reconfigurable hardware comprises a large number of

basic logic units. As a consequence, it is hard to be embedded into the small ubiquitous

devices such as cell phone and PDA.

On the other hand, a dedicated hardware implementation can overcome large-size

challenge of FPGA. This is because they are hardwired and do not require programmable

interconnection of basic logic circuits. Thanks to no programmable interconnection, a

dedicated video codec system can achieve the highest speed and best power efficiency

among the alternative solutions. Accordingly, full custom LSI can meet the demands of

12
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real-time applications on small ubiquitous devices well [13]. While they lack of flexibility

and updatebility and extendability, because they are hardwired.

Due to above weakness points of full custom LSI, they hardly meet the users’

changeable requirements. Moreover, with frequently updated situation of consumer

electronics market, more and more used devices will become unserviceable items. Those

devices left on our earth will be not good for our living environment. Furthermore, the

full-custom LSI development of a design at the transistor level will require several years

for design and testing. So long product development cycle can not satisfy the short time-

to-market requirement. Therefore, a promising programmable platform with the high

performance and power efficiency will be expected in the image/video coding application

domain.

The availability of low-cost and low-power hardware with sufficiently high perfor-

mance is essential for the popularization of image and video coding applications. To

reduce the hardware cost of video codec system while keeping high performance and

high power efficiency, a hybrid architecture such as SoC or SiP has been adopted. The

SoC may ultimately offer the lower silicon cost than SiP. Thanks to on-chip I/O inter-

face and on-chip memory, power dissipation and processing delay can be diminished too

much so that it can meet real-time requirements on mobile devices. Furthermore, SoC

system can be small enough to be embedded into portable devices due to integration

of multiple processors. With the demands on much richer functionalities of consumer

appliances, more and more processors will be executed on a single chip. This tends to

bring several challenging issues including the design and verification of SoC system due

to synchronized clocking circuits. Thus a promising architecture of SoC is demanded

for the future multimedia applications.
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1.4 Motivation of This Research

With the advance in multimedia and networking technology, digital video has been

penetrated into a variety of application fields. For instance, the remote surveillance

system has been emerging in some public places such as bank, airport and road as

well as parking lots. Also, video chatting is very popular via internet or wireless net-

work. It may be said that video coding has become an essential component of broadcast

and entertainment media. To cater to this market demand, a number of video coding

standards suitable for different application domains have been developed and commer-

cialized. These modern coding techniques offer the possibility to store or transmit the

vast amount of data necessary to represent digital images and video sequence in an

efficient and robust way [1].

Since mobile devices suffer from weak computing power, short battery lifetime and

limited display capability, standard video coding on such kind of small devices is usually

realized by a dedicated hardware. Although dedicated video codec can achieve both fast

coding performance and power efficiency, it is too inflexible and unextendable to satisfy

the users’ changeable requirements because they are hardwired. The software-based

solution for image and video applications is therefore more attractive than the pure-

hardware one.

In order to realize a fast coding by a software-based solution, a simple and efficient

video coding scheme and its parallel software implementation platform are required for

real-time applications on pervasive small devices. Such low complexity coding algorithm

easily embedded with other various functions is demanded as its counterpart of generic

compression standards such as MPEG4 [18] [19], JPEG2000 [20] and H.264 [6] [21].

This is because these standards endure too heavy computational load in spite of good

reconstructed quality with a very low bit rate. Furthermore, those coding standards
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implemented on conventional programmable implementation platforms such as media

processors or DSPs are hard to meet real-time requirements and power efficiency. This

is because Von Neumann-type processors built on the control-driven scheme and clock

synchronized circuit endure high additional overhead associated with context switching

in case of the parallel processing. Since a data-driven processing platform based upon

the data-driven scheme and self-timed super-pipelined circuit enables a large amount of

parallelism without any additional scheduling code, it is more promising for the video

coding software.

This thesis thus proposes a fast video coding scheme suitable for highly parallel

software implementation, by simplifying both intra- and inter-frame coding in exchange

for focusing on only semi-motion pictures observed in several video applications such as

remote surveillance and person-to-person teleconference system. The proposed scheme

is based upon block truncation coding (BTC). BTC is very simple but its image qual-

ity is not so good. In order to derive a better tradeoff between the image quality and

computational complexity, an adaptive block truncation coding (ABTC) scheme using

three-level classification and differential prediction coding modulation (DPCM) is intro-

duced for both intra- and inter-frame coding. Furthermore, its highly parallel software

implementation on a self-timed data-driven multimedia processor (DDMP) is discussed

in terms of realizing programmable SoC systems. Finally, evaluation results illustrate

that the proposed scheme can achieve the reconstructed image sequences up to 37 dB

image quality and 60 compression ratio as well as 60 VGA f/s frame rate on average,

which is twofold as that of previous scheme [22].
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1.5 Organization of Thesis

Chapter 1 describes the research background and motivation. The first section

introduces the video coding applications, main issues and metrics to evaluate a codec

system. Then the existing video coding algorithms and their implementation approaches

are reviewed, followed by the motivation of this research. Finally, the research frame-

work is given in the last section.

Charter 2 discusses the requirements of a fast video coding on system-on-chip (SoC)

for portable applications. In order to realize a fast coding on SoC, a simple and fast video

coding scheme suitable for parallel implementation is necessary. Moreover, a parallel

software implementation platform which can realize high-throughput performance and

low-power consumption is required to realize a flexible and updatable video codec system

on small portable devices.

Chapter 3 details the proposed ABTC scheme and its data-driven parallel imple-

mentation. ABTC is an extension of original block truncation coding (BTC), which is

very simple but its image quality is not so good. In order to reach a better trade-off

between the image quality and computational complexity, three techniques are utilized

in the proposed video coding scheme. First, two optimal threshold values are used to re-

alize the adaptive image coding based on the local image characteristics. Second, three

coding approaches corresponding to the classified image blocks are adopted to reduce

the computational complexity while keeping the good image quality. Last, DPCM is

employed to improve the compression efficiency with little image distortion by virtue

of inter- and intra-frame prediction. As for its data-driven parallel implementation,

three techniques are utilized to achieve a desired throughput performance and delay

time. The first is SIMD-type packet (two adjacent pixels are held in one packet). The

second is associative temporal memory based on the tagged packet of dynamic data-
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driven scheme. The third is compound operators to increase the throughput of history

sensitive processing.

Chapter 4 illustrates the experimental results of the proposed ABTC on data-driven

chip multiprocessor (DDMP). First, the image quality of the proposed ABTC with

the variable compression ratio is measured using three standard video sequences. The

rate-distortion evaluation shows that the proposed ABTC is more suitable for the semi-

motion pictures due to the 37 dB image quality with 0.4 bit rate, which can be observed

in several applications such as person-to-person teleconference and remote surveillance.

Moreover, the throughput performance and response time of DDMP implementation is

evaluated. Two types of data structures are exploited and used in this experiment. It

can be derived from the experimental results that the block-order input data is superior

to scanline-order one due to twofold frame rate of the former one as many as that of the

latter one. Moreover, response time of the block order is independent of the image size

while that of scan-line order is increased along with the enlarged image. Thus it can

be concluded that the block-order input data is more suitable for data-driven parallel

implementation of ABTC scheme.

Chapter 5 summarizes the research work and presents the future perspectives. In

this research, a fast and efficient video coding scheme and its data-driven parallel imple-

mentation have been presented for semi-motion picture applications. The experimental

result has proved its coding effectiveness and efficiency. Moreover, the data-driven par-

allel implementation shows around VGA 60 f/s on average. These results illustrate that

the proposed scheme implemented on data-driven processors can realize real-time cod-

ing with good video quality. In my future work, the coding efficiency of the proposed

ABTC scheme will be further improved by a binary block partitioning method with

variable-size block matching. Moreover, a circuit implementation for the proposed com-

pound reference instruction of the line-buffer will be performed, then a practical video
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coding system on USB-DDMP will be established according to the proposed ABTC

scheme. Furthermore, four future directions are outlined for this study which will be

hoped to motivate the researchers to undertake this field.
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Chapter 2

Requirements for A Fast

Coding on SoC

2.1 Introduction

A simple and efficient coding scheme and its parallel software implementation plat-

form are essential to realize a fast coding on flexible SoC. However, current video coding

standards involve several computation-intensive functional modules such as ME/MC

and DCT as well as entropy coding. This makes software implementation difficult to

meet the deadline delay constraint required by real-time applications albeit these stan-

dards produce satisfactory image quality at a very low bit rate. A simple and efficient

video coding scheme which acts as a counterpart of video coding standards is thus

required to realize a fast coding on programmable SoC.

BTC [9] is a promising algorithm for realizing the software coding on the SoC by

virtue of its simplicity and parallelism. While the basic BTC achieves a constant bit rate

(2 bits/pel), it endures a limited application field. In order to improve the compression

efficiency of basic BTC, there are several variants of BTC that have been proposed

in the literature. These techniques include the vector quantization (VQ) [23], median

filtering (MF) [24], discrete cosine transform (DCT) [25], and arithmetic coding (AC)

[26].

In addition, modifications of BTC coupled with variable block size [27] or threshold
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technique [28] have been used to improve the image quality. Moreover, the latter is

aimed at preserving the edges of objects. This is because BTC by its nature results in

ragged edges and introduces noise at the edges. Furthermore, BTC can achieve a good

reconstruction of the textured image, but it is not good at other image such as smooth

image and smooth-variation image.

In order to realize a flexible SoC system, where several real-time multimedia ap-

plications can be concurrently executed along with users’ requirements, it is important

to develop a fast software implementation platform. There are two promising soft-

ware implementation techniques so far. One is media processors targeted at multimedia

applications on consumer appliances which have been produced by famous semiconduc-

tor companies. Some of representative media processors are media embedded processor

(MeP) from Toshiba, open media application platform (OMAP) from Texas Instrument,

Blackfin processor from Analog Devices. These media processors can realize the module

configuration specific to target multimedia applications by virtue of custom instruction

sets and memory modules. Owing to custom configurations, both the flexibility and

desired performance can be accomplished by media processors.

Another one is microprocessor with multimedia instruction sets such as Pentium

with MMX, ARM and SH. The latter ones (i.e. ARM and SH) are embedded micro-

processor widely used in the mobile devices such as cell phone. By virtue of multimedia

instruction sets, microprocessor is more powerful for multimedia processing. These

approaches make real-time multimedia processing available in the today’s embedded

applications.

In the remaining sections, the current promising coding algorithms and existing

promising software implementation platforms will be described to realize a fast coding

on flexible SoC in more detail. The advantages and disadvantages of these algorithms

and software implementation platforms are discussed. Finally, the issues of the existing
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promising schemes and implementation platforms are discussed in terms of a fast coding

on SoC.

2.2 A Simple and Efficient Coding Scheme

A simple and efficient coding scheme is essential to realize a fast coding on flexible

SoC. Block truncation coding (BTC) is a promising algorithm to obtain real-time video

coding on the programmable SoC by virtue of its simplicity and parallelism. To improve

the rate-distortion performance of the basic BTC, several modified BTC algorithms

combined with other techniques have been proposed in the literature. These variations

in some cases yield better performance than basic BTC.

To reduce the bit rate of basic BTC, several authors employed vector quantiza-

tion(VQ) [23] [25] [29] [30] [31]. However, the size of code book has significant effects on

the image quality and bit rate. In case of the large size of code book, good image quality

will be accomplished with high bit rate. For the sake of reduction of bit rate, the small

size of code book was selected in the emerging BTC-VQ schemes. For example, [23] and

[25] use 256 code words. In [32], 64 masks are selected according to their edge-likeness.

Moreover, two code books are utilized in [30], one is selected as described in [23] and

the other is constructed to cover blocks with a single step edge intersection. When VQ

is applied to both quantization data and bit plane, the bit rate is equal to around 1.5

bits/pel.

Furthermore, based on the fact that most of the redundancies in the bit plane exist

in very close neighbors, [24] proposed a BTC hybrid coding coupled with the median

filtering. Since the root signal space is smaller than the binary space, the number of bits

of binary data is reduced by median filtering transform. In case that median filtering

was employed for the binary block, the compressed data rate could reach around 1.375
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bits/pel. Given that a binary block is coded with the trellis coding, a compressed data

rate up to 1.1875 bits/pel will be achieved.

In addition to VQ and median filtering, a hybrid scheme based on BTC coupled

with the discrete cosine transform (DCT) has been proposed in [25] [32] [33]. In [25],

the DCT is used to compress the gray level information (i.e., the low and the high-low

values). In [32], a smooth block is decided by comparing four low frequency DCT-

coefficients in each of 8x8 blocks with the predefined threshold. In case of a smooth

block, a DCT/VQ method is used. Otherwise, the block is divided into four, and then

each sub-block is encoded by a BTC-VQ method [29]. Since DCT is a time consuming

process, BTC combined with DCT will increase the decoding time albeit it enables

the improvement of the rate-distortion performance. Consequently, this hybrid coding

method dilutes the advantage of basic BTC, short decoding time.

To overcome the weak points of VQ and median filtering, [26] presented a modifi-

cation of BTC in which the compression ratio was improved by arithmetic coding with

an adaptive modelling scheme. The arithmetic coding is used to code the quantiza-

tion data and the bit plane. The experimental results illustrate that entropy coding

outperforms VQ [23] in both image quality and bit rate. Nevertheless, arithmetic cod-

ing endures so much computational complexity that practical implementation of this

algorithm becomes difficult.

Although above hybrid BTC-based scheme coupled with complex coding techniques

can improve the compression efficiency of basic BTC, their computational complexity is

increased in that coupled techniques are time-consuming processes. Accordingly, except

for the variations of BTC mentioned above, other modifications of the basic BTC seem

as promising algorithms for establishing a fast codec system on flexible SoC due to their

low complexity. These modifications of BTC will be described below in more detail.

In this section, how to simplify the coding schemes to enable a fast coding is
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discussed at first. Next, the existing promising block truncation coding schemes are

described in detail, followed by issues in the current promising coding schemes.

2.2.1 How to Simplify the Coding Schemes

From the viewpoint of better trade-off between the computational complexity and

compression efficiency, the approaches to simplify the coding schemes are summarized

as follows.

The first, throwing away complex coding functions such as spatial-frequency trans-

formation and entropy coding commonly used in the coding standards. Alternatively, a

simple quantization method like mean and the first absolute moment is used in absolute

moment block truncation coding (AMBTC) [35].

Sophisticated coding functions involved in the coding standards have robust capa-

bility to remove the redundancies of entropy information inherent in the image through

each processing stage. By virtue of this capability, the coding standards can achieve

better compression efficiency than the block truncation coding. Nevertheless, they are

too heavy to realize real-time coding by software solutions on flexible SoC. Alternatively,

block truncation coding employs simple quantization data which can preserve the local

characteristics of image. It has been proved that such kind of coding scheme can obtain

relatively good reconstruction because it takes advantage of the feature of human vision

system. That is, human is more sensitive to the variance of textured image than that

of less textured image.

The second, utilizing integer arithmetic computation without complex operators

such as multiplication and square root to make coding process simple. As an example,

AMBTC utilizes the first sample absolute moment AM rather than the standard devia-

tion used in basic BTC. The AM can be computed by simple operators such as add and

shift, whereas standard deviation contains the square root operator. Thus, AMBTC is
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much easier to be implemented than BTC due to its simplicity.

