25

IW—IVIZHEED K Ny 7 7 A —oN—7 u — syt H 8k ik 1B
ERAY

THFRAR

V7 b7 IBETAREED D LTy 77— N=7u—nEFons, v
7727 EHRELTERLTYS CEHETRARVEHR 7RI 23N T
278, Ny 77t —nN—70 = 5BENFEL, Ny 77 A —N—7 80— T
ZRENEECTH L. CEHETR T ILICWTE Ny 7 74— "—70—DfEHICBIL T,
Shahriar 5 DZETIX, Ny 77 F—N=70—=I1lhDHIB 70T 7LD Y=L, Zh
R A—FICHEMZ D2V —UPREINTVE, ZOL—NVIfE>T7R T I7LY —
AzREL, MHERZEZMMILILICL>T, Ny 774 —N"—70—DREZINZ 5
N5 EEERBRNIRLTVS, L2L, ZOMETIIRE - EEMI 22 TEFHTITI B
DERS>TED, ZOHBLIHELE SNV,

%Z 27T, AWI%ETIE, Shahriar 5D/Ny 7 74— N—7 0 =DV —VICHEDE, CF
ECHEINI TR T T LY — AP VIS T G2 HEI TR T %2 2 A 7 4 2 i
¥5,

R, L—ro—FHicsTHBILZT», BIBZHEEL 7.

SHROPEE LT, EYOL— Lo HEEIEE, FHEHRAMIoBEMl, FETTZ LI
£ 2 EMmHOEIDZE T 5 1%,

¥—TJ—K Sy77i—s—7u—, CgiE



Abstract

Rule-Based Automatic Detection of Buffer Overflow

Vulnerability

Miki Urabe

Buffer overflow (BOF) is one of the most important software vulnerability. The
C programming language which is popular as a software description language, is a
high possibility of buffer overflow because the programmer consider must the memory
management. Therefore, buffer overflow protection is important and measures to protect
the C program from the buffer overflow is important.

Shahriar et al. proposed a rule-base detection and patching method of BOF vulner-
abilities. However, in this approach the programmer should apply the proposed patching
rules manually. Developing an automated tool for applying the rules is desired.

In this study, we build an automatic detection system that finds a buffer overflow
vulnerability using Sharriar’s rules.

We implemented some of the rules and confirmed that our system automatically
detected a number of known vulnerabilities in open source software.

The future work includes automation of the rest of the rules, automation of patch-

ing, and reduction of false positives using static analysis.

key words Buffer overflow, C programming langrage

—ii —



