数 学 1/6

I 次の各間に答えよ。なお、解答用紙の所定欄に答のみを記入すること。

- (1) 0 < y < x, $2 \log_5(x y) = \log_5 x + \log_5 y$ のとき, $\frac{x}{y}$ の値を求めよ。
- (2) 平面上に 3点 O, A, B があり、 $\left|\overrightarrow{OA}\right| = 2$, $\left|\overrightarrow{OB}\right| = 3$, $\overrightarrow{OA} \cdot \overrightarrow{OB} = -1$ とする。 $\left|\overrightarrow{AB}\right|$ を求めよ。
- (3) 100から999までの整数のうちで、各位の数字が2つ以上同じである整数の個数を求めよ。ただし、各位の数字が2つ以上同じである整数とは383や777のようなもののことである。
- (4) $0 \le \theta < 2\pi$ のとき、次の方程式を解け。 $\sin \theta + \sqrt{3} \cos \theta = -1$
- (5) 2乗して3-4iとなる複素数x+yi(x,y)は実数)をすべて求めよ。ただし、iは虚数単位とする。
- (6) xy-2x+3y=0 を満たす整数 x, y の組 (x, y) はいくつあるか。
- (7) $2^{2017} + 3^{2017} + 5^{2017} + 7^{2017}$ の 1 の位の数を求めよ。
- (8) x を超える最小の整数を $\langle x \rangle$ で表す。例えば、 $\langle 3.14 \rangle = 4$ である。 このとき、等式 $2x = \langle x \rangle$ を満たす x の値を求めよ。

数 学 2/6

〔メモ欄〕

数 学 3/6

II 正四面体 ABCD がある。時刻 t=0 において点 A にある動点 P は 1 秒ごとに隣り合う 3 つの頂点のうちの 1 つに等しい確率で移動するものとする。自然数 n に対して,時刻 t=n において点 P が点 A, B, C, D にある確率をそれぞれ p_n , q_n , r_n , s_n として次の各間に答えよ。

- (1) 時刻 t=1 において点 P が点 A, B, C, D にある確率 p_1 , q_1 , r_1 , s_1 をそれぞれ求めよ。
- (2) 時刻 $t = n(n \ge 2)$ において点 P が点 A にあるとする。時刻 t = n 1 において点 P がいた可能性がある点をすべて求めよ。
- (3) $n \ge 2$ のとき、 p_n を q_{n-1} , r_{n-1} , s_{n-1} を用いて表せ。
- (4) $n \ge 2$ のとき、 $p_{n-1} + q_{n-1} + r_{n-1} + s_{n-1}$ の値を答えた上で、 p_n を p_{n-1} で表せ。
- (5) p_n を n の式で表せ。
- (6) $q_n = r_n = s_n$ であることを用いて、 q_n , r_n , s_n を n の式で表せ。
- (7) $|p_n-q_n|<10^{-6}$ を満たす最小の自然数 n を求めよ。ただし, $0.47<\log_{10}3<0.48$ であることを用いてよい。

数 学 4/6

〔メモ欄〕

数 学 5/6

- III 2つの放物線 C_1 : $y=\frac{1}{4}x^2$, C_2 : $y=\frac{1}{4}x^2-x+2$ に対し、次の各間に答えよ。
 - (1) C_1 上の点 $\left(a, \frac{1}{4}a^2\right)$ における接線の方程式を求めよ。
 - (2) 点 $\left(-\frac{3}{2},-1\right)$ を通る C_1 の接線の方程式を求めよ。
 - (3) (2) で求めた C_1 の接線のうち、傾きが正であるものを ℓ とする。 $\ell \succeq C_2$ の共有点の座標を求めよ。
 - (4) (3) の直線 ℓ と C_1 , C_2 で囲まれた部分の面積を求めよ。

数 学 %

〔メモ欄〕