The third, employing an adaptive coding approach instead of the uniform one. Such

kind of coding approaches enable encoding procedures adaptive to the characteristics

of local images. Smooth regions are thus encoded using a simpler way in comparison of

the complex area. In general, the threshold techniques are utilized to classify the whole

image into different area. And then adaptive coding methods with diverse computational

complexity are employed. Adaptive compression coding [28] is an example of this case.

The fourth, omitting the undetermined coding factors such as distribution of pixels

for simplification of the coding process. For example, two-level reconstruction data of

original AMBTC are computed using the number of pixels more than the mean value

of block. In order to simplify the coding computation, an assumption is made that the

number of pixels over the mean is identical to its counterparts. As a result, the number

of pixels do not need to be considered when computing the reconstructed data at the

decoder.

The fifth, taking advantage of the prediction approach to simplify the coding com-

putation. This consideration is based upon inherent image features that the redundant

information tends to exist in the neighboring pixels of the image and in the consecu-

tive images. A prediction approach adaptive to the features of local image is used to

examine the similarity of adjacent pixels, and then the current local image similar to

its predecessor can be denoted by a predefined tag.

It should be noted here that the approaches summarized above are dedicated for

block truncation coding for the sake of better trade-off between the compression effi-

ciency and computational complexity. Accordingly, some of approaches such as pre-

diction and classification techniques appended to the basic BTC will increase the con-

ditional switching process, which tends to increment the coding procedures compared

with basic BTC. While prediction and classification method can realize the image cod-
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ing adaptive to local image features. This is to say, the smooth area is encoded by

a simple way, while the complex area is encoded by a complicated way for reserving

the more entropy information. As a consequence, such adaptive approach can obtain

a better trade-off performance between the compression efficiency and computational

complexity than a uniform coding way.

2.2.2 Existing Promising Coding Schemes

In this subsection, the existing promising coding schemes for realizing a fast coding

on flexible SoC will be discussed. These promising schemes take advantages of some of

the aforementioned approaches to simplify the coding procedures for availability of a

fast coding while reserving a good compression efficiency.

(a) Basic block truncation coding

Block truncation coding is a lossy coding technique applicable for gray-scale images.

That is, it reduces the file size but loses some original information of the image [9]. The

significant advantages of this coding approach are low computational complexity and

high parallelism.

The codec diagram of the BTC is shown in Fig. 2.1. It can be seen that BTC

computes the mean and standard deviation (SD) over small blocks of input image. The

equations for mean and SD are shown below.

x =
1
m

m∑

i=1

xi (2.1)

σ2 =
1
m

m∑

i=1

|x2
i − x2| (2.2)

where x refers to the mean of block image with the size of m = N ×N , xi denotes the

ith pixel over the block image, and σ denotes the standard deviation (SD).

25



2.2. A SIMPLE AND EFFICIENT CODING SCHEME

���������

	
��
�
��

��
�

������
�
��

��

������
�
��

�
����
��

������
�
��

�

�

�

�

�

�
�

?1�ix

�

�

�

�� ���

�����

������	
�	�����
�	���


������
�������	�	������
	���


������
�������	�	���
����


������������
�����������������������������
	
����	�	�������������	


������������
�����������������������������
	
����	�	��
���������	


����������������
����������	�	���������	
���	


����������������
����������	�	��
���������	


a

p

�
�
����
�


��
�

��

�
����

�����
	�

����
	
��

�	�	

�������

 ���
��������

�	�	

p
q

�	�	�����
��
�!

"�
����
	����
��

a
b

q

b

Fig. 2.1 The diagram of BTC codec.

At the same time, by virtue of block mean as a threshold, each of small blocks is

quantized into a one-bit plane to preserve certain statistical moment. The bit plane

involves the binary data, where 1’s represent the pixel data over the mean, otherwise,

0’s. At the decoder, the two-level reconstructed data denoted as a and b are obtained

by virtue of the mean, SD, and the number of pixels over the mean denoted as q. p is

equal to m− q. a and b can be calculated below.

a = x− σ

√
q

p
(2.3)

b = x + σ

√
p

q
(2.4)

where a refers to the reconstructed data below the mean, otherwise, b. The bit rate of

BTC is dependent upon the bit number of mean and standard deviation as well as the

one-bit plane. As an example, for a 4×4 pel luminance block, if the mean and standard

deviation are 8 bits, the bit-plane is 16 bits, then bit rate of BTC is 2 bits/pel.

In order to meet the requirements of bit rate less than 2 bits/pel, a modification

of basic BTC is proposed using a 10 bits to jointly denote these two quantization data.

This scheme is based on the observation that grey level quantization error is more visible
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in low variance regions [34]. Hence the mean of the pixel block is assigned more bits

in blocks with small standard deviation and fewer bits in blocks with large standard

deviation. In this way, the bit rate is reduced to 1.63 bits/pel.

(b) Absolute moment block truncation coding

Based on the basic BTC, an absolute moment block truncation coding scheme

denoted as AMBTC [35] [36] [37] utilizes the first sample absolute moment AM in place

of the standard deviation used in basic BTC. AM is obtained by the following equation.

AM =
1
m

m∑

i=1

|xi − x| (2.5)

At the decoder, the two-level reconstructed data are calculated as follows.

a = x− m

2p
AM (2.6)

b = x +
m

2q
AM (2.7)

Using this new quantization method, AMBTC achieves better reconstructed image

quality than the basic BTC. Furthermore, AMBTC has no square root and square

computation, thus it is easier to be implemented than BTC. However, AMBTC still

keeps high bit rate albeit reconstructed image quality of AMBTC is superior to basic

BTC. Other variants of BTC transmit the lower mean xlow and higher mean xhigh

rather than the mean and absolute moment of block [25] [28] [30]. This technique can

overcome the rounding error produced by the only computed xlower and xhigher at the

decoder. However, this method tends to increase the bit rate because the bit number

of mean data is usually more than that of absolute moment AM .
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xlower =
1

m− q

∑

xi<x

xi (2.8)

xhigher =
1
q

∑

xi>=x

xi (2.9)

(c) BTC image coding with variable block size

As for basic block truncation coding, the block size is usually fixed 4×4, in order to

avoid edge blurring and blocking artifacts in smooth areas. Nevertheless, using the fixed

block size may not improve the compression ratio of smooth area such as background

image. For this purpose, [27] proposed modified BTC with a variable block size called

as vBTC.

In this algorithm, firstly a large size of the block image is input, and then the pro-

cessing of basic BTC is performed block by block. Suppose that the standard deviation

of the large size of block is over the predetermined threshold, then the size of the block

will be divided by four until the standard deviation of block is less than the predefined

threshold, wherein the minimal block size is 2× 2.

Compared with fixed size of BTC, vBTC can offer better performance. The use

of vBTC with optimal thresholds leads to a reduction of the error in the reconstructed

image by almost 40% of the error in the reconstructed images obtained by fixed size of

BTC [27].

(d) BTC image coding with thresholds

Targeted for the applications required edge preservation in the decoded image such

as vision and robotics as well as recognition, [28] presented an adaptive compression

coding based on the BTC and quad tree named as ACC. This algorithm is aimed for

28



2.2. A SIMPLE AND EFFICIENT CODING SCHEME

�������������	������
�������


������������
����

��	����


�	���������������

 ����!�������	����

��
������"

��#��$�"

��	��%&'(��)�����

*������$�%&'(����)����

�����
������
�����	�$��"

+���%&'(��

,��������-�.�

������

+���

%&'(�

��.
���	��������

����������	

��	���$ 
�	������

�����$�$�

���/���
�	�

 ���$�#�0�"

��.
���	��$�$�

�������������

�)�
���

1��
����)���������

����$�$�

���/���
�	�����

2�

3��

2�

3��

2�

3��

3��

2�

Fig. 2.2 The flowchart of ACC.

solving the problem that the basic BTC introduces the artifacts which cause a ragged,

noisy appearance in regions where contain an edge. The flowchart of ACC algorithm

[28] is shown in Fig. 2.2.

In order to realize an adaptive coding, two threshold values are utilized to identify

a block image as one of three categories. Since this algorithm is aimed to preserve the
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edge, both thresholds are decided as the difference of maximum and minimum luminance

value called as the range of block. The first threshold is named as the smoothness

threshold, and the second one is referred to as the edge detection threshold. The best

reconstructed image is produced by the smoothness threshold of 18 with the bit rate

of 1.1-1.2 bits/pixel. On the other hand, better bit rate (0.7-0.8 bits/pixel) is obtained

with the smoothness threshold of 40 as many blocks are represented by their mean.

Given that the range of the block is less than the smoothness threshold (18 or 40),

then it is determined as the smooth block, which is represented by its mean. Otherwise,

provided that the range of block is over the threshold, then the edge detection threshold

is utilized to identify the block involved an edge. Suppose that the range of block is

less than the edge detection threshold, the two-level reconstructed data are calculated

by AMBTC. Then the difference between the two-level reconstructed data is computed,

which is compared with the preset threshold 20. If this difference is less than 20, lookup

tables coupled with AMBTC are used, otherwise, only AMBTC. If the range of the

block is more than the edge detection threshold, the quad tree technique is used to

identify the edge. Given the range of 2× 2 block is more than 60, then 4 values of the

2 × 2 sub-quadrant will be stored in order to reserve the edge. Otherwise, 2 × 2 block

is represented by its mean.

The experiment results have shown that ACC can preserve edges of pictures better

than other variants of BTC without the quad tree method. Also, by virtue of the thresh-

old technique, ACC realizes the adaptive coding to overcome the poor reconstruction in

smooth region. Furthermore, this algorithm uses the lookup tables to code binary data

block. By this way, the compression ratio is improved.
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2.2.3 Issues in the Existing Promising Coding Schemes

Both the basic BTC and AMBTC are very simple but their image quality is not

so good and bit rate is high, thus their application field is rather limited. This is due

to the fact that the quantization threshold of each block image is only its mean value.

Also, they do not consider the adaptive coding based on the image characteristics so

that they can not realize good reconstruction of the less textured images. Although

AMBTC achieves better image quality than the basic BTC, the improvement of image

quality is very small.

Even though the variants of BTC coupled with other techniques such as variable

block size and threshold (e.g. ACC) have been made significant progress in terms of

coding efficiency, there are following issues having not been addressed so far.

The first, the most of current coding algorithms do not consider their implemen-

tation in total, so that their implementation is more complex even it is not reasonable

for practical applications. Also, great engineering efforts need to be paid for the imple-

mentation of complex coding algorithms. This will result in increasing the development

cost and delay time to the market.

The second, although BTC combined with variable block size can improve the bit

rate according to the image features, but division of large block image into small block

size based on standard deviation tends to increase the execution time. Moreover, this

algorithm is not beneficial for parallel implementation because of its hierarchical data

structure. Furthermore, this algorithm can not achieve better image quality due to just

usage of the basic BTC.

The third, the adaptive compression coding (ACC) can realize the image coding

adaptive to the image characteristics by virtue of two thresholds. Owing to the target

applications of ACC, both of thresholds are determined as the difference of maximum
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and minimum luminance value over a 4× 4 block. However, they can not represent the

variance of luminance of a block image, in spite of better edge reservation than other al-

gorithms. Also, ACC does not consider the high correlation between the neighbor pixels,

the efficient prediction methods are thus not used. Nevertheless, the prediction methods

can efficiently remove the inter-block redundancies so that the significant compression

gains of basic BTC can be obtained with the negligible image distortion. In addition,

ACC is very complex in that many techniques such as quad tree and lookup table are

utilized to realize the adaptive coding for the sake of better edge reservation. ACC

can not thus realize an optimal tradeoff between the image quality and computation

complexity.

Since the issues mentioned above are involved in the existing promising coding algo-

rithms, a more robust coding algorithm which can realize a better trade-off performance

between image quality and computational complexity must be developed.

2.3 A Fast and Parallel Software Implementation

Technique

In order to meet the requirements for continuously emerging applications, the var-

ious software implementation platforms have been developed and applied to current

multimedia appliances. The flexible SoC is an effective and robust implementation

technique for the decrease of the fabrication cost of the current consumer electronics

products.

Even though today’s CPUs continue to keep pace with Moore’s law, traditional

programmable processors do not have architectures that are well suitable for video

processing [14]. This is due to the fact that video processing includes block-based

and pixel-level tasks. Such dataflow-intensive tasks require the large register space
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which are not included in the traditional CPU and DSP architectures. In order to

meet the real-time video applications, there are two approaches to speed up the video

processing. One alternative approach is to introduce the hardware acceleration units

through intrinsic instructions; examples of such instructions include Intel’s MMX/SSE.

Another alternative approach is the media processors. In this section, the software

implementation techniques for realizing a fast coding on SoC are discussed in corporation

with the examples of the multimedia processing architectures.

2.3.1 How to Realize Fast and Parallel Software Processing

In order to enable fast and parallel software processing in the multimedia appli-

cations, a variety of implementation tactics have been developed so far. These tactics

are based upon the unique features of media processing, including large parallelism,

repetition of operations and intensive memory access. According to these features, the

current implementation approaches could be classified into following three types.

The first is the exploration of parallelism with different levels. These parallelism

comprise data-level parallelism (DLP), instruction-level parallelism (ILP) and control-

level parallelism (CLP). Data-level parallelism exploited has been employed in the

complicated instruction sets computers (CISC). Examples of processors in this cate-

gory are the Intel’s Pentium with MMX/SSE units [15] and D30V from Mistubishi

[38]. Instruction-level parallelism can be exploited with very long instruction word

(VLIW)/SuperScalar(SS), or super pipelining. VLIW-based examples are MAJC from

Sun Microsystems and FR500 from Fujitsu [13]. Processors with SS and pipelined fea-

ture include the new IA-64 based processor [39] family from Intel and HP and AMD’s

Athlon. Control-level parallelism (thread-level parallelism) leads to speculative thread

execution. MAJC [40] and FR500 are good examples for this approach [13].

The second is the specialized hardware support for repetitive operations such as
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multiply-accumulation computation (MAC), block search, summation of absolute dif-

ference (SAD) etc. The examples for this category are MAP100A [41] and TANGRAM

[42]. This approach is very similar to providing macros for a group of successive in-

structions in general processors.

The third is the usage of on-chip memory or high-speed link between the CPU and

the off-chip memory. To use on-chip memory is aimed to reduce the times of off-chip

memory access as the off-chip access is slow and large-power process. The example for

on-chip memory is IRAM [43] to reduce the need for transfers by embedding a significant

portion of the memory onto the chip. The example for the latter is the Pentium 4 based

850 chipset with a high speed RDRAM (Rambus Dynamic Random Access Memory).

In addition, the out-of-order execution logic is used in the intel’s Pentium processor

in order to diminish the side-effect causing by the delay of some instructions. The

processor with out-of-order execution logic attempts to find as many ready independent

instructions to execute as possible, even though they are not in the original program

order. While using this logic, the additional retirement logic unit is required to recover

the original program order of instructions reordered by the out-of-order logic.

The mentioned-above approaches used in the general- or special-purpose program-

able processors have empowered the fast video codec for today’s real-time multimedia

applications. In the following subsection, the current state-of-the-art software imple-

mentation platforms are delineated in corporation with the examples.

2.3.2 Existing Promising Software Implementation Platforms

The current general-purpose programable processors adopting some of aforemen-

tioned approaches are generally categorized into two groups, RISC processors and CISC

processors. Moreover, to meet the the low-power and real-time communication require-

ment of the mobile electronics, special-purpose processors dedicated for media process-
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ing has been developed according to the inherent features of media processing. The

examples of the media processors are Multimedia Embedded Processor (MeP) from

Toshiba, Open Media Application Platform (OMAP) processor from Texas Instrument

and Blackfin processor from Analog Devices.

