レーザースキャナデータを用いた 断面図作成プログラムの開発

1090412 稻田涼

高知工科大学工学部社会システム工学科

レーザースキャナは、高密度の三次元ランダムポイントでデータを取得する。レーザースキャナデータは空間内のポ イントデータが高密度で取得されることになり、天井等の空間に浮いた点も取得できる。一般のGISソフトで扱われる 三次元データは、地形のみで、空間に浮いた対象物は扱えない。また、GISには、断面図で描く機能があるが、垂直、 水平方向にしか断面図を描くことができない。そのため、本研究では、高密度の三次元ランダムポイントを用いて、断 面図を作成するためのプログラムを開発した。

断面図作成プログラムは完成した。本プログラムは、斜めの断面も描けるため、様々な用途に利用できると期待して いる。

Key wards: 断面図・レーザースキャナ・空間平面

1.はじめに

レーザースキャナは、高密度の三次元ランダムポ イントでデータを取得する。レーザースキャナデー タは空間内のポイントデータが高密度で取得される ことになり、天井等の空間に浮いた点も取得できる。 一般の GIS ソフトで扱われる三次元データは、地形 のみで、空間に浮いた対象物は扱えない。また、 GIS には、断面図で描く機能があるが、垂直、水平 方向にしか断面図を描くことができない。そのため、 本研究では、高密度の三次元ランダムポイントを用 いて、断面図を作成するためのプログラムを開発し た。このプログラムは、斜めの断面も描くことがで きるため、用途が多様となる。

2.使用機材

本研究で使用したレーザースキャナは、RIGL社製 の「LMS-Z210」である(図2-1)。使用したレーザー スキャナは、地上において使用することを目的とし たスキャナタイプのレーザーセンサであり、ノンプ リズムタイプの光波測距儀の一種である。レーザー スキャナは、写真を撮るように、一般的な短点タイ プの光波測距儀よりも、高速高密度に位置情報を取 得可能である。得られるデータは、対象物までの距 離、角度、対象物の反射強度、カラー情報である。 LMS-Z210のスペックを表2-1、表2-2に示す。

図 2-1. レーザースキャナの外観

表 2-1. レーザーのスキャニング性能1

項目	詳細
測定距離範囲	≦350m
最短距離	2m
測定精度	±2.5cm(標準偏差)
レーザー波長	0.9µm (近赤外線)

方向	(縦方向)	(横方向)
数	111~1106	$463 \sim 4621$
範囲	$\pm 40^{\circ}$	$0^{\circ} \sim 333^{\circ}$
松構	回転ポリゴン	回転工学ヘッ
1成1冉	ミラー	ド
スキャニ ング速度	5~52line/s	1° /s \sim 15 $^{\circ}$ /s
ステップ 幅	0. 24°	0. 24°
角度分解 能	0.036°	0.018°

表 2-2. レーザーのスキャニング性能 2

3. 断面図作成プログラムの概要

本研究のプログラムのフローチャートを図 3-1 に 示す。

断面図を作成するために、まず断面における空間 平面の式を立てる必要がある。

空間平面の式は一般的に方程式型の ax + by + cz = lを用いられているが、プログラムを 組む場合には、パラメータ型の式が便利である。 $(x_0, y_0, z_0)(x_1, y_1, z_1)(x_2, y_2, z_2)$ を通る空間平面の式 $i(x_0, y_0, z_0)$ から (x_1, y_1, z_1) に至るベクトル \vec{P}_1 と (x_0, y_0, z_0) から (x_2, y_2, z_2) に至るベクトル \vec{P}_2 を用い て、次式で表わすことができる。

$$\begin{cases} x = x_0 + (x_1 - x_0)s + (x_2 - x_0)t \\ y = y_0 + (y_1 - y_0)s + (y_2 - y_0)t \\ z = z_0 + (z_1 - z_0)s + (z_2 - z_0)t \end{cases} \quad \cdot \quad \cdot \quad (\pm 3-1)$$

ここで s,t は、媒介変数(パラメータ)である。 したがって、空間平面の式を立てるためには、断面 上の三点の座標が必要となる。その三点を使い、対 象となる断面の面の式を作ることができる。この空 間平面をベクトルの概念図を、図 3-2 に示す。

なお、この \vec{P}_1 、 \vec{P}_2 は単位ベクトルに変換してお いた方が、後に便利である。単位ベクトルとするこ とで、パラメータ *s*,*t* は実測距離として、表わすこ とができるからである。

図 3-2.空間平面の概念図

空間平面とレーザースキャナデータの各点の座標 との最短距離を計算し、距離の近いものは、断面上 の点として扱う。空間平面との最短距離は、空間平 面の法線ベクトルを利用する。

