異なる人工衛星画像を用いた 植生変化抽出の試み

1090456 高関良

高知工科大学工学部社会システム工学科

近年環境問題で特に気象変動が話題となっているが、それにより土地被覆の状況が実際どのように 変化しているか、あまり把握されていない。そこで、本研究では人工衛星画像を用いた植生変化の抽 出を試みた。今回 1998 年の TM 画像、2001 年の ASTER 画像を用いて、幾何補正・濃度補正・NDVI 計 算・二値化処理・変化抽出の一連のプロセスを構成する事ができた。しかし、結果は満足できるもの ではなかった。まず、センサ同士の観測波長帯の差と感度特性の差、幾何学的特性の差を完全に補正 する事ができなかったことが挙げられる。また、同一季節の画像を選んだつもりであったが、季節の 異なる時期同士での変化抽出となったのかもしれない。今後、検証方法を確立するとともに、画像の 補正手法を改良していく必要がある。

Key Words:人工衛星画像、NDVI

1. はじめに

近年環境問題で特に気象変動が話題となっている が、それにより土地被覆の状況が実際どのように変 化しているか、あまり把握されていない。そこで、 本研究では人工衛星画像を用いた植生変化の抽出を 試みる。

表 1-1 は研究室に存在する衛星画像データの一部 である。まず経年変化を見るためには、雲に覆われ ていない画像でなければならない。また、植物は 1 年の間でも季節変化がある。したがって植物の経年 変化を見るためには、同一季節のデータが必要であ る。最終的に使用できるデータは Landsat TM の 1998/10/05 と Terra ASTER の 2001/10/31 の画像で あった。

表 1-1. 所有している画像

撮影時間	衛星センサ	分解能(m)	雲量(%)
1998/07/14	Landsat TM	30	0
1998/07/24	Landsat TM	30	0
1998/10/05	Landsat TM	30	0
1999/01/05	SPOT HRV	20	30
2001/10/31	Terra ASTER	15	0
2002/01/03	Terra ASTER	15	0
2002/03/08	Terra ASTER	15	1
2002/09/26	Terra ASTER	15	1
2007/02/15	ALOS AVNIR2	10	0

2. 対象地域の範囲

国土地理院発行の2万5千分の一地形図の図画で ある繁藤、奈呂、土佐山田、美良布を比較対象とし た。範囲は緯度・経度で範囲を現すと、北緯 33° 35′00″~33°45′00″東経 133°37′30″~ 133°52′30″となる(図 1-1)。

3. 使用データ

3.1 Landsat TM 画像

衛星 Landsat は、1972 年に世界で初めて打上げ られた本格的な地球観測衛星であり、当時からすれ ば、すぐれた観測能力から人工衛星によるリモート センシングの飛躍的な発展のきっかけを作った衛星 である。

この研究で使用する TM 画像は、Landsat に搭載 されているセンサの一つで、可視・近赤外域、短波 長赤外域、熱赤外域の光の情報を取得できるシステ ムより構成されており、可視バンドから熱赤外バン ドまでの計7バンド持っている。可視・近赤外域・ 近赤外域 30m・熱赤外域は 120m の分解能衛星画像 である。現在は7号が運用されている。

3.2 Terra ASTER 画像

衛星 Terra は、1999 年に打ち上げられ、高度 705km の軌道を周回しながら、観測している。地球 観測システム計画という、NASA によって進められ ている地球規模の環境問題への貢献を目指す国際プ ロジェクトがあり、そのプロジェクトの中心的な役 割を担うことを期待されている。

この研究で使用する ASTER 画像は、Terra に搭載 されている日本製のセンサで、可視・近赤外域、短 波長赤外域、熱赤外域の光の情報を取得できるシス テムより構成されており、可視バンドから熱赤外バ ンドまでの計 14 バンド持っている。可視・近赤外 域 15m・近赤外域 30m・熱赤外域は 90m の分解能衛 星画像である。

