衛星画像解析のための

葉の分光反射特性

1120318 土居 永典

高知工科大学 工学部 社会システム工学科

本研究室では、陸域観測技術衛星 ALOS に搭載されている高性能可視近赤放射計 2 型(AVNIR2) センサで 観測された衛星画像を用いて植生図の作成を行っている.衛星画像の正確な解析のために衛星画像シミュ レーションに取り組んでいる.地上型 LiDAR を用いて樹木の三次元ボクセルモデルを作成し樹木の反射照 度の推定を試みている.樹木の反射照度の推定には、葉の正確な分光反射特性が必要となる.そこで葉の 分光反射特性を計測するために、分光放射計を用いた計測のしくみの構築した.構築した計測のしくみと 計測した反射係数の計測結果を用いて、反射照度シミュレーションを行ったが、可視光赤バンド(R)につい ては実測と異なった結果を得た.今後、高い精度のシミュレーションのために、計測装置、計測環境の見 直しを行う必要がある.

Key Words: 分光反射特性,反射照度,反射係数,シミュレーション

1. はじめに

近年のグローバルな気候変動を背景に自然 環境のモニタリングが求められている.本研 究室では自然環境のモニタリングに人工衛星 画像の使用を考えている.そこで,陸域観測 技術衛星ALOSに搭載されている高性能可視近 赤放射計2型 (AVNIR2) センサで観測された衛 星画像を用いて植生図の作成を行っている.

衛星画像の正確な解析のためには,衛星画 像と,現地で計測したデータをつなげる仕組 みが必要となる.そこで,本研究室では衛星 画像シミュレーションに取り組んでいる.地 上型LiDARを用いて樹木の三次元ボクセルモ デルを作成し樹木の反射照度の推定を試みて いる.樹木の反射照度の推定には,葉の正確 な分光反射特性が必要となる.

本研究目的は,衛星画像シミュレーション

に向けて,葉の分光反射特性を計測するため に,分光放射計を用いた計測のしくみの構築 することである.

構築した計測のしくみと,計測した反射係 数を用いて,反射照度のシミュレーションを 行う.そしてそのシミュレーション結果と実 際の計測結果を比較する.

今回,対象樹種は本学敷地内にある.常緑 広葉樹のカシとした(図1.1).

図 1.1 対象樹種

2. 測定機器

本研究では、オーシャンフォトニクス社 「USB4000」の分光放射計を使用した.

この分光放射計は、付属のソフトの「OPwave」 を使用することで、分光放射データの取得と 反射計測を行うことができる.図2.1は使用 した分光放射計、図2.2はカメラのレンズ機 能となる分光放射計に繋げる光ファイバ、図 2.3 は、反射係数を求める際に参照データと して使用する標準白版である.表2.1に、分 光放射計のスペックを示す.

図 2.1 分光放射計

図 2.2 光ファイバ 図 2.3 標準白版

表 2.1 分光放	射計のス	ペッ	ク
-----------	------	----	---

測定波長範囲	300~1200nm
波長分解能	0.2nm
S/N比	300:1(full signal時)
積分時間	10µ sec.∼65sec.
A/D分解能	16bit

3. 反射スペクトル測定手法

分光放射計の反射計測は、ダークデータ、 レファレンスデータの2種類が必要である. ダークデータとは、センサ固有のノイズデー タである.外部からの放射が全くないときの データを取得することで、ノイズのみのデー タを取得することができる.レファレンスデ ータとは、反射係数を計算するときの参照デ ータである.このデータは、標準白版を用い て放射照度を取得する.作業工程は以下に示 す.

- ① ダークデータを取得
- ② レファレンスデータを取得
- ③ 葉を測定
- ④ 反射係数の取得

本研究では、様々な光源の位置と葉の傾き における、安定した植生の反射係数を取得す るため、計測用の台座を作成した.図 3.1 に 台座の概要を示す.

