電気泳動堆積させた多層圧電セラミックスの曲げ強度

1. 緒言

圧電セラミックスは、電気的エネルギーと機械的エネルギ ーを可逆的に変換できる素子として機能し、センサ、圧電ブ ザーやアクチュエータなどに広く利用される.中でもチタン 酸ジルコン酸鉛(PZT)は応答性、圧電性に優れており、圧電セ ラミックスの代表的材料である.

弾性板の両面に PZT を貼り合わせたバイモルフ型アクチ ュエータは電圧を印加すると逆圧電効果によって両面の圧 電セラミックスが伸縮し大きな屈曲変位を出力できる.しか し、弾性板と圧電セラミックスとの異種材料の接着部におい て繰返し変形に起因する損傷が生じやすく、長期使用におけ る信頼性に問題がある.一方、圧電特性の異なる圧電体を組 織的に分布させることで、弾性板を必要としない傾斜機能化 モノモルフ型アクチュエータが研究されている⁽¹⁾.異種材料 の接着部を無くすことで、信頼性の低さを軽減することが期 待されている.

圧電セラミックスの代表的な作製方法に仮焼粉を押し固 めてから焼成する加圧成形法がある.これに対し,電気泳動 堆積法(EPD)は液体中に粒子を分散させた懸濁液に電極を浸 し,外部電界を印加して電極表面に粒子を泳動,堆積させる 成形方法である.簡易的な装置で基板形状に応じた堆積や, 圧電特性の異なる粒子の順次堆積による多層化,傾斜機能化 などの応用が可能である.

本研究では EPD を用いた圧電セラミックスを作製し,3 点 曲げ試験を行い, EPD による材料の機械的性質を加圧成形材 と比較した.さらに傾斜機能化に向けて2層材料についても その強度特性を検討した.

2. 実験方法

2.1 材料

モノモルフ型アクチュエータの変位を大きくするには圧 電定数が高く誘電率の小さい材料,圧電定数が低く誘電率の 大きい材料を組合せるのが有効である.本実験では研究室に て作製したリラクサー型強誘電体セラミックス 0.55Pb(Ni_{1/3}Nb_{2/3})O₃-0.45Pb (Zr_{0.3}Ti_{0.7})O₃⁽²⁾(以下A材)および市 販のPZT 仮焼粉(林化学工業; HIZIRCOA,以下C材)を対象 とした.

A 材の仮焼粉を作製するため,各構成元素を含む原材料を 秤量しエタノール中での湿式粉砕を 72 時間行った. PbO に ついては焼結時の蒸発量を考慮して 1wt%増やした. 電気炉 を使用して 900℃ で 4 時間の仮焼きを行い,160µm のふるい を通るまで粉砕した.

作製した A 材および C 材の仮焼粉にバインダー(PVA)を 加えて練合,焼結させ,銀電極の焼付けと分極処理を行った 後に圧電定数 *d*₃₃を測定した.各材料の圧電定数,および焼 結温度を表1に示す.

Table 1 Piezoelectric constant (d_{33}) of materials.

	<i>d</i> 33	Sintering temp.
А	530pC/N	1200°C
С	340pC/N	1130°C

機能性材料工学研究室 1170120 幡野利史

2.2 電気泳動法による成形

電気泳動法の模式図を図1に示す. 懸濁液は無水エタノール 50ml に仮焼粉 2.5g を入れ,0.1%硝酸を約 2ml 加えて pH 調整し,超音波洗浄機で撹拌したものを用いた.L字に折り 曲げた銅電極を用い(面積 10×15mm²),電極間の距離を 10mm とした.印加電圧は DC200V に設定した⁽³⁾.2層材を作製す る場合は A 材を 4 分間堆積し,次に C 材を含む懸濁液に入 れ替えて同様に 4 分間堆積させた.電極を引き上げて乾燥させて電極から剥離し,電気炉において 1200℃ で 2 時間焼結 を行った.

