Brain-Computer Interface のためのノイズ除去フィルタの開発

知能ロボティクス研究室 日野龍介

1. 緒言

近年, Brain-Computer Interface (BCI) という脳を計測し、 得られた信号を用いたインターフェイスが研究され、本研究 でも近赤外線分光法(NIRS)を用いた BCI の開発を行っている. BCI 実現のための課題として、計測される信号に様々な外乱 が確認され BCI の入力となる認知活動や純粋な運動成分のみ を取り出すことが困難であることが課題となっている. そこ で,本研究では呼気や脈拍,余分な体動成分など周波数やわ かりやすいノイズを、離散コサイン変換を用いて取り除いた 後、逆変換により認知活動による信号のみを取り出すフィル タの開発を行う.

2. 実験内容

呼気や脈拍、余分な体動成分などの除去のため、先行研究 で行われた、ステップトレーナーを用いた足踏み運動で得ら れた結果を用いた. 運動は安静30秒の後, 課題として足踏み を30秒間行うことを1セットとし,それらを6回繰り返して いる(図1). 図中の青い範囲は安静を、赤い範囲は課題を表 している.

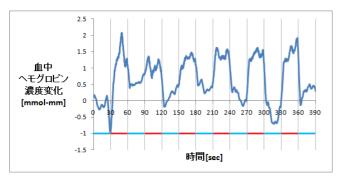


図1 足踏み運動による NIRS 計測結果

計測結果より、NIRS 信号特有の緩やかな下降現象が見られる ものの,安静・課題ともに一定周期の外乱が確認されている. 本報告ではこれらの成分を解析し、離散コサイン変換により BCI 入力信号として用いる認知活動以外の成分を取り除く.

2.1 離散コサイン変換

NIRS 測定結果より離散コサイン変換を行う(式 1). 離散コ サイン変換は離散フーリエ変換の一種であるが、余弦関数数 列の係数に変換をする. また, 実数入力に実数で返すため, 変換係数も実数で返ってくる. それにより特定成分への集中 度が上がるので、判別がしやすくなる.

$$X(k) = \sqrt{\frac{2}{N}}C(k)\sum_{n=0}^{N-1}x(n)\cos\left\{\frac{(2n+1)k\pi}{2N}\right\} \qquad \cdots (\not \stackrel{\rightarrow}{\rightleftarrows} 1)$$

離散コサイン変換を行った結果を図2に重要であると考え られる周波数の拡大を行ったものを図3に示す.

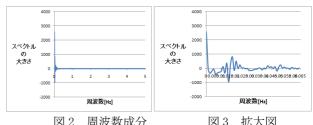


図 2 周波数成分

図3 拡大図

2.2 逆離散コサイン変換

図2で得られた結果を式2に示す逆離散コサイン変換を行 い外乱であると思われる周波数の除去を行った.

$$x(k) = \sqrt{\frac{2}{N}} \sum_{n=0}^{N-1} C(k) X(k) \cos \left\{ \frac{(2n+1)k\pi}{2N} \right\} \qquad \cdots (\not \equiv 2)$$

3. 実験結果

周波数成分より呼気や脈拍といった生体活動による信号と, 余分な体動成分と思われる低周波成分, 認知活動ではないと 思われる高周波成分を取り除き逆変換した結果を図4に示す.

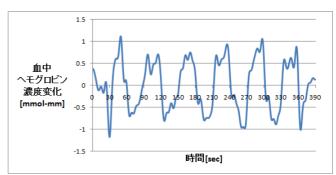


図5 フィルタを行った NIRS 計測結果

4. 結言

今回の報告では,離散コサイン変換で呼気,生理信号,余 分な体動成分の周波数領域を除き, 重要な認知活動の抽出が 出来たと思われることから、BCI 入力信号への応用の可能性 が確認できた. しかしながら, 詳細な周波数領域の特定や生 理信号の内訳などをより詳細にする必要があると思われる.

参考文献

- (1) 現代工学社:現代工学のためのフーリエ変換の計算法
- (2) 現代工学社:現代工学のための応用フーリエ解析
- (3) オーム社:わかりやすいデジタル信号処理
- (4) 工業調査会: ブレイン-マシン・インターフェイス最前線
- (5) 天野敬介, 王碩玉, 三浦直樹: 疑似歩行時の脳-筋肉活動 間の関連性解析, BMFSA 論文集, 2008, pp20-24