QPSK ディジタルコヒーレント伝送システムにおける信号品質モニタの実装

システム工学群 光エレクトロニクス専攻

岩下·小林研究室

学籍番号:1170005 氏名:五百蔵雅幸

1. 研究背景・内容

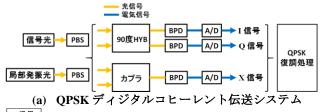
ディジタルコヒーレント伝送技術の進展により信号の 強度だけでなく位相や周波数の制御が必要になってき た。今後のディジタルコヒーレント技術においては、 QPSK だけでなくさらに多値化が要求され、MIMO 処理 などの高度な信号処理技術が要求される。信号の品質は アイパターンや信号点配置図やビット誤り率(BER)など で評価される。

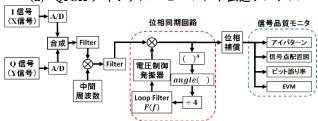
本稿では、MATLABにより作成した QPSK 信号処理 プログラムをオシロスコープ上で動作させ、リアルタイ ム信号品質評価を検討したので、その結果を報告する。

2. QPSK 信号処理プログラム

QPSK ディジタルコヒーレント伝送システムの実験構 成を図 1(a)に示す。オシロスコープ内の信号処理プログ ラムのブロック図を図 1(b)に示す。オシロスコープを用 いて BPD の出力を A/D 変換し、そのディジタル信号を 仮想計測器ソフトウェアアーキテクチャ((VISA)を用いて MATLAB に取り込んだ。フェーズダイバーシティ検波 では、I 信号と Q 信号の間に位相差 90 度あるため I+jQと合成した。ヘテロダイン検波ではX信号だけである。 今回は、ヘテロダイン検波に偏波ダイバーシティを用 い、得られたX信号とY信号の二つの信号を

SNR(Signal to Noise Ratio)が最大となる最大比合成法 で合成した。合成後に、フィルタを通過させ、中間周波 数を乗算してから再度フィルタに通過させた後に位相同 期回路に通し、入力信号に同期した局部発振信号を生成 し、同期検波した。位相同期回路では、信号を4乗して 位相角を取り、4で割った信号をループフィルタに通過 させ、その出力で VCO(電圧制御発振器)の周波数を制御 した。位相同期を行った信号を位相補償で位相の不確定 性を補償した。得られた出力信号からアイパターン、信 号点配置図を表示した。また BER(Bit Error Rate)、


EVM(Error Vector Magnitude)を計算し求めた。以上の 4つを1つの画面に表示させた。


3. 実験構成・結果

QPSK ディジタルコヒーレント検波の実験系を図 1(a) に示す。擬似ランダム信号で QPSK 変調した波長 1550[nm]の信号光と局部発振光を、偏波制御器(PC)で制 御して合波し、合波器で分けることにより、二つの信号 を得た。合波器とは、フェーズダイバーシティ検波では の光90度ハイブリットで位相の異なる I 信号と Q 信号 を得ることができ、ヘテロダイン検波ではカプラでX信 号とY信号を得られた。それぞれの信号成分をBPDで 受信し、サンプリングした。QPSK 処理プログラムに取 り込み処理を行った。二つの検波方式において光受信強 度を-10[dBm]から-24[dBm]まで 1dB 間隔で減少させた ときの BER と EVM の測定を行った。光受信強度と BER,EVM の関係を図2に示す。測定結果は、フェーズ ダイバーシティ検波は信号光強度 $P_s = -17[dBm]$ までエラ ーなく測定できた。ヘテロダイン検波は $P_s = -21[dBm]$ ま でエラーなく測定できた。EVM は信号光強度が減少す ると減少した。また、復調結果を図3に示すように画面 表示できた。

4. まとめ

フェーズダイバーシティ検波とヘテロダイン検波の QPSK 信号処理プログラムを作成した。そして、作成し た QPSK 信号処理プログラムにより、信号品質モニタの 画面表示が確認できた。また、信号強度の変化に対する BER と EVM を測定した。

(b) 信号処理ブロックダイヤグラム 図 1 ディジタルコヒーレント伝送システムの構成

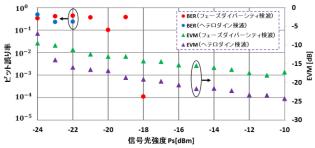


図3 QPSK 信号処理プログラムモニタ画面 (A)アイパターン(I or X 信号)、(B)アイパターン(Q or Y 信号)、(C)信号点配置図、(D)ビット誤り率(BER)、(E)EVM