護岸ブロックの形状を用いたLiDARによる 地すべり変位観測手法の開発

1120285 秋山 心平

高知工科大学工学部社会システム工学科

地上型LiDARを利用した地すべり変位観測手法の開発を行った.LiDAR(Light Detection And Ranging) とは、計測対象物に対してレーザー光を照射し、その散乱光や反射光を測定することにより、計測対象物 までの斜距離、水平角、鉛直角を一定の間隔で広範囲のデータを取得する測量機器である。そこで地上型 LiDARデータを用いて、地すべり観測手法の開発を試みた.護岸ブロックを計測対象物として三次元の点 群データを取得し、3つの面を抜き出し交点を算出して、多時期の比較を行い変位抽出を行った。2010年 夏と2011年夏の交点の移動量を比較したところ、1 cm精度で変位を捉えることができた。

Key Words: 地上型 LiDAR, 地すべり, 空間平面

1. はじめに

地上型LiDAR(Light Detection And Ranging)は, 広 範囲の三次元計測に最適であるため、地形測量に利用 されている. 高木研究室では、高知県吾川郡仁淀川町 長者地区の地すべり防止区域で、地上型LiDAR(以後, LiDARと呼ぶ)による地すべりの変位抽出を定期的に行 っている.地すべりは年間で数mmから数cm程度で,目 に見えないほど緩やかに移動している. 高木研究室で は、これまでに有効計測距離350m、角度分解能0.036°、 測距精度±25mmのLiDARによる地すべり観測手法が開発 されてきた. しかし従来のLiDARは、地すべり変位を捉 えるには十分な分解能と測距精度ではなかったため, 複数回計測や高精度幾何補正等、多くの工夫がなされ ていた. 2010年には、2台目となるLiDARが導入された. 新たに導入したLiDARは計測距離100m,角度分解能 0.0034°、測距精度±6mmと高分解能であり、物体の形 状を認識しやすい高密度のデータ取得が可能になった. この新規導入のLiDARを用いて、簡単に地すべりの移動 量を比較することが出来れば, 危険度判定や発生メカ ニズム解明に期待できる.

2010年度稲田涼修士論文では、旧LiDARを用いて地す べり末端部の護岸ブロック49個の平面計測による地す べりの変位抽出を試みた1).しかし抽出された変位の 方向に疑問の残る結果であった.そこで本研究の目的 は、新導入のLiDARで取得した41個分の護岸ブロックの 多時期での点群データを用いて、地すべりの変化抽出 を行い、地すべり変位の確認を行うものである.

2. 使用機材

本研究で使用したLiDARは、Leica-Geosystems社製 のCyrax-2500である.LiDARはデータ1点につき、斜距 離、水平角、鉛直角、三次元座標、反射強度の情報を 取得する.Cyrax-2500は、有効計測距離2m~100m、視 野角40°×40°と計測範囲は狭いが、測距精度は±6mm と高精度である. なお、本論文中では、Cyrax-2500に より取得されたデータをLiDARデータと呼ぶ. LiDARの 外観を図2.1に、仕様を表2.1に示す.

図2.1 Cyrax-2500

表 2.1 LiDAR の仕様

項目	Cyrax-2500	
計測範囲	2m~100m	
計測視野	$40^{\circ} \times 40^{\circ}$	
測距精度	± 6 mm	
計測原理	Time of Flight 法	
レーザー波長	532nm(可視光)	
計測所要時間	約15分	

3. 計測対象

本研究では、高知県吾川郡仁淀川町長者地区の長者 地すべりを計測対象地とした.高木研究室では、長者 川右岸の護岸工の LiDAR 計測を定期的に行っている. 本研究における対象範囲は、計測対象地域内に存在す る護岸ブロック 41 個で、2010 年度稲田涼修士論文の 研究対象と同じである(図 3.1).

図 3.1 対象範囲図

4. 地すべり変位抽出手法

4.1 地すべり変位抽出手法の概要

地すべり変位抽出手法の概要を図 4.1 のフローチャートに示す. なお、図中の(\bigcirc , \bigcirc , \bigcirc) は座標系を表す.

