自己充填コンクリートの粗骨材分離における レオロジー的考察

学籍番号 1090483 氏名 福岡 紀枝

高知工科大学工学部社会システム工学科

自己充填コンクリートの材料分離抵抗性を評価するためには、その流動性を把握する必要があるが、自 己充填コンクリートの流動性が必ずしも明らかになっていないのが現状である。そこで本研究では連続的 に速度変化する球押込み引上げ試験により、自己充填モルタルのフレッシュ時における流動性を測定し、 自己充填コンクリートの材料分離抵抗性を明らかにすることを目的とした。実験結果より、自己充填モル タルの粘弾性をモデル化することにより、粗骨材分離限界曲線の検討を行った。

Key Words:自己充填コンクリート、粗骨材、材料分離、球押込み引上げ試験、降伏値

1. はじめに

自己充填コンクリートの充填性や材料分離抵抗性 を評価するためには、その流動性を把握する必要が ある。しかしながら、必ずしも明らかになってない。 一方、自己充填コンクリートの流動性を把握するた めの簡易的な方法として球の落とし込み試験がある。 そこで、本研究では連続的に速度変化させた球押込 み引上げ試験を用い、フレッシュ時における自己充 填モルタルの流動性の測定および自己充填モルタル の粘弾性のモデル化を行い、粗骨材材料分離限界曲 線を提案した。

2. **実**験

2.1 使用材料及び実験条件

使用材料を表-1、モルタルの配合条件およびフ ロー値・Vロート値を表-2に示す。

表-1 使用材料										
セ	メント(C)	普通ポルトランドセメント								
		(密度=3.15g/cm比表面積								
		$=3450 { m cm}^2/{ m g})$								
細骨材	石灰石	密度=2.69 吸水率=0.68%								
(S)	砕石(CS)	FM 值=2.89								
	海砂(SS)	密度=2.60 吸水率=2.36%								
		FM 值=2.09								
高性能	AE 減水剤(SP)	レオビルド SP8SBs								

2.2 練混ぜ

各材料をモルタルミキサに投入し、図-1に示す

方法で練混ぜ方法で練混ぜを行った。なお、練混ぜ 水は一次水(W₁/C=20%に相当する水量)と残りの二次 水に分け分割して投入し、練混ぜを行った。¹⁾

図-1 練混ぜ方法

3. 測定方法

3.1 フロー試験及びVロート試験

練混ぜ後15分置いた自己充填モルタルをフローコ ーンに詰め、自重によるフローの広がりを測定した。 フロー試験と同様、練混ぜ後15分置いた自己充填モ ルタルをVロートに詰め、流下速度を測定した。

3.2 球押込み引上げ試験

図-2に試験方法を示す。試験には疲労試験機を 用いた。抵抗力の測定には2Nまで測定可能なロー ドセルを用い、変位の値の測定には疲労試験機から の出力を用いた。

振幅を ± 10 mm、 ± 20 mm、 ± 40 mm、 ± 50 mm、 ± 60 mm と変化させ抵抗力の測定を行った結果、振幅が ± 20 mmで最大抵抗力が測定できることが予備実験で確認できた。これより、速度の制御として図-3のような周期が0.01Hzと一定で振幅が ± 10 mmおよび、 ± 20 mmとした2種類の波を約5~7周期与えた。

	実験条件		示方配合 (kg/m ³)				フレッシュモルタルの特性						
配合名	Vw/Vp (%)	SP/C	Vs/Vm	セメント	水	石灰石 砕砂	海砂	SP	フロー (cm)			VD	
		(%)							cm ×	cm	平均	sec	1/sec
W/P=1.0 SP/C=0.8		0.8				605	585	6.9	12.6	12.1	12.4	12.8	0.078
W/P=1.0 SP/C=0.9		0.9						7.8	10.3	10.4	10.4	26.5	0.038
W/P=1.0 SP/C=1.0		1.0						8.7	13.5	13.3	13.4	14.7	0.068
W/P=1.0 SP/C=1.1		1.1						9.5	12.1	11.6	11.9	16.2	0.062
W/P=1.0 SP/C=1.3		1.3						11.3	19.7	19.9	19.8	9.3	0.108
W/P=1.0 SP/C=1.5	100	1.5	0.45	866	275			13.0	24.4	24.6	24.5	8.5	0.118
W/P=1.0 SP/C=1.7		1.7						14.7	28.1	27.9	28.0	7.9	0.127
W/P=1.0 SP/C=2.0		2.0						17.3	24.7	24.7	24.7	7.8	0.128
W/P=1.0 SP/C=2.3		2.3						19.9	34.0	34.0	34.0	7.0	0.143
W/P=1.0 SP/C=2.5		2.5						21.7	36.0	34.0	35.0	6.2	0.162
W/P=1.0 SP/C=3.0		3.0						26.0	34.0	31.9	33.0	5.3	0.189
W/P=1.1 SP/C=0.8		0.8	0.45	825	288	605	585	6.6	16.5	16.6	16.6	5.9	0.169
W/P=1.1 SP/C=1.0	110	1.0						8.3	15.9	15.8	15.9	6.8	0.147
W/P=1.1 SP/C=1.3		1.3						10.7	24.4	24.8	24.6	5.1	0.196
W/P=1.1 SP/C=1.5		1.5						12.4	29.1	28.3	28.7	4.9	0.204
W/P=1.1 SP/C=1.7		1.7						14.0	30.8	40.2	35.5	4.8	0.208
W/P=1.1 SP/C=2.0		2.0						16.5	33.0	31.0	32.0	4.7	0.213
W/P=1.2 SP/C=0.8	120	0.8	0.45 78	700	300	605	585	6.3	20.0	19.4	19.7	3.8	0.263
W/P=1.2 SP/C=1.0		1.0						7.7	20.3	21.2	20.8	3.1	0.323
W/P=1.2 SP/C=1.2		1.2						9.4	25.7	26.1	25.9	3.3	0.303
W/P=1.2 SP/C=1.3		1.3		/00	300			10.2	27.0	26.4	26.7	4.1	0.244
W/P=1.2 SP/C=1.5		1.5						11.8	40.5	40.3	40.4	3.5	0.286
W/P=1.2 SP/C=1.7		1.7						13.4	41.5	40.0	40.8	2.8	0.363