In this subsection, the general-purpose programmable processors including

RISC and CISC processors will be introduced, followed by the application-specific

programmable platforms with the benchmark processors.

(a) General-Purpose Programmable Processor

General-purpose programmable processors developed for widespread applications

today find a niche in the multimedia applications by adding the special instruction sets.

Based on the architecture of special instruction sets, the general-purpose programmable

processors can be grouped into RISC and CISC processors.

(I) RISC processor

The instruction set of the RISC processor is characterized by the most frequently

used instructions for general-purpose computing. More complex instructions or less fre-

quently used instructions are implemented as a sequence of the reduced instruction set

[13]. The new generation of processors such as the Sun UltraSPARC (termed as super

scalar) [44] [45] [46] can process up to four instructions simultaneously per cycle so as

to realize the instruction-level parallelism. To cater to the emerging multimedia appli-

cations, the SPARC family of microprocessors implement the SPARC ISA (Industrial

Standard Architecture) version 9, a 64-bit ISA with a multimedia extension called VIS

[47]. These instructions are used for the specialized pixel operations that can operate

in parallel on 8-, 16-, or 32-bit integer values packed in a 64-bit floating point (FP) reg-
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ister [13]. Moreover, the concept of sub-word parallelism has been exploited in several

other RISC-based designs to enhance the media processing [48] [49] [50]. Other leading

vendors and designers of RISC processors with support for the media processing include

ARM processors, PowerPC’s AltiVec and the PA-RISC 2.0 architectures [51].

The latest ARM [52] offers two complementary technologies for media acceleration:

ARM OptimoDE data engine technology, and the recently announced NEON technol-

ogy. The optimoDE data engine is a configurable VLIW-style DSP architecture targeted

at intensive non-stop data processing, such as video processing. OptimoDE data en-

gines provide a very high level of performance with a very efficient implementation. In

general, each design is tuned to an application domain, and can be reprogrammed to

handle different implementation of the applications. For example, an OptimoDE data

engine designed for video can be reprogrammed by software designed to handle MPEG4,

H.264 without changing the base hardware design.

ARM NEON technology is a SIMD architecture extension to the ARM processor

architecture that is targeted at flexible media and signal processing. NEON technology

provides powerful media acceleration within a general-purpose architecture. Each design

can have its implementation matched to the desired performance level of the ARM

core. Microarchitecture details such as memory system interfaces and execution units

are left to the specific implementation, while programmer’s model remains the same

across all designs. NEON technology accelerates a wide variety of applications-including

video, audio, and 3D graphics-without the need to modify the core. This provides the

capability for simultaneous acceleration of different media types, and gives the flexibility

to handle new applications after the design has been deployed.

ARM with these two new technologies is promising for future all-in-one-chip appli-

cations in the smart phones. This is due to the fact that configurable OptimoDE data

engines enable ARM to provide the highest domain-specific processing performance
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within a small gate count and minimal power budget. Moreover, ARM coupled with

NEON technology will enhance a high level of general-purpose signal processing capabil-

ity. Accordingly, ARM processors combined with these two technologies are promising

to meet the future demanding multimedia processing requirements of the embedded

market.

Another representative RISC processor for embedded applications is SH from Rene-

sas Technology Corp [53]. SH-4 [54] achieves 360 MIPS and 1.4 GFPLOPS at 200 MHz.

Its architectural enhancement is based on two-way superscalar issues of instructions,

sperate instruction and data caches, and early stage branches. The unique floating-

point vector instructions are effective for 3D graphics processing. SIMD extension in-

volved in the latest SH-5 [53] provides the parallelism required for efficient execution

of a wide range of applications including home video games and handheld PCs. Also,

SH-Mobile application processor is used for mobile phone system. The new software,

the SH-mobile V2 (type name SH7310) and SH-Mobile3 (type name: 73180), incorpo-

rates an MPEG4 full hardware accelerator for the third-generation (3G) mobile-phone

audiovisual communications.

(II) CISC processor

Compared with RISC processors, the CISC processors incorporate with more com-

plicated and feature-rich ISAs to enhance the media processing capability. An example

for the CISC processors is Intel’S Pentium with MMX/SSE. MMX/SSE extension to

the Intel architecture is designed to accelerate the multimedia and communication soft-

ware running on the Intel architecture processors [55]. MMX instructions are 64-bit

packed integer SIMD operations that operate on 8-, 16-, or 32-bit operands. The SSE

instructions are 128-bit packed IEEE single-precision floating-point operations. The
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Pentium 4 processor adds new forms of 128-bit SIMD instructions called SSE2. The

SSE2 instructions support 128-bit packed IEEE double-precision SIMD floating point

operations and 128-bit packed integer SIMD operations. The packed integer operations

support 8-, 16-, 32-, and 64-bit operands [15].

The intel’s Pentium-4 processor [15] has a FP execution cluster which executes the

FP, MMX, SSE, and SSE2 instructions and utilizes the following features.

(1) Many FP/multimedia applications have a fairly balanced set of multiplies and

adds. The FP adder can execute one extended-precision (EP) additions, one double-

precision (DP) addtion, or two single-precision (SP) additions every clock cycle. This

gives a peak six GFLOPS for SP or three GFLOPS for DP FP at 1.5 GHz.

(2) Many multimedia applications interleave adds, multiplies and pack/unpacked/shuffle

operations. For integer SIMD operations, which are the 64-bit wide MMX or 128-bit

wide SSE2 instructions, there are three execution units that run in parallel. The SIMD

integer ALU execution hardware can process 64 SIMD integer bits per clock cycle.

(3) A separate shuffle/unpack execution unit can also process 64 SIMD integer bits

per clock cycle. MMX/SSE2 SIMD integer multiply instructions use the FP multiply

hardware mentioned above to do a 128-bit packed integer multiply op every two clock

cycles.

(4) The FP divider executes all divide, square root, and remainder micro-operation.

It is based on a double-pumped SRT radix-2 algorithm, producing two bits of quotient

(or square root) every clock cycle.

The intel’s processor coupled with MMX/SSE can obtain 1.5 to 2 times performance

gains compared with the one without MMX/SSE instructions. Since the multimedia

processing requires the access of data from off-chip memory, the long latency will occur

due to frequent access of off-chip memory. In order to reduce long latency of memory,

the deep buffering of Pentium 4 processor (126 µops and 48 loads in flight) allows
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the machine to execute large sections of the program to examine the dependencies.

Moreover, the out-of-order execution hardware often unrolls the inner execution loop of

these programs numerous times in its execution window. This dynamic unrolling allows

the Pentium 4 processor to overlap the long-latency FP/SSE and memory instructions

[13].

Along with the extension of multimedia applications of general-purpose processors,

the application-specific processors (i.e. media processor) dedicated for media process-

ing have been proposed for mobile multimedia processing. The state-of-the-art media

processors will be discussed in the following parts.

(b) Application-Specific Programmable Processor

Media processors evolved from the digital signal processor (DSP) which is generally

for audio signal processing are developed for today’s and tomorrow’s multimedia appli-

cations on portable consumer appliances. Since the architecture of media processors is

designed based upon the features of media processing, they tend to achieve a better

cost/performance ratio than the general-purpose processor. The state-of-the-art media

processors contain the multimedia embedded processor (MeP) of Toshiba [3], Open Me-

dia Application Platform (OMAP) processor of Texas Instrument (TI) [56] and Blackfin

processor of Analog Devices (AD) [57].

(I) Multimedia embedded processor (MeP)

MeP [3] from Toshiba is a platform for digital media SoC chip that is targeted

at the digital media processing applications including video and audio. The MeP core

composed of configurable 32-bit CPU is a kind of microprocessor for embedded appli-

cations and can be used in the same way as the ARM9 and MIPS32 4K. The biggest
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difference is that the MeP is user configurable. The features and instructions can be

selected to be implemented in each MeP core from a set of options at design time. As an

example, the multiply-and-add and absolute difference instructions are added to reduce

processing time or change the instruction RAM size according to the program code size.

MeP can be developed in a hierarchy way for different applications. A MeP core

coupled with one or more extension units forms a MeP module. The extension units

contain the user-custom instruction (UCI) unit, DSP unit, coprocessor and hardware

engine. For instance, one of the modules in MPEG2 codec, is tailored for video codec

applications. Specifically, a user custom unit and hardware unit are added to sup-

port MPEG2 processing, including variable length coding and decoding, discrete cosine

transform (DCT)/inverse DCT, quantization and inverse quantization, as well as motion

compensation.

Asymmetric multiple MeP modules are composed of a SoC chip. Since they are

each tailored to particular multimedia processing like video, audio or graphics, MeP SoC

chip has smaller area and less power dissipation in comparison with general-purpose

processor where runs any software on a single large processor. Moreover, MeP enables

the implementation of complicated functions in a short time by virtue of flexible reuse

of the intellectual property (IP) blocks. Hence, MeP can accomplish the short time-to-

market performance required by the consumer electronics market.

(II) Open media application platform (OMAP) processor

OMAP [16] from Texas Instrument (TI) is a highly integrated hardware and soft-

ware platform designed to meet the application processing needs of next-generation

embedded devices.

The OMAP5912 [56] application processor is composed of TMS320C55x DSP core
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and ARM926EJ-S RISC processor. The C55xDSP architecture achieves high perfor-

mance and low power through increased parallelism and total focus on reduction in

power dissipation. The C55x CPU provides two multiply-accumulate (MAC) units,

each capable of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arith-

metic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is

under instruction set control, providing the ability to optimize activity and power con-

sumption. The ARM926EJ-S is a 32-bit processor core that performs 32-bit or 16-bit

instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses the pipelining so

that all parts of the processor and memory system can operate continuously. By virtue

of the dual-core architecture, OMAP can desperate the multimedia processing tasks

onto each of core based on the feature of tasks. Accordingly, OMAP can achieve bet-

ter cost-effective performance than the general-purpose processors due to its adaptive

processing.

(III) Blackfin (BF) processor

Blackfin processor [57] from Analog Devices is a 16/32-bit embedded processor

designed to meet the computational demands and power constrains of today’s embedded

audio, video, automotive, industrial/instrumentation, and communication applications.

Blackfin processors combine RISC MCU and DSP functionality.

MCUs are traditionally used for asynchronous control flow, and DSPs are well

for synchronous, constant-rate data flow such as audio or voice-band applications. This

integration of MCUs and DSPs can thus enable better performance than either of them.

This is because each optimization is performed according to the feature of different

tasks. DSP applications usually focus on performing as many arithmetic computations

as possible in the fewest number of core block cycles. To this end, DSPs often use
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complex VLIW instructions, which erode code density and can increase code memory

requirements. To enhance the multimedia processing capability, DSP often couples the

ancillary processors to make up for a lack of flexibility. By virtue of integrating RISC

microcontroller (MCUs) and DSPs into a single processing platform, BF processors

can eliminate the need for separate digital signal and control processors, which reduces

bill of material costs and greatly simplifies hardware and software design tasks. BF

processor can therefore achieve a high-performance and low power dissipation and short

time-to-market performance.

(IV) Features of media processor

Based on the aforementioned discussion, the key features of the architecture of the

state-of-the-art media processors are summarized as the following points.

The first, the availability of high performance supporting the video processing via

customized configuration such as memory size and instruction sets. As an example,

the MeP core consists of basic core and configuration parts including memory size,

instruction sets, debug support unit, and interrupt controller.

The second, parallel multi-processor architecture, where each of modules is designed

for a specific application. For instance, a module contains processor core and extension

units such as a VLIW (very long instruction word) coprocessor. With this configuration,

the three instruction can be executed in parallel.

The third, efficient and flexible programmability. This is due to the fact that

the extension units can be customized for specific application such as video codec or

audio codec based on the user’s requirements. As an example, the MeP provides the

optional configurations which enable the designer to build a system suitable for target

applications. Moreover, MeP SoC is composed of many MeP modules, each of modules
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is dedicated for a special application such as a video codec or audio codec. The module

composed of the SoC can be used for future other SoC.

The fourth, low power dissipation suitable for embedded applications. Since the

each module composed of SoC is configured according to the target application, it is

capable of the low power dissipation and high performance. As an example, a flexible

SoC is an asymmetrical multi-processor platform, so that it can achieve similar pro-

cessing performance to the general processor with less clock speed. As an example, the

MPEG2 codec built on the MeP requires 150 MHz with power consumption of 2 watts,

while over 3.6 GHz with power consumption of around 20 watt is required in case of

the general-purpose processors.

2.3.3 Issues in the Existing Promising Implementation Plat-

forms

General-purpose processors with specialized media extended instruction sets can

speedup the media processing with the exploration of different-level parallelism. While

these processors employ a dynamic branch prediction technique, which implies the need

for large primary and secondary level caches. This occupies valuable silicon area and

proves disadvantageous during cache misses due to real-time constraints that need to

be met for the media applications [13]. Moreover, the architecture of general-purpose

processors is not optimal for multimedia processing due to its single processing core,

albeit it provides the maximum flexibility. Generally, the single core can not realize

processing adaptive to the feature of the different tasks. As a result, video stream

processed by general-purpose processors requires the higher clock speed than special-

purpose media processing platform. Moreover, higher clocking speed will result in the

more power dissipation. Consequently, general-purpose processor is not suitable for

battery-supported mobile devices.
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The application-specific programmable platforms such as media processors can

overcome the weak points of general-purpose processors by virtue of the customized

module architecture. Each module composed of a media processing platform is respon-

sible for a preset task. For example, the specific instruction sets frequently used in the

media processing application such as MAC and SAD, are added by hardware solutions.

While such customization of each module endures limited flexibility compared with the

general-purpose processers.

Moreover, the programmable implementation platforms mentioned above are based

on the conventional Von Neummn control-driven mechanism and synchronizing clocking

circuits, so that the processing power enhanced by the increased clock rate will result in

the clock skew problem. In addition, the synchronized clocking circuits endure the long

wiring length across the chip, which imposes the extra power consumption. Since the

portable applications supported by battery require the better power-saving processing

performance, such as mobile phone and laptop PC, a new architecture of flexible software

implementation platform is required. Data-Driven multimedia processor is promising to

overcome above problems owing to its data-driven scheme and self-timed super-pipeline

circuits. Data-driven scheme enables no context switching whether parallel execution of

a program for a different set of instances or concurrent execution of different programs

[58].

A self-timed data-driven architecture is promising for future video codec systems

because of its data-driven scheme and self-timed local hand-shaking. A data-driven

scheme empowers parallel execution of a program for a different set of instances or

concurrent execution of different programs with no overhead associated with context

switching. This is because in the data-driven processors, the operation is to be fired

only depending on a pair of data necessary for execution of the operation [58]. This

feature enables high throughput performance required for real-time multimedia applica-
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tions. Furthermore, a self-timed clocking scheme empowers autonomous power-saving

features by local hand-shaking. Thus, a data-driven processor coupled with self-timed

super-pipelined implementation is promising for future battery-supported multimedia

applications.

2.4 Discussion

Since the more and more applications require the audio, video and communication

processing capability, low-cost and high-performance multimedia systems are demanded

to boost the prevalence of the rich-featured consumer appliances. SoC is an optimal

solution for reducing the system cost and better cost-effective performance due to its

high integration of multiple processing units.

In this chapter, the requirement for a fast video coding on flexible SoC was discussed

in conjunction with the promising existing algorithms and programmable processors. To

realize a fast coding on SoC, a simple coding scheme and its fast and parallel software

implementation platform are required.

