25

ERDO 7077 LASHICHEEIE Y 2 BEE 2 — PRy —1o

b Fé

S EH

YV —Za— FHOEEEIICHEEST 2R —, LIREMLza—Fo—fzEE2—F
MRS, b LEBIESRER a— FO—# 2 EE 2 — F LI o> 754, Z0HEEa—F
ERNET 2 a— FIRFARDBEIEZIT ) NEn[REENE C, B2 a2 08035 5,

INECTICHEFE - FZHENWICHRE T 23 I £ FEPREIN TS, ZOFED
—DIZY — R a— FHROFAIDOINIEDICTEE 2 — F 2 il § 2 FklH D, ZoREN
7% —) & LT CCFinderX 23% % .

L2L, CNETICRESIN T 2EHEEI—F 2T 5 Y —VIERRE T 2 FHENRD
LNTED, ZOFHEUMIY —LE2BEL 2WIRY) EE - F2BRIHTERw, 22 TA
MECRRERD 70 77 A SFEICHENEIN T 2 B 2 — PRI FEZRET 2. REFHET
&, BILEECY —R2a—F% b= il L7, T2 =2 v 095 5 HEBO By
C O TPRIGE Z0DSzililr EHET 5. WY 2 PREERZESZ LT, @ilFi3R
BAHPERNICAEa—FRALzEHa—FE L TRIETE 3 LEZ o5, CCFinderX
ERETHEOH N O 27\, WY 22 FHUEERZ N7, £7, CCFinderX THIHIL 7
HHI— P EAERETETOMETE S 2 EBHBIC X VR TE 2. —F, RET
BTN T 20 EDO R WEMNTRAVEREI—F2RNT2ILbbhrot, 51T,
W) 22 PRGBS — A a— o b — 27 v ORI & HBIBIRICH 2 DTlE BV v
REUSDWTHRET L 72, ZDOFGE, FEBFRNRE LA —T VY =AY 7 F 7 2 T7IZE8WTIE
FEBIBILR XA & e o 7z,



F——K HEa2—F, V7 F7z745, CCFinderX

i



Abstract

Development of a duplicate code detection tool that

automatically adapts to arbitrary programming languages

Tatsuro IMAIT

We call a part of the same or similar code that exists in two or more places in the
source code the duplicate code. If some problems are found on the duplicate code, it is
likely to make the same modifications on all of the duplicate code.

Methods for automatically detecting duplicate code have been proposed so far.
As one of the methods, there is a technique to detect a duplicated code based on the
sequence of tokens in a source code. CCFinderX is the typical implementation of that
technique.

However, duplicate code detection tools proposed so far have a fixed input language
and cannot detect duplicate code of other languages unless we do not modify the tool.
Hence, in this study, we propose a duplicate code detection tool that automatically
adapts to arbitrary programming languages. This tool preprocesses the sequence of
tokens in a source code, and it considers the tokens with high frequency to be reserved
words. It is expected that we can detect semantically similar codes as a duplicate
code by choosing the appropriate number of words considered to be reserved words.
We compared the output of CCFinderX and the proposed method and examined the
appropriate number of reserved words. Moreover, we confirmed that the proposed
method can detect most of the duplicate codes that was detected by CCFinderX. On

the other hand, we found that the proposed method also detected impractical, needless

— iii —



duplicate codes. Furthermore, we examined a hypothesis that an appropriate number
of reserved words has a correlation to the number of the different tokens in a source
code, and we could not find such correlation in the open-source softwares used in an

experiment.

key words duplicate code, software maintenance, CCFinderX

— v —



