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Abstract

Nowadays, using the particle swarm optimization (PSO) algorithms to train neural net-

works (NN) has become an attractive research. A famous method used to train the NNs

is the back-propagation (BP) algorithm. Recently, previous studies have shown that

the NN trained by PSO algorithms (NN-PSO) obtained higher recognition rates and

lower learning errors when compared to the NN trained by the conventional BP algo-

rithm. However, the standard PSO (SPSO) algorithm may stick to a local minimum

in the training process. In this situation, the SPSO algorithm is stopped, leading to a

high learning error rate or a low recognition rate of the trained NN. So far few studies

have tried to overcome this problem by adding improving the standard PSO algorithms.

Normally in previous studies, the improved versions of the PSO required to add more

compute-intensive tasks that often increase computational burden the SPSO algorithm.

Typically, previous researchers have implemented the NN trained by PSO algorithms

only in hardware or only in software. Normally, the hardware implementation of the

NN-PSO in these studies has been tested in a simulation using ModelSim program with

the SPSO algorithm but it has not been tested in the real classification tasks. The

FPGA-based NN was commonly investigated with a function-approximation, and the

researchers just focused on reducing learning errors in the training phase.

To deal with the issues described above, this research has three objectives. The first

objective is to introduce the improved particle swarm optimization (PSO) algorithms

which overcome the premature convergence of the standard PSO (SPSO) algorithm

without adding many computational tasks or compute-intensive functions to the SPSO

algorithm.

The second objective is to propose co-design architectures between hardware and soft-

ware for the NN-PSO. Compared to the hardware-only approach, the proposed co-design

approach not only maintains the testing speed but also reduces the required FPGA re-

sources concerning the logic elements and the memory bits previously reserved for the

hardware implementation of the PSO algorithms. Compared to the software-only ap-

proach, the proposed co-design approach preserves the flexibility during in the training

phase while obtaining the higher operating speed in the testing phase. The flexibility of

the co-design is an easiness to modify the PSO parameters or change the PSO algorithms

without redesigning or rebuilding the FPGA part.

The third objective is to investigate the performances concerning the learning errors

and recognition rates in classification tasks of the NN trained by PSO algorithms im-

plemented in a real FPGA device with the proposed co-design architectures comparing

to the NN trained by the standard and dissipative PSO (SPSO, DPSO) presented in
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previous studies. The DPSO algorithm is chosen because it keeps the particles out of

the local minimum without adding many tasks to the PSO algorithm.

Concerning the first objective, three different PSO algorithms which only change the

velocity update function of the SPSO algorithm were proposed called the wPSOd−CV,

the PSOseed, and the PSOseed2 algorithm.The first PSO algorithm introduced in this

chapter is the wPSOd−CV algorithm that has two main components called the velocity

control and the weight control. The velocity control has a jump phase to increase the

velocity of the particle so that particle can move to another searching area to avoid the

premature convergence. The weight control is used to balance between the exploitation

task and the exploration task of the wPSOd−CV algorithm. The wPSOd−CV algorithm

has some drawbacks. Even modifying only the velocity update function, this algorithm

adds two operations, increasing the compute-intensive tasks of the SPSO algorithm.

In addition, the jumping phase in the velocity control mechanism always has very big

jumps. If the searching area has many solutions, the wPSOd−CV has the possibility

to meet other solutions and jump to other searching space before the before meeting

the best solution. This issue leads to a possibility to ignore the best solution or require

more iterations to reach the best solution. To overcome these drawbacks, the PSOseed

algorithm is proposed. Avoiding jumping phases, for each particle the PSOseed algo-

rithm uses a new variable called the seed position that is randomly generated in the

initial phase of the algorithm. In each iteration, each particle is attracted and pulled

to the position of its seed. The seed mechanism could reduce the possibility that the

particle falls in a local minimum. Compared to the wPSOd−CV algorithm, the PSOseed

algorithm does not use any division operator and use fewer multiplication operators. A

limitation is that the PSOseed algorithm highly depends on the generated seeds. The

performance of the PSOseed significantly is reduced if the seeds are poorly generated.

This thesis also introduces the PSOseed2 algorithm to solve the issue concerning the

seed positions of the PSOseed algorithm by proposing a seed control mechanism. The

operation of the PSOseed2 algorithm is similar to the PSOseed algorithm. However,

in each iteration, all seed positions will be reseeded if the particles in the PSOseed2

algorithm cannot find a better position when the fitness value of the algorithm does not

change.

Regarding the second objective, the NN is implemented in hardware to maintain the

testing speed of the hardware-based program while the PSO is implemented in soft-

ware to keep the flexibility of the software-based program. Furthermore, the software

implementation of the PSO algorithms can also reduce the FPGA resources previously

reserved for the PSO algorithms. Three different co-design architectures were presented

based on the proposed partitioning methodology. The first architecture uses the NIOS

II processor. The second architecture replace the NIOS II by the ARM processor. This

architecture has also other improvements such as the using of direct-memory access or



iv

random-access memory. The third architecture combines the ARM approach in the sec-

ond architecture with the FPGA-based PCA to reduce the required resources but still

maintain the accuracy of the NN trained by PSO algorithms concerning the recognition

rates and the learning errors. Experimental results confirmed both the speed advantage

of the proposed co-design approach when compared with the software-only approach

and the resource advantage of the proposed co-design approach when compared with

the hardware-only approach. Results also showed that the hardware-based PCA can

reduce the required resources of the program while keeping high recognition rates.

In terms of the third objective, the NN was trained by three proposed PSO algorithms

(wPSOd−CV, PSOseed, PSOseed2) and two PSO algorithm presented in previous stud-

ies (SPSO, DPSO) in all three proposed co-design architectures. Experimental results

demonstrated that the NN trained by the proposed algorithms, especially the PSOseed2

algorithm, had the highest performances concerning the recognition rates and the learn-

ing errors in all three architectures.
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Chapter 1

Introduction

1.1 Overview

A neural network (NN) has emerged as an attractive target for research. Several com-

panies have also used the NN in the practical applications [1, 2]. The NN is invented for

representing a human brain concerning two aspects. The first aspect relates to a knowl-

edge acquisition. Both the NN and the human brain have a learning phase to acquire

the knowledge from an environment. The second aspect is the knowledge presentation.

The acquired knowledge after the training phase is stored in the form of the weights and

biases of each node of both the NN and the human brain [3, 4].

Before the testing phase, the NN needs to be trained. During the training phase, the NN

tried to find a set of parameters concerning the weights and biases which minimize the

learning error. A famous method used in the training of the NN is the back-propagation

(BP) algorithm. However, in previous studies have mentioned that the NN trained by

the particle swarm optimization (PSO) algorithm had obtained higher recognition rates

and lower learning errors when compared with the NN trained by the BP algorithm [5–7].

The PSO algorithm was introduced to simulate the social behavior such as a bird flocking

or a fish schooling. At any given time, the movement of each particle in the swarm, for

example, a bird or a fish, is always based on the knowledge of the best personal position

of this particle and the best global position of the swarm. The best global position is

evaluated from the best personal position of all particles [8–10].

In the training phase of the NN using PSO algorithm, the position of each particle is

an encoding vector that consists of all weights and biases of the NN. Each vector is

a potential solution for the weights and biases of the NN. In this situation, if the NN

2
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has ND weights and biases, the PSO particle is the ND-dimensional vector. If the PSO

training uses P particles, P encoding vectors will be employed. During the training

phase, the movements of these P vectors are based on the PSO algorithm. In each

position of the encoding vector, the learning error of the NN will be calculated using

a fitness function. The goal of the PSO training is to find a position of the encoding

vector which has the minimization of the learning error [5, 11].

In previous studies, the software implementation of the NN trained by PSO algorithm

(NN-PSO) is already investigated [5, 11]. Several practical problems have been solved

using the software-based NN-PSO [7, 12–15].

However, the standard PSO (SPSO) algorithm may stick to a local minimum during

the training of the NN, and the training phase will be stopped. In this case, the NN

cannot be trained. Thus, its learning error will be high, and its recognition rate will be

low. To overcome this premature convergence of the SPSO algorithm, several different

approaches have been introduced. The attractive and repulsive PSO (ARPSO) adds the

repulsive phase. The diversity of the swarm calculated in each iteration of the swarm to

determine whether the ARPSO operates in the attractive phase (the SPSO algorithm)

or the repulsive phase [16]. The PSO with spatial particle extension (SEPSO) that adds

the radius r to detect the collisions of all particles in the swarm. If the collisions occur,

the particles will be bounced backward to prevent the situation when all particles stick

to the local minimum [17]. The opposition-based PSO calculates the opposite particle

of each particle in each iteration. If the opposite particle has a better fitness value

than the original particle, this opposite particle will replace the original particle [18].

Other researchers use the multi-swarm strategy [19] or use not only the information of

a particle but also the information of its neighborhood to calculate the new position of

this particle [20]. Other solutions are to use the mutation operations such as the Cauchy

mutation [21, 22], the Gaussian mutation [23, 24], or to combine the SPSO algorithm

with the genetic algorithm [25]. The improved versions of the PSO in previous studies

normally add more functions, more compute-intensive tasks to the SPSO algorithm. It is

beneficial to investigate an improved version of the PSO algorithm to keep the particle

out of the local minimum which does not add many functions or tasks to the SPSO

algorithm.

Currently, a field-programmable gate array (FPGA) has also attracted many researchers.

Compared with the software-based program, the FPGA-based program could obtain a

higher operating speed because of the parallelism [26–28]. Compared with the graphics
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processing unit (GPU)-based program, the FPGA-based program has a lower power

consumption [28–30]. In addition, the FPGA-based program is also portable because

it can be implemented in a single FPGA chip and can operate without the need of

having a processor. Several studies related hardware implementation of the NN [31], the

SPSO [27], or even the NN-PSO have been published [32–34].

However, the hardware implementation of the NN-PSO was only tested in a simulation

using ModelSim program, with the SPSO algorithm, or was not tested in the classifi-

cation tasks. In these studies, the FPGA-based NN normally was used to investigate

the function approximation, or the researchers only focus on the training phase of the

NN-PSO by showing only the reduction of the learning errors [32–34]. It needs to in-

vestigate the hardware implementation of the NN-PSO in classification jobs using a real

FPGA device.

In addition, the previous papers normally focus only on the hardware-only architec-

ture [32–34]. In this situation, all components of the program were implemented in

hardware. This approach required many FPGA resources regarding the logic elements

and the memory bits. On the other hand, the FPGA device has the resource constraints

because the FPGA resources are very expensive [35]. In addition, the hardware-only

program is not flexible as the software-based program. It needs to rebuild and recompile

the program each time we change the parameters [36]. Therefore, it is necessary to have

a co-design architecture which can keep both the speed advantage of the FPGA-based

program and the flexibility of the software-based program. This approach can also re-

duce the required FPGA resources previously reserved for the components which are

already moved to the software-side.

1.2 Research objectives

To deal with the issues described above, this research has three main objectives. The

first objective is to introduce the improved PSO algorithms which overcome the prema-

ture convergence of the SPSO algorithm without adding many computational tasks or

compute-intensive functions to the SPSO algorithm.

The second objective is to propose co-design architectures between hardware and soft-

ware for the NN-PSO. Compared to the hardware-only approach, the proposed co-design

approach not only maintains the testing speed but also reduces the required FPGA re-

sources concerning the logic elements and the memory bits previously reserved for the
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hardware implementation of the PSO algorithms. Compared to the software-only ap-

proach, the proposed co-design approach preserves the flexibility during the training

phase while obtaining the higher operating speed in the testing phase. The flexibility of

the co-design is an easiness to modify the PSO parameters or change the PSO algorithms

without redesigning or rebuilding the FPGA part.

The third objective is to investigate the performances concerning the learning errors

and recognition rates in classification tasks of the NN trained by PSO algorithms imple-

mented in a real FPGA device with the proposed co-design architectures comparing to

the NN trained by the standard and the dissipative PSO [37] (SPSO, DPSO) presented

in previous studies. The DPSO algorithm is chosen because it keeps the particles out of

the local minimum without adding many tasks to the PSO algorithm.

1.3 Structure of the dissertation

This dissertation is divided into eight chapters, each of which deals with different ac-

counts. The content of the dissertation is as follows.

• Chapter 1 briefly presents the overview and objectives of this research.

• Chapter 2 presents related work concerning the NN, the SPSO algorithm, and

the DPSO algorithm. It also details how the NN can be trained using the PSO

algorithms.

• Chapter 3 focuses on the premature convergence issue of the SPSO algorithm

by proposing three improved versions of the SPSO algorithm called wPSOd−CV,

PSOseed, and PSOseed2.

• Chapter 4 describes the proposed partitioning methodology between hardware

and software for the NN-PSO. The operations on the software side of the proposed

partitioning methodology are also presented in this chapter.

• Chapter 5 focuses on the first co-design architecture based on the partitioning

methodology presented in chapter 4 which uses the NIOS II processor. This chapter

also discusses the performances of the NN trained by proposed PSO algorithms in

this architecture.

• Chapter 6 deals with the performances of the NN trained by proposed PSO al-

gorithms in the second co-design architecture that uses the ARM processor. The
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second co-design architecture is introduced to overcome the drawbacks of the first

architecture using the NIOS II processor presented in chapter 5.

• Chapter 7 presents a method to improve performances of the NN trained by pro-

posed PSO algorithms in the proposed co-design architectures. To reduce the

required resources while maintaining the high recognition rate, this chapter pro-

poses the third co-design architecture which is a combination between the co-design

architecture using ARM processor introduced in chapter 6 and the FPGA-based

principal component analysis. The performances of the NN trained by the pro-

posed PSO algorithm in the third co-design architecture are also discussed in this

chapter.

• Chapter 8 concludes all chapters and discusses the future directions for continuing

the research.
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Chapter 2

Background

Chapter 2 presents related work concerning the operation of the NN, the SPSO, and the

DPSO algorithms. It also details how the NN can be trained using the PSO algorithms.

2.1 Neural network

In previous studies, an artificial NN was proposed to represent a human brain. Similar to

the operation of the human brain, the NN acquires the knowledge from the environment

during the training phase. This collected knowledge is stored in the form of the weights

and biases of each node in the NN. In each iteration of the training phase, each node in

the NN tries to obtain a set of weights and biases which minimizes the learning error of

the NN.

The resources of the hardware-based program concerning the logic elements and the

memory bits are very expensive. On the other hand, the loops and the cycles in the

hardware implementation require many resources of the FPGA device. To reduce the

required resources of the FPGA-based program, this research focuses only on the feed-

forward NN because the data in the feedforward NN only move in one direction without

loops or cycles [1, 2].

Typically, the feedforward NN has three different types of layers called the input layer,

the hidden layer, and the output layer, respectively. The NN has only one input layer

and one output layer, but it may have more than one hidden layers. Each layer consists

of several nodes that connect to other nodes in the next and previous layers. The inputs

of a node in one layer are multiplied by the weights in this layer. Then, this result

becomes the input of nodes in the next layer through an activation function [1, 2].

12
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The operation of one node in the NN is illustrated in Fig. 2.1. The calculated results

x before the activation function is expressed in Eq. (2.1). This study uses the Sigmoid

function as the activation function. Therefore, the output y is calculated according to

Eq. (2.2). This output y is used as the input of the nodes in the next layer of the

NN [1, 2].

Figure 2.1: Operation of one node in the NN

x = Bias+ x1 × w1 + x2 × w2 + x3 × w3 (2.1)

where Bias is the bias value, x1, x2, and x3 are the inputs, Weight1 and Weight2 are

the weights, x is the input for the activation function.

y =
1

1 + e−x
(2.2)

where y is the output data after the activation function.

The NN is shown in Fig. 2.2. This NN has NI nodes in the input layer, NO nodes in

the output layer, NH nodes in one hidden layer, and NL hidden layers.

Figure 2.2: Architecture of the NN
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Fig. 2.3 shows the weights and biases in each layer of the NN. This NN has NI × NH

weights and NH biases in the connections between the input layer and the first layer of

the hidden layers. The connections between the last layer of the hidden layers and the

output layer have NH ×NO weights and NO biases. The connections inside the hidden

layers have (NH + 1)×NH × (NL − 1) weights and NH × (NL − 1) biases.

Figure 2.3: Weights and biases of the NN

In this study, two types of the NN are used. The first NN type has one hidden layer

(NL = 1) and the second type of the NN has two hidden layers (NL = 2). The ND1

number of weights and biases for one hidden layer NN is calculated in Eq. (2.3).

ND1 = (NI + 1)×NH + (NH + 1)×NO (2.3)

The calculation of ND2 weights and biases for the two hidden layers NN is illustrated in

Eq. (2.4).

ND2 = (NI + 1)×NH + (NH + 1)×NH + (NH + 1)×NO (2.4)

2.2 Particle swarm optimization algorithms in previous

studies

2.2.1 Standard particle swarm optimization algorithm

The SPSO algorithm is a well-known method for training of the NN. The idea behind

the SPSO algorithm comes from the social behaviors such as a bird flocking or a fish

schooling. At any given time t, each particle p in the swarm tends to move to the best

personal position found by this particle and the best global position of the swarm. The
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best global position is evaluated from the best personal position of all particles in the

swarm [3, 4]. The operation of the SPSO algorithm can be described as follows.

