oogbooobobouobdobobouobouoboono

go od

0000000000000 JavaScrippO OO O0O0D0O0O0OOOOJavaSeript 0000
O0000000000000000O0JavaScripp 0000000000000 DOO0O0O0O
O0000000O000OoO00oooooo ceUDOOODOOOOOOUODODOOOOODOOO
00000000 JavaScript 0000000000 ODOO0OOOOOODOOOOOODOO
00000000000 JavaScript 00 0000000000000 O0O0OODOOODOO
gdoooooobboobbbbobbbboooooboooooooooooooooooon
goboobobooooboboboooooboboboooobobobuoooobbooouboobobuoogn
gobobbooobobobooooobobboooobbbuoooobbboooubLbbooon
gogoboobobbddooooboooooobbbbboboUgLbbbbooooo
gobbboooobbboooobobboooobbbuooonooboooobobbooan
gobobobooooboobobooooobobboooobbobuoooobobboooubooboogn
gogbobooboooboodooooobbuooooobbooooobbooooubbboooOon
gobobbooobobboooobbtbooobbboooobboooubDbbUoooo
gobbbooogbobboooobbbooobbbuoooobboooobbboogn
gobbobooooboobboooooobbooobbbuoooobobooooboobobuoogn
gobobbooooboobooooobobboooobbboooooboboooobobbooon
goboboboooobobbuoooobbbooobbbooob bbb bboooo
gooboooobobooooboboooooboooooboo

gogbboooooobbooobbooobbooooooboboooboobooboboooon

gobobbooooooboobooooobobbooobobobuoooobboooobobbooon



goboboboooobobboooobbboooobbbuooobbboooobDbbooOoo
ggotbobboooooobbodoobobbobooooobbooooobobobon
goboboooobobooooboboooobobooooobboo
gobobbooobobooooooboooobobboooobboooobLobobooon
goboboboooobobbuoooobbbooobbbuoooobbboooubbbooOoo
gobobtbooobobboooobbbooobbbuooobbboooubbboooo
oopoooog7oboboboobooboobooboboobooooobooooboboooOoDo
gobobboooobooboboooooobboooobbbuooobobooouoboobobooon
gobobobooooobobooooobobboooobbbuoooobbboooubLbbooOon
gooboboodobobbooobbtooobbuooob bbb bboono
gobbboooobbboooobobboooobbbuoooooboooobobboogn
goboboboooobobobooooobobboooobbobuooooboboooubooboboogn

uoboboboooobodooobobooboooobobobboooobbboooobLbbooon

goooo O0000JavaScript0 00000000000 0O00OOO

—ii —



Abstract

Design and Implementation of a Type Dispatcher

Generating Tool for Virtual Machines

Takafumi KATAOKA

We are developing a JavaScript virtual machine (VM) for embedded systems.
JavaScript is a programming language that has rich facilities. Thus, JavaScript VMs
tend to be large size. Typically, embedded systems are poor in computing resources
such as CPU and memory. This makes it difficult to use JavaScript VMs on embed-
ded systems. Therefore, JavaScript VM for embedded systems should be small and
faster. To address this problem, we take an approach to make a dedicated VM for each
JavaScript program that only has facilities of JavaScript that are used in the program
in order to make the VM smaller and quicker. In this research, we focus on represen-
tation of types. Our VM represents types in two ways. Some types are represented
by pointer tagging; we embed type information in spare bits of pointers to the objects.
The others are represented by storing type information in the header of each object.
Though type can be examined quicker with pointer tagging, the spare bits are too few
to distinguish all types. The over all execution time of a program is short if we represent
frequently used types in the program by pointer tagging. Therefore, we are planning
to make dedicated VMs that use the appropriate type representation for each program.
The type dispatcher depends on how types are represented. Type dispatcher selects an
appropriate data processing routine based on the type of given data. However, it is

time consuming to rewrite all type dispatch code every time we change representation

— iii —



of types because JavaScript VM performs type dispatching in many places in its source
code.

In this study, we developed a tool that automatically generates VM source code
containing a type dispatcher corresponding to the given definition of type representation.
Our tool receives the definition of the instructions of the VM where the type dispatching
process is abstracted away. The definition of the instraction is described in a domain
specific language (DSL) that we also developed. Our tool generates source code for each
VM instruction into separate files.

We evaluated our tool by developing two VMs with different type representation
using our tool. One of the type representation is specialized to frequent use of strings.
The other is specialized to frequent use of arrays. These two VMs passed our 75 test
cases. We also confirmed that our tool makes it easy to develop VMs that have different
type representations. Furthermore, we mesured performance of the two VMs by using
two benchmark programs; one is a program that uses strings frequently and the other
is a program that uses arrays frequently. As a result we found that the VM specialized
to use of strings was faster in the execution of the program that uses strings frequently,
and the VM specialized to use of arrays was faster in the execution of the program that

uses arrays frequently. This result indicates usefulness of our tool.

key words virtual machine, JavaScript, program specialization, embedded system

—iv —