Such kind of coding scheme with low complexity and high parallelism enables a fast

codec system which flexibly cooperates with other real-time functions required by the

users. BTC and its existing variants are promising schemes for realizing a fast coding

on SoC, while they can not accomplish the better trade-off between the image quality

and computation complexity well. Therefore, a more promising video coding scheme is

required for this target.

As for its software implementation, the existing media processors are promising for

real-time multimedia applications by virtue of their custom configurations. As an ex-

ample, Toshiba’s MeP disperses the intensive processing over multiple processing cores,

each of which possesses the customized configuration based on the features of executed

45



2.4. DISCUSSION

tasks. Hence, the less clock speed is required to accomplish the multimedia processing

tasks in comparison with the general-purpose processors. While the customization of

each module composed of SoC will result in the limited flexibility, in that they are each

optimized for very different tasks. In addition, many functions have been integrated

on the single chip along with the demand of rich-featured consumer electronics. This

will lead to the productivity challenge with regard to the conventional Von-Neumann

processing platform based on clock-driven scheme and synchronized circuit implemen-

tation.

To resolve the aforementioned issues, a more promising platform is required for

future embedded applications. Data-driven chip multiprocessor is a promising platform

for realizing a fast coding on flexible SoC by virtue of its data-driven scheme and self-

timed super-pipelined circuits.

Concerning conventional Von Neumann-type processors, parallel implementation of

a program or concurrent execution of different programs will incur rather high overhead

associated with the context-switching [58]. On the other hand, data-driven processors

can overcome this disadvantage. This is due to the fact that the execution of operations

is only dependent on the available of a pair of data required for this operation. This

computing paradigm enables more power-saving performance in comparison with the

control-driven paradigm due to no centric control.

Furthermore, the self-timed super-pipelined implementation enables better

throughput performance required by media processing applications. Synchronous

pipeline circuits composed of current media processors require the additional intricate

controls for pipeline flushing and interlocking as well as bubble suppression alongside

the pipeline [58]. These controls affect the throughput performance and result in

additional power consumption. On the other hand, self-timed super-pipelined im-

plementation enables superior throughput performance to the synchronous pipeline
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implementation because of no intricate control.

In particular, the self-timed super-pipelined implementation makes the circuit ver-

ification easier than synchronized clocking one. This is because electromagnetic effect

within an integrated SoC becomes more significant than before along with the incom-

ing of deep-micron fabrication technology. Although highly integrated SoC empowers

smaller size and more functions, this tends to result in a big challenge for circuit veri-

fication. While a self-timed super-pipelined circuit composed of pipeline stages has no

systematic bus. This leads to that circuit verification can be performed based on each

pipeline stage. Accordingly, this approach is capable of the decrease of the engineering

efforts so as to shorten the time to market.

In order to realize a fast video coding on flexible SoC, a fast video coding scheme

suitable for highly-parallel software implementation is proposed in the following chapter.

Moreover, its highly-parallel software implementation on the data-driven processing

system is discussed for flexible SoC.
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Chapter 3

Adaptive BTC on Data-Driven

Processing System

3.1 Introduction

This chapter therefore proposes a fast video coding scheme suitable for semi-motion

pictures and then describes its data-driven highly-parallel software implementation. The

proposed coding algorithm is based upon the absolute moment block truncation cod-

ing (AMBTC) [35]. AMBTC calculates the mean of each block and then performs a

two-level quantization so that it is very simple but the image quality is not so good.

In order to improve the image quality, a AMBTC-based coding scheme has been de-

scribed in [22], while in this thesis the proposed scheme has significant features which

are different from the previous scheme. First of all, in order to derive a better trade-

off between reconstructed quality and computational complexity, the proposed scheme

introduces a three-level classification technique. Compared to the previous two-level

classification technique presented in [22], the proposed three-level classification tech-

nique enables more adaptability in encoding/decoding an image. Moreover, to further

improve the compression efficiency, differential pulse coding modulation (DPCM) is

employed in the current scheme. DPCM is utilized to remove the redundant informa-

tion existing in neighboring block images within an identical image. By virtue of these

coding techniques, i.e. three-level classification and DPCM, the proposed scheme can

– 49 –



3.2. ADAPTIVE BTC SCHEME

achieve better rate-distortion performance than the previous one [22]. Furthermore,

its data-driven parallel implementation is discussed to realize a fast video codec on a

data-driven chip multiprocessor implemented by the self-timed super-pipelined circuit

[58].

The structure of this chapter is as follows. In the next section, the proposed

adaptive BTC scheme is described in detail. In Section 3.3, its data-driven parallel

implementation is discussed to realize a fast coding on a data-driven chip multiprocessor.

Finally, the features of the proposed ABTC on the data-driven processing systems and

the principles of the load balance on a data-driven multiprocessor are discussed in

Section 3.4.

3.2 Adaptive BTC Scheme

Most of the existing block truncation coding schemes presented in the literature

such as [12] [24] don’t care about their implementation in total, while in this research

both a coding scheme and its implementation are taken into account as an integrated

system. When an adaptive BTC scheme [60] was designed, simplification and paral-

lelization of the original BTC [9] were performed simultaneously in order to realize a

fast coding on the programmable SoC as well as to guarantee the reasonable image

quality.

The proposed adaptive BTC scheme (ABTC) [61] is illustrated in Fig. 3.1. As

shown in Fig. 3.1 (a), an input RGB image is first partitioned into 4x4 unoverlapped

block images, followed by the color space conversion from RGB to YCrCb for better

coding efficiency. Next, the Y components go through AMBTC encoder. After that,

the inter- and intra-frame DPCM are used to remove the temporal and spacial redun-

dancy inherent in consecutive frames and neighboring pixels in the identical image,
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Fig. 3.1 Block diagram of the proposed ABTC scheme: (a) Encoder; (b) Decoder.

respectively. At the same time, the C components (Cr and Cb) are encoded in that

they are independent from Y component. Since human is more sensitive to luminance

changes than chrominance variance in a picture, mean value of every chrominance block

is merely calculated and transmitted. Finally, the encoded data and side information

are combined using entropy encoder before storage or transmission.

The ABTC decoder is shown in Fig. 3.1 (b). It can be seen that the procedures of

the decoding is reverse to that of the encoding shown in Fig. 3.1 (a). While the decoding

process is simpler than encoding one because of no computations of some parameters

such as AM and SAE. This research therefore focuses on the ABTC encoder.

Regarding the decoding process shown in Fig. 3.1 (b), whether this block belongs

to the one similar to its counterpart in the previous frame (SPF) is first checked by

a one-bit flag. Given this bit is 1, then this block is SPF. The corresponding decoded

block in the previous frame is used to compensate the current SPF block. Otherwise, the

following two-bit flag is checked to identify the type of encoded block image. Suppose

this two-bit flag is 11, then this block is the one similar to its previous block in the same

image (SPB). SPB is compensated by its previous decoded block in the identical image.

In the remaining subsections, the intra-frame coding of the proposed ABTC scheme
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is first described. Moreover, a square root quantization method used to encode the

pattern blocks is presented. Finally, a simple BTC-based interframe prediction is intro-

duced.

3.2.1 Intra-Frame Coding

(I) ABTC algorithm

The intra-frame coding of the proposed adaptive BTC scheme shown in Fig. 3.2 is

mainly composed of several pipelined modules: AMBTC encoder, DPCM for three types

of block images. A stream of 4x4 luminance block images are input into AMBTC en-

coder, and then mean value (x) and absolute moment (AM ) are calculated by AMBTC

as follows:

x =
1
l

l∑

i=1

xi (3.1)

AM =
1
l

l∑

i=1

|xi − x| (3.2)

where xi denotes the ith pixel value in a block of l(= 4 × 4) pixels. A one-bit plane

which contains 1’s where xi < x and 0’s where xi ≥ x is used to retain local properties

of the image.

Considering the characteristics of the useful images, in which only a small region

contains high detail or texture such as people and building, thus each luminance block

is classified as either a uniform block, a normal block or a pattern block based on the

predefined thresholds of AM and mean absolute error (MAE) calculated as follows.

MAE =
1
l

l∑

i=1

|x′i − xi| (3.3)

where x′i is the ith pixel value in a reproduced block image. Nevertheless, MAE is
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Fig. 3.2 The flow chart of the proposed algorithm.

usually replaced by SAE (summation of absolute error) in the practical implementation

for decrease of operations. If the AM of a luminance block is less than the threshold

value, then this block is referred to as a uniform block; if the AM of a luminance block

is over the threshold and also MAE is less than the threshold, then this block is named

after a normal block, otherwise, a pattern block. Moreover, each sort of block is labelled

by a 2-bit identifier.

In order to derive a better trade-off between the reconstructed quality and com-

putational complexity, those types of block images mentioned above are encoded by

distinct approaches. As for a uniform block, the mean of a block image is merely used
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to reproduce the image at the decoder because encoding a smooth block using its mean

results in a good reconstructed image. As for a normal block, three moments, mean,

AM and bit-plane are calculated by simplified AMBTC without consideration of the

distribution of pixel values over each normal block image. Then the encoded data are

transmitted. At the decoder, the two-level decoded data, xl and xh, are computed as

follows.

xl = x−AM (3.4)

xh = x + AM (3.5)

As for a pattern block, the mean errors are first computed by the equation (3.6).

In order to obtain high image quality while reserving the low bit rate, an adaptive

approach is used to determine the bit number of the mean errors. That is to say, the

bit number of the mean errors is dependent upon the maximum value among 16 mean

errors of each 4x4 pattern block. Moreover, the mean errors are first truncated based

on the desired bit rate performance. And then the truncated mean errors and mean

value over a pattern block are transmitted.

Ei = xi − x (3.6)

where Ei is a mean error of the pixel value in a pattern block. The sign of the mean error

is reserved by the one-bit plane. At the decoder, the reconstructed data are obtained

as follows.

x′i = x + E′
i (3.7)

where E′
i is a truncated mean error of the ith pixel value in a pattern block.
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To further improve the rate-distortion performance of the ABTC scheme, DPCM is

introduced to remove the redundancies of entropy information inherent in the neighbor-

ing blocks. DPCM is derived from the fact that adjacent pixels possess a high degree of

correlation within a picture, which is attributed to the increase of the compression ratio

through comparing adjacent block images. Suppose that the current block is similar to

its previous one, then only a two-bit identifier is transmitted.

In order to reduce the computational complexity with negligible image distortion,

three arbitral approaches corresponding to aforementioned block images are adopted to

identify the similarity between the adjacent block images. As for two adjacent uniform

blocks, the difference of means (difMean) of block images is merely computed by the

following equation and used for an arbitrator.

difMean = Meani −Meani−1 (3.8)

If difMean is over the predefined threshold, then the mean of current block is

transmitted. As for two contiguous normal blocks, three moments, difMean, difference

of AM (difAM ) and difference of bit-plane map (difMap), are calculated by the equations

(3.8), (3.9) and (3.10), respectively. These moments are used to examine the similarity

between the block images within a picture. Moreover, only if all moments are smaller

than the predefined threshold values, the current block is judged as the same to the

previous block.

difAM = AMi −AMi−1 (3.9)

difMap =
l∑

j=1

(Mapi,j

⊕
Mapi−1,j) (3.10)

where i refers to the ith block, j denotes the jth pixel in a pixel block, Map represents

a one-bit plane, difMap denotes the number of different bits between the adjacent bit

55



3.2. ADAPTIVE BTC SCHEME

planes.

On the other hand, as for two adjacent pattern blocks, two parameters, difMean

and summation of absolute difference (SAD) calculated by equation (3.11), are utilized

to decide the similarity between the pattern blocks.

SAD =
l∑

j=1

|Ei,j − Ei−1,j | (3.11)

where Ei,j denotes the mean error of the jth pixel over the ith pattern block; otherwise,

Ei−1,j denotes the mean error of the jth pixel over the (i−1)th pattern block. Moreover,

only if both difMean and SAD is less than the predefined thresholds, then the current

block is identified as the same to its previous one.

(II) Square Root Quantization for Pattern Block

In order to decrease the bit rate of ABTC algorithm, [63] proposed square root

quantization (SRQ) approach to encode mean errors of each pattern block. The pro-

posed square root quantization (SRQ) is formulated as equation (3.12). The input

luminance value Y is first subtracted the mean value of Y (x) and then the absolute

difference of Y and x is computed, wherein one bit is used as the sign bit of (Y-x).

Next, the absolute difference is divided by 2 and the result is quantized into a value

in the index table. After that, square root value of the index value is obtained. The

obtained value requires 5-bit, thus it is transformed into 4-bit value for less bit rate. At

the decoder, the process is inverse of the encoding procedure.

Y ′
i = Sign(Yi − x)×Round

√
|Yi − x|

2
(3.12)

Where Y ′
i is the encoded Y, round denotes that fractional number of square root is

round to the nearest integer number. Sign indicates the symbol of each mean error.
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Using above scalable quantization, each 8-bit mean error in the pattern block is

transformed into 4-bit code including one-bit sign. In order to eliminate the complex

quantization computation, a lookup-table implementation is employed for the aforemen-

tioned quantization.

���������	��

�
����� ����
������

�����

���! 
"�#%$%& �('*),+

-/.
021�3�46587!9*:�4

;=<!>�?8@ 1�3�4
�A�CB �

DE.
3�4,F G!HJI 9,KL4C1�MNO< :�1�P I ? 4

����+
#RQ�Q=S +UT & �

;

V �2��W�X���X
�/�J� �	��
������

YZ42021�3=465�7!9*:[4
\/]Z^ \/]U^

_ &�`ba�c   �
; c8` _ a & & �
c � ` ;�+ a a +
+�� `dc � _ _ c

&e` �f+ c c _
cg`ha + + a
� ` + � � &

� � � &

� c8` +
� ; ; ;

i cg` i a i + i +  
i ��+ ` i & i c i c j

i +
� ` i � c i ; i ; �,�

i ;�+ ` i c � i a i a �f+i c � ` i +�� i _ i _ ���

�  a ;
� & ; j
+ a c�a
c _ + _

_ c j
a + ;

& � �

; ; � a

 i + i ;
j i c i j��� i ; i � a

�f+ i a i c=a� c i & i ; j�f; i  i a ;

��� i _ i + _

i _ a�` i ; c i & i & � c
i a�c8` i _ & i  i  �f;

_ <!>k? ;=<
>k?

i � ` i + i � � &

@ 1�3�4 ;=<!>�?l I ?nm I ?0�1�3=4 ^oKL9,.p:�Mq1JKqr > .
s
Mq1JK ;

����� ����
������
t ��
��vu�

� � �

w2x

Fig. 3.3 Lookup table implementation.

Fig. 3.3 shows an example of SRQ encoding and decoding process. At the encoder,

mean value of a 4 × 4 pattern block is first calculated. In this example, mean value is

70. One of luminance values in the pattern block is 108, then 108 is subtracted 70 and

divided by 2. The result is equal to 19, then 19 is approximated into 16 in the index table

to make the deviation as small as possible. After that, the square root of 16 is equal to

4. Based on this idea, a lookup table (LUT) is designed including 256 codewords each of

which is 4-bit. Taking advantage of this lookup table, a 4-bit codeword corresponding to

one mean error can be directly obtained by a LUT operation. In this case, mean-error

luminance value is positive, then the sign is 0. At the decoder, input encoded data is
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4, square 4 is 16. Next, 16 is multiplied 2, and the product is equal to 32. Moreover,

32 is added 70, the summation is 102. Thus, when the encoded data 4 and mean value

equal to 70 are input, 102 is outputted via a LUT operation.