1. Initialize the random value for all particles in the swarm at time t . For example,

particle p has position # »xp(t), velocity #»vp(t), best personal position
#                »

xPbestp(t),

best global position
#             »

xGbest(t). The fitness value for the best personal position
#                »

xPbestp(t) is Pbestp(t). In a similar way, the fitness value for the best global

position
#             »

xGbest(t) is Gbest(t).

2. Calculate the new velocity at time (t+ 1) according to Eq. (2.5).

#»vp(t+ 1) = w × #»vp(t) + c1 × r1 × (
#                »

xPbestp(t)− # »xp(t))

+c2 × r2 × (
#             »

xGbest(t)− # »xp(t))
(2.5)

where w is the inertia weight, r1 and r2 are the random numbers, c1 and c2 are

the coefficients,
#             »

xPbestp is the best personal position found by particle p,
#             »

xGbest

is the best position found by any particle in the swarm

3. Evaluate the new position at time (t+ 1) based on Eq. (2.6).

# »xp(t+ 1) = # »xp(t) + #»vp(t+ 1) (2.6)

4. Estimate the new fitness values at time (t + 1) based on Eqs. (2.7) and (2.8).

The positions corresponding to these new fitness values are also discovered. As

presented, the best personal position
#                »

xPbestp(t + 1) is the position that obtains

the fitness value Pbestp(t + 1), and the best global position
#             »

xGbest(t + 1) is the

position that achieves the fitness value Gbest(t+ 1).

Pbestp(t+ 1) =


f( # »xp(t+ 1)) if f( # »xp(t+ 1)) < Pbestp(t)

Pbestp(t) if f( # »xp(t+ 1)) > Pbestp(t)

(2.7)

where f(.) is a fitness function.

Gbest(t+ 1) = argmin
p

Pbestp(t+ 1) (2.8)
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5. The stopping criterion is checked. In the PSO algorithm, the stopping criterion

could be a number of iterations or a threshold of the global fitness value Gbest. If

the stopping condition is satisfied, the PSO algorithm is stopped. Otherwise, the

operation of the SPSO algorithm returns to step 2 to continue a new iteration at

time (t+ 2).

2.2.2 Dissipative PSO algorithm

The SPSO could be trapped by a local minimum. In this situation, the PSO algorithm

will be stopped. If the SPSO sticks to the local minimum during the training of the NN.

The NN cannot be trained. The recognition rate of the testing phase will be low, and the

learning error of the training phase will be high. A well-known algorithm was created

to overcome the premature convergence called the dissipative PSO algorithm [5]. This

is the simple variation of the SPSO algorithm which adds Eqs. (2.9) and (2.10) after

calculating the new velocity #»vp(t+ 1) and the new position # »xp(t+ 1).

If(rand() < cv) Then #»vp(t+ 1) = rand()× #       »vmax (2.9)

If(rand() < cl) Then # »xp(t+ 1) = Rand(lo, up) (2.10)

cv and cl are numbers in the range [0, 1], Rand(lo, up) is the random number between

[lo, up], rand() is the random number in the range [0, 1], and #       »vmax is the maximum

velocity.

2.3 NN trained by the PSO algorithms

For the training of the NN by PSO algorithms, one important aspect is the encoding

strategy. In this approach, the weights and the biases of the NN are encoded in the

particle of the PSO algorithm.

For encoding, the position # »xp of particle p in the swarm is considered as a vector which

represents all weights and biases of the NN. If the PSO training has P particles, P

vectors will be used in the training phase. In this situation, the number of weights
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and biases in the NN equals to the number of dimensions of one particle vector. Each

element of the vector corresponds to one parameter of the NN. When the elements of

PSO vector are changed during the PSO algorithm, the corresponding parameters of the

NN are also updated [6, 7].

As presented in the previous section, two different type NNs are investigated in this

research. The first NN has one hidden layer and ND1 parameters. The calculation of

ND1 parameters is shown in Eq. (2.3). The second NN is two-hidden-layer NN which

has ND2 weights and biases which are described in Eq. (2.4). Therefore, there are two

different encoding vectors. The first vector is ND1-dimensional vector and the second

vector has ND2 dimensions. These encoding vectors are illustrated in Fig. 2.4.

Figure 2.4: Encoding vectors for one PSO particle in two different types of NN

For demonstration, the details of the encoding vector for two-hidden-layer NN can be

observed in Fig. 2.5. The ND2 parameters contain NI ×NH weights and NH biases in

the connections between the input layer and the first hidden layers, NH ×NH weights

and NH biases in the connections between the first hidden layer and the second hidden

layer, NH ×NO weights and NO biases in the connections between the last layer of the

hidden layers and the output layer.

Finishing the encoding procedure, the training phase is executed. The training data are

sent to the NN whose weights and biases are already encoded in the form of the PSO

vectors. Each PSO vector represents a position of a particle. This position is a set of

potential solutions for the parameters (the weights and the biases) of the NN. The goal

of the training phase is to find the position of the particles, in other words, the weights

and biases of the NN which could minimize the error between the actual output of the

NN and the desired output of the NN.

In each iteration, the actual output data of the NN are compared with the labeled data

(the desired output data) using an objective function, for all data. In this research, the

mean square error function is used as the objective function as shown in Eq. (2.11). This

is the single objective function [8].
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Figure 2.5: Details of the encoding vectors for two-hidden-layer NN

fitnessp =
1

T

T∑
i=1

(labeled−datai(j)− output−dataip(j))2 (2.11)

where fitnessp is the fitness value of particle p, T is the number of training samples,

labeled−datai(j) is the jth component of the labeled data i (1 ≤ i ≤ T ), output−dataip(j)

is the jth output data i of particle p.

At any given iteration, for each particle p, the position ever visited by this particle which

has the lowest learning error (lowest fitness value fitnessp) calculated by Eq. (2.11) be-

comes the personal best position
#                »

xPbestp. The fitness value corresponds to the personal

best position becomes the personal best fitness value Pbestp. In the similar way, the

position visited by all particles in the swarm that obtains the lowest learning error calcu-

lated by Eq. (2.11) is the global best position
#             »

xGbest of the swarm. The corresponding

fitness value of the global best position is the global best fitness value Gbest.

The particles move in each iteration to minimize the objective function (Eq.2.11). The

changing of the position of each particle means the weights updating and the biases
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updating of the NN.

The training continues until the achievement of the stopping conditions. Normally, the

stopping conditions are the number of iterations or the final global fitness value Gbest.

The weights and biases of the NN which correspond to the global best position of the

PSO algorithm after the training phase is used in the testing phase of the NN.
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Chapter 3

Proposed PSO algorithms

Chapter 3 focuses on the premature convergence issue of the SPSO algorithm by propos-

ing three improved versions of the SPSO algorithm called wPSOd−CV, PSOseed, and

PSOseed2. Several parts of this chapter have been published in our research arti-

cles [1, 2].

3.1 Introduction

In the training of the NN, the SPSO algorithm may be stuck in a local minimum. In

this situation, the SPSO will be stopped, the NN cannot be trained, and the recognition

rate will be low. Therefore, it is necessary to have an improved version of the SPSO

algorithm to solve the premature convergence of this algorithm.

Several different approaches have been introduced to overcome the premature conver-

gence of the PSO algorithm. The attractive and repulsive PSO (ARPSO) adds the

repulsive phase. The diversity of the swarm calculated in each iteration of the swarm to

determine whether the ARPSO operates in the attractive phase (the SPSO algorithm)

or the repulsive phase [3]. The PSO with spatial particle extension (SEPSO) that adds

the radius r to detect the collisions of all particles in the swarm. If the collisions occur,

the particles will be bounced backward to prevent the situation when all particles stick

to the local minimum [4]. The opposition-based PSO calculates the opposite particle

of each particle in each iteration. If the opposite particle has a better fitness function

than the original particle, this opposite particle will replace the original particle [5].

Other researchers use the multi-swarm strategy [6] or use not only the information of

a particle but also the information of its neighborhood to calculate the new position of

20
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this particle [7]. Other solutions are to use the mutation operations such as the Cauchy

mutation [8, 9], the Gaussian mutation [10, 11], or to combine the SPSO algorithm with

the genetic algorithm [12]. The improved versions of the PSO in previous studies nor-

mally add more functions, more compute-intensive tasks to the SPSO algorithm. It is

beneficial to investigate an improved version of the PSO algorithm to keep the particles

out of the local minimum which does not add many functions or tasks to the SPSO

algorithm.

The main contribution of this chapter is to propose three new PSO algorithms for the

training of the NN called the wPSOd−CV algorithm, the PSOseed algorithm, and the

PSOseed2 algorithm, respectively. These PSO algorithms do not add many compute-

intensive tasks to the SPSO algorithm because these algorithms only modify the velocity

update function of the SPSO algorithm. All these three PSO algorithms were used to

investigate the operation of the proposed co-design architectures. Experimental results

will be shown in chapter 5, 6, and 7 of this thesis.

This chapter is presented as follows. Section 3.2 presents the wPSOd−CV algorithm.

The drawback of the wPSOd−CV algorithm is also described in this section. Section 3.3

introduces the PSOseed algorithm to overcome the disadvantage of the wPSOd−CV

algorithm. The limitation of the PSOseed also discussed in this section. Finally, the

improved version of the PSOseed algorithm called the PSOseed2 algorithm is introduced

in section 3.4. Section 3.5 concludes this chapter.

3.2 Proposed wPSOd−CV algorithm

3.2.1 Introduction

The first PSO algorithm introduced in this chapter is the wPSOd−CV algorithm. This

algorithm contains two different strategies. The first strategy is the velocity control, and

the second strategy is the weight control. The wPSOd−CV algorithm only changes the

velocity update function. Thus, the position update function, the calculation of fitness

values Pbestp and Gbest are similar to the SPSO algorithm. These calculations can be

seen in Eqs. (2.6), (2.7), and (2.8) presented in chapter 2 of this thesis.
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3.2.1.1 Velocity control

The velocity control of the PSO algorithm is a crucial aspect. If the velocities of the

particles are too slow, the training time becomes very long. On the other hand, the

training phase becomes unstable if the particles have high velocities.

The velocity control mechanism is added to the velocity update function. This mecha-

nism adds the c3 part to the SPSO algorithm as can be observed in Eq. (3.1) [13].

#»v p(t+ 1) = w × #»v p(t) + c1 × (
#             »

xPbestp(t)− #»x p(t))

+c2 × (
#             »

xGbest(t)− #»x p(t)) +
c3 × r

( #»v p(t))2

(3.1)

where w is the inertia weight, r is the random numbers, c1, c2, and c3 are the coefficients,

# »xp(t) is the position of particle p,
#                »

xPbestp(t) is the best position found by particle p,
#                    »

xGbest(t) is the best position found by any particle in the swarm, #»vp(t+1) is the velocity

of particle p at time (t+ 1).

The velocity control is shown in Fig. 3.1 and is explained as follows.
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Figure 3.1: Mechanism of the velocity control

1. Swimming phase: particle p moves with a high velocity to the middle position

between
#                 »

x−Gbest and
#                 »

x−Pbestp. In this phase, the c3 part has value zero, and the

newly calculated velocity does not depend on this part.
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2. Stopping phase: particle p is near the middle position between
#                 »

x−Gbest and
#                 »

x−Pbestp. In this phase, particle p reduces the speed, and the c3 part starts

to affect the newly calculated velocity.

3. Jumping phase: when particle p has a very small speed, the c3 part will have a very

high value. The newly calculated velocity will increase drastically, and particle p

will jump to another searching area to start a new swimming phase.

3.2.1.2 Weight control

The inertia weight w also makes a significant impact to the PSO algorithm. When w

has a high value, the focus of the PSO algorithm is the global area. On the other hand,

when w has a small value, the PSO algorithm tends to search the local area. With the

using of the linear decreasing strategy, the PSO algorithm addresses the exploitation

task to search in the global area at the beginning of the PSO algorithm. Then, the

exploration task will be investigated to focus on the local area. The linear decreasing

strategy is illustrated in Eq. (3.2) [14].

By combination between the velocity control and weight control (the linear decreasing

strategy of the inertia weight), the PSO algorithm may have the possibility to search

the solutions which are skipped in the velocity-only approach.

w = wmax −
wmax − wmin

Nite
× ite (3.2)

The proposed wPSOd−CV algorithm consists of both the velocity control and the inertia

weight control. The velocity update function of the wPSOd−CV algorithm is given in

Eq. (3.3).

#»v p(t+ 1) = wmax −
wmax − wmin

Nite
× ite× #»v p(t) + c1 × (

#             »

xPbestp(t)− #»x p(t))

+c2 × (
#             »

xGbest(t)− #»x p(t)) +
c3 × r

( #»v p(t))2

(3.3)

where Nite is the number of iterations, ite is the current iteration, c1, c2, and c3 are the

coefficients, r is the random number.
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3.2.2 Discussion

This section proposed a novel PSO algorithm for the training of the NN called the

wPSOd−CV algorithm. This algorithm has two main components which are velocity

control and weight control. The wPSOd−CV algorithm only modifies the velocity update

function to alleviate the premature convergence. However, even modifying only the

velocity update function, this algorithm already adds several arithmetic operators that

are shown in the velocity control c3 part shown in Eq. (3.1), and in the weight control

strategy presented in Eq. (3.2). It is necessary to propose another PSO algorithm which

adds fewer arithmetic operators to the velocity update function.

In addition, the velocity control mechanism also has a drawback. As described in sec-

tion 3.2.1.1, the c3 part always creates a big jump to another searching area in the

jumping phase. If the searching ara has many solutions, the wPSOd−CV has the pos-

sibility to meet other solutions and jump to other searching space before the before

meeting the best solution. This issue leads to a possibility to ignore the best solution or

require more iterations to reach the best solution.

This chapter also introduces the PSOseed algorithm to overcome the disadvantages of the

PSOd−CV algorithm. This PSOseed algorithm which does not add many computational

tasks as the wPSOd−CV algorithm will be presented in the next section.

3.3 Proposed PSOseed algorithm

3.3.1 Introduction

To overcome the drawbacks of the wPSOd−CV algorithm, the PSOseed algorithm is

proposed. Avoiding jumping phases, for each particle the PSOseed algorithm uses a

new variable called the seed position that is randomly generated in the initial phase of

the algorithm. In each iteration, each particle is attracted and pulled to the position

of its seed. The seed mechanism could reduce the possibility that the particle falls in a

local minimum. Compared to the wPSOd−CV algorithm, the PSOseed algorithm does

not use any division operator and use fewer multiplication operators.

In the PSOseed algorithm, the velocity update function was modified as can be seen

in Eq. (3.4). This PSOseed algorithm introduces a new c3 part when compared with

the SPSO algorithm. This c3 part has a new variable called the seed positions of the

particles. In the PSOseed algorithm, each particle has its seed position. At the beginning
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of the PSO training, the seed positions of all particles in the swarm are assigned the

random values.

#»vp(t+ 1) = w × #»vp(t) + c1 × (
#                »

xPbestp(t)− # »xp(t)) + c2 × (
#             »

xGbest(t)− # »xp(t))

+c3 × r × (
#             »

xSeedp − # »xp(t))
(3.4)

where
#             »

xSeedp is the seed position of particle p, c1, c2, and c3 are the coefficient, r is the

random number.

With the appearance of the c3 part, the calculated velocity #»vp(t + 1) at time (t + 1)

of particle p depends not only on the current current velocity #»vp(t), the best position
#                »

xPbestp(t) found by particle p, the best position found by all particle
#                    »

xGbest(t) but also

on the seed position
#             »

xSeedp of this particle.

The c3 part or the seed factor of particle p usually attracts particle p by pulling this

particle to the seed position
#             »

xSeedp even when the particle p is stuck in a local minimum.

Using this concept, particle p may be kept out of the local minimum and continue the

operation in another searching area.

3.3.2 Discussion

This section proposes the PSOseed algorithm which slightly modifies the velocity update

function of the SPSO algorithm.

The proposed PSOseed algorithm uses the seed factors to keep the particles out of the

local minimum. However, the seed positions of all particles are randomly generated in

the initial phase of the PSOSeed algorithm without any control. The performance of the

PSOseed algorithm highly affected by these seed positions. If the seeds are generated

in the proper positions, the NN trained the by PSOseed algorithm could have a high

recognition rate and low learning error. On the other hand, the accuracy of the NN

trained by the PSOseed algorithm will reduce significantly if the positions of the seeds

are poorly generated.

Therefore, an improved version of the PSOseed algorithm called the PSOseed2 algorithm

is also introduced in the next section. This PSOseed2 algorithm has a mechanism to

control the seed positions of all particles.
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3.4 Proposed PSOseed2 algorithms

3.4.1 Introduction

This section presents the PSOseed2 algorithm to overcome the drawback of the PSOseed

concerning the seed positions. This PSOseed2 algorithm which combines the PSOseed

algorithm and a reseed mechanism also does not add many compute-intensive tasks to

the SPSO algorithm.

Similar to the operation of the PSOSseed algorithm, the seed positions of all particles are

also initialized at the beginning of the PSOseed2 algorithm. The PSOseed2 algorithm

also uses the velocity update function of the PSOseed algorithm as expressed in Eq.( 3.4).

However, the seed positions of all particles are fixed in the PSOseed algorithm while

the reseed control is conducted in each iteration of the PSOseed2 algorithm. For each

particle, the newly calculated fitness value Gbest(t + 1) at time (t + 1) are compared

with the fitness value Gbest(t) at time t. If this newly calculated Gbest(t+ 1) does not

have a lower fitness value than the fitness value Gbest(t), all seed factors are reseeded.

