25

TN ALEE D -0 O EHALHBEREN & Java 71 0
7 3 v BB ORSE

JNigE 2

T XLE (OYIHER) ICB ) 2 EAER B, LB e T — ¥ it E A
A= TEBEITRDIER, ZDA A= 70 l50 LTEMUTER LIRS
JLtThs, FEEWIINGDI L2BER, HEE2MHL L EYEDH s 70 s 7 L%
ERTEB XD EMNEREING, 7075 LDIEMMEZBHEICHIET 5 72 D113,
7a7 5 L ERIET 2N ERH S, £, T0S 7 LOMEREBEEOEEZREYIETZ L
IEMEDH 2 70 7 AOERTFEOERICHN TS 5.

Z ZCARMZE T, FIHEDBGEICE T 2 AR % WIBATHRDIC, DO LMk
2%, PVIYRALEEDLOD Java 7075 3 v VBEORE 27> 7. BAERNIZIZ
T, POEDLHEARAT NI RALZ2PHT-00L T4 ¥ 2FE L1, 1, HASHE
KBUZ X kRl Z JML a2 — FAZLIEHT 2 Y —)L (a— FL#y —)) 0FEER
fiotz, ZLTC, AR TEELZZa— FEBRY —)LICBL T, ELSEBRINTHENE
IDOMERE T o7, FERELT, V=P TERLHEE, SGRBIL TFIEL £
Nz, £, ZHED JML 2 — FCHa ARG TE 2008 ) 0 OMER =T o 72, fiR &
LT, RKY— BB Hujggnr /57— aryTid7u s 5 208E%2 +oIc il Tt 3 X
I RMEERE RIS o T, MEED b v b £ 5L — T AEEMOMES B T 2 B S
AREICT 2R EDI D 5 2 ED3bro Tk,

F—TU—K 7Y XL¥EH, Tu s ke @R, JML



Abstract

Development of a Java programming environment with

theorem proving function for supporting algorithm learning

Takashi KATO

The main targets of algorithm learning (especially in the early phase) are to be
able to image the flow of the process and to realize the image in a form of program. A
learner is required to be able to design a correct program based on these things. To
guarantee a program is formally correct, one have to verify that program. Repetition of
programming and verifying helps to acquire how to design correct programs. Therefore
in this study, we develop an environment of Java programming for algorithm learning
that enables to formally verify a program without enough knowledge of verification.
Firstly we, implement a editor for learning predefined basic algorithms. We also imple-
ment a tool (code converter) that converts a natural language specification into JML
code. Finally, we check whether the code converter can correctly convert a specification
into JML code. As a result, the words and grammar defined in the tool were converted
correctly. We also check whether sufficient verification can be performed using gener-
ated JML code. As a result, we found that sufficient verification cannot be performed

and auxiliary specifications such as loop invariants and lemmas are necessary.

key words algorithm learning, program verification, theorem prooving, JML

i