 $\vec{P}_1 \ge \vec{P}_2$ の外積を計算することで、空間平面の法 線ベクトル(a,b,c)を計算することができる。法線ベ クトルの各要素は、次式により計算できる。

$$\begin{cases} a = (y_1 - y_0)(z_2 - z_0) - (z_1 - z_0)(y_2 - y_0) \\ b = (z_1 - z_0)(x_2 - x_0) - (x_1 - x_0)(z_2 - z_0) \\ c = (x_1 - x_1)(y_2 - y_0) - (y_1 - y_0)(x_2 - x_0) \end{cases}$$

$$\cdot \cdot \cdot \cdot \cdot (\pm 3-2)$$

レーザースキャナの点座標を通り、法線ベクトル と平行な空間直線を立てれば、その空間直線と空間 平面との交点が求まる。

空間直線は、レーザースキャナの点座標を (x_q, y_q, z_q) とすると、次式で表わすことができる。

この時 u は、空間直線のパラメータである。この 式と、(式 3-1)を連立させることによって、空間 平面のパラメータ s,t と空間直線のパラメータ u が 同時に求めることができる。

求まった u、を(式 3-3)に代入すれば、空間平面 との交点が求まる。

今回最短距離は、レーザースキャナの距離精度である、2.5cmより、小さいものは、断面上の点であるとみなした。図 3-2 はその概念を示している。

図 3-3. 取得データ判定の概念図

断面上とみなされた点データを断面の空間平面上の座標に変換すれば、断面図が描ける。空間平面上の座標は先に求めた空間平面のパラメータ *s*,*t* を用

いることができる。s,tは、 \vec{P}_1 、 \vec{P}_2 の斜向座標で表 わされているので、これを直交座標に変換する必要 がある。

そのために、 $\vec{P}_1 \ge \vec{P}_2$ のなす角度 θ が必要となる。 この角度は、 $\vec{P}_1 \ge \vec{P}_2$ の内積により計算できるので、 直行座標 (x_n, y_n) は次式で計算できる。

変換された座標は、 (x_p, y_p) をグラフソフトで描け ば、断面図が作成される。

4. 断面図作成による地すべりモニタリング

この断面図作成プログラムを用いて、地すべり地に おける断面を描いた。

地すべりの対象地域は、高知県吾川郡仁淀川町長者 とした。高木研究室が、2004年から毎年観測を行っ ている地域である。

4-1. 対象地域

図4-1. 観測現況

図4-1は、地すべりの範囲、今回設定した、断面 の場所、レーザースキャナの位置、幾何補正をする ために使用した基準点を表わしたものである。

地すべりの変位抽出を行うため、過去に取得した、 2004/10/12、2005/12/11、2006/09/15、2007/12/13、 2008/09/14の5期分のレーザースキャナデータを幾 何補正し、比較した。幾何補正の際、使用した基準 点はプリズム1つ、反射板5枚の計6点の基準点を使 用した。

レーザースキャナデータによる幾何補正精度は観 測ごとに違ってくる。最確値をトータルステーショ ンで観測した値とし、レーザースキャナデータ上の 同じポイントと比較した。その平均二乗誤差を、表 4-1に示す。

2006年のデータは誤差が非常に大きいことが確認された。

	表4-1	. 幾何補正時に使用し	った、	平均二乗誤差
--	------	-------------	-----	--------

観測日	x(mm)	y(mm)	z(mm)
2004/10/12	10.42	18.07	4.71
2005/12/11	1.62	9.37	0.04
2006/9/15	99.63	109.81	79.91
2007/12/13	13.77	10.82	2.93
2008/9/14	38.26	20.17	4.85

4-2 結果

図4-2は、作成した断面図を5期分重ね合わせたもの である。

断面図は問題なく描くことはできた。しかし、地 すべりの変位抽出ができたとは言えない結果になっ た。この理由は、幾何補正時の誤差が原因ではない かと考える。

5. 考察

断面図作成プログラムは完成した。本プログラム は、斜めの断面も描けるため、様々な用途に利用で きると期待している。今回、地すべりの変位抽出に 応用したが、変化を検出することはできなかった。 これは、幾何補正精度が悪いためと考えられる。今 日は、レーザースキャナ付属ソフトで幾何補正を行 ったが、本研究室の修士の研究成果を使用し、幾何 変換を用いれば、高精度の幾何変換を行うことがで きる。そこで、今後、この幾何変換を行ったデータ を用いて、断面図を描き、地すべりの変位抽出を目 指したい。

6. 参考文献

01) 高木方隆、「国土を測る技術の基礎」

02) 光岡操、「レーザースキャナを用いた地すべり 地形変位観測のための3次元モデリング」、高知工 科大学大学院2003 年修士論文

03)氏家康二、「レーザースキャナを用いたオブジ ェクトマッチングによる地すべり変位追跡」、高知 工科大学 2004 年修士論文

04) 坂井知也、「レーザースキャナを用いた平面計 測における誤差分布モデルの構築」、高知工科大学 大学院 2005 年修士論文

05) 木下和、「レーザースキャナデータの高精度幾 何補正手法の開発」、高知工科大学大学院 2007 年 修士論文