3次元数値流体解析による 構造物に作用する荷重効果の評価

学籍番号:1150123 氏名:原田 直樹 高知工科大学 システム工学群 建築・都市デザイン専攻

本研究の先行研究である門田修士論文で行われた水理実験の3次元数値流体解析を行った。解析を行うに あたり、入力データの検討および作成を行い、水理実験の再現および解析を可能とした。また、解析により 算出した水位変動を、実験データと比較することで解析結果の妥当性を確認した。

次に、解析により建物に作用する荷重を算出し、水理実験の計測データにより算出されている荷重と比較 を行ったほか、堤防の有無で建物に作用する荷重の変化を示した。

Key Words: 三次元数值流体解析、CADMAS-SURF/3D、荷重効果

1. はじめに

2011 年、東北地方太平洋沖地震では、地震に伴 う津波により、構造物に甚大な被害をもたらした。 今後、南海地震の発生も懸念されていることから、 津波への対策を行うことは重要であるといえる。そ して、津波に耐えうる建物を作るためには、建物に 作用する荷重効果を明らかにする必要がある。荷重 効果を求める方法としては、水理実験による計測や 解析による方法などが考えられる。

荷重を求める方法のうち水理実験による方法にお いては、実際の水理現象からデータを計測するため、 より正確なデータが得られる。しかし、計測器の設 置等も限度があり、得られるデータ数も限られる。 そのほか、実験を行うにあたり費用や労力などがか かる。

一方、解析により求める場合、様々な条件で解析 ができるほか、実験装置等も必要ない。しかし、解 析結果が妥当なものであることを確認するには実験 の計測値等から確認する必要がある。

このことから水理実験データを用いて解析結果の 妥当性を確認すれば、解析による荷重の評価が可能 となる。 の水位変動が求められている。また、建物の海側の 面に作用する荷重を、波圧形の計測結果を用いて求 められている。そこで、本研究では、この水理実験 の三次元数値流体解析を行い、解析結果と実験結果 の水位変動を比較することで解析結果の妥当性を確 認し、構造物に作用する荷重効果を評価する。

3. 解析条件

3-1 解析の概要

解析には、数値波動水路プログラムのCADMAS-SURF/3Dを用いる。CADMAS-SURF/3Dは、造波水路の 模型実験に代わり得る手法となるプログラムである。

解析を行うために、地形データ、障害物データ、 造波データ等の入力データを作成する。水理実験で 用いられた水路断面図を図3-1に示す。図3-1中の CH1~CH6は水位計であり、この水位計が配置された 6箇所の位置での水位変動が実験により求められて いる。水槽の全長は55m、幅1m、高さ2mとなり、 水深は0.76mとなる。

水槽に配置されている堤防模型の立面図を図3-2 に示し、建物模型の立面図を図3-3に示す。堤防と 建物の位置関係を図3-4、図3-5に示す。

2. 目的

既往の研究では、門田により水理実験から水槽内

図3-1 水路断面図

3-2 造波データの作成

実験における造波板の駆動は位置制御であり、信 号に従って機械的に造波板を駆動する方法となる。 水理実験における造波板の移動パターンは2パター ンある。以下に二つのパターンについて説明する。

一つ目の方法は造波板を指定の時間押し出したあ と、正弦曲線で30秒かけてもとの位置に戻すパター ンである。二つ目の方法は、正弦曲線で15秒かけて 造波板を沖側に引いた後、指定の時間をかけて造波 板を押し出し、30秒かけて正弦曲線で元の位置に戻 すパターンである。

今回の解析ではその2パターンの造波方法から、 造波板を指定の時間押し出したあと、正弦曲線で30 秒かけてもとの位置に戻すパターンで、押し出し時 間15秒、目標水位8 c mの信号のものを解析に用い る。この造波信号を図3-6に示す。また、実験に用 いられた造波信号は、水位変動の時系列データとな っている。

CADMAS-SURF/3Dにおける造波方法には造波位置で 水位のみを与える方法、流速のみを与える方法、流 速と水位の両方を与える方法がある。これらの方法 から、実験を再現するにあたり、実験での造波板の 速度を流速として与えることで再現する。そのため には造波板の速度を算出することが必要となる。

実験データでは各信号における造波板の振り幅が 求められている。この造波板振り幅と造波信号は比 例関係にある。これにより造波板押し出しにおける 位置を求めた。造波板の戻りにおいては造波信号が 正弦曲線であることから正弦波の式を用い算出した。 算出した造波板の位置を図3-7に示す。

