基準点計測を必要としない

レーザースキャナデータの座標変換

1070544 宮崎 倫理 高木研究室

1. 背景

レーザースキャナは、主に地すべりや遺跡など の調査に利用されている。レーザースキャナは三 次元座標を短時間で取得することができるが、見 える範囲しかデータを取得できない。見えない場 所のデータを取得するためには、レーザースキャ ナの設置場所を変えなければならない。またレー ザースキャナで取得されたデータは、レーザース キャナ自身の座標であるため、地上座標への座標 変換を行い、設置場所ごとのデータを統合しなけ ればならない。そのためには基準点としてプリズ ムを4台以上設置する必要がある。プリズムはレ ーザースキャナから放出された光波を大きい強 度で反射させるものである。

基準点のデータを取得するためには、トータル ステーションなどの機材を用いて高精度で計測 するため、取得時間を大きく費やしてしまう。し たがって、プリズムを用いなくても、座標変換で きるしくみが求められている。昨年のプロジェク ト研究においては、平面計測による座標変換の可 能性が示された。したがって、この手法を確立す る必要がある。

2.目的

本研究は、レーザースキャナの座標変換に使用 する基準点をプリズムではなく、建物などの面か ら計算される基準点を用いた座標変換の可能性 を検討する。計測された3つの平面データより、 面の式を導くことで、仮想的な基準点が4つ生成 できる。この基準点をもとに座標変換を試みる。 今回は地上座標に座標変換されたデータでは なくレーザースキャナ同士の座標を統合するた めの座標変換を行った。

3.使用機材

・レーザースキャナ

使用したレーザースキャナは、地上において 使用することを目的としたスキャナタイプの レーザーセンサであり、ノンプリズムタイプの 光波測距儀の一種である。レーザースキャナは、 写真を撮るように、一般的な短点タイプの光波 測距儀よりも、高速高密度に位置情報を取得可 能である。得られるデータは、対象物までの距 離、角度、対象物の反射強度、カラー情報であ る。レーザースキャナの測距精度は±2.5cm(標 準偏差)である。表 3-1 にスキャニング性能を示 す。

表 3-1 レーザーのスキャニング性能

スキャニング	(縦方向)	(横方向)	
スキャニング	5~52 line/s	1° /s \sim 15 $^{\circ}$ /s	
角度ステップ	0.24°	0.24°	
角度分解能	0.036°	0.018°	

4.座標変換手法

レーザースキャナのデータは、4 つ以上の基準 点を設けることにより、レーザースキャナの設置 位置を原点とする座標変換式を計算することが できる。その変換式は次式のとおりである。

宮崎 倫理 2/4

$$\begin{pmatrix} P_{1} & P_{2} & P_{3} \\ P_{4} & P_{5} & P_{6} \\ P_{7} & P_{8} & P_{9} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} P_{10} \\ P_{11} \\ P_{12} \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \quad (\vec{x} \ 4-1)$$

X,Y,Z:地上基準点座標 $P_1 \sim P_{12}:$ 地上座標パラメーター x, y, z:画像基準点座標

今回基準点を取得するために3つの平行でない 面から導くことのできる点を基準点とした。つま り、3つの面の交点と、2つの面の交線上の点を 仮想的な基準点として利用する。その概念を図 4-1に示す。

交点を求めるために、それぞれの面の式を求め なければならない。面の式は、*ax*+*by*+*cz*=1で 表すことができる。面を計測した多数のレーザー スキャナデータから、最小二乗法を用いて次式に より面の式を導く。

(a, b, c):法線ベクトル $(x_i, y_i, z_i): レーザースキャナデータ$

そして、その3つの面の式を使い交点を求め、 一つめの基準点とする。次に面と面の交線上に3 つの基準点を設けた。これにより4つの基準点を 取得することができるので幾何変換が可能となる。

5.対象・位置

本研究では、高知工科大学のシンボルタワー を対象とした。図 5-1 はレーザースキャナを設置 した場所を番号で示している。また、基準点を導 くために利用した 3 つの面の位置も示した。

図 5-1 レーザースキャナ設置位置

6.座標変換結果

6-1. データの取得と座標変換

図 6-1 は、2 番から得られたレーザースキャナ のデータを可視化したものであり、このデータか ら3つの面の式を求めた。同様に1番から得られ たデータも同じ3つの面の式を求め、仮想的な基 準点を設定した後、座標変換を行った。

図 6-1 2番から得られたデータ

6-2.座標変換誤差

統合させた1番と2番のレーザースキャナデー タから同じ箇所の座標を抽出した。表 6-1 は、そ の残差を示したものである。

No	xの残差	yの残差	zの残差
1	0.225	-0.009	0.045
2	0.234	-0.079	0.163
3	0.139	-0.107	-0.042
4	-0.001	0.278	0.145
5	0.06	0.003	-0.084
6	0.113	0.056	0.171
7	0.06	0.152	0.174
8	-0.119	0.011	-0.007
9	0.135	0.267	0.047
10	0.369	-0.096	-0.093
標準偏差	0.177	0.142	0.114

表 6-1 座標変換における残差(m)

残差は、最大で 37cm 程度になり、レーザース キャナ自身の精度 2.5cm と比べて非常に大きなも のとなった。

7.誤差伝播の法則による変換結果の評価

座標変換を行った結果の残差が許容範囲内で あるかどうか調べるため、誤差伝播の法則から評 価を行った。今回は、二次元平面において1番と 2番の座標変換誤差が許容範囲内かどうかを検討 する。使用した面は面1と3を使用した。