3.3 スペクトル特性

TM と ASTER の観測波長域は異なっている。図 3-1 は、それぞれのセンサの観測波長域を示している。 植物の状況を把握するためには、可視の赤バンドと、 近赤外のバンドを利用する。両センサとも、可視の 赤バンドの波長域は同じであるが、TM の近赤外測 量域は ASTER よりも大きい。したがって、得られた 画像データを補正する必要がある。

3.4 幾何特性

TM、ASTER ともにラインセンサを用いて軌道上を 走査している。図 3-2 のように TM は常に直下方向 で観測しているが、ASTER はポインティング機能を 有し。斜め方向の観測を行っている。その影響によ り、線形モデルによって幾何補正を行うことができ ない。

図 3-2. センサによる画像取得方法の違い

4. 幾何補正

衛星画像は個別の座標系を有しており、植生の変 化を捉えるためには、座標系を地上座標系に統一す る必要がある。今回は、非線形の幾何モデルである 三次元射影変換のプログラムを用いて幾何補正を行 った。この変換は、ASTER のように斜め方向から観 測された画像であっても標高データがあれば補正で きるものである。今回用いた標高データは国土地理 院発行の10mメッシュデータである。幾何補正には、 画像上の座標とそれに対応する地上座標が必要であ る。

図 4-1 は TM 画像において利用した基準点の配置 を示し、図 4-2 は ASTER 画像において利用した基 準点の配置を示している。幾何補正処理は、同一範 囲を同一分解能の画像を出力する事が出来る。用い る衛星画像の分解能が Landsat は 30m、ASTER は 15m であるため、25m に統一して出力した。

幾何補正精度は、TM画像はu方向9.750m、v方向 10.20mとなった。ASTER画像ではu方向3.505m、v方 向5.090mとなった。両方とも分解能25mであるので 誤差は1ピクセル以内に収まっているので許容範囲 内といえる。

図4-1. TM画像の基準点情報

図 4-2. ASTER 画像の基準点情報

5. 濃度補正

ASTER 画像は、図 3-1 で示したように近赤外の観 測波長域がせまいので、TM 画像に比べて暗い画像 である。したがって濃度補正が必要となる。

画像の明るさやコントラストの調節は、原画像の 各画素の輝度をある関数によって変換することがで きる。この輝度値を変換する関数として今回用いた のは、線形変換(linear strech)である。原画像の 輝度値を P、一次変換によって得られる輝度値を Q とすると、次式で表すことができる。

$$Q = aP + b \qquad (\ddagger 5-1)$$

この式の a、b は変換係数を表しており、一般的 には a はゲイン(gain)、b はオフセット(offset)と 呼ばれている。そして、ゲインによってコントラス トが、オフセットによって明るさが調節できる。

ゲインは統計量の分布幅を調節することから、原 画像における輝度の最小値 Pmin と最大値 Pmax を、 変換によって最小値 Qmin と最大値 Qmax にしたいと き、次式によってゲインが決定できる。

$$a = \frac{Q_{\text{max}} - Q_{\text{min}}}{P_{\text{max}} + P_{\text{min}}} \qquad ($$
 $\ddagger 5-2)$

オフセットは、原画像の最小値にゲインをかけた とき、それが変換後の最小値になるように設定する 必要があるため、次式で計算を行う。

$$b = Q_{\min} - aP_{\min} = \frac{Q_{\min}P_{\max} - Q_{\max}P_{\min}}{P_{\max} - P_{\min}} \quad (\not \exists 5-3)$$

Pmin と Pmax の値は、両画像ともに最小値・最大 値となる画素の値を読み取る。今回最小値は水域 (早明浦ダム湖)を選び、最大値は構造物(高知県南 国市廿枝 1185-1)を選んだ。Qmin と Qmax の値は、1 バイトでの量子化のため、Qmin=0、Qmax=255 とし た。なお、近赤外の Qmin は、後に計算する植生指 標において、Qmin=0 だと計算不能となるため Qmin=18 とし、赤の可視光は Qmin=14 とした。 図 5-3、図 5-4 は濃度補正を行った画像である。 本来の目的通りに濃度補正が行えたのならば、二つ の画像濃度は一致しなければならない。しかし、実 際に濃度変換を行った結果、未だなお ASTER 画像は TM 画像に比べ暗く、結果は十分ではないと言える。 これは各センサの感度特性とセンサの幾何学の違い によるものと考えられる。