図 3.1 台座を用いた反射率計測の模式図

センサ(光ファイバ)の位置は,葉の垂直方 向に固定し,距離は,植物の葉とファイバの 間が 30mm となるようにした.そうすることで 視野範囲は,直径 24.8mm の円となる.

ハロゲンランプの入射角度は20°~60°ま
で変化でき、葉の傾き(φ)も同様に水平から
0°~60°まで変化できるように工夫している.

4. 反射係数の計測結果

図 4. に, ハロゲンランプの入射角 20°葉の 傾き 0°のときの分光反射係数を示す.

図4 反射係数の計測結果

人工衛星 ALOS の AVNIR2 センサによって取 得されている光の波長域は,可視光赤バンド が 610nm~680nm、近赤外バンドが 760~890nm である.

5. 反射照度のシミュレーション

反射照度シミュレーションには、シェーデ ィングを適用した.シェーディングは、光源 の位置と輝度、光源の光が当たる対象物の面 の向きと反射特性、そして観測する視点を決 めれば、シェーディングモデルを用いて物体 の明るさを求めることができる.物体の放射 照度*L*を求めるには、光源の散乱度を*Ld*、光源 の反射度を*Lr*、周囲の散乱度を*Lc*とすると、 次式で表すことが出来る.

 $L = L_d + L_r + L_c \quad (\ddagger 5.1)$

Ld, Lr, Lcは, 光源から入射する輝度を Lin とすると, 次式で表すことが出来る. $L_d = R_d L_{in} \cos \theta_i$ $R_d: 拡散反射係数 (0~1) (式 5.2)$ $L_r = L_{in} \omega(\theta_i) \cos \gamma$ $\omega(\theta_i): 反射率$ $\gamma: 反射光と視点との角度 (式 5.3)$

 $L_c = L_a R_d$ $L_a:周囲環境の強さ(式 5.4)$ 今回のシミュレーションでは、Lin の値は 標準白版の反射照度を使用し、拡散反射係数 の Rd 値は 0 とし反射率 $\omega(\theta)$ は, 計測値を利 用した.また計測値は, AVNIR2 センサの可視 光赤バンド(R) と近赤外バンド(IR)の領域ご とに平均したデータを使用した.図 5.1, 5.2 に光源の入射角(θ)と葉の傾き(ϕ)を変化さ せた時の反射係数を示す.

図 5.1 可視光赤バンド(R)の反射係数

図 5.2 近赤外バンド(IR)の反射係数

光源の入射角は、葉の法線ベクトルと光源 の方向とのなす角θで表し、葉の傾きは、ハ ロゲンランプの反射光とセンサの角度γごと に整理した.このグラフを用いれば、葉の放 射量を推定することができる.図 5.3 に可視 光赤バンド(R)、図 5.4 に近赤外バンド(IR) での反射照度シミュレーション結果を示す. シミュレーションはγを1°ごとに計算して いる.

図 5.3 可視光赤バンド(R)のシミュレーション結果

図 5.4 近赤外バンド(IR)のシミュレーション 結果

6. 反射照度の計測結果

図 6.1 に可視光赤バンド(R), 図 6.2 近赤外 バンド(IR)での反射照度計測結果を以下に示

図 6.2 近赤外バンド(IR)の計測結果

可視光赤バンド(R)はシミュレーションと 計測値に違いがあるが,近赤外バンド(IR)は 比較的一致している.

7. 考察

衛星画像シミュレーションに向けて,葉の 分光反射特性を計測するため,分光放射計を 用いた計測のしくみを構築した。

反射係数の計測結果を用いて,反射照度シ ミュレーションを行ったが,可視光赤バンド (R)については実測と異なった結果を得た.

今後,高い精度のシミュレーションのため に,計測装置,計測環境の見直しを行う必要 がある.

参考文献

1) 高木方隆, 国土を計る技術の基礎

2) オーシャンフトニクス株式会社

「OPwave」ラマン測定動作手順マニュアル 3) 大渕雄一 高木方隆, 放射計による植物 の分光反射測定手法の確立, 高知工科大学 高木研究室, 2009 年度