Format

Wearable multi-sensor systems

using textile-based 2-D communication

Project Leader

NODA, Akihito, Ph.D Associate Professor, Electronic and Photonic Systems Engineering

1. Objective

This project is aimed at:

Development of a body-scale sensing method using a wearable large-aperture sensor array. The sensor array consists of sensor elements attached to items of clothing made of conductive textiles. A conductive textile-based communication method, which enables both power supply and communication to arbitrary points on a conductive fabric, has been proposed by the project leader [1]-[3]. In this project, we will construct a wearable sensor network system embedded into an item of clothing. The sensor nodes are not wired individually, nor are they loaded with batteries or WiFi/Bluetooth modules. In sensor array systems, the spatial arrangement of sensor elements limits system performance. Even if the sensor elements themselves are miniaturized, there is an inevitable trade-off between downsizing the array and improving performance. Therefore, the means of carrying a large-area sensor array is a universal challenge. In this project, we propose a means of carrying an array by wearing it. We aim to develop a technology that will revolutionize a variety of human-related sensing applications, such as sensing the state of the human body itself and sensing the environment surrounding the human body.

2. Project Outline

To that end, the project will consist of the following phases:

- (a) mathematical analyses of the signal processing in flexible sensor arrays;
- (b) development of electronic circuits for the sensor nodes and for the data sink device; and
- (c) implementation of application software for demonstration of the wearable sensor array.

3. Expected Performance

In this project, the successful candidate would be expected to:

- (a) work independently;
- (b) think logically; and
- (c) enjoy tough challenges.

4. Required Skills and Knowledge

The successful candidate for this project will have the following knowledge and skills:

- (a) knowledge of the fundamentals of electronic circuits, and skill in soldering/handcrafting circuits under test;
- (b) knowledge of the fundamentals of signal processing; and
- (c) skill in programming with C-family languages and microcontrollers (e.g., Arduino).

References

[1] NODA, Akihito; SHINODA, Hiroyuki. Inter-IC for Wearables (I2We): Power and data transfer over doublesided conductive textile. *IEEE Transactions on Biomedical Circuits and Systems*, 2018, 13.1: 80-90.

[2] NODA, Akihito. Demonstration of wireless access to batteryless and antennaless sensors distributed on

clothes. In: 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2019. p. 1-2.

[3] NODA, Akihito. Wearable NFC reader and sensor tag for health monitoring. In: 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2019. p. 1-4.

See my webpage:

https://researchmap.jp/akihitonoda/?lang=en

See our admission guidelines:

https://www.kochi-tech.ac.jp/english/admission/ssp_aft19oct/ssp_application_guideline.html

Contact

E-mail: noda.akihito@kochi-tech.ac.jp