Jdoboobouoooobobouon

Joooodbotdbodogboonbog

oo o

gobobboooobobodooooobuoooobobboooobbboooooboobooon
gobobboooboboobooooobobbooobbbuoooobbboooubLbbuooOon
gobbobodoooobobbuooooobbuooobooob bbb bboooOoo
gobbboooobbbooooobboooobbbuoooobboooobbboogn
gogboboboooooooboobooooooboboooooboboooguboboboogn
goboboboooboboobooooobobbooobobbuoooobboooubLbbooOon
gobobbooobobbuoooobbbooobbbuooob bbb bboooo
gobbobooooboboogon

000000000000 0000 ASTgrepO0OOOOOASTgrepO0OOOOOOODO
O00000000000ASTOODODOOO ASTOOOOOOOD ASTOOOOOOOO
0000000000000 000000000oo0000o0oo0oo0oo0OdASTgrep O
000000000000 0D00 ASTOOODODODOO ASTOODOOODOOOODOOO
0000000000000 0O ASTOOOOOODODODODODOOOOOOO0O0O0000

OO00O0bOo0o0oOoogJNIDODOOoOOOooOoboooooOobobbooboobooo
000000000000 ASTOOOOUOOOODODOOOO0OO0O0OO0oDOooOO0Oooooooo
000000000000 0000000000ASTgrepO0ODO0OD0OODOODOODODOO
0000000000000 00ASTgrep0 0000000 0O0OOO0ODODOODOOO

uoboobooooooboooan



goooo godobbooobbboooobboo

—ii —



Abstract

Design and Implementation of Semantic Error Detector

Based on Pattern Matching Using Tree Patterns

Shinya Nakamura

While some bugs of computer programs, such as syntax errors, can be detected
by general compilers, bugs that are correct on syntax and types are difficult to be
detected. We call the latter “semantic errors”. Not only by compilers, semantic errors
are difficult to be discovered even by reading the program carefully. To make matters
worse, programs that have semantic errors can run. Hence, they may show unexpected
behavior, which often lead to security problems. Therefore, much work has been done
to detect semantic errors so far. However, the existing tools are specialized in specific
rules or, even for generalized tools where we can define error detection modules, making
modules is not an easy task.

In this study, we developed a semantic error detecting tool, ASTgrep. ASTgrep
comprises two modules; an abstract syntax tree (AST) generator, which parses the
input program to generate its AST, and a pattern matcher, which matches patterns
of semantic errors against the AST. The users gives patterns of semantic errors, which
have similar forms of the AST that the AST genarator module generates. This allows
the users to develop patterns easily from the AST.

For a case study, we developed patterns of JNI coding rule violations and ensured
that violations are successfully detected. From this case study, we found that it was

easier than other tools to develop rules, because we could develop patterns from the

— iii —



generated AST. Furthermore, we examined whether ASTgrep is effective for detecting
violations of a cording standard. As a result, we found that ASTgrep is effective for

detecting semantic errors that can be determined based on syntax and types.

key words pattren match bug detection] security

—iv —





