鋼製ダンパーを設けた簡易橋梁の耐震性能

1100405 高橋佑輔

高知工科大学工学部社会システム工学科

仮桟橋工法を応用した簡易な道路橋は、大幅なコスト削減と工期の短縮が実現できるが、設計上、橋脚 の降伏を許しており、耐震性能2を満たしていない。実施設計では橋脚間にブレースを設けている例があ ることから、このブレースに鋼製ダンパーの考え方を適用して耐震性能2を満足する設計の検討を行った。 結果、適切な断面設計を行うとブレースがエネルギー吸収機能を発揮する。さらに、限定された設計条件 の下であれば、動的解析によらずにプッシュオーバー解析でブレースの最適断面を求められる可能性を示 した。

Key Words:簡易橋、ラーメン橋、鋼製ダンパー、エネルギー吸収、座屈

1. はじめに

株式会社高知丸高殿によって開発された sqc ピア 工法は仮桟橋工法を道路橋に応用することによって、 大幅なコストの削減と工期の短縮が実現できる。

sqc 工法は、言わば杭を打ち残したような形として、地盤上にある杭をそのまま橋脚として用いるところに特徴がある。極めて合理的な構造であるが、オリジナルが仮設構造物であるため、耐震性能が課題であった。

写真1は、実用化第1号の橋梁であるが、部分的 に橋脚間にブレースが設けられている。これは、橋 脚長、スパンがかなり大きい部分があって耐震設計 の規定を満たしていなかったためであるが、基本的 な考え方が補強であるため、設計上、橋脚の降伏を 許している。すなわち、耐震性能2(地震による損 傷が限定的なものにとどまり、橋としての機能の回 復が速やかに行い得る性能)は満たしていない。

一方、近年、鋼製ダンパー、ダンパーブレースな どと呼ばれる2次部材を降伏させることによってエ ネルギー吸収を図り、耐震性を向上させる研究が報 告されている。そのことを利用して、今井は、橋脚 間のブレースを積極的に降伏させ、ブレースによる エネルギー吸収によって橋脚の降伏を防いで耐震性 能2を満たす設計の検討を行っている。

しかしながら、ブレースによるエネルギー吸収量 や、それによる動的応答の変化などの詳細は明らか にされていない。本研究では、ブレースによるエネ ルギー吸収とその制震効果を詳細に検証するととも に、ブレースをダンパーとして有効に機能させるた めの設計法を探ることとした。

2. モデル構造

検討の対象は、今井が報告している基本設計の諸 元を持つ橋梁の1径間分とした。図1にモデルの構 造を、表1に主要部材の断面諸元を示す。橋脚に対 しては、道路橋示方書耐震設計編の規定に従って非 線形特性を設定した。橋脚以外の部分は弾性として いる。

表1 部材断面一覧 単位(mm)				
	Н	В	tw	tf
主桁(H)	900	300	16	28
橫桁(H)	588	300	12	20
中間横桁(H)	700	300	13	24
橫構斜材(2×L)	75	75	9	9

	φ	tw
橋脚	609.6	12.7

 ダンパーによる地震エネルギー吸収のメカニ ズム

3.1 鋼製ダンパーの諸元

ブレースの設置位置を図 2 に示す。両端 2 対の橋脚 に同じ諸元のダンパーを設 置するものとした。設置位 置は図中の H1、H2 に固定 し、断面を変化させた。

断面は、角パイプ断面を 使用する。今回の研究では、 断面の増減による破壊形態 の変化を解明するため、 JIS の規定に関わらず、広 範囲の断面のデータが必要 となる。そこで、今井のブ レースが降伏して、橋脚が

図2 橋軸方向側面

降伏しなかったケース E、G の断面を参考に、断面 100~3500 mm²の範囲の解析を行った。断面の詳細 は表2、3に示す。

なお、実際の鋼製ダンパーでは圧縮時にも有効に 機能するように何らかの座屈防止策が必要であるが、 ここでは簡単に引張、圧縮とも同じ降伏特性である とした。降伏応力は 250N/mm²、降伏後の 2 次剛性は 初期剛性の 1/10 とした。

ケース	断面積	ケース	断面積
А	100	G	1213
В	300	Н	1500
С	500	Ι	2000
D	700	J	2500
Е	893	K	3000
F	1000	L	3500

表2 ブレース断面 単位(mm²)

表 3	ブレース部材断面	単位(mm)	

Е	B $75 \times 75 \times 3.2$
G	$B 100 \times 100 \times 3.2$

3.2 動的解析結果

ケース A~L について動的解析を実施した。橋軸 直角方向の地震波だけを考え、タイプⅠ、Ⅱの地震 波3波ずつ、計6波の地震動に対する応答を調べた。

タイプ I の地震動では、ケース A~L すべてで橋 脚が降伏しなかった。これは、橋脚の応答が小さか ったため、ブレースの断面関係なく橋脚本体で地震 動に耐えたためである。