求められた造波板の位置から、一定時間ごとの変 位を求める。造波板の時間ごとの変位を図3-8に示 す。

この変位から、単位時間あたりの変位を求め、 造波板速度とした。この速度を図3-9に示す。

4. 解析結果

4-1 水位変動データの比較

解析により各チャンネル位置における水位変動を 算出した。図4-1~図4-5に、CH1~CH5 における解 析結果と実験結果の水位変動を示す。

図4-5 CH5水位変動

CH1~CH5の水位変動は実験値と解析値の傾向が近 い値を示しており解析結果の妥当性がうかがえる。 しかし、時間差が生じていることが確認でき、解析 結果の方が実験結果よりも早い段階で水位が変動し ていることが確認できる。

4-2 津波荷重の評価

建物の海側の面全体に作用する荷重を堤防の有無 で求めた。以下の図4-6,図4-7に荷重の解析結果と 実験結果を比較したものを示す。また荷重の最大値 を表4-1に示す。

図4-7 堤防なしの荷重

表4-1 最大荷重		
	解析結果における 最大荷重(N)	実験結果における 最大荷重(N)
堤防あり	13.37	12.58
堤防なし	22.16	21.14

図4-6、図4-7における実験結果と解析結果の荷重 の比較において、実験に近い傾向の荷重を解析によ り得ることができた。防波堤により津波荷重が低減 されることも実験と解析の両方で示されていること がわかる。また、建物に作用する最大荷重も実験結 果と解析結果で近い値を示している。しかし、解析 結果の方がが実験よりも建物への波の到達が早い結 果となっている。水位変動の段階で時間による差を 確認できることから、造波データ等の入力データに おいて時間的な誤差があったのではないかと考えら れる。

4-3 建物に作用する最大荷重分布の算出

建物にどのように荷重が作用するのかを確認で きるようにするため、建物の海側の面に作用する最 大荷重の分布を、堤防の有無で解析により求めた。 以下の図4-8、図4-9に荷重分布を示す。

図4-8 堤防なしでの最大荷重分布

最大荷重分布において、堤防の有無にかかわらず 建物の海側の面に作用する荷重は、低層部分へ作用 する荷重が最も高く、建物高さが大きくなるほど作 用する荷重は小さくなることが分かる。建物幅にお いては、大きな差は見られないが建物中央部分へ作 用する荷重が最も大きな値となる。また、堤防を配 置することにより、作用する荷重を面全体で低減で きている。

4-4 CH6における解析結果と実験結果の水位変 動の差

4-1 水位変動データの比較 に示してあるとおり、 CH1~CH5の水位変動は実験結果に近い傾向を示すこ とができている。しかし、堤防および建物付近に配 置されているCH6における水位変動のみ大きな差が 見られた。CH6における解析結果と実験結果の水位 変動を以下の図4-10に示す。

図4-10 CH6水位変動

CH6においては実験値の水位変動がほぼ0に近い値 を示していることがわかる。CH6の水位計の位置は 海岸堤防のすぐ後ろのに配置されている、建物に作 用する荷重が算出されていることから波が堤防を越 えて建物に当たるにはCH6の位置にある水位計を波 が通過しなければならない。このことから実験時何 らかの原因で水位が計測されなかったことなどが考 えられる。

まとめ 5.

水理実験の3次元数値流体解析を行い、実験結果 と解析結果の水位変動を比較し、解析の妥当性を確 かめた。そして、建物の海側の面全体に作用する津 波荷重の算定および最大荷重分布を解析により求め、 荷重の傾向および実験結果との比較を行うことを可 能とした。

課題 6.

課題として、今回の解析では解析時間等の影響 から、一種類の造波信号から解析を行った結果しか 示すことができなかった。実験データは数多く残さ れていることから、今まで以上に実験データの活用 が望まれる。しかし、三次元解析は二次元解析等よ りも解析に長い時間がかかる。今後、解析時間の短 縮方法を考慮する必要がある。

参考文献 7.

- 2013年度修士論文 門田龍介
- 「砕波の波形を考慮した津波荷重の実験的研究」
- 2) 数値波動水路の開発 秋山実、浜野明千宏
- 3) 岐阜大学工学部 平成16年度卒業論文

「波面検出型無反射造波装置について」 筒井則行 4) 耐波工学 港湾・海岸構造物の耐波設計 合田良實 著