1. 緒言

我々の日常生活を支える種々の機械には、多くの駆動部分 で潤滑部品が使用されている。昨今の傾向として、機械の高 効率・高信頼性・低環境負荷が求められ、これらを達成する ため潤滑部品のトライボロジー、すなわち摩擦・摩耗・潤滑 の制御技術が期待されている。例えば自動車用ガソリンエン ジンに使用されるピストンリングの厚さは 1.2mm 程度と薄 く、これとシリンダとの間に形成される油膜の厚さを、摺動 面に何の加工も施さずに測定することは難しい。本研究では、 リング背面に貼り付けた小型の超音波探触子により油膜厚 さの測定を試みている^{1,2,3)}。しかし、1.2mm と幅の狭いリ ングでは、波の伝波経路での音波の拡散により、リング側面 やエッジ、更には探触子背面部からの様々な反射が、観測す べき波形に影響を及ぼすことが懸念される。そこで、それら の影響を極力抑えた PZT のコンポジット素子を専用に開発 し、それをリング背面に直接貼り付ける構造の探触子を構成 して、油膜厚さの測定を行った。本報では、1.2mm 幅のリ ング単体と、それにオイルリングを組み合わせたときの油膜 形成状態の違いを、エンジンの始動や停止時での極低いすべ り速度条件下において計測し、そのとき測定された摩擦との 関係から、ピストンリングの潤滑状態を総合的に評価するこ とを試みている。

測定原理ならびに実験装置

図1に膜厚の測定原理を示した。ピストンリング内面から 照射された超音波は、その波長よりも薄い油膜中で多重反射 し、リング表面からの第一反射波と干渉する。この干渉の影 響を受け、観測すべき第一反射波の波高値hは、膜厚Lに依 存して変化する。このため、その波のエコー高さhを測定す ることにより膜厚Lを推定できる。

図1 油膜厚さの測定原理

実験で使用したピストンリング・シリンダの主要寸法なら びに材質は表1に示す通りである。なお、トップリング先端 には5µm程度のクラウニングが施してある。また、オイル リングは、一般のガソリンエンジン用の3ピース型の組み合 わせリングを使用している。 トライボロジー研究室 古川 由容

そして超音波探触子は、トップリング内側表面に沿うよう な変形が可能なコンポジット素子を使用し、リング内周面に 密着させて貼り付けている。

表1 試験片ならびに超音波探触子の仕様

	Top ring	Cylinder	Probe (PZT)	
Outer diameter	86mm	96mm	Frequency	5MHz
Inner diameter	80mm	86mm	Band	Wide
Width	1.2mm		length	3.0mm
Materials	SWOSC-V	S45C	width	1.2mm
Tension	6.0±1N		Thickness	0.5mm

図2に、マイクロメータヘッドを用いてピストンリング先 端の膜厚を調整できる膜厚較正器4により較正した、エコー 高さ比H(=h/h₀×100、%:h₀は乾燥時エコー高さ)と油膜厚 さLとの関係を示した。膜厚Lの減少に伴ってHは低下し、 特に膜厚が5µm以下の領域では、急激なHの低下が認めら れ、薄膜領域での膜厚測定に適していることが分かる。また 実験前と後の較正曲線がほぼ一致したことから、実験中のな じみはほとんど無かったと判断できる。なお、図におけるマ イナスの油膜厚さは、リングが相手面と接触した後、さらに マイクロメータヘッドを押し込んだ時の読みである。

図3は摺動実験装置の概略であるが、本装置の場合、ピス トンが固定され、代わりにリニアモータで駆動されるシリン ダが摺動する構造となっている。先に較正を行ったピストン リングをピストンに取り付け、ポンプで油を供給しながら摺 動させたときの膜厚を測定する。そして、ピストン固定用の 梁に設置した歪ゲージにより測定された、リングとシリンダ 間の摩擦の挙動を併せて検討し、ピストンリングの潤滑状態 を評価することになる。

図3 ピストンリング膜厚試験機

3.トップリング単独での油膜形成状態と摩擦

図4に、探触子を貼り付けたトップリングを、円周方向に 0°、90°、180°、270°回転させて測定した、油膜の挙動 を示してある。膜厚はシリンダ行程中央の最大すべり速度付 近で厚く、すべり速度がほぼ0となる上・下死点付近で薄く なる、一般的な挙動を示している。しかし、後者の近傍では、 固体接触が生じることによる、固体接触部での荷重支持割合 Wsの増加が認められる。

このWsは、固体接触開始点でのエコー高さ比H₀と、混 合潤滑下で観測されるエコー高さ比Hとの差 Δ H(=H-H $_0$)を、全支持荷重を固体接触部で支持するときに観察される エコー高さ比Hsからの減少量(Hs-H₀)で除することに より定義した。したがってWs= Δ H/(Hs-H₀)である。 WsならびにLの挙動は、円周方向に異なっているため、ピ ストンリングの潤滑状態を評価する場合には、円周方向に平 均化した油膜厚さを用いることが望ましい。

図 5 には、円周方向に平均化した油膜厚さの挙動を摩擦力 と共に示してある。摺動速度が比較的高い 1.5Hz では 7~8 μ m の油膜が形成される。一方、0.25Hz ではシリンダの行 程の比較的広い領域にわたって混合潤滑状態(L<0 μ m)にあ り、過酷な潤滑により摩擦力も多少大きく現れている。

4. オイルリングを併用した場合の潤滑特性

図6は、オイルリングを併用した場合の結果であり、形成 される油膜の厚さは、図5のトップリングのみの場合より明 らかに薄く、特に0。5Hz以下では、全行程で混合潤滑状態 にある。なお、混合潤滑下での荷重支持割合Wsは油膜の形 成具合と連続的な関係にあり、このような過酷な領域でも、 油膜の効果が健在であることが分かる。

図5 オイルリング追加時の膜厚挙動および摩擦力

5. 結言

通常のガソリンエンジンに実際に使用されている 1.2 mm幅 のピストンリングの油膜厚さを、超音波法を用いて測定し、 低すべり速度での膜厚測定ならびに、固体接触部での荷重支 持割合の推定が実際に可能であることを明らかにした。

文献

(1)トライボロジー会議予稿集、(2003)、203.
(2)トライボロジー会議予稿集、(2002)、71.
(3)日本設計工学会平成16年度春季研究発表講演会講演 論文集、(2004)、107.

(4)日本設計工学会平成17年度春季研究発表講演会講演 論文集、(2005)、95.