3.2.2 BTC-Based Interframe Prediction

Motion prediction is very important to obtain a satisfactory image quality and

desired compression ratio. The well-known block-based motion estimation and com-

pensation technique is widely utilized in the current video coding standards such as

H.263/H.264 and MPEG2/MPEG4. While this motion prediction technique is time-

consuming process, it is too heavy to realize software implementation for real-time

applications. Although a number of fast motion estimation approaches have been re-

ported [64] [65] [66] [67], which can achieve better results than that of conventional fast

search algorithms, such as three-step search, the 2-D logarithmic search, the conjugate

direction search [68]. While these fast motion estimation schemes are not well compat-

ible with our intra-frame coding. Therefore, a simple and efficient prediction approach

is required for a fast coding on flexible SoC. To this end, a simple and adaptive motion

prediction approach which can be harmonious with the intra-frame coding of ABTC

scheme is presented in this subsection. This is because the entropy moments produced

by AMBTC are taken full advantage of to justify whether the current block is a motion

block.

In the conventional motion-estimation approach, large block size is adopted (i.e.

16x16 or 8x8 block). In this case, if the entropy moments of one block image are utilized

to justify its status, large distortion in the reconstructed image will be occurred. In

addition, the shape of motion objects is not block so that large block size results in

unsatisfactory image quality, albeit the low bit rate performance may be obtained. In

order to overcome this weakness, the latest video coding standard such as H.264 uses the
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variable block size, while the computational complexity of motion prediction is increased

drastically, although the optimal compression efficiency can be accomplished.

In the proposed motion estimation approach referred to as DPCM, small block size

of 4x4 is employed to remove the temporal redundancies existing in the consecutive

frames. Owing to small block size, utilizing the moments of a block image as the

arbitrary factors can produce a more precise motion prediction. Moreover, the motion

prediction method is adaptive to the type of blocks. This is aimed to reach a better

trade-off between the computational complexity and image quality. In fact, it is a simple

block-based difference coding as current block is only compared to its counterpart in

the previous frame.

The proposed approach shown in Fig. 3.4 includes different processes according to

the types of two block images involved in the consecutive frames. If both are uniform

blocks, the mean values are only compared. Suppose that difMean is over a certain

threshold, current block is decided as a motion block. This is because comparing two

smooth blocks using their means leads to more accurate motion prediction. On the

other hand, if one of them with AM over the predefined threshold exists, then three

parameters, difMean, difAM, difMap are compared, respectively. This is because

examining a high-detail block using its mean can not accurately ascertain its status.

Moreover, only if all parameters are smaller than the predefined threshold values, the

current block is decided as a stationary block. In this case, no still block is encoded

and transmitted at all. These threshold values can be obtained adaptively depending

on the user’s requirements of either BPP (bit per pixel) or signal-to-noise ratio (SNR)

or both.

The encoded data structure for classified blocks is presented in Fig. 3.5. It can be

observed that only 1 bit is demanded to represent the block similar to its counterpart

in the previous frame (SPF), and three bits are required to denote the block similar to
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Fig. 3.4 Flowchart of a block-based difference coding.
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Fig. 3.5 Data structure of various block images.

its previous block in the same image (SPB). The compression ratio (CR) for each type

of block images can be computed as follows.

CR =
16a
N

(3.13)

where a refers to as the number of bits for each original pixel, while N represents the

total number of bits for the encoded data of each 4x4 block image.

Since the input video sequence is colored into RGB images in the experiments, a

is equal to 24 bit. Accordingly, the CR of SPF is equivalent to 384, while that of SPB

is equal to 128. Concerning a uniform block with N=23 bits, CR=16. Otherwise, for a

normal block with N=44 bits, CR is equal to around 8. While the CR of a pattern block

is dynamic, as the number of bits of its encoded data is dependent upon the maximum

value of mean errors (ME).

It can be deduced from Fig. 3.5 that the compression ratio of a pattern block is

the least among these predefined blocks due to 16 mean errors (ME). While the number

of pattern blocks is generally small because a common image includes small high-detail

regions such as people and building. Especially, the DPCM is involved in the proposed
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scheme, which can further decrease the number of pattern blocks. Hence, the desired

compression ratio can be obtained using the proposed ABTC.

3.3 Data-Driven Parallel Implementation

The dynamic data-driven chip-multiprocessor [58] is a promising platform for the

proposed ABTC software because it allows us to process high-bandwidth stream data

under the lower electric power by virtue of unique features of the data-driven scheme

and the self-timed pipeline hardware.

In the data-driven processing scheme, each operation indicated by a node is not to

be fired until a set of data necessary for the operation exist on the all input arcs of the

node. Moreover, in the dynamic data-driven scheme, parallel execution of a program

for different sets of data instances can be allowed without context switching and predes-

ignated scheduling. Thus multiple processors based on the dynamic data-driven scheme

can efficiently cooperate and their throughput is not hindered by latencies caused by

memory access, processing delays, and interprocessor communication delays. Neverthe-

less, in conventional Von Neumann-type processors where instructions are executed in a

predetermined sequence, such kinds of latency significantly affect the rate of execution

of sequential instructions. In the data-driven processors, on the other hand, flow rate

of the pipeline is completely independent of both total delay in the pipeline and the

length of the pipeline. The data-driven processors therefore can achieve better pipeline

throughput performance than the conventional processors.

In order to utilize its pipeline processing capability, it is essential to maximize

the data flow rate in the pipelines of all the processors. This leads to the scalable

implementation along with the available number of processors. To keep maximum data

flow in each processor, it is necessary to not only reduce the number of operations but
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also exploit the parallelism inherent in it.

Moreover, the data-driven processing systems enable the concurrently parallel pro-

cess. By virtue of the concurrent process, the response time of the history sensitive

process can be reduced too much. Accordingly, the desired throughput performance

can be accomplished. Concurrently parallel implementation associated with the history

sensitive process will be discussed in subsection 3.3.3.

3.3.1 Parallelism Inherent in ABTC

Parallelism inherent in ABTC are exploited in a hierarchical way. Given the data

dependency exists between the elements, then the pipelined parallelism can be exploited.

Otherwise, concurrent parallelism. Based on the luminance data dependency, three-level

parallelism are defined here. The first is a coarse-grained level which refers to the frames

of a video sequence. The second is a medium-grained level which refers to the blocks of

a frame. The third is a minimum-grained level which refers to the pixels of a block.

On the coarse-grained level, there are data dependencies existing in the consecutive

frames of a video sequence because of the inter-frame prediction of the ABTC scheme.

Accordingly, the pipelined parallelism can be exploited for this level. Likewise, on the

medium-grained level, pipelined parallelism can also be exploited owing to the intra-

frame prediction. As shown in Fig. 3.1, different block data can be simultaneously

processed in the temporal dimension so that the pipelined parallelism are fully realized.

On the fine-grained level, pixel data within each block image are independent of each

other, the concurrent parallelism can therefore be fully exploited. Again, luminance

component has no relationship with chrominance one, concurrent parallelism can be

exploited.

It should be noted here that the exploited parallelism may exceed the allowed

maximum of the available hardware resources. In this case, the processing efficiency
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of a data-driven processor will be affected or it can not work at all. Accordingly,

the exploited parallelism must be customized into the available hardware resources.

Customized methods for one single processor include the reduction of the number of

concurrent processing nodes and the decrease of the input flow rate. The former is

derived from that the limited capacity of the matching memory composed of a data-

driven processor. The latter arises from the limited number of pipelined stages within

a data-driven processor.

3.3.2 Two Types of Input Data Structure

Two types of input data structures shown in Fig. 3.6 are explored. Fig. 3.6 (a)

illustrates that a stream of data with original raster scanline order are input into the

ABTC encoder. For such input data structure, the throughput of block data fluctuates

between maximum (= wh
4t0

, where w and h are the width and height of a frame image; t0

is interval time between pixel data) and minimum (= wh
(3w+4)t0

). Fig. 3.6 (b) indicates

that ABTC encoder receives a sequence of 4x4 block images, whose throughput is equal

to wh
16t0

. So that the block-order input enables a constant flow of data stream. This is

due to the fact that there is no three-line delay time arising from the original scanline

order but an additional transform process is required.

To transform the original scanline-order image into a sequence of 4x4 block images,

a compound reference instruction of the line buffer is proposed and shown in Fig. 3.7.

Before utilizing this proposed instruction, the original pixel data with scanline order is

stored into the line buffer based on the coordinates of pixels. Moreover, the line buffer

requires the least capacity of 5120 (640x8) words for VGA image to ensure the steady

data flow. As shown in Fig. 3.7, input data is the number of the last line over each

4x4 block image. The three offsets of buffer address are 3, 2 and 1 in case of 4x4 block

images. Subtracting each offset from the number of last line, the data address of its
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Fig. 3.6 Input data structure: (a) Scanline-order input; (b) Block-order input.

prior line can be obtained. Then three data belonging to its prior lines over a 4x4 block

are read and output. The block transformation of every frame can be thus speedily

realized and target throughput performance will be achieved by virtue of this proposed

compound instruction.

3.3.3 Pipelined Parallel Implementation

Since functional modules composed of ABTC codec have distinctive computational

characteristics, it is important to analyze their processing natures and then to perform

a superior pipeline implementation for better systematic throughput performance.

Based on the essential data dependencies, each functional module in the ABTC

codec can be identified as either a history sensitive process or a functional process.

Since the throughput performance of a history sensitive process is an inverse ratio of

the response time of the critical path, it is necessary to minimize the length of the

critical path in order to maximize the throughput performance.
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Fig. 3.7 A compound reference instruction of the line buffer.

As an example, Fig. 3.8 (a) illustrates a dataflow graph that sums up 16 input

pixels of a block and calculates its mean by a 4 bit right-shift operation. In this case, an

intermediate accumulated sum is fed back to the add operator repetitively. This kind of

feedback path is generally involved in the history-sensitive process like Fig. 3.8 (a), and

it might be a critical path, i.e., the longest critical path affects the total pixel rate of

the ABTC program. The execution time of a partial program belonging to the longest

critical path in the ABTC program therefore must be reduced.

Fig. 3.8 (b) shows that our data-driven implementation by which the feedback path

is distributively stuffed into each compound operator (read & add) so that the execution

time of the critical path can be minimized at the software level. In this sophisticated

implementation, the following techniques are introduced: First, SIMD-type data packet

(two pixels can be held in a packet). Second, associative temporal memory based on

tagged packet of dynamic data-driven scheme. Third, compound operators: read &

add, swap & add & shift.

The data-driven program shown in Fig. 3.8 (b) accepts a stream of 8 packets each
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Fig. 3.8 Mean module: (a) Data dependency; (b) Data-driven implementation.

of which holds two neighbor pixels in a 4x4 block. This program is unfolded to a normal

concurrent program which sums up 8 packets by a tree structure of binary adders. At

the beginning of the program, the (2i − 1)th (i = 1, 2, 3, 4) packet is stored into the

temporal memory with its identifier. Then the (2i)th packet goes to the 1st read &

add operator and two intermediate sums are calculated from the (2i − 1)th and (2i)th

packets. At the 2nd read & add operator, the (4j − 2)th (j = 1, 2) packet is read and

added to the (4j)th packet in the same way. After that, the (8k−4)th (k = 1) packet is
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read and added to the (8k)th packet. Finally, two intermediate sums in the 8th packet

are added and shifted, and then the final mean is outputted.

To make a quantitative comparison of throughput performance, response time (TR)

in Fig. 3.8 (a) and Fig. 3.8 (b) was computed, respectively. TR is a product of critical

path length and response time of each instruction (tc). It can be derived from Fig. 3.8

(a) that TR is equal to 15(tc + tc) + t, where t denotes the time of the second pixel in

a block image arriving at add operator. In our pipeline implementation shown in Fig.

3.8 (b), suppose that t
′

is the time of the 8th packet arriving at read & add function,

then response time T
′
R = t

′
+ 6tc. In case of DDMP, t

′
= 7t, tc = 42t, thus TR/T

′
R=4.9.

This ratio shows that throughput of Fig. 3.8 (b) is around 5 times as many as that of

Fig. 3.8 (a).

As for functional process, its throughput performance is dependent on both num-

ber of operations and available processors. Hence the number of operations must be

decreased so as to maximize the throughput performance for available hardware re-

sources.

3.3.4 Concurrently Parallel Implementation

In addition to the above-mentioned pipeline implementation, the concurrent imple-

mentation is also performed to increase the throughput performance of history sensitive

process such as functional modules for computing absolute moment and one-bit plane

as well as summation of absolute errors (SAE) over a 4x4 block.

Considering 16 pixels within each 4x4 block are independent of each other, so

they can be processed in parallel. Since the SIMD-type data packets are adopted in this

implementation, eight operators are enough to process 16 pixels concurrently. Moreover,

for the sake of minimum number of operators, two data packets with diverse generation

identifiers are employed. As a result, only four operators are required to complete the
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calculation simultaneously rather than eight operators.

The relationship between SIMD-type data packets and image pixel data used in this

implementation is illustrated in Fig. 3.9. Fig. 3.9 (a) shows a 4x4 block image. It can

be seen that two neighbored pixels are packed into one packet, which are represented

as data0 and data1, respectively. Fig. 3.9 (b) illustrates a SIMD-type data packet

composed of generation identifiers and double data, and so on. Since current data-

driven multimedia processor (DDMP) [58] enables dynamic data-driven processing, the

generation identifiers illustrated in Fig. 3.9 (b) (i.e. pixel=12 bits, line=14 bits, frame=2

bits) is required to identify a pair of matched data packets. As shown in Fig. 3.9 (b),

pixel (pl) and line (ln) involved in the header of a DDMP data packet denote the

horizontal and vertical coordinates of the image, respectively. Otherwise, frame shown

in Fig. 3.9 (b) is used to denote the key frame (reference frame) or the frame predicted

by the key frame. By virtue of the generation identifiers (i.e. ln and pl), the desired

pixel data can be accessed directly from the on-chip associative temporal memory.

Moreover, DDMP empowers many compound instructions related to the associative

temporal memory, which significantly contributes to the increased flow rate. Especially,

with regard to history sensitive process, desired throughput performance can be accom-

plished via parallel execution of several identical compound instructions of associative

temporal memory.

As an example for this case, the concurrent parallel implementation for computing

AM is shown in Fig. 3.10. It can be observed that the AM module receives two mean

values with diverse ln values (one is ln=1, another is ln=3) and identical pl values (i.e.

pl=2). These two mean values are used to read the original luminance data stored in

the associative temporal memory. The mean with ln=1 is responsible for the first two

lines over each 4x4 block, otherwise the mean with ln=3 via four identical read&dif

operators. Next, two add operators are executed concurrently. After that, summation
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Fig. 3.9 SIMD-type DDMP packet vs. image pixels. (a) A 4x4 block image;

(b) A SIMD-type DDMP packet.

of absolute value of the four mean errors is obtained. As the double-data packet is

used in this implementation, both data 0 and data 1 contain the summation of four

pixels individually. Also, data packets with ln=2i-1 and ln=2i+1 (i=1,3,5......) can

be processed simultaneously. Accordingly, two packets with summation of four pixels

are produced. To get the summation of 8 pixels, the generation identifiers need to be

identical. To this end, the operator used to differentiate them is required. And then

the packet with ln=2i+1 goes through the operator for subtracting 2 from ln. Next,

the packet holding summation of 8 pixels in data0 and data1 is swapped and added and

right shifted 4 bit (due to 16 pixel). Finally, the AM is outputted. It can be derived

that the response time of our parallel implementation is around half of that of sequential

process due to half length of the critical path.
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Fig. 3.10 Data-driven parallel implementation of AM module.