The operation of the PSOseed2 algorithm is described as follows.

1. At the beginning of the algorithm at time t, assign the initial values for the seed

positions of all particles.

2. At time (t+ 1), conduct the PSOseed algorithm for all particles using:

• Eq. (3.4) presented in section 3.4 of this chapter to update the new velocities.

• Eq. (2.6) presented in section 2.2 of chapter 2 to calculate the new positions.

• Eq. (2.7) presented in section 2.2 of chapter 2 to evaluate the new fitness

values Pbest(t + 1) and the corresponding positions
#                              »

xPbest(t+ 1), for all

particles.

• Eq. (2.8) presented in section 2.2 of chapter 2 to estimate the new fitness

values Gbest(t+ 1) and the corresponding positions
#                              »

xGbest(t+ 1).

3. Compare the newly calculated Gbest(t + 1) at time (t + 1) with the Gbest(t) at

time t:

• If the newly calculated Gbest(t+ 1) ≥ Gbest(t) then renew all seed factors.

• If the newly calculated Gbest(t+1) < Gbest(t) then update the global fitness

value Gbest(t) = Gbest(t+ 1).
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4. Return to step 2 to start a new iteration at time (t+ 2) until the stopping criteria

are satisfied.

Figure 3.2: Operation of the PSOseed2 algorithm

The operation of the PSOseed2 algorithm could be illustrated in Fig. 3.2. In this fig-

ure, the reseed mechanism is used to overcome the problem of the seed positions. The

PSOseed algorithm will finish when the positions of both particle p and its initial seed

are in the local minimum. In this situation, the NN cannot be trained by the PSOseed

algorithm. On the contrary, the PSOseed2 may activate the reseed mechanism to gen-

erate the new seed position of particle p which pulls the particle p out of the local

minimum. The NN can continue to be trained by the PSOseed2 algorithm.

3.4.2 Discussion

This section already presents the PSOseed2 algorithm which is based on the concept

of the PSOseed algorithm presented in section 3.3. The PSOseed2 algorithm is the

combination of the PSOseed algorithm and the reseed control which could solve the

seeding problem of the PSOseed algorithm.

The PSOseed2 also solves the premature convergence of the SPSO without adding many

computational tasks or functions to the SPSO algorithm.

3.5 Discussion

Three different PSO algorithms are proposed in this chapter. All three PSO algorithms

only change the velocity update function of the SPSO algorithm. The first PSO algo-

rithm called the wPSOd−CV that has two different strategies called the velocity control

and the inertia weight control. However, the wPSOd−CV still adds several tasks to

the SPSO algorithm. In addition, the jumping phase of the velocity control may skip
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the solutions. Therefore, another PSO algorithm is introduced called the PSOseed al-

gorithm. This algorithm employs the seed factors to pull the particle out of the local

minimum. The new part in the velocity update function of this algorithm does not use

any multiplication or division operations. However, the PSOseed algorithm highly de-

pends on the seeds. If the seeds are poorly generated, the performance of the PSOseed

will be decreased significantly. The PSOseed2 is also proposed in this chapter to im-

prove the PSOseed algorithm. The PSOseed2 is the PSOseed algorithm with the reseed

mechanism.

All these three PSO algorithms were used to train the NN in the proposed co-design

architectures. Experimental results of these PSO algorithms will be detailed in next

chapters.

From next chapter, the co-design for the NN-PSO will be presented. The first issue

described in chapter 4 is the proposed partitioning methodology of the NN-PSO.

References

[1] T. L. Dang, T. Cao, and Y. Hoshino. A proposed psoseed2 algorithm for train-

ing hardware-based and software-based neural networks. International Journal of

Innovative Computing, Information and Control, 13(4):1205–1219, Aug 2017.

[2] T. L. Dang and Y. Hoshino. An-fpga based classification system by using a neural

network and an improved particle swarm optimization algorithm. In 2016 Joint

8th International Conference on Soft Computing and Intelligent Systems (SCIS)

and 17th International Symposium on Advanced Intelligent Systems (ISIS), pages

97–102, Aug 2016.

[3] J. Riget and J.S. Vesterstrm. A diversity-guided particle swarm optimizer - the

arpso. Technical report, 2002.

[4] T. Krink, J. S. Vesterstrom, and J. Riget. Particle swarm optimisation with spatial

particle extension. In Proceedings of the 2002 Congress on Evolutionary Computa-

tion, volume 2, pages 1474–1479, 2002.

[5] H. Wang, H. Li, Y. Liu, C. Li, and S. Zeng. Opposition-based particle swarm

algorithm with cauchy mutation. In Proceedings of the 2007 IEEE Congress on

Evolutionary Computation, pages 4750–4756, Sep 2007.



REFERENCES 29

[6] J. Jie, J. Zeng, C. Han, and Q. Wang. Knowledge-based cooperative particle swarm

optimization. Applied Mathematics and Computation, 205(2):861 – 873, 2008.

[7] R. Mendes, J. Kennedy, and J. Neves. The fully informed particle swarm: simpler,

maybe better. IEEE Transactions on Evolutionary Computation, 8(3):204–210, Jun

2004.

[8] H. Wang, C. Li, Y. Liu, and S. Zeng. A hybrid particle swarm algorithm with

cauchy mutation. In Proceedings of the 2007 IEEE Swarm Intelligence Symposium,

pages 356–360, Apr 2007.

[9] A. Stacey, M. Jancic, and I. Grundy. Particle swarm optimization with mutation.

In Proceedings of the 2003 Congress on Evolutionary Computation, volume 2, pages

1425–1430, Dec 2003.

[10] N. Higashi and H. Iba. Particle swarm optimization with gaussian mutation. In

Proceedings of the 2003 IEEE Swarm Intelligence Symposium, pages 72–79, Apr

2003.

[11] Q. Wu. Power load forecasts based on hybrid pso with gaussian and adaptive

mutation and wv-svm. Expert Systems with Applications, 37(1):194 – 201, 2010.

ISSN 0957-4174.

[12] B. Yang, Y. Chen, and Z. Zhao. A hybrid evolutionary algorithm by combination of

pso and ga for unconstrained and constrained optimization problems. In Proceedings

of the 2007 IEEE International Conference on Control and Automation, pages 166–

170, May 2007.

[13] Y. Hoshino and H. Takimoto. Pso training of the neural network application for

a controller of the line tracing car. In Proceedings of the 2012 IEEE International

Conference on Fuzzy Systems, pages 1–8, Jun 2012.

[14] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In Proceedings of

the 1998 IEEE International Conference on Evolutionary Computation Proceedings.

IEEE World Congress on Computational Intelligence, pages 69–73, May 1998.



Chapter 4

Proposed partitioning

methodology for the NN-PSO

Chapter 4 describes the proposed partitioning methodology between hardware and soft-

ware for the NN-PSO. The operations on the software side of the proposed partitioning

methodology are also presented in this chapter. Several parts of this chapter have been

published in our research articles [1–3].

4.1 Introduction

The FPGA-based program may obtain a higher operating speed than the conventional

software-based program because of the parallelism of the FPGA-based program [4, 5].

Compared to the GPU-based program, the FPGA-based program has a lower power

consumption [5–7]. In addition, all components of the FPGA-based program such as the

FPGA chip, the random access memory (RAM), the buttons. . . could be implemented

in a single FPGA board, and the FPGA-based can operate without the need of having

a processor that is very portable. Nowadays, the using of a system on chip (SoC)

FPGA emerges. The single SoC FPGA device consists of both a processor such as an

ARM processor and FPGA components. This approach could increase the operating

speed because of higher bandwidth, and increase the portability because of lower board

size [8].

However, the hardware-based approach also has the disadvantage in terms of the resource

constraints. Each FPGA design project needs to take care of the FPGA resources

because the resources of the FPGA device concerning the logic elements and the memory

30
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bits are very expensive which could exceed the financial condition of the project [9].

In addition, the FPGA-based program also has the drawback regarding the flexibility.

Compared with the software-based approach, the FPGA-based approach requires more

time and efforts to modify the program. For example, each time the parameters of the

PSO algorithm such as the number of iterations or the number of particles are changed,

the waiting time for rebuilding the program is unavoidable [10].

The operating speed of the software-based program could be slower than the hardware-

based program. However, the software implementation approach has the flexibility ad-

vantage. It is easy to modify the parameters without rebuilding and recompiling the

program. Furthermore, the software-based program could be implemented by a proces-

sor such as the ARM processor or the Intel processor which is not expensive as compared

to the FPGA resources.

Therefore, this research investigates the co-design architectures between hardware and

software for the training of the NN by PSO algorithms. These architectures have the

speed advantage of the hardware-only approach, the flexibility and the resources benefits

of the software-only approach.

In the co-design, one of the most important issues is the partitioning methodology. It

is necessary to determine what component of the system is executed by a processor on

the software side, and what components are implemented on the hardware side.

The main contribution in this chapter is to propose the partitioning methodology for the

NN trained by PSO algorithms. The operations on the software side are also presented

in this chapter.

This chapter is presented as follows. Section 4.2 presents the proposed partitioning

methodology for the NN-PSO. The operations on the software side are detailed in sec-

tion 4.3.

4.2 Proposed partitioning methodology

This research proposes a co-design architecture which could take advantage of both

software approach and hardware approach.

In the NN-PSO system, the PSO algorithms are used only in the training phase of the

NN while the NN is used in both the training phase and the testing phase. Hence,

the PSO algorithms are moved to the software side and implemented by a processor

by the C programming language. On the other hand, the NN is still implemented on
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the hardware side by the SystemVerilog programming language. The advantages of the

proposed architecture are as follows.

• The necessary FPGA resources for the proposed co-design architecture is reduced

when compared with the hardware-only architecture because the PSO algorithms

are already moved to the software side. The FPGA resources reserved for the

implementation of the PSO algorithms are not used in the co-design approach.

• During the training of the NN, the parameters of the PSO algorithms could be

modified without rebuilding or redesigning the FPGA-based NN. It is easy to

change the parameters of the PSO algorithms such as the number of iterations, the

number of particles, or even the new PSO algorithm to investigate the operation

of the proposed architecture in different situations. Having this flexibility, the

software-based PSO may have a higher ratio of performance to cost than the

FPGA-based PSO.

• The testing phase still has the FPGA-based NN which maintains the operating

speed. Compared with the software-only approach, the co-design approach may

obtain a higher operating speed in the testing phase.

• The processors used for the implementation of the PSO algorithms in this research

are the NIOS II processor and the ARM processor which are already embedded

in the FPGA board. Therefore, the co-design still has the portability because all

components are implemented in a single FPGA board.

Figure 4.1: Proposed partitioning methodology

The proposed co-design architecture can be observed in Fig. 4.1. The components of

the training phase are shown inside the blue rectangle. These components are the
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PSO training module implemented by a processor, the NN implemented in an FPGA-

based custom module, and the connections between the software-based module and the

hardware-based module. The NN is wrapped inside the custom module along with the

floating-point calculation module for the floating-point calculations and the finite state

machine for control the operations of the custom module.

There are three different co-design architectures presented in this thesis. The first archi-

tecture uses the NIOS II as the processor. The second architecture replaces the NIOS II

processor by the ARM processor. The third architecture combines the ARM approach

of the second architecture with the hardware-based PCA. The details of these architec-

tures along with the connections between the hardware side and the software side will

be discussed in chapters 5, 6, and 7.

Finishing the training phase, the FPGA-based components inside the red rectangle are

used in the testing phase.

4.3 Operations on the software side

This section presents the operations during the training phase on the software side.

These operations are executed by a processor. The operations on the hardware side and

the connections between hardware and software are presented in chapters 5, 6, and 7.

Figure 4.2: Operations on the software side

Fig. 4.2 illustrates the training phase of our co-design. All components except the NN

are executed by a processor. The operation of the training is as follows.
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Step 1 The initial values of all velocities and positions are randomly generated. As

discussed in chapter 2, the position of each particle is a set of potential solution for the

weights and biases of the NN.

Step 2 At any given iteration, the position vector (
#                                 »

PSO−weights) of particle p is sent

to the NN where 0 6 p 6 P , and P is the number of particles. The
#                                 »

PSO−weights has

ND dimensions that represent ND parameters of the NN. In our research, ND = ND1

if one-hidden-layers NN is used, ND = ND2 if two-hidden-layer NN is employed. The

calculations of D1 and D2 are presented in Eqs. (2.3) and (2.4) presented in chapter 2.

Step 3 The software side waits for the results from the hardware-based NN by checking

a ready signal. Based on our experiments, the training of the NN obtained better

accuracy when the training data are normalized and examined in the random order.

Thus, the processing module is added to shuffle the data. At any given iteration of

the training phase, this module creates a new hash table for all training data. In this

processing module, the data are also processed using z-score normalization as can be

seen in Eq. (4.1) [11]. The attributes are processed one-by-one. The first attribute of all

data samples is normalized in the first iteration. This normalization continues to process

the second attribute in the second iteration, the third attribute in the third iteration. . . .

This process repeats until all attributed are already normalized.

attributeij =
attributeij −mean−attributei

sd−attributei
(4.1)

where attributeij is the jth data of the attributei, mean−attributei and sd−attributei

denote the mean and the standard deviation of the attributei.

Step 4 The evaluation module checks the ready signal from the NN before receiving the

processed data from the NN. The actual output from NN is compared with the desired

output of the NN by using the objective function as shown in Eq. (2.11). The fitness

values calculated from this fitness function are used to identify the new Pbestp of particle

p and the new Gbest of all particles. The particle positions
#                 »

x−Pbestp corresponding to

the fitness value Pbestp and
#                 »

x−Gbest corresponding to the fitness value Gbest are saved.

As presented in section 2.3,
#                 »

x−Pbestp is the position of the particle p that obtains the

Pbestp value, and
#                 »

x−Gbest is the position of any particle in the swarm that gets the

Gbest value.
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Step 5 The new velocity and new position of particle p is updated based on Eq. (2.5)

and (2.6) presented in chapter 2.

Step 6 This step is reserved for the checking of the particle numbers. If all particles are

already processed, the training phase moves to step 7. Otherwise, the training returns

to step 2, and next particle will be addressed.

Step 7 This step is used for the checking of the stopping condition which is the num-

ber of iterations in this study. If the stopping criterion is met, the training phase is

terminated, and the trained weights will be stored.

4.4 Discussion

This chapter presents the proposed co-design between hardware and software for the

training of the NN by PSO algorithms. As discussed, the NN is implemented in hard-

ware to maintain the testing speed of the hardware-based program while the PSO is

implemented in software to keep the flexibility of the software-based program. Further-

more, the software implementation of the PSO algorithms can also reduce the FPGA

resources previously reserved for the PSO algorithms.

The details of the co-design architectures will be discussed in the next chapters of this

thesis. Chapter 5 focuses on the first architecture using the NIOS II processor.
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Chapter 5

Proposed co-design architecture

using the NIOS II processor

Chapter 5 focuses on the first co-design architecture, based on the partitioning methodol-

ogy presented in chapter 4 which uses the NIOS II processor. This chapter also discusses

the performances of the NN trained by proposed PSO algorithms in this architecture.

Several parts of this chapter have been published in our research articles [1, 2].

5.1 Introduction

In the co-design architecture, choosing a processor is an important issue. The first

proposed architecture uses the NISO II processor developed by Altera [3, 4]. This

processor is selected because of several advantages concerning the flexibility, the high

performance, the low cost, and the long life cycle as claimed by Altera [3, 4].

In addition, many intellectual property (IP) cores are provided along with the NIOS II

processor to reduce the design time, increase the performance of the system. These IP

cores can be freely downloaded from the website of Altera [5–7].

The main contribution of this chapter is to introduce a hybrid framework between soft-

ware and hardware for the training of the FPGA-based NN by software-based PSO

algorithms. In this framework, the NN is hardware implemented by SystemVerilog pro-

gramming language while the PSO algorithms are executed in the NIOS II processor.

In our experiments, three proposed PSO algorithms (wPSOd−CV, PSOseed, PSOseed2)

introduced in chapter 3 and two other PSO algorithms (SPSO, DPSO) presented chap-

ter 2 were used to test with two publicly recognized databases (heart disease dataset and

38
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iris dataset). The operating speed and the required resources were also investigated.

This chapter is presented as follows. Section 5.2 presents the proposed architecture.

The experimental results are shown in section 5.3. Finally, section 5.4 concludes this

chapter.

5.2 Proposed architecture

5.2.1 Overview

As discussed in chapter 4 of this thesis, the NN is implemented by SystemVerilog in

hardware to accelerate the testing speed of the co-design architecture. The PSO algo-

rithms are moved to the software side to maintain the flexibility of the software-based

program and to reduce the required FPGA logic elements and memory bits. In this

approach, the NIOS II processor developed by Altera is used as the processor. This

processor is one of the most famous embedded softcore processors that is optimized

for the FPGA programs. Using the NIOS II softcore processor, all components of the

NN trained by PSO algorithms (NN-PSO) system are implemented in an FGPA device

which could be portable and low power consumption. In addition, it is not difficult to

customize the NIOS II processor to satisfy the new requirements or the new features of

the design [3, 4].