表-2 モルタルの配合条件およびフロー値・Vロート値

4. 実験結果および考察

4.1 変位-抵抗力関係

変位-抵抗力関係の例を図-4に示す。変位と抵 抗力の関係がループ状になっている。このことから、 モルタル中で押引きされている球とモルタルが擦れ ることによりエネルギーが発生したと考えられる。

4.2 速度一抵抗力関係

4.3.2 配合による違い

振幅が±20mmの時の速度-抵抗力関係を図-5に 示す。図-5(a)と図-5(b)の配合条件、フロー値、 Vロート値は表-2に示した通りである。

球押込み・引上げ試験において、速度-抵抗力関係のグラフは繭形を描いた。SP添加率1.7%のモル

タルでは最大で0.15N近くの力がかかっている。し かし、SP添加率2.5%のモルタルでは0.03N程度の力 しかかかっていない。Vw/Vpを小さくしてもSP添加 率を大きくすることでモルタルの粘性が下がるため、 フロー値はほぼ同じであるが、Vロート値は小さく なる。球押込み・引上げ試験において、速度が同じ であるがその時に生じる抵抗力に差が生じたものと 考えられる。

4.2.2 変位振幅による違い

図-6に変位が±10mm、±20mmの速度-抵抗力関 係を示す。変位が異なることにより、球の変位が0 となる位置での球の速度は、変位を大きくしたモル タルのほうが速くなるが、モルタルの最大および最 小抵抗力、抵抗力が0となる位置の速度に関しては 大きな変化は無い。

4.3 モデル化

4.3.1 粗骨材分離が起こらない条件

粗骨材分離を起こさない条件として、粗骨材がモ ルタル中を沈降する力がモルタルのもつ抵抗力より も小さければよい。すなわち、式(1)の条件を満た すことで粗骨材分離は生じない。

$$\mathbf{R} \ge \mathbf{mg} - \mathbf{F} \tag{1}$$

ここで、mは粗骨材の質量(g) Gは重力加速度 Fは自己充填モルタルの浮力(N) Rは自己充填モルタルの抵抗力(N)

である。

モルタルの密度を2250kg/m³、粗骨材の密度を 2.6g/cm³とし、算出した粗骨材分離の境界となる値 は0.01436Nである。

4.3.2 粘弾性モデル

実験に使用した自己充填モルタルが式(1)の条件 を満たしているか明らかにするためには、モルタル 中の球が速度0から動き始める瞬間の力を知る必要 がある。そこで、バネ、スライダー、ダッシュポッ ドを用い作製した自己充填モルタルの粘弾性を表す モデルを図-7に、粘弾性モデルも用いて行った解 析例を図-8および図-9に示す。

4.3.3 SP 添加率-Py1 関係

SP 添加率-Py1 関係を図-10 に示す。Py1 は粗骨 材が沈降し始める時の自己充填モルタル抵抗力を表 している。式(1)より算出した粗骨材分離のより、 粗骨材分離境界線より下にある点では材料分離する と考えられる。

4.3.4 SP 添加率-Py2 関係

SP 添加率-Py2 関係を図-11 に示す。Py2 の値が 小さければ、粗骨材が下まで沈降する。

4.4 粗骨材の材料分離限界

粗骨材の材料分離限界を図-12 に示す。井上²⁾、 篠原³⁾の研究では材料分離の定義を骨材が下まで沈 降するとしているが、本研究では材料分離の定義を 骨材が下まで沈降する場合とモルタル中で止まる場 合があるとしている。そのため、両氏と値が離れて いる点においては、骨材が下まで沈降せず途中で止 まっており、両氏の値と近い点においては Py2 の値 が小さく、骨材が下まで沈降したためだと考えられ る。

- 5. まとめ
- (1) 速度-抵抗力関係は繭形になり、配合によって 異なる。
- (2)本研究において粗骨材分離限界曲線は図-12の ようになると考えられる。

参考文献

- 1) 永峯秀則・岸利治:遠心浮き推量と変形性との 規則に基づくモルタル中の自由水に関する研究, 土木学会論文集No,4,2006年12月
- 2)井上亜寿沙:自己充填モルタル中の細骨材分布, 土木学会全国大会第62回年次学術講演会概要書, 2007年
- 3) 篠原寿一:自己充填モルタルの細骨材の沈降, 高知工科大学卒業論文,2006年