3.3.5 Load Balance on Multiprocessor Encoding Systems

(I) Basic principles of load balance

Load balance among the multiprocessor is essential to optimize the performance of

a data-driven program. This is because pipeline throughput is slowed down in case of
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the occupation ratio of pipeline stages over the pipeline efficiency. Pipeline efficiency is

the proportion of net processing time spent on packet processing in terms of pipeline

throughput [58]. Thus, the load balance on multiprocessor systems is a critical step for

the maximum performance of a data-driven program.

In contrast to the conventional processors, it is much easier to build an optimization

for individual programs in terms of load balance among the data-driven processors.

This is because attentions do not need to be paid to communication overheads and

process scheduling [58]. Since a data-driven program is divided into pieces in node-by-

node fashion, load balance over the multiprocessor systems can be performed on the

basis of resulting pieces. Moreover, the principles for load balance on the data-driven

multiprocessor systems are summarized as follows.

Provided that memory resources are used in a software program, then memory

allocation is needed to be performed ahead of the load balance. This is because memory

allocation determines the allocation of memory relative instructions involved in the

instruction sets of current data-driven processors.

The following step is operator identification. Doing this step has two objectives.

One is to identify the operators like copy, conditional branch and absorb which tend to

change the processing load. Due to the feature of such operators, it is necessary to first

extract and place them over the available processors individually. The other is to form

various sorts of node pieces according to the category of the operators.

The data-driven chip multiprocessor shown in Fig. 3.11 consists of three types

of processors, ALP, LCP and CVP. These processors with different configurations are

customized into different tasks. An ALP processor mainly responsible for the arithmetic

and logic operations involves a complicated functional module (FP). A LCP processor

primarily aiming at the tasks for varying generation identifiers has a simple FP module.

A CVP processor with an interface to the external memory is chiefly responsible for
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Fig. 3.11 Block diagram of DDMP.

external memory relative operations. Accordingly, the formed node pieces are allocated

over the dedicated processors.

It can be derived that no control consideration is necessary. This is because neither

context switching nor scheduling is required in the data-driven paradigm. Otherwise,

regarding the control-driven paradigm, a complete program debugging on a multipro-

cessor system is difficult because program scheduling must be considered to ensure that

the program sequence is the same as that of the original program. As a consequence, the

data-driven processors can benefit more immediately from the today’s ever-increasing

integrated technologies to fit themselves to multiprocessor systems [58].
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(II) Load balance on data-driven multiprocessor systems

It is well-known that load balance among multiprocessor systems is essential for

optimum utilization of the component processors. The load balance on four- and eight-

processor systems is performed to realize a scalable implementation of intra-frame en-

coder. As the pipeline stages of CVP is more than that of ALU and LCP, the response

time of CVP is greater than that of other processors. Consequently, CVP processors

are not used for the history sensitive processes involved in the intra-frame coding such

as AM, SAE and SAD. This is because the throughput performance of history sensitive

process is dependent on the response time of a critical path.

According to the basic principles of load allocation mentioned above, the memory

allocation should be performed at first. The current DDMP shown in Fig. 3.11 is

composed of 10 processors on a single chip, each of which has an associative temporal

memory with 2048 words (32 bit/word). To reduce the required memory capacity, it is

necessary to separate long-length data into short-length ones and compact the scattered

data.

In the DPCM module for normal blocks, the number of different pixels between

current one-bit plane and its previous one is required. Since the number of bits is 16

for each 4x4 block, the total memory capacity required is equal to 216 words in case of

lookup table implementation. While this number is more than the maximum capacity

of current associative temporal memory on the DDMP chip. To tackle this problem, a

one-bit plane composed of 16 pixels is divided into top 8 bit and low 8 bit, then only 28

words of associative temporal memory are demanded. As a consequence, the memory

requirement is decreased drastically. And in the same way, the memory management

for mean, AM, bit plane and SAE is shown in Fig. 3.12. It can be observed that

the scattered moment data belonging to one block are compacted into one block via
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Fig. 3.12 Memory management for the entropy moments of luminance block images.

changing generation identifiers (pl and ln) so that the memory capacity required is

reduced too much.

Table 3.1 Memory management for 4 processors.

4 processors alp0 alp1 alp2 lcp0

data R Y Y Cr

G AME AM Cb

B bit plane Cr

ME SAE Cb

lookup table

The memory management for 4 processors is illustrated in Table 3.1. It can be seen

that all three components of a color image, red (R), green (G) and blue (B), are com-

pacted into one processor in order to avoid data overwriting errors in case of concurrent

processing. Moreover, all the entropy moments of each luminance block, Y , AM, bit

plane and SAE, are stored into one processor so as to reduce the memory capacity. Con-

sidering no relationship between Y component and C component (Cr and Cb), the pixel

data of Y component and C component are allocated on different processors to realize

concurrent processing. As for the intra-frame coding using 8 processors, the memory

management is shown in Table 3.2. The principle of this allocation is identical to that
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of 4 processors. That is to say, memory allocation is based on the data dependency and

amounts of data.

Table 3.2 Memory management for 8 processors.

8 processors alp0 alp1 alp2 alp3 alp4 lcp0 lcp1 lcp2

data R B Y Y AME G Cr lookup table

ME AM Cb

bit plane Cr

SAE Cb

In the data-driven program, the elementary data-processing functions are shown by

nodes, and data dependency among the nodes is represented by directed arcs connecting

the nodes [58]. As for the functional process, the total number of arcs denotes the

processing load in the processor. Otherwise, concerning the history sensitive process,

processing load is dependent on the data structure residing in the arcs. Accordingly,

the processing type should be identified ahead of the load balance.

Since the assignment of the memory relative nodes is determined by the results

of the memory allocation mentioned above, it is performed at first. After that, such

nodes as copy and conditional branch are allocated due to their feature of varying

processing load. Last, the remaining functional nodes are allocated on the suitable

processors according to the category of the nodes and the number of arcs so as to make

the processing load balance.

The concrete results of load allocation on the four- and eight-processor systems are

shown in Table 3.3 and Table 3.4, respectively. In both tables, nodes can be categorized

into functional nodes and memory relative nodes. The former contains the arithmetic

and logic instructions, conditional branch instructions, copy instructions and compound

instructions. On the other hand, the latter involves the memory initialization instruc-
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tions, memory access instructions and memory compound instructions. It should be

noted here that the total number of nodes shown in Table 3.4 is more 4 than that

shown in Table 3.3. This is due to the fact that these 4 nodes are utilized to initialize

the additional 4 processors involved in the 8-processor encoding system. It can be also

observed that the total number of arcs allocated on each processor is not equal because

the data dependencies inherent in the ABTC scheme and dedicated instruction sets of

each type of processors limit the load balance. Therefore, this is a best allocation result

for our data-driven parallel implementation.

Table 3.3 Load balance on 4-processor encoding system.

4 processors No. of Nodes No. of Arcs

alp0 65 77

alp1 58 70

alp2 65 80

lcp0 54 74

Table 3.4 Load balance on 8-processor encoding system.

8 processors No. of Nodes No. of Arcs

alp0 36 42

alp1 37 48

alp2 26 29

alp3 26 33

alp4 32 35

lcp0 31 40

lcp1 38 50

lcp2 20 28
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3.4 Discussion

In this chapter, an adaptive block truncation coding scheme suitable for highly-

parallel software implementation was proposed. Moreover, its data-driven parallel im-

plementation was discussed to realize a fast encoding on flexible SoC.

The main points of the proposed ABTC scheme different from the existing BTC-

based schemes are shown as follows. The first, threshold values used for three-level

classification are different from ACC scheme [28]. In the proposed ABTC scheme, AM

and MAE are used within a 4x4 block, while block ranges (i.e. difference of maxi-

mum and minimum luminance values) are selected as both threshold values in the ACC

scheme. Although block ranges can achieve optimal edge reservation performance, they

are incapable of reflecting the variances of luminance over a 4x4 block. The second,

three types of blocks are encoded by different ways for adaptive coding based on the

characteristics of local image. In the proposed ABTC scheme, to keep more entropy in-

formation of complex block images, the mean errors of each pattern block are computed.

Moreover, to reduce the bit rate while to produce good reconstruction, the adaptive ap-

proach is used to determine the bit number of mean errors. Namely, the bit number is

decided by the maximum absolute value of mean errors over each pattern block. Also, in

order to simplify the decoding process, the original procedure of AMBTC is simplified

without considering the distribution of pixel values over a 4x4 block image. The third,

considering adjacent pixels possess high similarity in the identical image, the differential

prediction coding modulation (DPCM) is used for intra-frame coding. Furthermore, to

reach a better trade-off performance between image quality and computational complex-

ity, three prediction approaches corresponding to block types are applied for intra-frame

prediction.

Moreover, an interframe motion prediction approach used in the proposed ABTC
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scheme is a simple block-based difference coding in that a current block is only com-

pared with its counterpart in the previous frame. This prediction method is also more

compatible with the AMBTC-based intra-frame coding than motion estimation widely

used in the current video coding standards such as H.263+/H.264. This is because the

entropy moments of each block image produced by AMBTC are used as arbitrary met-

rics. Again, motion estimation is a time-consuming process although it achieves higher

motion prediction efficiency.

Furthermore, its data-driven parallel software implementation was performed on

the self-timed super-pipelined multiprocessor. For maximum firing rate of the pipeline

circuit, the parallelism inherent in the proposed ABTC scheme are exploited based on

the data dependencies. Given that there are data dependencies between elements, then

the pipelined parallelism can be exploited. Otherwise, concurrent parallelism.

Since the response time of a critical path in a history sensitive process impacts on

the throughput performance, the length of the critical path must be minimized. To

this end, the compound instruction and associative temporal memory as well as the

SIMD-type data packets are taken full advantage of in this software implementation.

Two examples, Mean module and AM module, were illustrated in this chapter.

In addition, data-driven processors enable the latency-tolerant execution. This

is derived from its firing rule that any operation is initiated only when a couple of

data necessary for this operation become available. Thus the firing rate is not hin-

dered by the delay time produced by the memory access and processing delay as well

as inter-processor communication. However, in the conventional processor, where the

instructions are executed in a predetermined sequence, such kind of latencies residing

in the processors affects the execution of sequential instructions [58].

To keep the maximum flow rate of each processor in a chip-multiprocessor system,

load balance is necessary. This is because pipeline throughput is affected by the occu-
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pation ratio of pipeline stages. Provided that the occupation ratio is over pipeline effi-

ciency, the flow rate of packets is cut down. Fortunately, load balance among data-driven

processors is rather easier than doing that among control-driven processors because of

no control considerations.

In order to realize the load balance, the memory allocation should be performed at

first in that it determines the allocation of memory relative instructions. Moreover, to

minimize the required memory capacity, each 16-bit map data used to reserve the local

features is separated into top 8-bit and low 8-bit data. Then two 8-bit data of a current

block are compared with that of its previous one, respectively. In this case, the size of

lookup table becomes small so that memory requirement is reduced too much. For the

identical purpose, the scattered entropy moment data of block images are managed into

one processor based on the tagged information for the identical purpose.

Since such functional nodes as copy, conditional branch and absorb alter the pro-

cessing load, it is necessary to extract and place them among the available processors

individually. After that, the remaining functional instructions are allocated on the ap-

propriate processors based on the type of instructions and the number of arcs so as to

make the processing load balance.

The performance of the proposed ABTC scheme implemented on the dynamic data-

driven chip-multiprocessor will be evaluated and a series of experimental results will be

illustrated and discussed in the following chapter.
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Chapter 4

Experimental Evaluation

4.1 Introduction

In order to verify the performance of the proposed ABTC scheme implemented on

the data-driven processing system, experimental evaluation is performed using a variety

of benchmark images and video sequences. Rate-distortion performance is measured by

the bit rate with the desired image quality or image quality with the target bit rate.

Image quality is evaluated from both subjective and objective quality measurements.

Subjective quality is illustrated by the decoded image, while objective quality is mea-

sured by peak signal to noise ratio (PSNR). Frame rate is referred to as number of

encoding frames per second.

In this chapter, the image quality and bit rate of the proposed ABTC scheme is first

evaluated from intra- and inter-frame coding. After that, the frame rate and response

time of data-driven implementation are evaluated from intra- and inter-frame coding.

Moreover, the performance comparison is conducted with the coding standards and

similar coding schemes. Finally, a discussion is given at the end of this chapter.

4.2 Image Quality and Bit Rate

Image quality and bit rate are important metrics for measurement of rate-distortion

performance. In this section, the decoded image quality with desired bit rates is eval-

– 81 –



4.2. IMAGE QUALITY AND BIT RATE

uated from intra- and inter-frame coding. Experimental evaluation is conducted using

the benchmark images shown in Fig. 4.1 and Fig. 4.2 and video sequences shown in

Fig. 4.8. Moreover, performance comparisons are made for image quality at the same

bit rate.

Fig. 4.1 Lena with the size of 512x512.

4.2.1 Intra-Frame Coding

(I) ABTC algorithm

Experimental evaluations were performed using a series of different benchmark

images. Original image of Lena with the size of 512x512 is shown in Fig. 4.1. Except

for Lena, the size of other images shown in Fig. 4.2 is 256x256. The results shown

in Fig. 4.3 indicate that the proposed adaptive BTC (ABTC) achieves image quality

around 3 dB better than AMBTC with the 2 bits per pixel [69].
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4.2. IMAGE QUALITY AND BIT RATE

             (a) Parrot                (b) Girl
                      

             (c) Couple                (d) Pepper

             (e) Airplane                (f) Sailboat

Fig. 4.2 Benchmark images with the size of 256x256.

Moreover, the visual quality of the proposed ABTC is tested and compared to other

image coding algorithms using Lena image. In order to clarify the difference of visual

quality, a part of Lena image reconstructed by four algorithms are enlarged 3 times and

presented in Fig. 4.4. It is apparent that the visual quality of the proposed ABTC

algorithm is much better than that of both AMBTC and BTC in exchange for little
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Fig. 4.3 The comparison of image quality.

increase of computation cost. Furthermore, visual quality of the proposed algorithm is

competitive to that of JPEG2000 while its computational complexity is much less than

that of JPEG2000.

(II) ABTC algorithm coupled with SRQ

The proposed SRQ [63] is aimed to improve the bit rate performance of ABTC

algorithm. In order to evaluate the coding gains of ABTC algorithm coupled with

SRQ, the performance comparison between the ABTC algorithm and ABTC coupled

with SRQ is conducted using the benchmark images. To examine the image quality

against compression ratio, the threshold values of AM and SAE are changed for desired
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4.2. IMAGE QUALITY AND BIT RATE

    

(a) ABTC                    (b) JPEG2000 
PSNR-Y: 36.71dB              PSNR-Y: 39.65dB 

    

(c) AMBTC                    (d) BTC 
PSNR-Y: 33.02dB              PSNR-Y: 32.53dB 

Fig. 4.4 The comparison of visual quality of reproduced images with the 3 bits per pixel.

compression ratio while reserving the good reconstructed images.

With identical threshold values of AM and SAE, the results of Lena and Airplane

as well as Pepper are shown in Fig. 4.5, Fig. 4.6 and Fig. 4.7, respectively. It can be

seen that the ABTC coupled with SRQ can produce better image quality than ABTC

with identical bit rate at the cost of increased computation cost. While it should be

noted that the impact of SRQ on rate-distortion performance of ABTC is varied with

the number of pattern blocks. That is to say, with the increased compression ratio,

SRQ will not significantly impact on the image quality and bit rate of ABTC.