Fig. 5.1 shows the components of the proposed co-design approach. The FPGA-based

module contains five components which are an NN, a floating-point (FP) submodule,

a buffer−in, a buffer−out, and a ready submodule. In this design, the floating-point

submodule is reserved for the floating-point calculations. This submodule implements

the floating-point IP cores provided by Altera to reduce the design time [6].

In this proposed co-design architecture, the synchronization between the FPGA side

and the NIOS II processor is crucial. The program will not work if the design could

not overcome this issue. Two buffers and the ready signal are employed to control the

connections between the hardware side and the software side. These two buffers are

implemented using the on-chip memory of the FPGA device. The ready submodule will

send the ready signal to the NIOS II processor when buffer−in is empty or the buffer−out

is full. The buffer−in whose size is ND + NI is used to store the parameters (weights

and biases), and the input data of the NN. As described in chapter 2, NI is the number

of nodes in the input layer, ND is the number of weights and biases. In this situation,

ND = ND1 if one-hidden-layer NN is used, and ND = ND2 if two-hidden-layers NN is
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used. The calculations of the ND1 and ND2 are presented in Eqs. (2.3) and (2.4) of

chapter 2.

Figure 5.1: Proposed co-design with NIOS II processor

The operations of the PSO training executed by the NIOS II processor on the software

side are already discussed in section 4.3 of chapter 4. The next sections in this chapter are

dedicated to the operations on the hardware side and the connections between software

and hardware.

5.2.2 The FPGA-based custom module

The operation of the FPGA-based custom module is based on a global finite-state ma-

chine (FSM) as shown in Fig. 5.2. Normally, the FSM is kept in the idle state. When

the buffer−in is full, the FSM changes to the NN−running state. In this state, the

NN starts the operation which is controlled by another FSM called FSM-NN. The ac-

tivation function of the NN is the hardware implementation of the Sigmoid function

which is shown in Eq. (2.2) of chapter 2. When the NN needs to use the floating-point

calculations, the NN will send a request signal to the FP submodule. After sending

request signal, the FSM of the hardware-based module will move to the FP−running

state. Inside the floating-point submodule, there is a calculation−counter. When the

calculation−counter reduces to zero, the FSM returns to the NN−running state. Upon

finishing the operation, NN will send the output data to the buffer−out. When the

buffer−out is full, the FSM comes back to the idle state.

The FP submodule which handles the floating-point calculation of the FPGA-based mod-

ule implements the floating-point IP cores provided by Altera [6]. The calculation−counter

is used in the FP submodule to synchronize the operation of the NN with the operation

of the FP submodule. The connections between the FP submodule and the NN are

illustrated in Fig. 5.3. The details of the operation are as follows.
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Figure 5.2: FSM of the FPGA-based component

Figure 5.3: Synchronization between NN and floating-point submodule

1. The FSM-NN controls the operation of the hardware-based NN. This FSM has two

main states called waiting−phase and running−phase. In the running−phase, the

FSM has several smaller states to calculate the output from each node of the NN

using Eqs. (2.1) and (2.2). During the calculation, if the NN needs to execute a

floating-point operation, the NN will check the current status of the FP submodule

by investigating the flag signal come from the FP submodule. If the signal is not

ready (flag = 0), the FSM of the NN moves to waiting−phase. Otherwise, the

algorithm changes to step 2.

2. The require−calculations signal is sent from NN to the FP submodule. This signal

depends on the type of the operation. For example, if the subtraction is required,

the NN will send float−alu−mode−sub signal to the FP submodule.

3. The input data are also forwarded to the FP submodule using data.
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4. The NN determines whether the operation of the FP module is finished or not

by rechecking the flag signal. Inside the FP module, the flag signal is con-

trolled by the calculation−counter. As discussed, the FP module implements the

floating-point IP cores provided by Altera. The output latency for each arith-

metic operation is specified in its user guide [6]. The values of these latencies are

employed in the calculation−counter. Upon receiving the require−calculations

signal, the flag will be set to value zero (flag = 0), and calculation−counter will

be assigned to a corresponding value to the latency of the required operation. For

example, the latency of the subtraction is mentioned in the user guide as seven

clock cycles. Hence, when the require−calculations is the float−alu−mode−sub

signal, the calculation−counter has value seven which is reduced one unit on each

clock cycle. When the counter value equals zero, the subtraction is finished. The

flag signal will be set to value one (flag = 1). Otherwise, the value of the flag

signal is still zero.

5. In the NN side:

• If flag signal has value one (flag = 1), the NN will collect the outputs of

the floating-point calculations from the FP submodule. After that, the FSM

of the NN continues to operate in the running−phase. When the NN needs

the floating-point calculations again, the algorithm returns to step 2.

• If flag signal still has value zero (flag = 0), the FSM of the NN changes to

the waiting−phase to wait for the results of the FP submodule.

5.2.3 Connections between hardware and software

5.2.3.1 Operation

The connections between the hardware side and the software side become important

issues in the proposed architecture. If the operation on the hardware side cannot syn-

chronize with the operation on the software side, the co-design architecture may not

produce the correct results.

Fig. 5.4 shows the synchronization. The details are described as follows.

1. The NIOS II processor checks whether the FPGA-based module is in the ready

state or not by checking the ready signal sent from the FPGA-based module. In

the FPGA-based module, the value of the ready signal depends on the state of
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Figure 5.4: The FPGA-based component

the buffer−in. If this buffer is empty, the ready signal has value one (ready = 1).

Otherwise, the ready are set to zero (ready = 0).

2. In the NIOS II side:

• if ready = 1, the NIOS II processor will send ND +NI data to the buffer−in

of the FPGA side (as presented, ND is the number of weights and biases of

the NN, NI is the number of input nodes of the NN). After that, the ready is

set to value zero (ready = 0). The data from buffer−in are sent to the NN to

process. Finishing the processing, the output data from NN module will be

sent to the buffer−out whose size is NO (NO is the number of output nodes).

If the buffer−out is full, the ready will be set again to value one (ready = 1).

• if ready = 0, the NIOS II is put in the waiting state.

3. The NIOS II uses the ready signal again to determine whether the operation of

the FPGA-based module is finished or not.

4. If ready = 1, the NIOS II processor will collect the output data from the buffer−out.

Otherwise, the NIOS II processor will wait.

5.2.3.2 Implementation

The proposed architecture uses the IP cores from Altera to increase the performance,

and decrease the design time. Besides the floating-point IP cores presented in the pre-

vious section, the Avalon memory-mapped interface (Avalon-MM) is also used. This

interface is used to create the connections between hardware side and software side.

The communication and the data transmission between the NIOS II processor and the

FPGA-based module are conducted using this interface.
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The operation of the Avalon-MM is based on several signals. The full list of the signal

could be observed in its user guide [5]. Five signals are used in this implementation.

The write signal is used for the write request. The read signal is reserved for the

read request. The address request employs the address signal. To send the data from

the NIOS II to the FPGA modules, the writedata signal is needed. In the opposite

direction, the readdata signal is dedicated to the data sent from FPGA modules to the

NIOS II processor. Fig. 5.5 illustrates the Avalon-MM connection between the NIOS II

processor and the custom module. The NIOS II is the master, and the custom module

is considered as the slave in this connection. The FPGA-based NN is wrapped inside

this custom module.

Figure 5.5: Avalon MM interface

The connection ports of the FPGA-based custom module is illustrated in Fig. 5.6. This

module has two Avalon-MM connections called avalon−slave−0 and avalon−slave−1,

respectively. The former is used for the data signal, and the latter is reserved for the

control signal.

The connections of the whole system are presented in Fig. 5.7. In this figure, the FPGA-

based module is called new−component−0. Two connections between the hardware-

based module and the NIOS II processor have address 0000−0000 and address 0000−0400,

respectively. These addresses could be accessed using the pointers in the C programming

language executed by the NIOS II processor.

Figure 5.6: Custom module
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Figure 5.7: Connections in NIOS II approach

5.3 Experiments

All experiments are conducted using the DE1-SoC board which has the Cyclone V

chip [8]. Fig. 5.8 shows the DE1-SoC board. Five different PSO algorithms were in-

vestigated in the experiments included three proposed PSO algorithms (wPSOd−CV,

PSOseed, PSOseed2), the SPSO algorithm, and the DPSO algorithm (presented in chap-

ter 2). The DPSO is chosen in the experiments because this is also an improved version

of the SPSO that keeps the particle avoid the premature convergence without adding

many compute-intensive tasks to the SPSO.

Figure 5.8: DE1-SoC board

Based on the experimental results, a set of parameters which obtained high recognition

rates of the NN and low learning errors of the PSO algorithms was as follows.

• w = 0.9, c1 = c2 = 0.5 in the SPSO algorithm.
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• w reduced from 0.9 to 0.00001, c1 = c2 = 0.5, c3 = 0.00001 in the wPSOd−CV

algorithm.

• w = 0.9, c1 = c2 = 0.5, c3 = 0.3 in the PSOseed and the PSOseed2 algorithms.

• cv = 0.0, cl = 0.001 in the DPSO algorithm (similar to previous research [9]).

The parameters for the PSO training such as the number of particles or the number

of iterations were changed in each experiment to investigate the operations of five PSO

algorithms in different situations. The experimental results can be observed using the

NIOS II console as can be seen in Fig. 5.9.

Figure 5.9: NIOS II console

In our experiments, two publicly recognized databases were employed called the heart

disease dataset and the iris dataset.

5.3.1 Performances of he NN trained by PSO algorithms

To observe the operation of the NN trained by PSO algorithms in the proposed co-design

architecture using the NIOS II processor, the data in each database were randomly

divided into two different sets to conduct the cross-validation. When the first set was

used as the training data, the second set was considered as the testing data, and vice

versa. The full list of the experiments is shown in Table 5.1.

Table 5.1: List of experiments conducted with NIOS II approach

Dataset Features

Heart disease dataset
13 attributes, 2 classes
Cross validation data: 100 samples in set 1, 80 samples in set 2
(presented in section 5.3.1.1)

Iris dataset
4 attributes. 3 classses
Cross validation data: 105 samples in set 1, 45 samples in set 2
(presented in section 5.3.1.2 )
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5.3.1.1 Heart disease database

The heart disease database contains the information to predict whether a patient has

the heart disease or not (two classes). Each sample in this data set consists of thirteen

attributes of four different types called real, ordered, binary, and nominal [10]. With

this database, 100 data samples were chosen randomly as set 1, and other 80 samples

were selected randomly as set 2. The conducted experiments used one-hidden-layer NN

which had 13 input nodes corresponded to 13 attributes, 2 output nodes corresponded

to 2 classes, and 24 hidden nodes. The cross-validation was carried out. When set 1 was

used as the training set, set 2 became the testing set and vice versa.

Scenario 1: in this scenario, the training data were set 1, and 80 samples of set 2

were chosen as the testing data.

The first measurement of the NN trained by three proposed PSO algorithms (wPSOd−CV,

PSOseed, and PSOseed2) and two PSO algorithms presented in previous studies (SPSO,

DPSO) in the co-design architecture was the Gbest, the minimum value of the learning

error. Fig. 5.10 illustrates the reduction curves of the Gbests of all five PSO algorithms

when the parameters of the PSO training were 10 particles, 230 iterations. After the

training phase, the Gbest of the NN trained by PSOseed2 algorithm decreased to the

lowest value. The full list of the experimental results is shown in Table 5.2. At iteration

230, the final Gbest of the NN trained by the PSOseed2 algorithm was 0.1060 while the

learning errors of the NN trained by PSOseed, wPSOd−CV, DPSO, and SPSO were

0.1111, 0.1243, 0.1271, and 0.1497, respectively.

The second measurement for the efficiency of the NN trained by different PSO algorithms

was the recognition rate of the NN. The full list of the recognition rates is also shown

in Table 5.2. Similar to the learning errors, the NN trained by PSOseed2 algorithm also

obtained the highest recognition rate at 96.25% when compared to the NN trained by

other four PSO algorithms (SPSO, DPSO, wPSOd−CV, and PSOseed).

Table 5.2: Results with heart disease dataset, 100 training samples, 80 testing samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.1497 0.1271 0.1243 0.1111 0.1060

Recognition rate 78.75% 85.00% 86.25% 92.50% 96.25%

Experimental results of this scenario confirmed the efficiency of the NN trained by the

PSOseed2 algorithm concerning the recognition rate and the learning error.
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Figure 5.10: Reduction of Gbest with heart disease dataset, 100 training samples, 80
testing samples

Scenario 2: to conduct the cross-validation, set 2 was used as the training data in

the second scenario, and set 1 became the testing set. In this situation, the number

of particles was 25 particles, and the number of iterations was 135 iterations. This

scenario observed the operation of the NN trained by PSO algorithms when the number

of training data was lower than the number of testing data.

The reduction of the fitness values Gbest of the NN trained by five different PSO algo-

rithms is presented in Fig. 5.11. The learning error of the FPGA-based NN trained by

the software-based PSOseed2 algorithm once again had the lowest value.
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Figure 5.11: Results with heart disease dataset, 80 training samples, 100 testing
samples
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As illustrated in Table 5.3, the NN trained by the PSOseed2 algorithm also achieved the

higher recognition rate (78.00%) than the NN trained by other PSO algorithms (76%

with the PSOseed algorithm, 73.00% with the wPSOd−CV and the DPSO algorithm,

and 72% with the SPSO algorithm).

Table 5.3: Results with heart disease dataset, 80 training samples, 100 testing samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.0939 0.0627 0.0198 0.0136 0.0064

Recognition rate 72.00% 73.00% 73.00% 76.00% 78.00%

Experimental results with the cross-validation suggested that the PSOseed2 algorithm

could be a potential solution for the improvement of the SPSO algorithm for the training

of the NN.

5.3.1.2 Iris database

The iris database has 150 samples of three different flowers that are iris Setosa, iris

Versicolour, and iris Virginica. Each sample in this dataset contains four attributes called

the sepal width, the sepal length, the petal width, and the petal length, respectively [10].

To conduct the experiment with this dataset, the NN has four input nodes, three output

nodes, ten nodes in each hidden layer, and two hidden layers. Four input nodes of this

NN correspond to four attributes of the iris database, and three output nodes were

chosen because the iris database has three classes. Using this database, 105 samples

were selected randomly as set 1, and 45 remaining samples were considered as set 2.

Scenario 1: In the first test, the smaller dataset (set 2 with 45 samples) was the

training data, 105 samples of set 1 were selected as the testing data.

Fig. 5.12 and Table 5.4 demonstrate the experimental results of this scenario. The

settings for all PSO algorithms were 40 particles, and 270 iterations. As can be observed,

the NN trained by the PSOseed2 algorithm obtained the lowest learning error at 0.0105

among the NNs trained by five PSO algorithms. Concerning the recognition rate, the

NN trained by the proposed PSOseed2 algorithm and the proposed PSOseed algorithm

got the highest percentage of the correct recognition at 96.19% after 270 iterations.
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Figure 5.12: Reduction of Gbest with iris dataset, 45 training samples, 105 testing
samples

Table 5.4: Results of FPGA-based NN with iris dataset, 45 training samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.1430 0.0548 0.0459 0.0379 0.0105

Recognition rate 87.62% 94.29% 95.24% 96.19% 96.19%

Scenario 2: In the first test, 45 samples of set 2 were the training data, and 105

samples of set 1 were selected as testing data. Thus, in the second scenario, set 1 was

chosen as training data, and set 2 was the testing data for the cross-validation.
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Figure 5.13: Reduction of Gbest with Iris dataset 105 training samples, 45 testing
samples
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The learning curve of the NN trained five PSO algorithms, or the reduction of the learn-

ing error Gbest, is presented in Fig. 5.13. The configurations of the PSO algorithms were

20 particles, 280 iterations. In this scenario, the learning error of the NN trained by

the PSOseed2 algorithm decreased to the lowest value at iteration 280. As presented in

Table 5.5, the final Gbest of the NN trained by the PSOseed2 algorithm was 0.0540 while

the final Gbests of the NN trained by other PSO algorithms were 0.0567 (PSOseed algo-

rithm), 0.0693 (wPSOd−CV algorithm), 0.0743 (DPSO algorithm), and 0.1178 (SPSO

algorithm).

Concerning the recognition rate, the NN trained by all improved PSO versions (DPSO,

wPSOd−CV algorithm, PSOseed, and PSOseed2) may obtain 100% while the NN trained

by the standard version of PSO has only 88.89% of the recognition rate.

Table 5.5: Results of Iris dataset, 105 training samples, 45 testing samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.1178 0.0743 0.0693 0.0567 0.0540

Recognition rate 88.89% 100.00% 100.00% 100.00 100.00%

The results of the cross-validation show that the FPGA-based NN trained by the

software-based PSOseed2 implemented by the NIOS II processor obtained the high-

est recognition rate and the lowest learning error not only with the small number of

training samples but also with the large number of training samples.

5.3.2 Operations of the proposed co-design architecture using NIOS

II processor

5.3.2.1 Operating Speed

The operating speed of the co-design architecture using NIOS II processor was also inves-

tigated. In this experiment, the testing speed of the proposed co-design architecture was

compared with the testing speed of the software-only architecture. Thus, the software-

only architecture was also created. The details of the software-only architecture could

be seen in appendix A. This software-based NN was implemented by the C language

by the Intel core i3 2.4 GHz. The hardware-based NN in the co-design approach is still

implemented by the SystemVerilog language. The frequency of the components in the

co-design approach could be modified using a phase-locked loop [7]. Thus, the clock
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frequency of the co-design approach was also increased from 50 MHz (default frequency

of the DE1-SoC) to 100 MHz.