タイプⅡの地震動に対する解析結果を表4に要約 する。表中の〇は当該部材が降伏していないことを、 ×は降伏していることを示す。ダンパーが降伏、橋 脚が降伏していない状態とするのが本設計の目的で あるから、橋脚が〇、ダンパーが×となっているケ ースE、F、Gが目的を達成した構造である。

表4 動的解析結果の要約			
ケース	橋脚	ダンパー	
А	×	×	
В	×	×	
С	×	×	
D	×	×	
E	0	×	
F	0	×	
G	0	×	
Н	×	×	
Ι	×	×	
J	×	×	
K	×	0	
L	×	0	

もめぬた外田の西外

タイプⅡの中でも応答の大きかった地震波3の動 的解析のダンパー部分の応力ーひずみの関係結果を 図3に示す。同様に、タイプⅡ-地震波3の動的解 析の変位を図4に示す。図4の結果は、橋脚と主桁 の接合部の変位で、特に、非線形と線形で、変位差 の大きい 5-10 秒間を示す。図4の非線形とは、ブ レース部材が降伏応力を超えると塑性変形を起こす 解析の結果で、線形とは、ブレース部材を降伏させ ずに、弾性材料のように、直線的な応力--ひずみの 関係を示す設定での解析結果である。

ケース A~D では、ダンパーが降伏して、橋脚も 降伏する結果になった。橋脚の降伏は、主桁と橋脚 の接合部、又は、橋脚の地表部分から起きる。

その代表的な例のケースAでは、図3より、ブレ ースが地震エネルギーを吸収していることを示すリ サージュが確認できる。ループも大きくエネルギー 吸収していることが分かる。図4より、前半は、微 小ながらエネルギー吸収しているが、後半からは、 ほとんどエネルギー吸収していない。これは、ブレ ースの断面が過小なため、エネルギー吸収能力の不 足が原因と考えられる。

ケース E~Gでは、ダンパーが降伏して、橋脚は 降伏しない結果になった。

その代表的な例のケース E は、今井が、耐震性能 2を満たす設計として報告しているものである。図 3より、リサージュが確認できる。ループも大きく エネルギー吸収していることが分かる。図4より、 非線形が線形の変位の約2割減少していることから、 ブレースがエネルギー吸収することで、応答が小さ くなったことが分かる。そして、ケース E~G 全て のケースで、線形より非線形の波形に少し遅れが生 じることが分かった。これは、良好な断面設計が行 えたとき、特有の性質と思われる。適切な断面の判 断基準として利用できる可能性がある。ケース E~ Gの中では、ケース Eのリサージュの面積が大きく、 一番エネルギーを吸収している割合が高いため、ダ ンパーが効率良くエネルギー吸収を行う目的に合っ た断面であった。

ケース H~Jでは、ダンパーが降伏して、橋脚も 降伏する結果になった。橋脚の降伏は、地表部分か ら起こる。これは、ダンパー断面の増加に伴う、橋 梁上部の剛性の増加が関係していると思われる。

その代表的な例のケースJでは、図3より、リサ ージュが確認できる。しかし、ループが小さいため、 ダンパーのエネルギー吸収が少ない。そのため、図 4より、前半は、微小ながらエネルギー吸収してい るが、後半からは、ほとんどエネルギー吸収してい ない。これは、ケースAと似ているが原因が異な る。ケースAでは、断面過小によるダンパー自身の エネルギー吸収能力不足で、ケースJは、断面の過 大なために起こる、降伏によるエネルギー吸収の減 少が原因である。

ケース K、L では、ダンパーが降伏せず、橋脚が 降伏する結果になった。橋脚の降伏は、ダンパーと 橋脚の接合部の下部分から起こる。

その代表的な例のケースLでは、図3より、リサ ージュが確認できない。ブレースが降伏していない ため、地震エネルギーを吸収していない。図4より、 ダンパーが地震エネルギーを吸収していないので、 変位も変化していない。結果、橋脚本体の降伏を許 している。これは、断面過大で、ブレースがエネル ギー吸収装置としてのダンパー機能を果たしていな いためである。

4. 動的解析とプッシュオーバー解析の相関性

プッシュオーバー解析は、モデルの橋軸直角方向 に単調増加荷重を載荷する静的解析である。ここで の単調増加荷重とは、各節点の質量に、水平加速度 を乗じた水平荷重を示す。ブレースと橋脚の降伏時 の加速度を表5に示す。加速度と荷重は比例関係に ある。表5には、プッシュオーバー解析における4 か所のブレースと橋脚の一次降伏時の荷重の比(橋 脚降伏荷重/ブレース降伏荷重)も合わせて示した。