図 4.1 地すべり観測の概要図

LiDAR 計測によって取得したデータには、ランダム な誤差が含まれている.過去の研究成果によると、ラ ンダムな誤差を丸めるためには、高密度なデータで平 面計測を行う必要がある 2).旧 LiDAR はデータの密度 が低かったので、護岸工ブロックの各面の形状を捉え ることが困難であった.しかし、新しい LiDAR は高密 度のため、面の形状を把握できる.したがって、ブロ ックの 3 つの面を抽出し、空間平面を求めることが出 来れば、その交点を算出できる.その後座標系統一の ため、算出した交点を幾何補正すれば、2010 年の交点 と 2011 年の交点の移動量を比較して地すべりの変位抽 出が可能である.

4.23つの平面上にあるデータの抽出法

LiDAR を護岸工の対岸の川辺に設置して LiDAR 計測 を行った. LiDAR 計測は計 3 回行い,その中から幾何 補正用基準点のデータを判読しやすいと判断されたシ ーンを 1 つ選び使用した. LiDAR が取得するデータは, 点群の集まり(ポイントクラウド)で表現される.こ のデータの原点は LiDAR 設置位置となり,座標系は LiDAR 座標系(u, v, w)とする. LiDAR で護岸ブロックの データを取得したときのイメージを図 4.2.1 に示す.

図 4.2.1 LiDAR 計測によるデータ取得図

ブロックの平面を3つ選び,平面上にあるデータの 抽出を行う.平面抽出のフローチャートを図 4.2.2 に 示す.対象となる平面はブロック中央のくぼみ面,く ぼみ面横の左内側面,上斜面の3面とする.四辺形の 平面データを抽出後,面の式を立てる.

図 4.2.2 面抽出の概要図

最初にブロック平面の端点のデータを LiDAR 計測デ ータから目視で取得する.1 面につき 4 点必要なので 平面3つ分,計10 点のデータを取得し,各端点に番号 をつけた.取得した端点の位置図を図4.2.3 で示す.

図 4.2.3 端点位置図

取得した端点 1-2-3-4 で構成される四辺形の平面を 平面1,端点 1-4-5-6 で構成される平面を平面m,端 点 7-8-9-10 で構成される平面を平面nとする.面の式 を以下に示す.

$$ax+by+cz=l$$

この端点の座標を面の式に代入し,連立方程式を解 けば係数が求まる.面の式を導いた後,四角形の内部 にあり,かつ作成した四角形の面から最短距離が 2cm 未満にある点を平面上の点であるとみなし,LiDAR デ ータから抽出する.取得データ判定の概念を図 4.2.4 に示す.

図 4.2.4 取得データ判定の概念図

データ抽出が終了後,再度面の式を立て係数を算出 する.このとき多数の点データから面の式を求めるに は,最小二乗法を用いた.次式は,最小二乗法による 係数算出のための計算式である.

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \sum u_i^2 & \sum u_i v_i & \sum u_i w_i \\ \sum u_i v_i & \sum v_i^2 & \sum v_i w_i \\ \sum u_i w_i & \sum v_i w_i & \sum w_i^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum u_i \\ \sum v_i \\ \sum w_i \end{pmatrix}$$

 (u_i, v_i, w_i) : LiDAR データ (a, b, c): 係数

データ抽出後のイメージを図 4.2.5 に示す.

図 4.2.5 データ抽出後のイメージ図

4.3 交点の算出

平面が 2 つあると交線ができ,平面が 3 つあると交線が交わって交点ができる.ブロックにおける抽出された 3 平面の交点のイメージを図 4.3 に示す.

図 4.3 ブロックの交点イメージ図

平面 l, m, nの係数 *a, b, c* がそれぞれ求まっているので, 平面の交点は次式を用いて求めることができる.

$\begin{pmatrix} x_p \\ y_p \\ z_p \end{pmatrix} = \begin{pmatrix} a_l \\ a_m \\ a_n \end{pmatrix}$	$ \begin{array}{c} b_l & c_l \\ b_m & c_m \\ b_n & c_n \end{array} \right)^{-l} \begin{pmatrix} l \\ l \\ l \end{pmatrix} $
	(x_p, y_p, z_p) :交点の座標
	(a_l, b_l, c_l) :平面1係数
	$ig(a_m,b_m,c_mig)$:平面 m 係数
	(a_n,b_n,c_n) :平面 n 係数

今回 2010 年と 2011 年の 41 ブロックの交点を算出した.