To measure the time, the performance counter core was used in the FPGA-based NN of

the co-design apporach [7]. The performance counter core can be observed in Fig. 5.7.

On the other hand, the QueryPerformanceCounter() function was employed in the

Intel-based NN approach [11].

In the experiment with the proposed co-design architecture, the sending of the input

data to the NN, the receiving of the results from the NN, the printing of the results to

the NIOS II console were executed by the NIOS II processor. Therefore, the speed of

the NIOS II processor still has the influence to our experimental results.

Table 5.6 shows the testing speed of both two approaches when testing with the heart

disease dataset 100 training samples and 80 testing samples. Results showed that even

the NIOS II processor operates at the lower clock frequencies than the Intel processor, the

hardware-based NN obtained a higher operating speed than the conventional software-

based NN.

Table 5.6: The testing time in second

`````````````̀Approach
frequency

50 MHz 100 MHz 2.4 GHz

Co-design using NIOS II processor 0.1529 0.0764 -

Intel processor - - 0.1815

5.3.2.2 Required resources

To investigate the resource advantage of the proposed co-design when compared to

the hardware-only architecture, the required resources in each type of design was also

observed. Hence, the hardware-only design was also developed. The details of the

hardware-only architecture could be seen in the appendix B.

In this experiment, the FPGA resource is the percentage which can be calculated from

the number of the adaptive logic modules (ALMs) used in the design and the total

number of ALMs available in the FPGA chip (the Cyclone V).

In our experiments, the required resources for the hardware-only architecture were ex-

cessive. Both the NN used to test with the iris dataset and the heart disease dataset
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cannot be fitted in the FPGA device using the hardware-only approach. In these situa-

tions, the compilations were failed, the required resources were over 100% of the Cyclone

V.

To observe the required element with other cases when the compilation of the hardware-

only architecture was successful, the smaller NN was created. The experimental results

were shown in Table 5.7. However, the required resources for the hardware- only were

still excessive. The 2-6-4 NN (two input nodes, six hidden nodes, and four output nodes)

cannot be implemented in the Cyclone V. Only a smaller NN of size 2-2-2 can be fitted

in this FPGA chip (70% of the resources). On the other hand, the co-design architecture

with 2-6-4 NN required only 27% of the resources.

Table 5.7: The logic utilization

Approach Logic utilization

2-6-4 NN hardware-only
>100%

(compiles failed)

2-2-2 NN hardware-only 70%

2-6-4 NN hardware-software 27%

The reduction of the logic utilization is explained by the using of the NIOS II processor.

In the hardware-only architecture, the PSO module implemented in FPGA requires

many resources. On the other hand, the co-design architecture moves the PSO module

to the NIOS II processor, and the FPGA resources reserved for this PSO module are

not used. Our proposed co-design could address the problem of the limited resources of

the hardware-only architecture.

5.4 Discussion

This chapter proposed our first co-design architecture for the training of the NN by the

PSO algorithms. In this architecture, the NIOS II processor is used as the processor.

All PSO algorithms are executed by the NIOS II processor.

Using the NIOS II processor, all components of the co-design architecture could be

implemented in a single FPGA chip which is portable. In addition, the NIOS II processor

is already optimized by Altera for the FPGA design.

Experimental results confirmed that the co-design architecture using NIOS II processor

was successfully implemented. The results also showed that the NN trained by the pro-

posed PSO algorithms, especially the PSOseed2 algorithms, obtained higher recognition
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rates and lower learning errors than the NN trained by the PSO algorithms presented

in previous studies (SPSO algorithm, DPSO algorithm). The speed advantage of the

co-design approach when compared with the software-only approach and the resource

advantage of the co-design approach when compared with the hardware-only approach

were also demonstrated in our experiments.

However, the using of the NIOS II processor, the softcore processor, has the drawback

related the speed because of the constraints with the FPGA fabric. In addition, the

NIOS II is created using available resources from the FPGA device which could be the

resource-intensive processor, especially, if a high computing power of the NIOS II is

required.

Thus, the next chapter of this dissertation proposes the second co-design architecture

using another processor to overcome these drawbacks of the NIOS II processor.
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Chapter 6

Proposed co-design architecture

using the ARM processor

Chapter 6 deals with the performances of the NN trained by proposed PSO algorithms in

the second co-design architecture that uses the ARM processor. The second co-design

architecture is introduced to overcome the drawbacks of the first architecture using

the NIOS II processor presented in chapter 5. Several parts of this chapter have been

published in our research article [1].

6.1 Introduction

As discussed in chapter 4, the FPGA-based NN and the software-based PSO algorithms

are used in the proposed partitioning methodology. The hardware-based NN is imple-

mented using SystemVerilog programming language. The PSO algorithms executed by

a processor.

In chapter 5 of this thesis, first co-design architecture using the NIOS II processor is

introduced. However, the NIOS II is a softcore processor which is implemented us-

ing the available resources concerning the logic elements and the memory bits of the

FPGA device. In addition, the softcore processor also has the speed limit because of the

constraints with the FPGA fabric. Recently, the hardcore processor also has been devel-

oped. Unlike the softcore processor, the hardcore processor is physically implemented

as a structure on the FPGA board. Compared to the softcore processor, the hardcore

processor has advantages in terms of:

56



6.2 Proposed architecture 57

1. Speed: the hardcore processor may operate at a higher clock frequency than the

softcore processor.

2. Required logic elements and memory bits: the resources previously reserved for

the softcore processor such as the NIOS II processor will not be used in case of

using the hardcore processor.

The ARM processor is one of the most famous hardcore processors used with the FPGA

device. Even operating in the low-power consumption mode, the ARM processor could

still get high performance. In addition, the NIOS II approach presented in chapter 5 is

designed to use for the Altera device family while the ARM processor can be freely used

with the device from other companies.

The main contribution of this chapter is to introduce the co-design approach for the

training of the NN by PSO algorithms using ARM as the processor.

To evaluate the operation of the co-design and to confirm the efficiency of three proposed

PSO algorithms. Five different PSO algorithms (SPSO, DPSO, wPSOd−CV, PSOseed,

and PSOseed2) were used to train the NN.

This chapter is presented as follows. Section 6.2 introduces the co-design architecture

using the ARM processor. The experimental results are given in section 6.3. Section 6.4

is dedicated to the conclusion of this chapter.

6.2 Proposed architecture

6.2.1 Overview

The overview of the co-design approach using ARM processor is shown in Fig. 6.1. The

ARM processor is inside a hard processor system (HPS). This research uses the Cyclone

V SoC hard processor system provided by Altera [2]. A Linux operating system is

installed on the ARM processor to implement the PSO algorithms.

Inside the HPS used in this research, there are three main components as follows.

1. SD card: the Linux file system is stored on an SD card. The FPGA board will

boot Linux from this SD card. In addition, the configuration data of the FPGA

components are also kept in the form of the raw binary file (.rbf) in the SD card.

2. ARM processor: the PSO algorithms are implemented by this processor.
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Figure 6.1: ARM apporach for the NN trained by PSO algorithms

3. DDR3 random-access memory (RAM): to reduce the required memory bits, this

approach uses 1 GB DDR3 RAM which is divided into two equal sections. The

first section which has 512 MB is reserved for the Linux operating system. The

other 512 MB section is used for the data transmission between the hardware side

and the software side. All weights, biases of the NN, input data sent to the NN,

and the output data received from the NN are put in this section.

The co-design architecture has three main components called the PSO training in soft-

ware, the FPGA-based module, and the connections between software side and hardware

side. The PSO training in software has been discussed in section 4.3 of chapter 4. Each

step of the training is also described in Fig. 4.2 of this chapter. The FPGA-based mod-

ule has been introduced in section 5.2.2 of chapter 5. This hardware-based module has

not only the FPGA-based NN but also the floating-point submodule. The NN and the

floating-point submodule work in parallel. The synchronization between the NN and

the floating-point submodule is already shown in Fig. 5.3 of chapter 5.

Hence, this chapter focuses on the connection between the FPGA-based module and the

ARM processor.

6.2.2 Connections between the software side and the hardware side

To increase the connection speed between the software side and the hardware side,

this approach employs three direct memory access (DMA) controllers [3]. The DMA

controllers are configured by the ARM processor. In this architecture, the data were

sent from the FPGA-based module to the data transmission section of the DDR3 RAM

and vice versa. Thus, to start the DMA transfer, the ARM processor will send the
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address of the data transmission section in RAM and the address of the FPGA-based

module to the DMA controller.

To connect with the DMA, an Avalon memory-mapped slave interface [4] is created in

the FPGA-based module. The whole system with the connections can be observed in

Fig.6.2.

 

Clock 
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processor 

Custom 

module 

DMA 

controllers 

Figure 6.2: Whole system in ARM approach

The operations of the DMAs can be seen in Fig. 6.3. The DMA0 and DMA1 are used

for the transmission of the data between the hardware side and the software side. The

DMA2 is reserved for the flag signal. This DMA always sends the current state of

the FPGA-based module to the ARM processor. During the operation, if the ARM

processor needs to conduct the data transmission with the FPGA-based module, the

flag signal will be investigated by the ARM processor. The flag signal sent from the

FPGA-based module to the software side using DMA2 is kept at the address 4096 of

the DDR3 RAM.

All DMAs in this architecture use the Avalon-MM interface. As shown in Fig. 6.2, The

DMA0 and DMA1 connect to the avalon slave 0 port, and the DMA2 connects to the
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avalon slave port. The connections between the RAM inside the HPS and the DMA

use the f2h sdram port.

Figure 6.3: Using of Direct Memory Acces (DMA)

Figure 6.4: The data transmission section

ND parameters (weights and biases) and the input data of the NN are stored in the

data transmission section of the RAM with the corresponding addresses as can be seen

in Fig. 6.4. As introduced in chapter 2, ND = ND1 if one-hidden-layer NN is used,

ND = ND2 if two-hidden-layer NN is used. The calculations of D1 and D2 are already

presented in Eqs. (2.3) and (2.4).

The first parameter of the NN (N1) is put at address 0, the last parameter ND is stored

at address ND−1. In this case, N1 to ND is the ND components of the ND-dimensional

vector which is presented in Fig. 2.4 of chapter 2. These ND parameters are the ND

weights and biases of the NN.

In a similar way, the first input is stored at address ND, the last input is put at address

ND +NI − 1 (NI is the number of nodes in the input layer). The output data from the

NN are stored from address ND +NI to address ND +NI +NO − 1 (NO is the number

of nodes in the output layer. Two vectors
#         »
input and

#            »
output are the NI input data sent

to the NN and the NO output data received from the NN, respectively. The flag is used

for timing control. The transmission of the flag uses the DMA2. The operation of the

flag is illustrated in Fig. 6.5.

On the software side: when the ARM processor (the software-side) needs to use the

FPGA-based NN module (the hardware side), it will check the flag stored at address
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Figure 6.5: Timing control by using flag

4096 of the RAM. If the flag is not ready (flag 6= ready), the ARM processor is put

in the waiting phase. Otherwise, the ARM processor will send the data to hardware

side. After sending the data, the ARM processor changes the value of the flag (flag =

not−ready), and continues to recheck this flag. If the flag is still not ready (flag =

not−ready), the ARM will wait for the data from the hardware side. Otherwise, the

RAM processor will collect the output data in the data transmission section of the RAM.

On the hardware side: The operation of the FPGA-based NN is based on a finite-

state machine which has two main states. In the initial phase, the finite-state machine

of the NN is in the NN−ilde−state. In this state, the flag is set to ready (flag =

ready). After receiving the data from ARM processor, the finite-state machine of the

NN changes to NN−running−state. In this state, the flag is set to not ready (flag =

not−ready). The NN will operate in this NN−running−state. This state has smaller

states to calculate the output of each node in each layer of the NN according to Eqs. (2.1)

and (2.2). Finishing the calculation, the output data are also sent to the RAM using

DMA. Finishing the data transmission, the finite-state machine of the NN returns to

NN−ilde−state and sets the flag to ready (flag = ready).

6.3 Experiments

The experiments presented in this chapter were conducted with the Cyclone V SoC chip

that has an ARM-based hard processor system.

In the experiments, the FPGA-based NN was trained with five different PSO algorithms

(SPSO, DPSO, wPSOd−CV, PSOseed, and PSOseed2).

Two different types of experiments were conducted. The first type was used to inves-

tigate the performances of the PGA-based NN trained by five different software-based

PSO algorithms (SPSO, DPSO, wPSOd−CV, PSOseed, and PSOseed2) using the ARM
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processor. The second experiment type was employed to observe the operations of the

co-design architecture when compared with the software-only architecture concerning

the operating speed, and hardware-only architecture in terms of the required resources.

In our experiments, the parameters for the PSO algorithms were similar to the param-

eters of the experiments presented in chapter 5. The details of the parameters were as

follows.

• w = 0.9, c1 = c2 = 0.5 in the SPSO algorithm.

• w reduces from 0.9 to 0.00001, c1 = c2 = 0.5, c3 = 0.00001 in the wPSOd−CV

algorithm.

• w = 0.9, c1 = c2 = 0.5, c3 = 0.3 in the PSOseed and the PSOseed2 algorithm

• cv = 0.0, cl = 0.001 in the DPSO algorithm (similar to previous research [5])

The number of particles and the number of iterations were varied to observe the operation

of the NN trained by PSO algorithms in different situations.

In the experiments, the PSO algorithms were coded by C programming language by

ARM processor, and the NN was implemented in FPGA by SystemVerilog programming

language. The output data can be observed using Putty software as shown in Fig. 6.6.

Figure 6.6: Putty software

6.3.1 Performances of the NN trained by PSO algorithms

Three different publicly recognized databases were used to investigate the operations

of the NN trained by five PSO algorithms. The cross-validation was tested for each

database. The full list of the databases can be seen in Table 6.1.



6.3 Experiments 63

Table 6.1: List of experiments conducted with ARM approach

Dataset Features

Wine dataset
13 attributes, 3 classes
Cross validation data: 120 samples in set 1, 58 samples in set 2
(presented in section 6.3.1.1)

Australian credit dataset
14 attributes, 2 classes
Cross validation data: 490 samples in set 1, 200 samples in set 2
(presented in section 6.3.1.2)

Iris dataset
4 attributes. 3 classses
Cross validation data: 45 samples in set 1, 105 samples in set 2
(presented in section 6.3.1.3 )

6.3.1.1 Wine dataset

The wine dataset has 178 samples of three different Italian wines. Each sample consists

of thirteen attributes which come from the chemical analysis [6]. The cross-validation

was done by dividing the data randomly into two different sets. The first set had 120

samples, and other set had 58 samples.

To conduct the experiments with this dataset, the NN had 13 input nodes (for 13

attributes), 22 hidden nodes, and 3 output nodes (for 3 classes of wines).

Scenario 1: Fig. 6.7 and Table 6.2 show the experimental results when 120 samples

of set 1 were chosen as the training data, and 58 samples of set 2 were considered as

the testing data. The configurations of the PSO algorithms were 15 particles and 800

iterations. The learning error Gbest of the NN trained by the PSOseed2 reduced to the

lowest value 0.0034 at iteration 800.
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Figure 6.7: Reduction of Gbest with wine dataset, 120 training samples, 58 testing
samples
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Concerning the recognition rates of the NN trained by five PSO algorithms, Table 6.2

showed that at the minimum value of learning error (0.0034), the NN trained by the

PSOseed2 algorithm also obtained the highest recognition rate at 98.28%.

On the other hand, as illustrated in Table 6.2, the NN trained by the SPSO algorithm

had the highest learning error (0.0456) and the lowest recognition rate (89.66%).

Table 6.2: Results of FPGA-based NN with wine dataset, 120 training samples, 58
testing samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.0456 0.0193 0.0136 0.0098 0.0034

Recognition rate 89.66% 94.83% 96.55% 96.55% 98.28%

Scenario 2: The cross-validation was carried out in this scenario. Set 2 which had

58 samples became the training set, and the 120-samples set was selected as the testing

data. The PSO parameters had the configurations of 40 particles and 400 iterations.

Fig. 6.8 illustrates the reduction of the learning error, the Gbest value, in each iteration

of the training phase. The list of all experimental results concerning the recognition

rates and the learning errors of the NN trained by five PSO algorithms is expressed in

Table 6.3. Similar to the results in the previous scenario when set 1 was considered as

the training data, the high accuracy in terms of learning error and recognition rate of

the NN trained by the PSOseed2 algorithm was confirmed by these experimental results.
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Figure 6.8: Reduction of Gbest with Wine dataset with 58 training samples, 120
testing samples
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Table 6.3: Results with wine dataset, 58 training samples, 120 testing samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
262× 10−5 79× 10−5 76× 10−5 58× 10−5 32× 10−5

Recognition rate 86.67% 90.00% 90.00% 90.00% 93.33%

6.3.1.2 Australian credit dataset

The Australian credit dataset was also employed in our experiments to investigate the

operations of the hardware-based NN trained by software-based PSO algorithms in a

different situation. This dataset comes from the credit card application of the Australian

which has two classes called rejection and approval. Each sample of this dataset has

fourteen attributes which were modified to protect the confidentiality [6]. With this

dataset, 490 samples were included randomly in the set 1, and 200 samples were also

selected randomly as set 2.

The cross-validation was conducted with the 14-24-2 NN. In this case, the NN had

14 input nodes corresponding to 14 attributes, 24 hidden nodes, and 2 output nodes

corresponding to 2 classes.

Scenario 1: The experimental results when 490-sample set was chosen as training

set, and 200-sample set was considered as the testing set are given in both Fig. 6.9 and

Table 6.4. The number of particles was 10, and the number of iterations was 250.

Fig. 6.9 shows the reduction curves of the learning errors Gbest in this scenario. Among

five PSO algorithms, the NN trained by the PSOseed2 algorithm continued to achieve

the lowest learning error at iteration 250.

Table 6.4 shows the learning errors and the recognition rates after 250 training itera-

tions. Similar to the learning error, the recognition rate of the NN trained by PSOseed2

algorithm obtained the highest number at 95.50% when compared with the NN trained

by other four other PSO algorithms.

Table 6.4: Results with Australian credit dataset, 490 training samples, 200 testing
samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.1582 0.1533 0.1282 0.1282 0.1244

Recognition rate 90.00% 93.00% 94.50% 94.50% 95.50%
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Figure 6.9: Reduction of Gbest with Australian credit dataset, 490 training samples,
200 testing samples

Scenario 2: the second scenario of the cross-validation focused on the small number

of training data, and the high number of testing data. Therefore, 200 samples of set 2

became the training data while 490 samples of set 1 were the testing data.

Fig. 6.10 and Table 6.5 demonstrate the results of the experiment with 5 particles,

850 iterations. Compared with other PSO algorithms, the NN trained by PSOseed2

algorithm got the smallest learning error (0.0135) and obtained the best recognition

rate (82.86%).

These results once again expressed that the PSOseed2 algorithm could be a potential

solution to improve the SPSO algorithm in the training of the FPGA-based NN.

Table 6.5: Results with Australian credit dataset, 200 training samples, 490 testing
samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.0635 0.0286 0.0184 0.0164 0.0135

Recognition rate 80.82% 81.84% 82.65% 82.65% 82.86%

With the cross-validation, the NN trained by the PSOseed2 algorithm obtained the

highest recognition rate and the lowest Gbest not only with the high number of training

samples (490 samples) but also with the small number of the training samples (200

samples). In addition, the high recognition rate and the low Gbest of the NN trained by

the PSOseed2 algorithm were also observed even with the small number of the particles

(5 particles).
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Figure 6.10: Reduction of Gbest with Australian credit dataset, 200 training samples,
490 testing samples

6.3.1.3 Iris dataset

The iris dataset which has four attributes, three classes was also evaluated [6]. In this

situation, the configuration of the NN was four input node, ten hidden nodes in each

hidden layer, two hidden layers, three output nodes. The cross-validation between 45

samples randomly selected as set 1 and 105 samples randomly chosen as set 2 was done.

Scenario 1: When set 1 used as training data, set 2 used as testing data, the PSO

algorithms had 25 particles and 500 iterations.

The learning curves of the NN trained by five PSO algorithm are presented in Fig. 6.11.

The final values of the learning errors and the recognition rates are illustrated in Ta-

ble 6.6. As can be seen, the NN trained by all three proposed PSO algorithms (wPSOd−CV,

PSOseed, PSOseed2) had higher recognition rates when compared with the NN trained

by two other PSO algorithms presented in previous studies (94.29% with the DPSO

algorithm, and 91.43% with the SPSO algorithm).

Concerning the errors of the learning phase, the NN trained by the PSOseed2 algorithm

got the lowest learning error (0.0123) while the NN trained by the SPSO algorithm had

the highest learning error (0.0702).

Scenario 2: For the cross-validation, 105 samples of set 2 were chosen as the training

data, 45 samples of set 1 were selected as the testing data in this scenario.
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Figure 6.11: Results with Iris dataset, 45 training samples, 105 testing samples

Table 6.6: Results with Iris dataset, 45 training samples, 105 testing samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.0702 0.0664 0.0418 0.0128 0.0123

Recognition rate 91.43% 94.29% 96.19% 96.19% 96.19%

Fig. 6.12 shows the reduction of Gbest, the learning errors, of the FPGA-based NN

trained by five different algorithms executed by the ARM processor when the 105-

samples dataset was used as the training data, and the 45-samples dataset was con-

sidered as the testing data. The configurations of the PSO algorithms were 20 particles

and 820 iterations. As observed, the recognition rate of the NN trained by both the

proposed PSOseed and the proposed PSOseed2 obtained the highest recognition rates.

In addition, the learning error Gbest of the NN trained by the PSOseed2 algorithm also

decreased to the lowest values among five PSO algorithms (SPSO, DPSO, wPSOd−CV,

PSOseed, and PSOseed2).

Table 6.7: Results of FPGA-based NN with iris dataset, 45 training samples, 105
testing samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.0745 0.0450 0.0448 0.0353 0.0269

Recognition rate 95.56% 95.56% 95.56% 97.78% 97.78%

Results presented in this section confirmed the efficiency of the proposed PSO algorithms

for the NN training, especially the PSOseed2 algorithm, when compared with the PSO

algorithms presented in previous studies.
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Figure 6.12: Results with iris dataset 105 training samples, 45 testing samples

6.3.2 Operations of the co-design architecture using the ARM proces-

sor

6.3.2.1 Operating speed

In this experiment, the testing speed of the FPGA-based NN in the co-design architec-

ture was compared to the testing speed of the software-based NN in the software-only

architecture. In this situation, the software-only architecture was also developed in this

research. The details of the software-only architecture are shown in appendix A.

There are two different environments for this experiment. The first one is a conven-

tional computer which implements the software-based NN. The second one is the DE1-

SoC board which can investigate the operating speed of both software-based NN and

hardware-based NN.

To investigate the speed advantage of the co-design architecture using the ARM proces-

sor when compared to the co-design architecture using the NIOS II processor presented

in chapter 5 of this dissertation. The FPGA-based NN used with NIOS II processor was

also included in this experiment.

The list of the experiments can be observed as follows.

1. The conventional computers: both the NN and the PSO algorithms were coded

by the C programming language, and the executions of the NN and the PSO were

done by an Intel processor. The programs were compiled using Visual Studio 2013

on two different computers. The first computer had Intel core i3 (2 cores, 2.4 GHz)
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processor. The second computer was equipped with Intel core i7 (4 cores, 4.0 GHz)

processor. The time was measured by QueryPerformanceCounter() function [7].

2. The DE1-SoC board: The frequency of the system could be modified using the

Altera phased-locked loop IP cores [3]. Therefore, this experiment observed the

operating speed of the system in two different clock frequencies that were 50 MHz

(the default clock of the DE1-SoC), and 100 MHz. There are three different sce-

narios for the DE1-SoC as follows.

(a) The software-based NN in the NIOS II processor: both the NN and the PSO

were coded by the C programming language, the operations of the NN and

PSO were executed by the NIOS II processor. The measurement of the time

can be investigated using performance counter [3].

(b) The FPGA-based NN with NIOS II approach: the NN was implemented in

the hardware by SystemVerilog programming language, the PSO algorithms

which were coded by the C programming language were implemented by the

NIOS II processor. This approach also used the performance counter core to

investigate the execution time [3].

(c) The FPGA-based NN with ARM approach: the NN was implemented in

the hardware by SystemVerilog programming language, the PSO algorithms

which were coded by the C programming language were implemented by the

ARM processor. In this situation, the time was measured by clock gettime()

function [8].

The experimental results were shown in Table 6.8, and 6.9. The results for the Intel

approaches were the average execution time after 15 tests. As can be seen, the speeds of

the testing phase of the core i3 approach and core i7 approach were 0.0776 and 0.4523,

respectively. The operating speed of the software-based NN using NN processor was

2.1595 seconds (at 50 MHz of the clock frequency of the NIOS II processor) and 1.4681

seconds (at 100 MHz of the NIOS II clock frequency). The operating speed of the

software-based NN in NIOS II approach was higher than the software-based NN in Intel

approach because the Intel processor could operate at a higher clock frequency than the

NIOS II process.

In our experiments, the co-design architectures still need to use the NIOS II processor

or the ARM processor to send the testing data to the input of the NN, to receive the
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processed data from the output of the NN, and to print the results. Therefore, the

performance of the co-design architectures was still affected by the NIOS II processor

or the ARM processor. However, experimental results confirmed that the FPGA-based

NN achieved the lower operating speeds than the software-based NN even the clock

frequencies of the NIOS II processor or the ARM processor were much lower than the

clock frequencies of the Intel processors.

In the comparison between two FPGA-based NNs, the FPGA-based NN used with the

ARM processor obtained the higher performance concerning the testing speed. These

results can be explained because the frequency of the ARM processor did not depend on

the system clock, and the ARM processor could operate at a higher clock frequency than

the NIOS II processor. Another reason is the using the DMA for the data transmission

between ARM processor and the FPGA-based module.

Table 6.8: The testing time in second by using DE1-SoC