図5-3. TM画像の濃度補正後

図5-4. ASTER画像の濃度補正後

6 NDVI 計算

分光反射特性を用いて、地目を分類するのに最も 簡便な方法は、バンド間演算と呼ばれる手法である。 バンド間演算は、人工衛星センサにより得られた各 バンドの値同士について演算処理を施すものである。 特にバンド比を計算するために用いられる。植物の 分光反射特性は、近赤外域で高い反射をし、可視光 の赤では低い反射をする。この特徴を利用すること で、近赤外域と可視光の赤バンドの比は植物を強調 することができる。植物を強調するためのバンド間 演算に正規化植生指標(NDVI)と呼ばれている手法が ある。NDVI は次式で計算できる。

$$NDVI = \frac{IR - VR}{IR + VR} \qquad (\textbf{\vec{x} 6-1)}$$

この式において、IR は近赤外のバンド値、VR は

可視光の赤のバンド値をを代入して求める。NDVI は比を計算する事から、濃度の違いはある程度補正 できる。NDVIの値は-1~1の範囲となり1に近いも のほど植物が多い事になる。TM 画像において、IR は第4バンド、VR は第3バンド、VR は第2バンド の値となる。

図6-1. TM画像のNDVI画像

図6-2. ASTER画像のNDVI画像

図6-1、図6-2はそれぞれ、TM画像、ASTER画像の NDVIの値を画像化したものである。NDVI-1~1を黒 ~白のグレースケールで表現している。

その結果、今度は逆にASTERのNDVI画像の方が明 るい画像となった。

ASTERのVRである第2バンドは、TMに比べてさらに 非常に暗い画像であり、IR-VRの値がTMよりもASTER が大きくなる傾向にあったからである。

7. 二值化処理

NDVIの画像はそれぞれ濃度に差が生じている。この問題を解決するために、二値化処理を行う。二値 化処理は、グレーで表現された画像に対して、ある 闘値を設定し、闘値より小さい値はすべて0、闘値 より大きい値はすべて1という二値のみに変換する ことをいう。ここでは、TMのNDVI画像、ASTERの NDVI画像に対して別々の闘値を設定し、植物のない 要素を0、植物のある画素を1とする二値化処理を行った。

闘値の決定は、市街地の範囲はほぼ変化がないものと見なし、闘値を変化させながら両者の市街地の 形状を目視で確認し、両者の形状がほぼ同じとなる 闘値を選んだ。

8. 変化抽出

二値化されたNDVI画像を用いて、植物の変化抽出 を行った。二値化されたASTERのNDVI画像から、TM のNDVI画像を減算すると、変化域を抽出することが できる。ASTER画像は2001年、TM画像は1998年のも のなので、植生の増えた画素は1、減った画素は-1 と計算される。その値をそれぞれ赤(1)と青(-1)で 表現したものが図8-1である。この図より非常に多 くの箇所で増加したり減少したりしており、3年間 の変化にしては、激しすぎる変化ではないかと思わ れる。

図8-1. 植生の変化抽出結果

9. 考察

今回 1998 年の TM 画像、2001 年の ASTER 画像を 用いて、植生の変化抽出を試みた。幾何補正・濃度 補正・NDVI 計算・二値化処理・変化抽出の一連の プロセスを構成する事ができた。しかし、結果は満 足できるものではなかった。まず、センサ同士の観 測波長帯の差と感度特性の差、幾何学的特性の差を 完全に補正する事ができなかったことが挙げられる。

また、同一季節の画像を選んだつもりであったが、 季節の異なる時期同士での変化抽出となったのかも しれない。今後、検証方法を確立するとともに、画 像の補正手法を改良していく必要がある。

参考文献

- 21) 図解リモートセンシング 著者:日本リモート センシング研究会
- 2) JAXA ホームページ <u>http://www.jaxa.jp/</u>