4.4 交点の幾何補正

LiDAR 計測は,計測時期によって設置位置と姿勢が 微妙に異なるため,座標軸も異なる.そこで計測によ って得られた2時期のLiDAR データを幾何補正し,座 標系の統一を行う必要がある.幾何補正を行うには4 点以上の基準点が必要である.今回は護岸ブロックに 常設している反射板6点を基準点として幾何補正を行 った.基準点の位置を図4.4に示す.

図 4.4 幾何補正用基準点の位置図

基準点の正確な座標を取得するために、トータルス テーションを使用して計測を行った.幾何補正のため の座標系は、トータルステーション設置位置を原点と したローカル座標系に統一した.幾何補正には 3 次元 affine 変換を使用した.3次元 affine 変換式を以下に 示す.

$$\begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix} = \begin{pmatrix} p_0 & p_1 & p_2 \\ p_3 & p_4 & p_5 \\ p_6 & p_7 & p_8 \end{pmatrix} \begin{pmatrix} u_i \\ v_i \\ w_i \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$

 (x_i, y_i, z_i) : 基準点座標(ローカル座標) (u_i, v_i, w_i) : 基準点座標(LiDAR 座標) (x_o, y_o, z_o) : LiDAR 設置座標(ローカル座標) (p_o, \dots, p_o) : 変換係数

幾何補正は上式に LiDAR 座標系とローカル座標系の 基準点座標を代入して, LiDAR 設置座標と変換係数を 算出した.

LiDAR データによる幾何補正精度は観測ごとに異な るため、反射板が設置されている基準点において精度 検証を行った.最確値をトータルステーションで観測 した座標とし、幾何補正した LiDAR データの座標と比 較した.幾何補正の平均二乗誤差(RMSE)を表 4.4 に示 す.2011 年のデータの誤差が全体的に大きく、Y 軸方 向は約 6mm の誤差があった.幾何補正の精度から 6mm 以下の変化は期待できないことが分かった.

	Х	Y	Z
2010夏	0.00291	0.00123	0.00324
2011 夏	0.00367	0.00592	0.00437

表 4.4 幾何補正の平均二乗誤差(単位:m)

5. 結果

X-Y 平面と Y-Z 平面上での交点の移動を比較した. 移動量は小さいため,移動量を 20 倍にして図 5.1,図 5.2 に示す.

図 5.1 移動量比較図(20 倍)-XY 平面

図 5.2 移動量比較図(20 倍)-YZ 平面

2010 年のブロックと 2011 年のブロックの交点座標 の差を求めて移動量を比較したところ, X 軸方向で最 大 2.6cm, Y 軸方向で最大 1.8cm, Z 軸方向で最大 3cm の変化が見られた.41 個のブロック交点を比較したと ころ, X・Y 軸方向の移動量は地すべりの方向にブロッ クが動く結果を得た.またこのブロックがある位置は、 地すべりの末端部分であり隆起現象が起きるのだが,Z 軸方向は全体的に上下に移動している結果を得た.ま た,Z 軸方向の移動量は半数以上が 6mm 以下の変化で あった.しかし,護岸工の中下段付近のブロックは隆 起している傾向にある.

6. 考察

今回新しい LiDAR を用いて面の交点を求め,地すべ りの動きを捉える仕組みを開発した.2010 年度稲田涼 修士論文の結果は,XY 軸方向の動きがばらばらであっ たのに対し,本研究ではブロック全体が地すべり方向 に動く結果を得た.2 軸方向では全体が下方向に動く 結果であったのに対し,本研究では上下方向に動く結 果を得た.また,移動量が1年で10cmを超えるブロッ クが多数あり,地すべり区域でも現実的ではない結果 であったのに対し,本研究では最大 3cm の移動量とい う結果を得たので,精度は向上していると考えられる. 今後も定期的に観測し,さらに検証をしていく必要が ある.

参考文献

1) 稲田涼,地上型 LiDAR を用いた地すべりの監視手法, 高知工科大学 2010 年度修士論文

2) 木下和,レーザースキャナデータの高精度幾何補正 手法の開発,高知工科大学 2007 年度修士論文

3) 宮崎倫理,レーザースキャナによる幾何補正手法の 精度向上,高知工科大学 2008 年度修士論文

4) 山西恭平,地上型 LiDAR のレーザー波長特性を利用 した物体判読手法の開発,高知工科大学 2010 年度学士 論文

5) 高木方隆, 国土を測る技術の基礎