`````````````̀Approach
frequency

50 MHz 100 MHz

Software-based NN implemented in NIOS II 2.1695 seconds 1.4681 seconds

FPGA-based NN with NIOS II approach 0.4350 seconds 0.1714 seconds

FPGA-based NN with ARM approach 0.0406 seconds 0.0278 seconds

Table 6.9: The testing time in second by using Intel processor

`````````````̀Approach
frequency

2.4 GHz 4.0 GHz

Software-based NN implemented in Intel core i3 0.4523 seconds -

Software-based NN implemented in Intel core i7 - 0.0776 seconds

6.3.2.2 Required resources

Another aspect needs to be investigated in the co-design architecture is the required

resources. With the goal of comparing the required resources between the co-design

architecture and the hardware-only architecture, the hardware-only architecture was

developed. The details of the hardware-only architecture can be seen in appendix B.

In the hardware implementation, the implementation of the floating-point intellectual

property cores in the floating-point module required a lot of resources. Therefore, two

different approaches of the hardware-only were investigated. In the first approach, each

of hardware-based NN and hardware-based PSO had its own floating-point module.
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Thus, two floating-point modules were implemented. On the other hand, in the second

approach, the FPGA-based NN and the FPGA-based PSO shared one common floating-

point module using a FPGA-based multiplexer (MUX).

This experiment also checked the required resources of the co-design using NIOS II

processor to compare with the required resources of the co-design using ARM processor.

Table 6.10 shows the experimental results when the NN was used to test with the iris

dataset. In this situation, the size of the NN was four input nodes, ten hidden nodes,

and three output nodes.

Experimental results showed that the required resources in hardware-only approach were

excessive. The compilations in both scenarios of the hardware-only architecture were

failed (more than 100% of the logic utilization). However, the using of the MUX reduced

the required digital signal processing (DSP) blocks. This results can be explained be-

cause the floating-point intellectual property cores needed to used a lot of logic elements

and DSP blocks as described in floating-point IP cores user guide [9].

Results also confirmed that co-design architecture reduced the required logic resources

concerning the logic elements and the memory bits compared to the hardware-only

architecture. In this situation, the co-design architecture could overcome the limited

resources of the hardware-only architecture.

The required resources in the co-design architecture with the ARM processor was also

lower than the resources required in the co-design architecture with NIOS II processor.

This results can be explained because the resources previously resources for the NIOS

II processor were not used in the ARM approach. As presented, the NIOS II processor

was implemented using the available FPGA resources while the ARM processor was

physically implemented on the FPGA board. Furthermore, the required memory bits of

the NIOS II approach was high because this approach used the on-chip memory while the

ARM approach employed the DDR3 RAM. In addition, the ARM processor already had

the Linux operating system while the operating system did not be implemented in NIOS

II processor. In case of using Linux, the required resources for the NIOS II processor

will increase with the using of the resources reserved for the memory management unit

(MMU).
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Table 6.10: Resources Utilization in percentage

`````````````̀Approach
Resources

Logic elements Memory bits DSP blocks

Hardware-only without MUX 280% 2% 44%

Hardware-only with MUX 279% 2% 22%

Co-Design with NIOS II 51% 77% 22%

Co-Design with ARM 46% <1% 22%

6.4 Discussion

This chapter presented the second co-design architecture using the ARM processor. In

this architecture, the operations of the PSO algorithms and the FPGA-based module

were similar to the operations in the architecture using the NIOS II processor. However,

PSO algorithms were executed by the ARM processor which can operate at a higher clock

frequency than the NIOS II processor. In addition, the ARM processor is physically

implemented on the FPGA board while the NIOS II processor is implemented using

the available resources of the FPGA device. Thus, the ARM approach may reduce the

required resources of the program.

The co-design architecture using the ARM processors also has two improvements when

compared to the NIOS II is the appearances of the DMA and the DDR3 RAM. The

DMA may increase the operating speed of the program. On the other hand, the using

of the RAM can reduce the required resources of the design.

Experimental results have demonstrated the speed advantage of the co-design with ARM

processor when compared with the software-only approach or the co-design with the

NIOS II processor. The results also confirmed the resource advantage of the co-design

with ARM processors when compared with the hardware-only approach and the co-

design using the NIOS II processor.

The operations of the proposed PSO algorithms for the training of the NN in the co-

design architecture with ARM processor were also observed. Results showed that the

NN trained by the proposed PSO algorithms, especially the PSOseed2 algorithm, got the

higher accuracy concerning the learning errors and the recognition rates when compared

with the NN trained by other PSO algorithms presented in previous research (SPSO,

DPSO).

However, the resource was still an important issue in the proposed architecture. There-

fore, the next chapter proposes the third co-design architecture which gives a solution
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to reduce the required resources.
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Chapter 7

Proposed NN-PCA architecture

using the ARM processor

This chapter presents a method to improve performances of the NN trained by pro-

posed PSO algorithms in the proposed co-design architectures. To reduce the required

resources while maintaining the high recognition rate, this chapter proposes the third

co-design architecture which is a combination between the co-design architecture using

ARM processor introduced in chapter 6 and the FPGA-based principal component anal-

ysis (PCA). The performances of the NN trained by the proposed PSO algorithm in the

third co-design architecture are also discussed in this chapter.

7.1 Introduction

The co-design architecture using the ARM processor presented in the previous chapter

had obtained a higher operating speed and required fewer resources regarding the logic

elements and the memory bits than the NIOS II approach. However, the required

resources for the FPGA-based NN is still very high. It is beneficial to study the reduction

of the size of the hardware-based NN. In this situation, the resource utilization of the

design could be reduced.

Our research investigates the PCA to minimize the size of the NN. In the NN-PSO,

the PCA is used not only in the training phase but also in the testing phase. Hence,

to maintain the operating speed of the testing phase, the PCA needs to be hardware

implemented on the FPGA side. However, the conventional PCA algorithm using the

76
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matrix calculation will require many resources [1]. This approach is unsuitable for the

hardware device.

In previous research, the Generalized Hebbian Algorithm (GHA) was presented [2, 3].

Several researchers have mentioned that the GHA is considered to be one of the best

PCA algorithms for the hardware implementation because this algorithm does not use

the covariance matrix [4, 5]. For this reason, the GHA is used in our research as the

PCA algorithm.

The main contribution in this chapter is to introduce an architecture for the co-design

NN trained by PSO algorithms. This architecture is the combination between the ar-

chitecture presented in chapter 6 and the hardware-based PCA (NN-PCA).

This chapter is presented as follows. Section 7.2 introduces the GHA algorithm. The

proposed architecture is presented in section 7.3. The experimental results are shown in

section 7.5. Section 7.5 concludes this chapter.

7.2 Generalized Hebbian Algorithm

The concept of the GHA is a single layer NN using the Hebbian learning algorithm.

During the training phase, the weights of this NN are modified in each iteration. After

a number of iterations, the NN becomes a filter for the principal components, and the

ith output of this NN corresponds to the ith principal component of the input data. The

GHA is the unsupervised learning. The details and the proof of this assumption have

already been presented in previous studies [2, 3].

The outputs of the GHA-based NN can be calculated according to Eq.( 7.1).

yj(t) =

NI∑
i=1

wji(t)xi(t) (7.1)

where NI is the number of input nodes, NO is the number of output nodes, yj(t) is the

jth component of the output vector #»y at time t (0 6 j 6 NO), xi(t) is the ith component

of the input vector #»x at time t (0 6 i 6 NI), wji is the connection weight between ith

input and jth output.

The weight update function is based on the Hebbian rule as can be seen in Eq. (7.2) [2, 3]
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wji(t + 1) = wji(t) + η

[
yj(t)xi(t)− yj(t)

j∑
k=1

wki(t)yk(t)

]
(7.2)

where η is the learning rate.

The weight update function can be rewritten to reduce the calculation task as can be

seen in Eq. (7.3).

wji(t + 1) = wji(t) + ηyj(t)

[
xi(t)−

j∑
k=1

wki(t)yk(t)

]
(7.3)

7.3 Proposed architecture

7.3.1 Overview

The proposed NN-PCA architecture still maintains the concept of the co-design discussed

in chapter 4 of this thesis. In this architecture, the PSO algorithms are implemented on

the software side by the ARM processor. On the other hand, the NN and the PCA are

hardware implemented.