Since these experiments are targeted for the bit rate gains with the reasonable image

quality, the PSNR values of decoded images shown in Fig. 4.5, Fig. 4.6 and Fig. 4.7

are all more than 35 dB, in that over 35 dB of image quality usually gives good visual
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Fig. 4.5 The performance comparison between ABTC and ABTC with SRQ using Lena.
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Fig. 4.6 The performance comparison between ABTC and ABTC with SRQ using Airplane.

perception. While the compression ratio is not large so that the number of pattern

blocks is large. In this case, the effect of SRQ on coding efficiency of original ABTC is

significant. Otherwise, in case of large compression ratio, the number of pattern blocks

is so small that the coding gains of ABTC coupled with SRQ can be negligible. This is

the reason why ABTC algorithm is solely applied to the interframe coding discussed in

the following subsection.
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Pepper

36

38

40

42

44

46

48

6 8 10 12 14 16 18

Compression Ratio

Y
-P

SN
R

 (d
B

)

ABTC
ABTC-SRQ

Fig. 4.7 The performance comparison between ABTC and ABTC with SRQ using Pepper.

4.2.2 Inter-Frame Coding

In this subsection, the performance evaluation of the proposed ABTC scheme in-

cluding ABTC algorithm and BTC-based motion prediction approach is performed using

standard video sequences with different motion activities and background images. The

third frame of each video sequence is shown in Fig. 4.8. The characteristics of these

video sequences are shown in Table 4.1. Moreover, with the identical threshold values,

the features of test video images were tested and summarized in Table 4.2. It is obvious

to observe that video sequences tested feature different block images; especially Miss

America (Missa) possesses the percentage of blocks same to its previous one up to 42.1%

so that using DPCM can reduce the intra-frame redundancies very much.

Table 4.1 Test video sequences. (Size: CIF; No. of tested frames: 30.)

Video sequence Missa Foreman Salesman

Motion Slow motion Large motion in all Fast motion

directions with camera motion

Information Scanty Scanty Noisy background
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4.2. IMAGE QUALITY AND BIT RATE

(a) Missa        (b) Foreman

 (c) Salesman

Fig. 4.8 The 3rd frame images of original video sequences.

The residual image and predefined block images of Frame 1 of Missa video sequence

were analyzed. Then the resulting images were illustrated in Fig. 4.9. A residual image

shown in Fig. 4.9 (b) was produced by subtracting Frame 0 from Frame 1 without

motion prediction with the threshold of luminance difference equal to 8. Generally, the

human vision system (HVS) is not sensitive to the luminance variance less than 8. It

can be observed from Fig. 4.9 (b) that the large redundant information exist in the

consecutive frames. This provides the possibility for the coding gains by inter-frame

prediction method. Moreover, the various block images in Frame 1 were illustrated in

Fig. 4.9 (c), Fig. 4.9 (d), Fig. 4.9 (e) and Fig. 4.9 (f), respectively. It can be observed
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4.2. IMAGE QUALITY AND BIT RATE

Table 4.2 Characteristics of block images in the tested video sequences.

Block type Uniform Normal Pattern SPB

Amount 781 1270 1620 2665

Missa Percentage (%) 12.3 20.0 25.6 42.1

Amount 1003 1532 2771 1030

Foreman Percentage(%) 15.8 24.2 43.7 16.3

Amount 493 1053 4237 553

Salesman Percentage (%) 7.8 16.6 66.9 8.7

from Fig. 4.9 (c) that the number of same to previous block under the predefined

threshold values is large. This indicates that the intra-frame prediction approach is

necessary to remove the redundancies within a head-shoulder image like Missa. In

these experiments, compression ratio, peak signal to noise ratio (PSNR) are selected as

quantitative evaluation measurements.

All the sequences are colored images with 24 bit per pel and the first 30 frames

of each sequence were tested. The size of these frame images are 288lines× 352pixels

(CIF). Since the first evaluation is aimed at testing the rate-distortion performance of

the proposed ABTC scheme, the threshold values were varied to examine sensitivity

of PSNR against compression ratio. In order to obtain desired compression ratio, the

optimal combinations of variant threshold values shown in Table 4.3 were investigated

using the program. The other experimental conditions constitute 8 bits for each mean

of luminance component and 5 bits for each AM as well as 6 bits for each mean of

chrominance components. Moreover, the threshold value of difMean and difAM is

equal to that of AM. In addition, the threshold value of difMap is 5. The experimental

results are provided in Fig. 4.10. It can be seen that the proposed scheme can achieve

very good rate-distortion performance for Missa due to low bit rate of 0.4 bit/pel and
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4.2. IMAGE QUALITY AND BIT RATE

                (a)  Frame 1                                           (b) Resudal image (ThY = 8)

    (c) Same to Previous Block (SPB)      (d) Uniform blocks without SPB

      (e) Normal blocks without SPB        (f) Pattern blocks without SPB

Fig. 4.9 The various block images in Frame 1.
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PSNR of around 37 dB (decibels). The reconstructed images for all third frames of test

video sequences are shown in Fig. 4.11. It is apparent to observe that reconstructed

image of Missa produced is better than that of Foreman or Salesman within the tested

compression ratio due to its little changes between successive frames. These results

indicate that the proposed ABTC scheme is more suitable for semi-motion pictures

with scanty information and slow motion.

Table 4.3 The parameters used in the experiment.

Desired CR 10 15 20 25 30 35 40 45 50 55 60

ThAM 2 2 3 4 4 4 5 5 5 5 5

Missa ThSAE 32 46 50 57 60 63 73 76 80 81 85

Cut-error 0 1 1 2 2 2 2 2 2 2 2

ThAM 3 4 5 6 7 8 9 10 12 13 13

Foreman ThSAE 50 68 90 115 130 147 167 177 186 200 208

Cut-error 1 2 2 2 3 3 3 3 4 4 4

ThAM 3 4 4 5 5 5 5 6 7 7 8

Salesman ThSAE 30 50 68 80 88 92 98 108 118 128 137

Cut-error 1 2 2 2 2 3 3 3 3 3 3

4.3 Frame Rate and Response Time

The second evaluation is targeted at testing the frame rate and response time of

the ABTC scheme implemented on the chip-multiprocessor encoding system. The frame

rate was measured by maximum throughput denoted as MaxTP. MaxTP refers to the

maximum number of double-data packets per second. Frame rate (FR) is calculated by

equation (4.1). In Table 4.5, response time (RT) is the duration time between the input

time of the first pair of pixel data and its output time.
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Fig. 4.10 The comparison of rate-distortion performance.

The 3rd Frame of Missa                  The 3rd Frame of Foreman 

 

The 3rd Frame of Salesman 
 

Fig. 4.11 Comparison of visual quality of reconstructed images with the 60

compression ratio.
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FR =
MaxTP

PictureSize/2
(4.1)

4.3.1 Intra-Frame Coding

Concerning intra-frame coding, the data-driven parallel implementation of the pro-

posed ABTC scheme was performed using variant number of processors on a single

chip. With the identical parameters, the result shown in Table 4.4 illustrates that over

30 VGA images per second were achieved using four processors. Moreover, as for an

ideal case, the performance of data-driven software implementation should be scalable

along with the increase in number of available processors. While as for this practical

implementation, it is difficult to achieve the proportional speedup since the essential

data dependencies inherent in the ABTC algorithm limit the load balance on available

processors. The best performance has therefore been achieved in this data-driven par-

allel implementation. This is due to the fact that the speedup ratio of frame rate shown

in Table 4.4 is equal to around 1.6 in the average case.

Table 4.4 Frame rate of ABTC encoder using VGA image.

Metrics Best Typical Worst Average

Block type Uniform Normal Pattern Combined

4 processors 54fps 30fps 28fps 37fps

8 processors 77fps 54fps 48fps 59fps

4.3.2 Inter-Frame Coding

Regarding inter-frame coding, a performance comparison between the scanline-

order and block-order input was conducted. The results are shown in Table 4.5. It

can be deduced that throughput performance obtained by block-order input is around
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twofold as many as that of scanline-order input on average. It can also be observed

that response time of the block-order input is not affected by image size, while that of

scanline-order input is incremental along with the increase of image size. Hence a block-

order input for the proposed ABTC scheme is superior to the original scanline-order

input. These results shown in Table 4.5 are derived from a special video sequence where

no block image is identical to its previous one in both previous frame and identical

frame. Thus the frame rate can be further improved for the practical images.

Table 4.5 Performance comparison between scanline- and block-order input for

inter-frame coding using 10 processors on a chip.

Metrics Best Typical Worst Average

Size Input Block Uniform Normal Pattern Combined

FR (f/sec) 99 69 61 76

Block RT (us) 25.6 33.4 36.3 31.8

VGA FR (f/sec) 48 24 20 30

Scanline RT (us) 186.4 348.4 425.2 320

FR (f/sec) 300 212 190 234

Block RT (us) 25.6 33.4 36.3 31.8

CIF FR (f/sec) 150 87 66 101

Scanline RT (us) 113.8 184.5 235.0 177.7

4.4 Performance Comparison

The performance comparison was performed in two steps using three video se-

quences. The first step is to compare with compression standards, Motion-JPEG2000

by virtue of jj2000-4.1 [70] and H.264 (baseline profile) using JM9.4 [71]. In the second

step, the ABTC scheme is compared with other modified BTC scheme [22]. The com-
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parison made here focuses on trade-off performance between reconstructed quality and

computational complexity as well as memory complexity. The results are summarized

in Table 4.6.

Table 4.6 Performance comparison of different coding algorithms.

ABTC2 ABTC1 Motion H.264

[22] JPEG2K

Intraframe ABTC2 ABTC1 DWT 4x4

integer DCT

Interframe BTC BTC None MC

Missa 37 35.7 35 40

Average PSNR(dB) Foreman 29 27.8 33 37

Salesman 32 32 32 39

Bpp (bit/pel) 0.4 0.4 0.4 0.4

Computational Complexity

for CIF image at 30 fps 18.8 12 1997.4 2081.8

(MOPS)

(I) PSNR

The comparison of rate-distortion performance was performed and shown in Fig.

4.12. It can be recognized from Fig. 4.12 (a) that the average luminance PSNR values

for Missa using Motion-JPEG2000 and H.264 are around 35 dB and 40 dB at the bit

rate of 0.4 bit/pel, respectively. Moreover, the average luminance PSNR value using

the proposed ABTC scheme is around 37 dB at the same bit rate. Since all luminance

PSNR values are over 35 dB, ABTC scheme can be addressed as same level as other

95



4.4. PERFORMANCE COMPARISON

Missa Sequence

35

37

39

41

43

45

47

0 10 20 30 40 50 60 70
Compression Ratio

(a)

A
ve

ra
ge

  P
SN

R
_Y

(d
B

) ABTC
M-JPEG2K
H.264

Foreman Sequence

25

30

35

40

45

50

0 10 20 30 40 50 60 70
Compression Ratio

(b)

A
ve

ra
ge

 P
SN

R
_Y

(d
B

) ABTC
M-JPEG2K
H.264

Salesman Sequence

30

35

40

45

50

0 10 20 30 40 50 60 70
Compression Ratio

(c)

A
ve

ra
ge

 P
SN

R
_Y

(d
B

) ABTC
M-JPEG2K
H.264

Fig. 4.12 Comparison of rate-distortion performance.
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high-quality coding standards. On the other hand, with the large-motion and camera-

motion or fast-motion video sequence such as Foreman or Salesman, the reconstructed

quality of the ABTC scheme is not as good as that of the standard algorithms under

the large compression ratio, in that a large amount of high-detail pattern blocks are

identified as uniform blocks or normal blocks encoded by mean or AMBTC.

(II) Computational complexity

Suppose here that addition, subtraction, multiplication, logic operation are con-

sidered as individual computational entities. In H.264, the hierarchical integer DCT is

employed instead of the original DCT used in the H.263. The size of these transforms

is mainly 4x4, in special cases 2x2 [7]. To simplify the quantization of computational

complexity, the amount of computation of H.264 shown in Table 4.5 was obtained by

counting up the operations of 4x4 integer DCT and MC. While H.264 endures more

computational complexity than its predecessors such as MPEG2/MPEG4 due to new

encoding tools such as variable block sizes for ME/MC and CAVLC entropy coding

in case of baseline profile. In Motion-JPEG2000, discrete wavelet transform (DWT) is

used to transform the spatial domain to temporal frequency, which is a computation-

intensive operation. It requires the computation cost up to 6.66×107 for the CIF image.

Otherwise, concerning the ABTC scheme, the computational requirements are around

6 × 105 for intra-frame coding and approximately 1.9 × 104 for intra-frame DPCM in

case that all the blocks are identified as pattern blocks.

Motion compensation (MC) in case of full search (FS) requires 3(2p + 1)2MN

operations, where p(= 7) is the range of search and MN is the size of image. The BTC-

based motion prediction approach requires 3n operations in case of pattern blocks, where

n is the number of pixel blocks.
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(III) Memory complexity

In the proposed scheme, one sixteenth of each frame is required to be stored into

memory, but in the baseline profile of H.264 one whole frame is required to be deposited

for motion estimation. Furthermore, memory access operations of the proposed ABTC

scheme can be conducted in parallel to the other computations on a block-by-block

basis, so that memory access latency can not affect total throughput.

As for the comparison to AMBTC-based scheme, it can be derived from Table 4.6

that the proposed ABTC can produce around 1.3 dB better reconstructed quality than

the previous ABTC scheme [22] for Missa at the identical bit rate with little increase of

computation cost. Accordingly, the proposed scheme achieves a better trade-off between

reconstructed quality and computational complexity.

4.5 Discussion

In this chapter, the proposed ABTC scheme on the data-driven chip multiprocessor

was evaluated in terms of rate-distortion performance and frame rate as well as the

response time. Moreover, the performance evaluation was performed for intra-frame and

inter-frame coding by virtue of various benchmark images and standard video sequences.

For the intra-frame coding, the ABTC algorithm was compared with the similar

algorithms (i.e. BTC and AMBTC) and coding standard JPEG2000. The experimental

results show that the ABTC can produce better image quality than BTC and AMBTC

with the identical bit rate. While the image quality of the proposed ABTC is not good

as that of JPEG2000, its computational complexity is much less than that of JPEG2000.

A heavy coding standard like JPEG2000 requires a high-speed processor for realizing the

real-time applications. Especially, users today run the multiple demanding applications

at the same time, so that a more powerful processing platform is required. In order to
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meet this requirement, clock frequency of a single programmable processor is continually

increased. However, a very high clock speed tends to result in the clock skew problem

and high power consumption. Moreover, today’s hardware engineers have recognized

that it is hard to further improve the performance of a single programmable processor

by increasing the clock frequency in the future.

As a consequence, the multi-core processors have emerged for meeting the multi-

function applications so as to overcome the clock skew problem and diminish the power

dissipation. For example, Intel. Corp [62] has launched the latest dual-core processor

named as Pentium-D which offers the exceptional functionality and performance. How-

ever, the multi-core Von Neumann-type processor will bring the crisis to the software

design. This is because both process scheduling and inter-processor communication are

needed to be considered by the software engineers which results in the long design circle.

On the other hand, the data-driven software implementation for the multi-core processor

is much easier owing to no consideration of the process scheduling and inter-processor

communication. Additionally, data-driven computing paradigm allows us to represent

system functions in natural way, including hardware and software portion seamlessly.