誤差伝播の法則とは $x_1, x_2 \cdots x_n$ のデータを使っ て、 $X = f(x_1, x_2 \cdots x_n)$ によりXを導いたときの Xの誤差を求めるものである。この計算は、計測 された $x_1, x_2 \cdots x_n$ のデータに含まれる誤差が

 $\sigma_{x_1}, \sigma_{x_2}, \cdots \sigma_{x_n}$ のとき、それぞれの誤差が独立で あれば、次式で表すことができる。

$$\sigma_X^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \dots + \left(\frac{\partial f}{\partial x_n}\right)^2 \sigma_{x_n}^2 \quad (\overrightarrow{x}, 7-1)$$

今回の二次元平面における座標変換の式は次 式である。

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} u_i - u_0 \\ v_i - v_0 \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \quad ($$
 $$$ (7-2)$

X, Y: 座標変換後の座標 $u_i, v_i: レーザースキャナデータ$ $u_0, v_0: レーザースキャナの交点座標$ $\theta: 回転角度$ $x_0, v_0: 基準点座標$

この変換式に含まれる誤差は、 $u_i, v_i, u_0, v_0, \theta$ なので、各々の誤差を求めなければならない。

7-1.レーザースキャナデータの誤差

 $u_{i\nu}v_{i}$ に含まれる誤差はレーザースキャナと対象 物との距離rと水平角度 ϕ で決まる。rと ϕ の誤差 はカタログスペックにより決まっている。次式は $u_{i\nu}v_{i}$ を導く式である。

$$u_i = r\cos\phi \qquad (\vec{\mathfrak{T}} \, 7-3)$$

$$v_i = r \sin \phi \qquad (\vec{\mathbf{x}} \ 7-4)$$

これを誤差伝播の法則にしたがって解くと*u_i*,*v_i*の誤差を求めることができる。

7-2.二直線からなる交点の座標における誤差

二直線による交点 (u_0,v_0) の誤差を求めるため には、面の式の誤差を求めなければならない。二 次元平面での面の式はv = au + bとなり、これを 最小二乗法によって次式により係数a,bを求める ことができる。

$$a = \frac{n[u_i v_i] - [u_i][v_i]}{n[u_i u_i] - [u_i][u_i]} \qquad ($$
\eftilde{\extsf{x}} 7-5)

$$b = \frac{[u_i u_i] [v_i] - [u_i] [u_i v_i]}{n[u_i u_i] - [u_i] [u_i]} \quad ($$
[‡] 7-6)

各データに含まれる誤差(σ_u, σ_v)は前節で求めたの で、誤差伝播の法則にしたがってa, bの誤差 σ_a, σ_b が求まる。

次に、二直線の式は次式で与えられるものとす る。

$$v = a_1 u + b_1$$
 (式 7-7)

$$v = a_2 u + b_2$$
 (式 7-8)
この二つの式を連立させて交点 (u_0, v_0)を求める。
(u_0, v_0) は次式から計算できる。

$$u_0 = \frac{b_1 - b_2}{a_2 - a_1} \tag{₹ 7-9}$$

$$v_0 = \frac{a_2 b_1 - a_1 b_2}{a_2 - a_1} \tag{₹ 7-10}$$

 $a_{1,b_{1,}}a_{2,b_{2}}$ の誤差は式 7-7,8 より求めることがで きるので、誤差伝播の法則にしたがって解くと σ $u_{0,\sigma,w}$ 求めることができる。

7-3.回転角度 θ の誤差

次式は回転角度θを求める式ものである。

$$\theta = \tan^{-1} a_2 - \tan^{-1} a_1$$
 (式 7-11)

 a_1, a_2 の誤差は既に前節で求まっているので、こ の式を誤差伝播の法則にしたがって解くと σ_{θ} を 求めることができる。

求めた誤差を式 7-2 の座標変換の式を用いて誤 差伝播の法則により、*X*,*Y* の誤差を求めることが できる。

7-4.誤差分布図による評価

次にレーザースキャナの位置を原点とし、 (-100,-100)から(100,100)までの範囲を 10m刻みで データを取得した時の(*u_iv_i*)の誤差を可視化する ためにプログラムを作成した。プログラムで得ら れた誤差分布図を図 7-1 に示す。

図 7-1 *u_i*,*v_i*の誤差分布図

図 7-1 より、原点から遠くなるにつれ、誤差が 大きくなっていることがわかるが、最大でも 10cm 未満である。次に座標変換を行った(*X*,*Y*)の誤差と 実際に座標変換を行ったレーザースキャナのデ ータから座標を抽出した残差の分布を図 7-2 に示 す。多くの誤差を含んだデータにより座標変換を 行っているため、誤差は 10cm~1m と非常に拡大 されている。

図 7-2 X,Y の誤差分布図と実測による残差 図 7-2 より、レーザースキャナのデータから抽 出した残差が誤差伝播の法則で求めた誤差の許 容範囲内に入っているが、誤差伝播の結果のほう が大きい傾向がみられた。

8.考察

本研究より、プリズムを基準点に使わず、建物 の面から計算される基準点を使ったレーザース キャナの座標変換は可能であることがわかった。

しかし、統合させたデータ同士の座標の残差が、 レーザースキャナ自身の精度よりも非常に大き くなることが問題である。誤差伝播の結果と実際 のレーザースキャナのデータ結果を比べると、妥 当な値であったが、今後、さらに高精度座標変換 の手法を考えなければならない。

参考文献

 上野 太郎: 2005 年度プロジェクト研究成果 報告書