Compared with the hardware-only architecture, this partitioning strategy could not

only maintain the testing speed of the FPGA-based program but also reduce the FPGA

resources previously reserved for the PSO implementation. Compared with the software-

only architecture, this co-design could not only maintain the flexibility of the software-

based program in the training phase but may also obtain a higher operating speed in

the testing phase. In this case, the flexibility relates to the easiness to modify the PSO

parameters or even change the PSO algorithms without the need of rebuilding the FPGA

part.

Fig 7.1 shows the proposed architecture with both FPGA side and software side. The

FPGA side has two main components called the PCA module and the neural network

module. The PSO algorithms are implemented by the ARM processor on the software

side. There are four connections between these two sides. The control−signal and the

input−data are sent from the software side to the hardware side. On the contrary, the

status−signal and the output−data are sent from the hardware side to the software side.

The data on the software side are stored in the DDR3 RAM. When the ARM needs to

conduct the operation, these data will be collected from the RAM.
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Figure 7.1: Proposed NN-PCA architecture

The operation of this proposed architecture is as follows.

1. The training phase of the PCA: the software side sends the control−signal = 1

to the hardware side along with the trained data. This training phase is the

unsupervised learning which does not depend on the output data. The trained

PCA weights #»w are stored.

2. The training phase of the NN: the software side sends the control−signal = 0 to

the hardware side along with the trained data. In this case, the trained weights

are loaded into the PCA module. This is the supervised learning. The output data

from the NN are evaluated on the software side using PSO algorithms. Finishing

this training phase, the trained weights are kept.

3. The testing phase of the system: the software side sends the control−signal = 0

to the hardware side along with the test data.

The details each step will be discussed in section 7.3.3 of this chapter.

On the hardware side, the processing of the data in each node of the hardware-based

NN is based on Eq. (2.1) shown in chapter 2 of this dissertation. To demonstrate, the

operation of one node in the NN according to Eq. (2.1) can be expressed as can be seen

in Fig. 7.2.
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Figure 7.2: Operation of one node in the NN

The NN module and the PCA module are implemented in hardware to take the speed

advantage of the FPGA. To conduct the arithmetic operators, both NN module and

PCA module connects to another module called ALU which implements the floating-

point IP cores. The output latency of each operator is presented in the floating-point IP

cores user guide [6]. These latencies are used for the synchronization between the ALU

module and other hardware modules (NN and PCA). The synchronization is shown in

Fig. 7.3 and is described as follows.

1. The request signals from the FPGA-based NN or FPGA-based PCA are sent to the

ALU module. For example, if the subtraction is needed, the request−subtraction

is used.

2. The data signal are also forwarded to the ALU module.

3. The calculation−counter in the ALU module is configured based on the latency of

the requested operation. For example, if the request signal is request−subtraction.

The calculation−counter = 7 because the latency of the subtraction is seven

clock cycles according to the user guide. The FPGA-based NN or the FPGA-

based PCA always checks the value of the calculation−counter. The value of the

calculation−counter reduces one unit on each clock cycle.

4. if calculation−counter = 0, the FPGA-based NN or FPGA-based PCA will receive

the output of the floating-point calculation.

7.3.2 Connections between FPGA side and software side

The connection between hardware side and software side is illustrated in Fig. 7.4 which

can be explained as follows.
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Figure 7.3: Connection with ALU module

Figure 7.4: Connections between hardware side and software side

1. When the software side wants to conduct the data transmission with the FPGA

side. The ARM processor will check the current state of the FPGA side by using

status−signal.

2. If the FPGA is in the busy state (status−signal = 0), the software side will wait.

Otherwise, the software side sends the control−signal to the FPGA side. The

control−signal has two different states. If the program is in the training phase of

the PCA, the control−signal = 1. On the other hand, the control−signal = 0 if

the program is in the testing phase of the PCA.

3. The data from PSO module are also forwarded to the FPGA side by using the

input−data.

4. The software rechecks status−signal to determine whether the data processing

have been finished on the FPGA side or not.

5. If the data processing is done (status−signal = 1), the software side received the

output data using the output−data.

To take advantage of the FPGA architecture and to increase the operating speed, all

connections between software side and hardware side using four signals status−signal,
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control−signal, input−data, output−data are conducted by DMA. The DMA controllers

are configured by the ARM processor.

7.3.3 Operations of the NN-PCA

The training phase of the proposed architecture contains two different tasks called the

PCA training and the NN training which will be presented in this section.

7.3.3.1 PCA training phase

Figure 7.5: PCA training task

Fig. 7.5 shows the training of the PCA. In this situation, the control−signal received

from the ARM processor has value one (control−signal = 1). The PCA training is the

unsupervised learning which is trained based only on the input data so that the software

module does not need to receive the output data. At any given training time t, the

trained weights #»w(t) are stored. At the time (i+ 1), these weights are used to calculate

the new weights #»w(t+ 1) in the weight update function as shown in Eq. (7.2).

As discussed in section 7.2, the weight update function operates based on the GHA

algorithm. The operation of this function could be divided into two main subtasks. The

first subtask is the calculation of the output #»y which is expressed in Eq. (7.1). The

second subtask is to conduct the weight update function which is shown in Eq. (7.3).

The operation of the proposed PCA module can be demonstrated in Fig. 7.6.

1. The input data from the software module are processed in the Calculate−outputs

submodule. In this submodule, the output data are processed according to Eq. (7.1)

using a finite-state machine. When this submodule needs to use the floating-point
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Figure 7.6: Operation of the PCA module

calculation, it will establish a data transmission session with the ALU module. The

operation of the data transmission is already described in Fig. 7.3 of section 7.3.1.

2. The calculated outputs from the Calculate−outputs submodule and the inputs are

used in the Update−weights submodule. The weights of the PCA are estimated

in this module based on Eq. (7.3). The operation of this submodule is also based

on a finite-state machine. This submodule also has the connections to the ALU

module to conduct the floating-point calculations.

7.3.3.2 NN training phase

After finishing the PCA training task, the NN training task will be carried. Fig. 7.7

illustrates the training of the NN.

Figure 7.7: NN training task

To conduct the PCA training phase, the software side sends the control−signal which

has value zero (control−signal = 0) to the FPGA-based module.



7.4 Experiment 84

During the NN training phase, the trained PCA weights from the PCA training task

will be loaded into the PCA module.

The output data from PCA module become the input of the NN. These data are pro-

cessed in the NN module. The NN training is the supervised learning. Hence, in any

given time t, the actual outputs from the NN are compared with the labeled outputs of

the training data based on the fitness function on the software side. In our program, the

mean square error function which is presented in Eq. (2.11) of chapter 2 is employed.

The results of fitness function are used to update the new Pbestp(t + 1) of particle p,

the new Gbest(t+ 1) of all particles, the new position at time (t+ 1) of particle p, and

the new velocity #»vp(t + 1) at time (t + 1) of particle p. The position update function,

the new Pbestp(t+ 1) function, the new Gbest(t+ 1) function are shown in Eqs. (2.5),

(2.7), and (2.8), respectively. The velocity update function depends on the PSO algo-

rithm. For example, if the PSOseed algorithm is used, Eq. (3.4) is applied. The details

in each step of the training on the software side can be seen in Fig. 4.2 of chapter 4. As

presented, all operations of the PSO algorithms in this architecture are executed by the

ARM processor.

Finishing the training phase, the PCA trained weights and the NN trained weights will

be used in the testing phase.

7.4 Experiment

All experiments presented in this section used the DE1-SoC development kit which had

the Cyclone V SoC chip. The accuracy concerning the recognition rates and the learning

errors of the NN trained by five PSO algorithms (SPSO, DPSO. wPSOd−CV, PSOseed,

and PSOseed2) were observed. The parameters for PSO algorithms were similar to the

parameters presented in chapter 5, and 6. The details of the parameters are as follows.

• w = 0.9, c1 = c2 = 0.5 in the SPSO algorithm.

• w reduces from 0.9 to 0.00001, c1 = c2 = 0.5, c3 = 0.00001 in the wPSOd−CV

algorithm.

• w = 0.9, c1 = c2 = 0.5, c3 = 0.3 in the PSOseed algorithm and the PSOseed2

algorithm.

• cv = 0.0, cl = 0.001 in the DPSO algorithm (similar to previous research [7]).



7.4 Experiment 85

All experiments were conducted using the NN-PCA architecture. In these experiments,

the particle numbers and the iteration numbers of the NN learning, and the iteration

numbers of the PCA learning were varied to investigate different situations.

In the experiments, the PSO algorithms were coded by C programming language by the

ARM processor, and the NN was implemented in FPGA by SystemVerilog programming

language.

7.4.1 Performances of NN trained by the PSO algorithms

In the experiments to investigate the performances of the PSO algorithms in NN-PCA

architecture, two different databases were used which can be seen in Table 7.1.

Table 7.1: List of experiments conducted with NN-PCA approach

Dataset Features

Diabetic retinopathy debrecen dataset :
19 attributes, 2 classes
Cross-validation data: 450 samples in set 1, 300 samples in set 2
(presented in section 7.4.1.1)

Wine dataset:
13 attributes. 3 classes
Cross validation data: 88 samples in set 1, 90 samples in set 2
(presented in section 7.4.1.2 )

7.4.1.1 Diabetic retinopathy debrecen dataset

The diabetic retinopathy debrecen dataset comes from the feature extracted from the

Messidor dataset. This dataset has nineteen features which are used to predict whether

a sample of this dataset has any sign of diabetic retinopathy or not [8].

To conduct the experiments with this dataset, 450 samples were chosen randomly as

set 1, and 300 samples were considered as set 2. The FPGA-based PCA was used to

reduce the input data from nineteen to four. Thus, the configurations of the NN were

four input nodes corresponding to four inputs, twenty-five hidden nodes, and two output

nodes corresponding to two classes.

Scenario 1: When set 1 was used as the training set, set 2 was selected as the testing

set. The settings of the PSO algorithms were 10 particles and 150 iterations. The

iteration numbers for the unsupervised learning was 2000 iterations. Two measurements

for the NN trained by five PSO algorithms were investigated.

The first measurement is the learning error in the training phase. The reduction of the

learning error Gbest in this scenario is shown in Fig. 7.8. As can be seen, the reduction

curve of the NN trained by the PSOseed2 algorithm declined to the lowest value at 0.1288
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which confirmed the performance of the NN trained by PSOseed2 algorithm concerning

the learning error.
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Figure 7.8: Reduction of Gbest with diabetic retinopathy debrecen dataset, 450 train-
ing samples, 300 testing samples

The second measurement is the recognition rate in the testing phase. The recognition

rates of the NN trained by all five PSO algorithms after 150 training iterations are shown

in Table 7.2. These results expressed the accuracy of the NN trained by the PSOseed2

algorithm in terms of the recognition rate.

Table 7.2: Results of FPGA-based NN with diabetic retinopathy debrecen dataset,
450 training samples, 300 training samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.1529 0.1443 0.1302 0.1297 0.1288

Recognition rate 90.67% 91.00% 91.33% 92.67% 93.67%

Scenario 2: To conduct the cross-validation, set 2 which had 300 samples was also

considered as the training set in the second scenario. In this case, 450 samples of set 1

were chosen as the testing data.

In this scenario, the PSO training had 20 particles and 500 iterations. The training

iterations for the FPGA-based PCA module was 4200 iterations.

Fig. 7.9 presents the reduction of Gbest when the NN trained by five PSO algorithms.

In this figure, the PSOseed2 approach obtained the lowest learning error while the SPSO

approach had the highest learning error.
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Figure 7.9: Reduction of Gbest with diabetic retinopathy debrecen dataset, 300 train-
ing samples, 450 testing samples

Experimental results shown in Table 7.3 also confirmed that the NN trained by the

PSOseed2 algorithm in the NN-PCA architecture achieved the highest accuracy concern-

ing the learning error when compared with the NN trained by other four PSO algorithms

(SPSO, DPSO, wPSOd−CV, PSOseed). At the minimum learning error (0.0743), the

NN trained by the PSOseed2 algorithm also got the highest recognition rate at 85.33%.

Table 7.3: Results with diabetic retinopathy debrecen dataset, 300 training samples,
450 testing samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.0853 0.0823 0.0786 0.0766 0.0743

Recognition rate 81.78% 82.45% 84.22% 85.11% 85.33%

7.4.1.2 Wine dataset

The wine dataset which has thirteen attributes and three classes was also used in the

experiments with the NN-PCA architecture [9]. In these experiments, the FPGA-based

PCA module reduces the size of the input data from thirteen to three. The configurations

of the NN were three input nodes, seven hidden nodes in each hidden layer, two hidden

layers, and three output nodes. This 178-sample dataset was divided randomly into two

sets for the cross-validation, the first set has 88 samples and the remaining 90 samples

were belong to set 2.
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Scenario 1: Set 1 was used as the training data and set 2 was selected as the testing

data, The configurations of the PSO algorithms were 25 particles and 355 iterations.

The hardware-based PCA had 2000 iterations for the unsupervised learning.

Fig. 7.10 illustrates the reduction of the learning error, Gbest, of the NN trained by

five different PSO algorithms (SPSO, DPSO, wPSOd−CV, PSOseed, and PSOseed2).

As can be observed, the Gbest in the PSOseed2 approach decreased to the lowest value

while the SPSO approach had the highest learning error.
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Figure 7.10: Reduction of Gbest with wine dataset, 88 training samples, 90 testing
samples

Concerning the recognition rates of the NN, Table 7.4 gives information that at the

minimum value of Gbest (0.0995), the NN trained by the PSOseed2 algorithm also

obtained the highest percentage of correct recognition at 91.11%%. On the other hand,

the NN trained by the SPSO algorithm still had the lowest recognition rate at 78.89%

and the highest learning error Gbest at 0.1463 among five algorithms.

Table 7.4: Results with wine dataset, 88 training samples, 90 testing samples

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.1463 0.1224 0.1202 0.1189 0.0995

Recognition rate 78.89% 84.44% 87.78% 88.89% 91.11%

Scenario 2: Another scenario was conducted when set 1 became the testing data,

and set 2 was used as the training data. In this scenario, the number of particles was 30,
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the number of iterations for the NN training was 225. The training of the FPGA-based

PCA had 10000 iterations.

The reduction curves of the fitness values Gbest of the NN train by five PSO algorithms

are shown in Fig. 7.11, and all experimental results are presented in Table 7.5. Similar to

other experiments, the results demonstrated the efficiency regarding the recognition rate

of the NN trained by three proposed algorithm (wPSOd−CV, PSOseed, and PSOseed2)

when compared with the NN trained by PSO algorithms introduced in previous studies

(SPSO, DPSO). Among three proposed PSO algorithms, the NN trained by PSOseed2

algorithm had the lowest error in the training phase at 0.0975.
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Figure 7.11: Reduction of Gbest with wine dataset 90 training samples, 88 testing
samples

Table 7.5: Results wine dataset, 90 training samples, 88 training

SPSO DPSO wPSOd−CV PSOseed PSOseed2
Final Gbest

(Learning error)
0.1375 0.1143 0.0991 0.0988 0.0975

Recognition rate 87.50% 92.05% 93.18% 93.18% 93.18%

7.4.2 Operations of the NN-PCA architecture

The proposed NN-PCA architecture needs to be investigated in two main aspects. The

first aspect is the required resources concerning the logic elements and the memory

bits. The second aspect is the speed when compared to the conventional software-based

program.
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7.4.2.1 Required resources

The goal of this experiment is to investigate the advantage of the using of FPGA-based

PCA concerning the resources. The resources concerning the memory bits of the NN-

PCA architecture is very low because our proposed NN-PCA uses the DDR3 RAM

instead of on-chip memory, all weights and biases of the NN are stored in the DDR3

RAM. Hence, the resources investigated in this situation are the logic elements. Two

different architectures were used in the experiment. The first one is the co-design using

ARM processor presented in chapter 6 of this dissertation (without-PCA approach).

The second one is the NN-PCA architecture introduced in this chapter. The experiment

was conducted with two different datasets presented in section 7.4.1. Our research also

tried to implement the hardware-only version of the NN-PCA approach for using these

two databases. However, the required resources of the hardware-only architecture were

excessive, the Cyclone V did not have enough required resources. Thus, this section

does not focus on the hardware-only architecture.

Diabetic retinopathy debrecen dataset: this scenario used one-hidden-layer NN to

test with the diabetic retinopathy debrecen dataset (300 samples chosen randomly as

training data, 350 samples selected randomly as testing data). Each architecture had

three different configurations of the hidden nodes which were 8 hidden nodes, 20 hidden

nodes, and 25 hidden nodes. The input nodes were 19, and the output nodes were 2.

In the PCA approach, the input size was reduced from 19 to 4. The number of PCA

iteration was 2000. The PSO parameters were 20 particles, 150 iterations.

Table 7.6: Results with diabetic retinopathy debrecen

Approach Hidden nodes Resources Gbet Recognition rate

PCA
8 58% 0.0862 96.86%
20 69% 0.0848 96.86%
25 75% 0.0829 96.86%

Without PCA
8 35% 0.0904 93.14%
20 76% 0.0889 95.71%

25
>100%

(compile failed)
- -

Table 7.6 presents the experimental results. Because the PCA is implemented in hard-

ware using SystemVerilog programming language, this module also consumes the FPGA

resources. Thus, when the NN had a small number of hidden nodes, the required

resources for the PCA approach could be higher than the required resources for the
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without-PCA approach. However, using a small number of nodes in hidden layers re-

duced the recognition rate and increased the learning error. In the case of using the

NN which had a significant number of hidden nodes, the required resources of the

PCA approach decreased significantly when compared with the required resources of

the without-PCA approach. For example, with 25 hidden nodes, the number of weights

and biases for the without-PCA are (19 + 1)× 25 + (25 + 1)× 2 = 552 while the number

of weights and biases for the PCA approach after conducting the PCA process from 19

to 4 are (4 + 1)× 25 + (25 + 1)× 2 = 175. Experimental results also demonstrated that

the PCA approach with 8 hidden nodes got the higher recognition rate and required

fewer resources than the 20 hidden nodes of the without-PCA approach.

