1. 緒 言

ある種の物質に力を加えると応力に比例して電気分極が発 生する.この現象を圧電効果という.これは主に結晶で見ら れる現象である.これを利用したデバイスは多数あるが、結 晶以外の物質では実現していない.液晶は流動性を持ちなが ら圧電効果を示すため,圧電デバイスとして期待できる.液 晶の圧電効果は、フレクソエレクトリック効果(以下フレクソ 効果)と呼ばれる⁽¹⁾.液晶の個々の分子は永久双極子を持ち、 微視的には分極している.だが、巨視的には分子配列の対称 性から分極していない.しかし、液晶の分子配向場に外場(例 えば磁場や電場)を加えることで分子配列の対称性が崩れ、巨 視的に分極させることが可能である.

本研究では液晶を流動させることで、分子配列の対称性を 崩し、分極を起こす.また、研究で使用する液晶は 4-*n*-octyl-4'-cyano biphenyl (8CB)である.この液晶は、温度領 域 34.0~38.5℃のせん断流中で分子が回転挙動を示すため、 分子配向場に大きな歪みが発生する.従って、より大きな分 極値が得られることが期待できる⁽²⁾.本実験では、回転二重 円筒間における液晶分子の挙動を観察し、エリクセン数 Er(弾性力に対する粘性力の比、 $Er=\gamma_1HU/K$; γ_1 :代表粘性係数,H: 円筒間距離,U:内筒の回転速度、K:代表弾性係数)の変化が分 子の挙動にどのような影響を及ぼすか調べる.

2. 実験装置および方法

図1のように、①ガラス製の外筒(外径8.0mm,内径6.0mm, 高さ 31.0mm)と②ステンレス製の内筒(直径 5.4mm, 高さ 35.0mm)には、液晶分子が円周方向に対して垂直に配向する ように③垂直配向剤を施す.そして、外筒と内筒が同軸にな るように取り付け、内筒と外筒の間に④液晶を入れる. ⑤DC モータと⑥歯付きベルト、プーリーを使用し、内筒を回転さ せ、液晶を流動させる.この時、装置の周りは温度コントロ ール BOX で覆い, ヒータ, ファン, 温度センサー, 温度制御 器を使用し, BOX 内の温度が目標値になるようにする. その 後,液晶の温度が BOX 内の空気の温度と完全に同じになるよ うに1時間予熱し、実験を開始する.実験では、液晶分子の 回転挙動を観察するために偏光顕微鏡を使用する. 顕微鏡映 像を CCD カメラで撮影し、PC に取り込む. その後、撮影し た動画(毎秒 30 フレーム)のフレーム切り出しを行い、1 フレ ームごとの反射光強度を計測する.実験後は、配向状態をリ セットするため、液晶を等方相に相転移させ、内筒を10秒間 2rpmで回転させる.

3. 実験結果および考察

図2は、エリクセン数を変化させたときの反射光強度の変化を1フレームごとに示したものである.縦軸は反射光強度、 横軸は時間を表している.図1のセルをz軸方向から見た場合、せん断開始直後では、分子はx-y面内で回転する.分子

知能流体力学研究室

藤本 和雅人

がせん断方向を向いている時,分子はせん断の影響を強く受け,速く回転する.この時,光学異方性により変色現象が起こり,反射光強度に変化が現れる.図2で,*Er*=100の時,変色現象の発生時刻は*t*=47.96sである.*Er*=250の時は*t*=4.9s, *Er*=500の時は*t*=2.03sである.エリクセン数が大きくなることで変色現象の発生が早くなる.これは,エリクセン数を大きくすることでせん断速度が増加し,分子の回転速度が速くなったためであると考えられる.

図3は,液晶温度35℃, *Er*=250における実験画像である. 図3(a)はせん断開始前,図3(b)はせん断開始7.7秒後,図3(c) は開始21.9秒後の画像である.時間が経過すると,黒い帯が 現れる.せん断流中で,分子配向場に大きな歪みが存在する ことにより,分子がz方向に回転を始める.z方向に向いた 分子が図3(b)に見られるような帯として現れる.以上の結果 からエリクセン数を変化させることで分子の挙動をコントロ ールでき,圧電デバイスとして期待できる.

参考文献

(1) 尾崎雅則,吉田勝美,フレクソエレクトリック効果,液 晶,6,(2002),22.

①Out glass tuber④Liquid crystal②Stainless-steel cylinder⑤DC Motor③Orientation layer⑥Synchronous belt & pulley

(a) t=0.0s (b) t=7.7s (c) t=21.9sFig.3 Behavior of molecules of 8CB at $T=35.0^{\circ}C$