This advantage leads to improve the SoC design productivity as well as to explore many

parallel algorithms easily.

Furthermore, the performance comparison was conducted between the proposed

ABTC algorithm and the ABTC coupled with SRQ presented in [63]. The experimen-

tal result shows that the ABTC coupled with SRQ can obtain better rate-distortion

performance than that of ABTC at the cost of the increased computation cost. While

it should be noted here that the the impact of SRQ on the coding efficiency of ABTC

becomes smaller along with the increased the compression ratio. This is because the

number of pattern blocks is small with the large threshold of SAE. It can be derived

that the coding efficiency of ABTC coupled with SRQ is similar to that of ABTC in
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case of the large compression ratio. Accordingly, with respect to the inter-frame coding,

the SRQ is not applied for coding pattern blocks.

Combined with a simple BTC-based motion prediction approach, the ABTC scheme

was evaluated utilizing video sequences including diverse background images and motion

activities. The experimental results illustrate that the proposed ABTC can achieve

reconstructed images up to around 37 dB with 60 compression ratio on average for

the Missa, which is better than the other video sequences (i.e. Foreman and Salesman).

This result also indicates that the proposed ABTC scheme is more suitable for the semi-

motion pictures observed in the applications such as person-to-person teleconferencing

and remote surveillance.

Compared to the previous scheme [22], around 1.3 dB image quality gains were ac-

complished with the identical bit rate. Moreover, the proposed scheme possesses better

adaptability than its predecessor owing to its deeper classification and DPCM. Fur-

thermore, the proposed ABTC was compared with the coding standards (i.e. Motion-

JPEG2000 and H.264 (baseline)). The experimental result shows that the proposed

ABTC scheme can produce better image quality than Motion-JPEG2000, whereas not

as good as H.264. Nevertheless, the latest coding standard H.264 endures more compu-

tational complexity than the proposed ABTC scheme. As a consequence, the proposed

scheme can achieve a better trade-off between the image quality and computational

complexity.

The data-driven parallel implementation of the proposed ABTC scheme on data-

driven multimedia processor (DDMP) [58] was evaluated in terms of the frame rate and

response time. The results of the scalable implementation indicate that over 30 VGA

frames per second was achieved using 4 processors. Moreover, the encoding speedup

ratio up to 1.6 was obtained by 8 processors. Although the encoding speedup should

be scalable along with the increased number of processors for data-driven processing
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system, it is difficult to achieve for the practical implementation. This is because data

dependencies inherent in the algorithm limit the load balance. Accordingly, it can be

derived that the best throughput performance has been accomplished.

In addition, a performance comparison between scanline- and block-order input was

conducted for inter-frame coding. The results indicated that block-order input produced

the superior frame rate performance to the scanline-order because of no three-line delay

time. While additional functional module is required to transform the original scanline-

order input into the 4x4 block images. To this end, a compound reference instruction

of line buffer was proposed. Moreover, the experimental result shows that the response

time of block-order input is not varied with the increased size of the image. On the other

hand, for scanline-order input, larger size image is, longer delay time becomes. So that

the block-order input is superior to scanline-order input for the proposed ABTC scheme.

Furthermore, the evaluation result of data-driven parallel implementation shows that

around 60 VGA frames per second, which is around twofold as many as that of previous

frame [22].
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Chapter 5

Conclusion and Future

Directions

5.1 Conclusion

In this thesis, an adaptive block truncation coding scheme suitable for highly-

parallel software implementation was proposed for semi-motion pictures observed in the

applications such as person-to-person teleconferencing and remote surveillance. More-

over, its data-driven highly-parallel software implementation was discussed to realize a

fast coding on flexible SoC. The extension of this work towards algorithm and imple-

mentation is depicted. Finally, future directions for this study are outlined at the end

of this chapter.

5.1.1 An Adaptive Block Truncation Coding Scheme

An adaptive block truncation coding scheme was proposed to realize a fast coding

on SoC. The proposed scheme is one of extension of basic BTC so that it is very simple.

In order to improve the coding efficiency of basic BTC, three techniques were employed

in the proposed scheme. The first is two optimal threshold values for realizing the

adaptive coding, the sample first absolute central moment (AM) and mean of absolute

errors (MAE). AM represents the dispersion from the mean over a 4x4 block image, it

is thus used to differentiate the smooth regions. By virtue of AM, the block images are
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grouped into two categories, named as uniform block and normal block. Provided that

AM is smaller than the predefined threshold, the block is identified as uniform block,

otherwise, normal block. In order to differentiate the blocks with large image distortion

from the normal blocks, the second threshold MAE is employed as it denotes the errors

between the decoded block and its original one. Compared with the range thresholds

used in ACC [28] which are targeted at edge reservation, the luminance variance over a

block image is considered in the proposed classification approach. Suppose the MAE of

a normal block is greater than the preset threshold value, the block is named as pattern

block.

The second is variant coding approaches corresponding to three types of block

images. To realize a better trade-off between the image quality and computational

complexity, each type of block image is encoded by the approach adaptive to its image

characteristic. Concerning a uniform block, the mean value of this block is merely

computed, while the normal block is encoded by AMBTC. Otherwise, the mean error

coding method is utilized to keep more entropy information of pattern blocks.

The third is differential pulse coding modulation (DPCM). To improve the coding

efficiency, the DPCM is used to remove the redundancies inherent in the consecutive

frames and neighbor pixels. In the inter-frame DPCM, two prediction approaches are

utilized for uniform block and normal block. In fact, inter-frame DPCM is a simple

block-based difference coding because the current block is only compared to its coun-

terpart in the previous frame. While with respect to the intra-frame DPCM, three

adaptive approaches are used to determine the block same as its previous one.

The experimental results of intra- and inter-frame coding have proved that the pro-

posed ABTC scheme can achieve a better trade-off performance between the image qual-

ity and computational complexity than its similar algorithms or coding standards. In

addition, the proposed scheme features bit rate scalability by means of adaptive thresh-
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old values. Thus it can fulfill various user requirements based on available bandwidth

and end-system capability. From the evaluation result, around 37 dB image quality

was accomplished for Missa video sequence with the 0.4 bits/pel. Moreover, the exper-

imental evaluation indicates that the proposed scheme is more suitable for semi-motion

pictures including smooth background image and slow motion like Missa. However,

its performance regarding motion-intensive or camera motion video (e.g., Foreman and

Scalesman) is degraded. There is no prediction gain for interframe, since these kind of

video sequences result in a small number of Same-to-Previous-Frame (SPF) blocks. This

is because the interframe prediction approach used in the proposed ABTC scheme only

compares the current block to its counterpart in the previous frame. Moreover, the pro-

posed approach requires the additional bits to denote the type of blocks. Consequently,

there is less advantage when the proposed scheme is applied for motion-intensive video

sequences.

5.1.2 The Data-Driven Parallel Implementation

As for its data-driven implementation, both pipeline parallelism and concurrency

were exploited to realize a fast encoding on data-driven chip-multiprocessor. To achieve

a desired throughput performance required by the video coding applications, three tech-

niques were adopted in this implementation.

The first is the SIMD-type data. That is, two adjacent pixels are packed into one

data packet so as to obtain the data-level parallel process. The second is the associative

temporal memory base upon the tagged packet of dynamic data-driven scheme. Asso-

ciative temporal memory was used to keep the temporal data to decrease the times of

accessing the external memory. The third is the various compound instructions. The

compound instructions were taken full advantage of to improve the throughput perfor-

mance through the decrease of the number of operators. Since the throughput perfor-
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mance of history sensitive process is dependent upon the response time, the pipelined

and current parallelism were exploited and the compound instructions were employed to

reduce the length of the critical path. In addition, to reduce the memory requirement,

the scattered block data were compacted and then they were stored into the associative

temporal memory. Also, a one-bit plane was separated into top 8-bit and low 8-bit,

then a lookup table only composed of 256 elements was demanded.

Concerning intra-frame coding, the scalable implementation of the proposed ABTC

scheme was conducted. The results indicated that over 30 VGA frame images per

second were achieved using 4 processors. The speedup ratio up to 1.6 was obtained by

8 processors. Although it is not increased proportionally along with the increment in

number of processors, it was the best performance for the practical implementation due

to the limitation of data dependencies inherent in the proposed scheme.

With respect to inter-frame coding, two types of input data structures had been

explored. The experimental results indicates that the block-order input enables better

throughput performance than the original scanline-order input. Moreover, the response

time of block-order input is not changeable along with the larger size of image while

that of scanline-order input becomes increased. Nevertheless, block-order input requires

an additional module to transform the original scanline-order input into a sequence of

4x4 block images. To this end, a compound reference instruction of the line buffer

was devised to access previous three lines of data simultaneously by virtue of the last

line of data over each 4x4 block image. Experimental evaluation shows that around 60

VGA frames per second can be obtained on average utilizing block-order input which is

twofold as many as that of previous frame [22]. The proposed scheme implemented on

the data-driven chip-multiprocessor can therefore empower real-time coding for semi-

motion picture applications.
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5.1.3 Extension of This Work

In this subsection, the extension of this work towards algorithm and implementation

will be discussed in detail.

(I) Algorithm Level

The performance of the proposed scheme can be improved by combining the coding

approaches for bit plane. This is due to the fact that the 16-bit map of each block

contains the redundancies which leaves the space to further increase the compression

ratio.

Moreover, the proposed ABTC scheme employs the mean error coding approach

to encode the pattern block. While the differences of absolute moment over each block

image could be utilized instead of current approach so as to further increase the bit rate

performance. The difference of absolute moment refers to the difference between the

absolute value of a mean error and the absolute moment (AM). The number of bits for

the difference of the absolute moment is thus less than that of mean error.

The inter-frame prediction approach used in the proposed ABTC scheme is very

simple as the current block is only compared to its counterpart in the previous frame.

While the motion prediction efficiency is degraded for the motion-intensive video se-

quences like Foreman or Salesman. To increase the motion prediction performance for

motion-intensive video sequences, the binary block partitioning method with variable-

size block matching [72] could be appended to the proposed scheme at the cost of more

expensive computation.

Accordingly, there are large spaces and possibilities to continuously perfect the

proposed ABTC scheme and extend its multimedia application domains based upon

achieved research results so far.
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(II) Implementation Level

In this study, a compound reference instruction of the line buffer has been proposed

to transform the original scanline-order input data into a block-order one, while its

circuit-level architecture was remained.

For future work, a logic-gate implementation of the proposed compound reference

instruction of the line-buffer will be first completed and then its cost-performance will

be evaluated. After that, a practical video coding system on a USB-DDMP chip will be

established for real-time applications based on the proposed scheme and its data-driven

parallel implementation.

5.2 A Framework for Future Directions

In this section, future directions for this study which will be hoped to motivate the

researchers to undertake this field are outlined as follows.

5.2.1 How to Objectively Evaluate Image Quality

In this research, the image quality is evaluated in terms of the mean squared error

(MSE) between the reconstructed luminance values and its original ones by virtue of

the existing peak-signal-to-noise (PSNR) metric. Good reconstructed images typically

have PSNR values of more than 30 dB.

However, PSNR does not always represent the reconstructed image quality per-

ceived by the observer. This is because it does not consider the feature of human vision

system (HVS). Accordingly, a superior metric which includes the HVS factor is desired

to evaluate the perceived fidelity of the reconstructed image.
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5.2.2 How to Efficiently Remove Interframe Redundancies

Motion prediction is essential to improve the compression efficiency. In the proposed

ABTC scheme, the BTC-based motion prediction approach is actually a simple block-

based difference coding. Since a current 4x4 block image is only compared to the

one with the identical position in its previous frame, it is very simple in contrast to

the motion estimation and compensation (ME/MC) widely used in the existing video

coding standards such as H.263/H.264 and MPEG2/MPEG4. The effectiveness of this

BTC-based motion prediction method has been proved by the semi-motion pictures like

Missa video sequence. While it is not as good as ME/MC for motion-intensive video

sequence like Foreman or Salesman due to its simplicity.

Nevertheless, both motion prediction approaches mentioned above are not opti-

mum. This is due to the fact that the motion objects in the video sequence are not

severely assortative with the block shape. So that the temporal redundancies can not

be eliminated completely. A more efficient motion prediction approach is expected to

meet very low-bit rate applications such as mobile communications.

5.2.3 How to Successfully Transmit Video Via WSN

With the emergence of wireless sensor network (WSN), how to successfully transmit

the video images captured by multiple sensors via WSN is a future research direction.

Since each sensor over WSN suffers from the low computing power and limited com-

munication bandwidth, video coding algorithms targeted at WSN should possess low

computational complexity and high compression efficiency. Moreover, the sensors are

battery-powered so that low-power mobile platform is required. This is because fre-

quently changing the battery is not feasible.

The proposed ABTC scheme is very simple because of no frequency transform.
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Also, the data-driven multimedia processor is a low-power software implementation

platform owing to its unique architecture, namely, dynamic data-driven scheme and self-

timed pipelined circuits. So that research results presented in this thesis are promising

for the WSN video communication application.

While WSN features changeable bandwidth and varied delay time, hence a video

coding scheme should possess resilience to occasional packet loss and ability to quality

recover from catastrophic failures. Accordingly, the robust error resilience and quality

recover tools are required to be integrated into the proposed scheme.

5.2.4 How to Effectively Realize 3-D Image/Video Coding

Nowadays, users are expecting the three-dimensional (3-D) video streaming in place

of existing two-dimensional (2-D) video steaming for the real-time communication appli-

cations such as person-to-person teleconferencing and remote surveillance. This is due

to the fact that 3-D video can provide us with deep information of objects. Deep infor-

mation can make our observation more vivid and distinct. Currently, deep information

has been utilized in robotic walking and ship navigation as well as product inspection of

industry. While ubiquitous consumer appliances like cars and mobile portable devices

like laptop and mobile phone have not equipped with 3-D sensor until now, we have not

enjoyed the vivid 3-D world supplied by the popular devices.

3-D image/video sequence includes twofold entropy information as many as monoc-

ular image/video sequence. Provided that existing coding standards are used to en-

code/decode two images/video sequences independently, the storage capacity and com-

munication bandwidth will be double. In order to reduce the bandwidth requirement

and storage capacity, intensive researches have been concentrated on the disparity-

estimation and compensation method (DE/DC). This method takes full advantage of

unique features, namely, binocular redundancies inherent in the stereo pairs captured
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by two sensors with slightly different directions. So that most of efficient stereo im-

age/video coding schemes are based upon the DE/DC approach so far.

In order to cater to 3-D video communication and entertainment market demand,

the proposed scheme will be extended to 3-D image and video coding by combining

a disparity estimation/compensation (DE/DC) approach. Nevertheless, there are two

major issues to be addressed for DE/DC-based stereo video coding. One is how to decide

upon which one is more effective to use to decrease the redundancies inherent in the

target images between DE and ME. Another one is that how to encode the disparity

map can obtain the desired bit rate. This is because the characteristic of disparity

map is different from the natural image, so that the generic coding approaches are not

suitable for disparity map. While encoding the disparity map is essential to achieve

low-bit rate performance, more efficient coding methods adaptive to its unique features

of disparity map are expected in the future study.

The advanced works outlined above will contribute to establishment of 3-D flexible

video communication systems with the high compression gains and error resilience tools

for video transmission applications. Moreover, the images reconstructed by these video

systems can be evaluated by the new metrics which include the characteristics of human

vision system. As a consequence, such 3-D video surveillance systems over WSN are

promising to be appeared in the airports, parking lots, markets and households in the

future.
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