Fig1 Schematic illustration of electrophoretic deposition system.

2.3 曲げ試験

焼結した試験片はダイヤモンドカッターを使用して 15×4mmの長方形に切り出し、3 点曲げ試験を行った.本研 究では小型の試験片を用いるため、図2に示す3 点曲げ試験 を新たに設計,製作した.本試験機は、直流モータにより駆 動するもので、クロスヘッド送り速度は0.5mm/min、支点間 距離を10mmとして設計した.各測定装置の構成を図3に示 す.ロードセル出力と変位計出力を記録し、破壊荷重を求め た.破面を走査型電子顕微鏡(SEM)により観察した.

Fig2 Schematic view of 3-point flexure test system.

Fig3 Configuration of measuring devices.

3. 実験結果

3.1 曲げ強度

実験で得られた曲げ強さ *o*_b と破壊確率 *F* の関係としてワ イブルプロットを図 4 に示す. なおランク法として平均ラン クを採用した. 成形法の違いに注目すると, EPD で成形した ものは,加圧成形したものに比べて強度が低くなっているこ とが分かる.また C 材においては形状母数が加圧成形で11.7, EPD で 7.24 とあまり強度のばらつきが見られないものの, A 材ではそれぞれ 5.66, 2.52 と EPD のばらつきが著しくな ることが分かった.

図 5 に EPD による 2 層材料の曲げ強度の結果を単層材料 と比較して示した. 2 層材では、曲げ試験時に A 材あるい は C 材のいずれが引張り側になっても強度分布に差が生じ なかった.しかしながら、ばらつきの度合いは A 材のそれと 同程度になった.

Fig4 Weibull plots of bending strength of uniaxial press and EPD.

Fig5 Weibull plots of bending strength of bilayer ceramics.

3.2 破面観察

図6にC材の加圧成形材(a)とEPDによって成形した材料 (b)の単層材破面を示す.加圧成形と比べるとEPDでは多く の空隙が観察された.すなわちEPD材では欠陥を多く含む ため,強度が加圧成形材に比べて劣る結果となったと考えら れる.

次に2層材の破面を図7に示す. EPDによる2層材では境 界付近にて多くの空隙が存在していた.またA材はC材と 比較して破面の凹凸が激しかった.これは原料仮焼粉の平均 粒径がA材の方がC材に比べて大きかったためと考えられる.

本実験での2層材の曲げ強度のばらつきはA材のそれと 同程度となり,強度の低い材料に支配される.

A 材と C 材の懸濁液を途中で交換して 2 層材を作製した ため境界付近に空隙が多くなったが,材料の割合を徐々に変 えて堆積できればこの点は解決できると考えられる.

(a) Uniaxial press. (b)EPD Fig6 SEM images of fracture surface (Sample C).

Fig7 SEM image of fracture surface (Bilayer material).

4. 結論

- (1) 加圧成形と比較して EPD による試験片は内部に多くの 空隙が存在し、曲げ強度を低下させた.
- (2) 2 層の曲げ強度の分布は各材料の強度分布と同様の分 布となる.
- (3) EPD による 2 層材は境界層付近に多数の空隙が見られ た.

文献

- Y. H. Chen, T. Li, and J. Ma. "Development of piezoelectric monomorph actuator using electrophoretic deposition." Journal of materials science 41.24 (2006): 8079-8085.
- (2) Du, Jianzhou, et al. "Effects of Fe₂O₃ doping on the microstructure and piezoelectric properties of 0.55Pb (Ni_{1/3} Nb_{2/3}) O₃-0.45Pb (Zr_{0.3}Ti_{0.7}) O₃ ceramics." Materials Letters 66.1 (2012), pp. 153-155.
- (3) 矢野洋平, 楠川量啓, 高坂達郎, 山本新, "電気泳動法に よる多層圧電アクチュエータの作製"講演論文集, 2016(54).