Wine datase: The second scenario investigated the wine dataset that has thirteen

attributes and three classes (90 samples were chosen randomly as the training data, 88

samples were selected randomly as the testing data). The PCA which trained by 5500

iterations was used to reduce the input data from 13 to 3.

Two different configurations of the PSO parameters were chosen to investigate the oper-

ation in different situations. The first configuration used the smaller number of particles

numbers and iteration numbers than the second configuration. In both configurations,

the PCA iteration was 5500 iterations.

In the first configuration of the PSO parameters, two different two-hidden-layer NNs

were used. The first NN had 5 hidden nodes in each layer and the second NN had 10

hidden nodes in each layer. The number of particles was 5, the number of iterations

was 300. Experimental results are shown in table 7.7. Two different two-hidden-layer

NNs were also employed in the second configuration of the PSO parameters which had

5 hidden nodes and 15 hidden nodes in each layer. In this case, the particle numbers

and the iteration numbers were increased to 15 particles and 500 iterations. The results

are shown in Table 7.8.

Table 7.7: Results with wine dataset, 5 particles, 300 iterations, 5500 PCA

Approach Hidden nodes Resources Gbet Recognition rate

PCA
5 43% 0.1535 94.318%
10 63% 0.0582 95.45%

Without PCA
5 28% 0.1954 73.863%
10 65% 0.0776 94.56%
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Table 7.8: Results with wine dataset,15 particles, 500 iterations, 5500 PCA

Approach Hidden nodes Resources Gbet Recognition rate

PCA
5 43% 0.1293 94.318%
15 71% 0.0501 96.54%

Without PCA
5 28% 0.1732 86.363%
15 81% 0.0734 95.45%

Similar to the experimental results in the previous scenario, with a small number of

hidden nodes, the required resources of the without-PCA approach was lower than the

PCA approach because of the resources reserved for the implementation of the PCA.

However, the recognition rates with the small number of hidden nodes were low (73.86%

with 5 particles 300 iterations, and 86.33% with 15 particles, 500 iterations). Using

bigger hidden nodes, the recognition rates of both approaches were increased. In this

situation, results showed that the PCA approach obtained the higher recognition rates

and reduced the required resources when compared with the without-PCA approach.

This results can be explained because the PCA approach not only reduced the required

resources previously reserved for the weights and biases of the NN but also reduced the

correlated information.

7.4.2.2 Operating speed

Another aspect that needs to be considered is the operating speed. Experiments were

conducted to compare the operating speed between the proposed co-design architecture

and the software-only architecture. In the software-only architecture, both NN and

PCA were implemented by Intel processors. Two Intel processors were employed in this

study (Intel core i3 and Intel core i7). The frequency of the FPGA architecture could

be modified using a phased-locked loop IP cores provided by Altera [10]. Thus, two

different frequencies of the hardware module were used in the experiments. There were

four different scenarios of the experiment as follows.

• Software-based NN-PCA in the Intel core i3 (2 cores, 2.4 GHz) processor.

• Software-based NN-PCA in the Intel core i7 (4 cores, 4.0 GHz) processor.

• FPGA-based NN-PCA with 50 MHz of the clock frequency.

• FPGA-based NN-PCA with 100 MHz of the clock frequency.
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The Intel approach was coded by C programming language in Visual Studio 2013 on two

different computers. The speed of the software-based program was measured using the

QueryPerformanceCounter() function [11]. The average execution time after 20 tests

were considered as the operating speed. In the FPGA-based program, the measurement

of the time was conducted using the clock gettime() function [12].

The execution time using two datasets presented in section 7.4.2.1 which were the dia-

betic retinopathy debrecen dataset and the wine dataset.

Diabetic retinopathy debrecen dataset: The number of the training samples (300

samples) and the testing samples (350 samples) were similar to the experiments of the

required resources presented in section 7.4.2.1. The PCA reduced the input data from

nineteen to four, and the NN had four input nodes, 8 hidden nodes, and two output

nodes.

Table 7.9: The testing time with diabetic retinopathy debrecen dataset, 350 testing
samples in second

`````````````̀Approach
Frequency

50 MHz 100 MHz 2.4 GHz 4.0 GHz

NN-PCA implemented in Intel core i3 - - 0.022 seconds -

NN-PCA implemented in Intel core i7 - - - 0.0208 seconds

NN-PCA implemented in FPGA 0.0175 seconds 0.0113 seconds - -

The experimental results can be seen in Table 7.9. These results showed that even

operate at a lower clock frequency, the FPGA-based NN-PCA could obtain a higher

operating speed than the software-based NN-PCA.

Wine dataset: In this scenario, the testing time with the wine dataset was inves-

tigated. Similar to the resources experiment presented in section 7.4.2.1, the number

of training samples was 90, and the number of testing samples was 88. Therefore, 88

samples were used to measure the operating speed of the NN-PCA architecture. The

size of the NN was three input nodes, ten hidden nodes in each layer, two hidden layers,

and three output nodes. The PCA in this scenario reduced the input data from thirteen

to three.

Experimental results are shown in Table 7.10. These results once again confirmed the

speed advantage of the hardware-based PCA. As observed, the required times to process

all 88 training samples of this approach were lower than the Intel approach.
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Table 7.10: The testing time with wine dataset, 90 training samples, 88 testing
samples in second

`````````````̀Approach
Frequency

50 MHz 100 MHz 2.4 GHz 4.0 GHz

NN-PCA implemented in Intel core i3 - - 0.0445 seconds -

NN-PCA implemented in Intel core i7 - - - 0.0136 seconds

NN-PCA implemented in FPGA 0.0130 seconds 0.0085 seconds - -

7.5 Discussion

This chapter presents a co-design architecture for the training of the FPGA-based NN

using the PSO algorithms. The proposed architecture called NN-PCA architecture con-

tains not only the co-design architecture presented in chapter 6 of this thesis but also

the hardware-based PCA. The FPGA-based PCA is based on the GHA which is suitable

for the hardware implementation.

The operations of five PSO algorithms (SPSO, DPSO, wPSOd−CV, PSOseed, PSOseed2)

for the training of the NN in this NN-PCA architecture were investigated in our exper-

iments. The results once again demonstrated the performance of the NN trained by

PSOseed2 algorithm concerning the learning errors and the recognition rates.

Results in our experiments also showed that the hardware-based PCA can reduce the

required resources of the program while still got the high recognition rates when com-

pared with the without-PCA approach with the same condition of the PSO parameters

and the same number of the hidden nodes. In addition, this co-design architecture also

had a higher testing speed than the software-only architecture.
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Chapter 8

Conclusion

To achieve the research objectives, both the hardware aspect and the software aspect of

the NN trained by the PSO algorithm were investigated.

The partitioning methodology for the co-design between hardware and software for the

NN-PSO was proposed. The NN is implemented in hardware using SystemVerilog pro-

gramming language, and the PSO algorithms are moved to the software side and exe-

cuted by the processors. In the NN-PSO, the NN is only used in the testing phase while

the PSO algorithms are employed in both training phase and testing phase. Compared

to the hardware-only approach, the proposed co-design approach not only maintains

the testing speed but also reduces the required FPGA resources concerning the logic

elements and the memory bits previously reserved for the hardware implementation of

the PSO algorithms. Compared to the software-only approach, the proposed co-design

approach not only preserves the flexibility during in the training phase but also obtains

the higher operating speed in the testing phase. The flexibility relates to the easiness to

modify the PSO parameters or even change the PSO algorithms without redesigning or

rebuilding the FPGA part.

Three different co-design architectures were presented based on the introduced parti-

tioning methodology. The first architecture uses the NIOS II processor. In this case,

both NIOS II processor and FPGA-based NN are implemented in a single FPGA de-

vice which is portable. The NIOS II processor is replaced by the ARM processor in

the second architecture because the ARM processor could operate at a higher clock fre-

quency than the NIOS II processor. In addition, the second architecture may reduce

the required FPGA-resources previously reserved for the NIOS II processor because the

96



97

ARM processor is physically implemented on the FPGA board while the NIOS II pro-

cessor is created using available resources from the FPGA device. The third architecture

combines the ARM approach in the second architecture with the FPGA-based PCA to

reduce the required resources but still maintain the accuracy of the NN trained by PSO

algorithms concerning the recognition rates and the learning errors.

Regarding the software aspect, three different PSO algorithms were proposed in this

thesis to solve the premature convergence of the SPSO without adding many compute-

intensive tasks or functions to the SPSO algorithms. All three algorithms only modify

the velocity update function of the SPSO algorithm. The first algorithm, called the

wPSOd−CV algorithm, has the velocity control and the weight control mechanisms.

This algorithm has a jump phase to prevent the situation when a particle sticks to a lo-

cal minimum. However, even changing only the velocity update function, this algorithm

still adds several tasks for the weight control and the velocity control. In addition, al-

though the wPSOd−CV has the weight control to balance between the exploitation and

the exploration, the exploration of the wPSOd−CV algorithm is significantly affected

by the big jumps with a very high speed of the particles. To overcome the drawbacks

of the wPSOd−CV algorithm, the second algorithm called the PSOseed algorithm was

presented. Avoiding the jumping phases, the PSOseed algorithm uses a new variable

called the seed position which is generated in the initial phase of the algorithm. In

each iteration, each particle is attracted and pulled to the position of its seed. This seed

mechanism has the possibility to keep the particles out of the local minimum. Compared

to the wPSOd−CV algorithm, the PSOseed algorithm does not use any division opera-

tor and use fewer multiplication operators. However, the performance of the PSOseed

algorithm highly depends on the seeds. If the seed positions are poorly generated, the

accuracy of the NN trained by the PSOseed algorithm will reduce. The third algorithm

called the PSOseed2 algorithm overcomes the seed problem of the PSOseed algorithm

by using the reseed mechanism. In any given iteration, if the learning error does not

reduce, the seed positions will be reseeded.

In the experiments, three proposed PSO algorithms (wPSOd−CV, PSOseed, PSOseed2)

and two PSO algorithm presented in previous studies (SPSO, DPSO) were employed.

The NN was trained with these five PSO algorithms in all three proposed co-design

architectures. Experimental results demonstrated that the NN trained by PSOseed2 had

the highest performances concerning the recognition rates and the learning errors in all

three architectures. The results also confirmed both the speed advantage of the proposed
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co-design approach when compared with the software-only approach and the resource

advantage of the proposed co-design approach when compared with the hardware-only

approach. Results also confirmed that the NN-PCA approach had the reduction of the

required resources while maintaining the high recognition rates when compared with the

without-PCA approach.

The proposed NN-PSO system is suitable for studies and applications which require

high-speed, low-power consumption, and portable program. An example of this system

could be the real-time object recognition. The captured images from a camera will be

pre-processed by the image processing filters such as the median filter or the Gaus-

sian filter for the noise reduction. Previous research has presented that the hardware

implementation of these filters is feasible. The features of pre-processed data will be

extracted by using OpenCV which was built on ARM-based Linux system. The FPGA-

based dimension reduction techniques may be used with the extracted features. After

the dimension reduction step, the features are fed to the NN-PSO system. The whole

system could be implemented in a small FPGA board.

The proposed PSOseed2 does not add many compute-intensive tasks to the SPSO. There-

fore, this algorithm is suitable for the studies or applications which require the hardware

implementation of PSO algorithm.

Our experiments were conducted with the Cyclone V which is the lowest system power

and performance device from Atera. The Cyclone V also has the limited FPGA re-

sources. Therefore, the target of these experiments is to investigate the operation of

the proposed co-design architectures with small-scaled classification tasks which have

the small size of the NN. A portable device which has low power consumption can be

used to solve these tasks because all components of the proposed architecture such as

the processor or the FPGA-based modules can be implemented in a single FPGA SoC

chip, the Cyclone V in this situation. In future research, if a more powerful device could

be used such as the Arria or Stratix, a more complex dataset and a bigger NN will be

investigated. The target is to develop a portable and wearable system to solve the daily

life problems related the classification.

Among three proposed PSO algorithms, the NN trained by the PSOseed2 obtained the

highest recognition rate and the lowest learning error. Therefore, a possible avenue is

to conduct more studies about this algorithm.

In the FPGA-based program, the issue related to the limited logic elements and memory

bits needs to be investigated. Thus, another direction for the future research is the
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optimization task for the FPGA-based program. The goal of this task is to reduce the

required resources for the proposed co-design.



Appendix A

Software-only architecture

This appendix has been published in our research article [1].

Figure A.1: The software-only architecture

Fig. A.1 presents the software-only approach. In this approach, all components of the

NN-PSO are implemented on the software side by a processor such as the Intel processor.

The training data are divided into two different parts called the input data and the

labeled data, respectively. The labeled data are the desired output data. The input

data are sent to the particle-block module, and the labeled data are forwarded to the

evaluation modules. Each particle is a ND-dimensional vector that corresponds to ND

parameters (weights and biases) of one NN. The output data of the NN are fed to the

evaluation modules. In these modules, the fitness values are calculated by the mean

square error function as presented in Eq. (2.11).

The calculated fitness values will be fed to the Pbest module to evaluate the new Pbestp

according to Eq. (2.7). Results of the Pbest module are used to estimate the new Gbest

based on Eq. (2.8).
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In each iteration, the stopping-check module investigates whether the stopping criterion

is satisfied or not. If the stopping condition is not met, the new velocities and positions

of all particles are calculated in the updated module, and the new iteration will be

conducted. The velocity update function in the updated module based on the PSO

algorithm. For demonstration, if the PSOseed2 is used, the velocity update function

is calculated according to Eq. (3.4) and the reseed control. On the other hand, if the

stopping condition is satisfied, the trained weights and biases will be stored to use in

the testing phase.
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Appendix B

Hardware-only architecture

This appendix has been published in our research article [1].
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Figure B.1: Algorithm of hardware implementation of training step

Fig. B.1 shows the hardware-only architecture. The whole system is controlled by a

global finite-state machine. In this architecture, module Gbest and module Pbest are

processed in parallel to take advantage of the FPGA-based program. The components

of this system are as follows.
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1. Floating-point calculation (FPC): implements the floating-point IP cores provided

by Altera. Every floating-point computation in other modules connects to this

module. In the same way as the floating-point submodule presented in section 5.2.2

of chapter 5. This submodule has a calculation−counter for the synchronization

with other modules.

2. Random number generator: This is a special submodule of the hardware-only

architecture because the random number generator is software is not easy as the

software. The random numbers are generated by linear feedback shifts register.

Our program uses the IEEE 754 floating-point single precision so that the LFSR

is the 32-bit register. To prevent some special cases of the IEEE 754 when all bits

of the register are zero or all bits of the exponent are one, two bits are fixed. Two

different xor functions are used for the LFSR. One is in the mantissa part, one

is in the exponent part. Bit 29, 28, 26 in the exponent and bit 20, 17, 14 in the

mantissa are selected as the taps bit. The content of the LFSR can be seen in

Fig. B.2.

Figure B.2: Initial value LFSR: s-sign bit, e-exponent bit, and m-mantissa bit

3. Neural network (NN): the input of the NN is a two-dimensional array of weights

called w which can be presented by SystemVerilog as [31:0]w[0:ND -1] where

the first dimension demonstrates the floating-point number (32 bits). The second

dimension is reserved for the weights and the biases (ND parameters). The acti-

vation function of the NN is the Sigmoid function shown in Eq. (2.2). The FPGA-

based NN is based on another finite-state machine which has two states called

idle−state and running−state, respectively. Normally, it is in the idle−state.

When a computational request comes, the finite-state machine moves to running−state

to conduct the processing based on Eqs. (2.1) and (2.2). Finishing the operation,

the NN sends output data via output port and its finite-state machine returns to

idle−state.

4. Training sample: processes the raw T training data and sends the processed data

to the NN module.
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5. Target training: contains T labeled training data (target) for the learning stage

of the NN.

6. Particle: each component in this module is one particle which contains D weights

of the NN. The values of these weights are calculated from weight update module.

In the first iteration, each value of each particle is assigned the initial value from

the LFSR.

7. Output particle: Output−particlei (0 6 i < P where P is the number of particles)

are the outputs of the NN when D weights of particle i are the parameters of the

NN.

8. Fitness function: employs the mean squared error according to Eq. (2.11) imple-

mented in hardware by using its finite-state machine.

9. Pbest: discovers the best fitness value in each particle based on results from the

fitness function module. The weights correspond to each Pbest are kept.

10. Gbest: finds the best global fitness value in a particular iteration. The weights

correspond to Gbest of the population are stored.

11. Weight update: updates the new velocities and the new positions of the weights

and the biases based on the PSO−CV algorithm.

12. Check stopping condition: checks whether the stopping criterion is satisfied or not.

If the stopping condition is not met, the next iteration is conducted.

The components on the FPGA board can be shown as Fig. B.3.

Figure B.3: The hardware-only architecture
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