ブレースが降伏することで、地震エネルギーを吸 収して、橋脚が降伏しないケースE、F、Gのブレー スの荷重と橋脚の荷重の降伏荷重比を算出する。今 回の設計条件では、橋脚とブレースの降伏荷重比は 約1.8~2.1である。つまり、橋脚の一次降伏時の 荷重がブレースの一次降伏時の約1.8~2.1倍の時 に良い設計が行える。

しかし、この値自体は、設計条件によって変化す るため、あまり重要ではない。ここで重要なのは、 静的解析であるプッシュオーバー解析から得られた 降伏荷重比と、ダンパーの制震性能に高い相関が認 められたことである。これは、限定された設計条件 の下であれば、動的解析によらずにプッシュオーバ 一解析でブレースの最適断面を求められる可能性を 示しているように思われる。

表5 降伏時の水平加速度 単位(G)

ケース	ブレース	橋脚	降伏荷重比
А	0.043	0.130	3.02
В	0.055~0.056	0.150	2.67~2.72
С	0.067~0.068	0.160	2.34~2.38
D	0.080~0.081	0.174	2.16~2.19
Е	0.092~0.093	0.190	2.04~2.07
F	0.098~0.099	0.198	2.00~2.02
G	0.111~0.113	0.204	1.80~1.84
Н	0.130~0.131	0.212	1.63~1.64
Ι	0.160~0.162	0.226	1.40~1.41
J	0.191~0.195	0.240	1.23~1.26
К	0.221~0.227	0.252	1.11~1.14
L	0.253~0.256	0.252	0.98~1.00

5. ダンパーの座屈荷重の照査

3・4 での検討でダンパーが降伏して橋脚が降伏 しないケース E、F、G の角パイプ断面の座屈を照査 する。

座屈荷重 P_{cr} は次式で計算する。

$$P_{cr} = \frac{\pi^2 EI}{L^2}$$

 $P_{cr} = 座屈荷重$ $\pi = 円周率$

 $E = 2.0 \times 10^{5}$ N/mm² (引張弾性係数)

I=断面 2 次モーメント

細長比の定義において L を実部材長とせず境界条 件を考慮した有効座屈長(換算座屈長)を用いて座屈 荷重を求めることにする。

 $L_k = k \cdot L$

 $L_k = 有 効 座 屈 長 (換 算 座 屈 長)$

*k*については、ブレースとブレースの接合部は固定とし、橋脚との接合部はヒンジと考え、条件に当てはまる理論値を使用した。

k = 0.7

 $L_k = 0.7 \times 2500 = 1750 \text{ mm}$

表6にケースEの部材断面を示す。

表 6 ケース E の断面部材 単位(mm)

Н	75	tw	3.2
В	75	tf	3.2

上表の結果から座屈荷重を計算した。

 $I = 7.91 \times 10^5 \text{ mm}^4$

 $P_{cr} = (\pi^2 \times E \times 7.91 \times 10^5) / (1750) = 5.10 \times 10^5$ N

 $\sigma_{cr} = 571$ N/mm²

ケース F、G も同様に座屈応力を求めた。

表7 ケースFの断面部材 単位(mm)

Н	80	tw	3.26
В	80	tf	3.26
$I = 9.83 \times 1$	0^5 mm^4		

 $P_{cr} = (\pi^{2} \times E \times 9.83 \times 10^{5}) / (1750) = 9.83 \times 10^{5}$ N $\sigma_{cr} = 634$ N/ mm²

表8 ケースGの断面部材 単位(mm)

Н	100	tw	3.2
В	100	tf	3.2
$I = 1.25 \times 10^6 \text{ mm}^4$			

 $P_{xx} = (\pi^2 \times E \times 1.25 \times 10^6) / (1750) = 1.25 \times 10^6 \text{ N}$

 $\sigma_{cr} = 1040$ N/mm²

ケース E、F、G の座屈応力の計算結果をまとめて 表 9 に示す。降伏応力は、3.1 で示した 250N/milと する。表 9 から明らかなように、座屈応力は 3 ケー スとも降伏応力以上となっており、耐荷力は降伏応 力で決まる。このことから、今回の条件下では、圧 縮時にもダンパーが有効に機能することが分かった。

表 9 座屈応力 単位 (N/mm²)

ケースE	ケースF	ケースG
571	634	1040

6. 結論

ある条件では、鋼製ダンパーが地震エネルギーを 吸収する機能を発揮できる。

ダンパーの断面には最適値があり、断面が過小の 場合は、ダンパーはエネルギー吸収するが、エネル ギー吸収不足となり、断面が過大な場合は、ダンパ ーはエネルギー吸収不足、又は、降伏しないためダ ンパーとして機能しない。

適切な設計をすれば、圧縮時にもダンパーが有効 に機能することができる。

参考文献

今井恵介「鋼製ダンパーを設けた簡易橋の耐震性 能」、土木学会四国支部第 15 回技術研究発表会講 演概要集、平成 21 年 5 月

4