Effect of FRP reinforced fiber on process induced strain by molding temperature pattern

システム工学群 機能性材料工学研究室 1180053 川上 明哲

1. 緒言

繊維強化プラスチック(Fiber Reinforced Plastics: FRP)とは 炭素(Carbon)やガラス(Glass)などの繊維を合成樹脂(Plastics) に含ませた複合材料である.現在ではFRPが軽量で高い強度, 錆びない特性などを持っていることから,航空や医療,スポ ーツ用品などの幅広い分野で用いられるようになった.しか し,FRPの成形方法では樹脂と強化繊維の熱膨張率に差があ るため,成形時の強化繊維にひずみが生じてしまい,変形や き裂が生じやすくなり,品質の低下してしまうという課題が ある.この成形誘起ひずみは樹脂の熱膨張と硬化収縮によっ て生じるため,成形時の温度変化パターンが成形ひずみに影 響を与えると考えられている.しかし成形中の繊維に生じる 成形誘起ひずみの測定はほとんど行われていない.

本研究では、FBG(Fiber Bragg Grating)光ファイバ式センシ ングを用いることで成形中の強化繊維に生じるひずみの測定 を行う.また成形条件が繊維の成形誘起ひずみに与える影響 を明らかにすることを目的とし、成形時の温度パターンを変 化させて測定を行い、成形温度パターンが FRP の強化繊維の 成形ひずみに与える影響を検証した.

2. 材料および実験方法

本研究では成形中の GFRP の強化繊維に生じるひずみを測 定するために,光ファイバを強化繊維に使用して GFRP を作 成した.これは測定に用いる FBG ひずみセンサの形状と大き さに周囲の強化繊維を合わせるためである.これによりセン サと強化繊維の差を無くし,強化繊維に加わるひずみを測定 することが可能である.また図1にFBG センサを埋め込んだ 試験片の概略図を示す.

以下に実験に使用する GFRP の製作手順を示す.

- ①光ファイバ表面の被膜を剥ぎ,3cmの長さに切断した. これを21本の束を6束と20本切り出した.
- ②外枠 4.5cm×3cm,内枠 2.5cm×1cm に切った紙に①で切断した光ファイバを一方向になるように並べ、テープで固定したものを6枚と20本の中心にFBGひずみセンサを埋め込んだものを1枚製作した.
- ③GFRP に使用するエポキシ樹脂は主剤 801N に硬化剤 3080 を 100:45 の配合で混合させた. その後 90 秒間のかき混ぜ, 900 秒間でエポキシ樹脂内の空気抜きを行った.
- ④作成したエポキシ樹脂を②で制作した光ファイバに含浸させ、積層を行った.この際にFBGひずみセンサを埋め込んだ紙がGFRPの中心層に位置するように配置し、6層目には温度測定のための熱電対を埋め込んだ.

Fig.1 Schematic view of GFRP specimen with sensors

作成した GFRP の上下をシリコンコートで挟み,おもりを 載せて,マルチオーブンで加熱を行った.本実験では 100 分 で 100℃まで 1.0℃/min で温度上昇させた後に 100℃を保持し た状態で 180 分間の加熱を行い,33℃まで冷却させた条件と, 40 分で 100℃まで 2.5℃/min で温度上昇させた条件の2つの温 度条件で加熱成形を行い,成形中に繊維に生じるひずみを測 定した.また,熱電対で温度の測定も同時に行った.

加熱中の GFRP 内強化繊維に生じるひずみの測定システム を図 2 に示す.中心波長 1550nm の SLD(Super Luminescence Diode)光源からの光はサーキュレーターを介して FBG ひずみ センサに入射される.入射された光は FBG 内で反射され,再 びサーキュレーターを介した後に光スペクトラムアナライザ (Optical Spectrum Analyzer)でブラッグ波長を測定した.得られ た波長シフトと温度から,繊維に生じるひずみを求めた. 以下に繊維に生じるひずみの算出式を示す.

$$\varepsilon = \frac{\frac{\Delta\lambda}{\lambda_0} - (-6.207 \times 10^{-9} \times \Delta T^2) - 5.672 \times 10^{-6} \times \Delta T}{0.7368 \times 10^{-7}} + \alpha_s \Delta T$$

ここで λ_0 はひずみと温度変化がない状態におけるブラッグ波 長であり、 $\Delta \lambda$ は λ_0 からのシフト量、 α_s は光ファイバの熱膨張 率、Tと Δ Tは室温と室温からの温度変化である.

Fig. 2 Measuring system of strain of reinforcing fiber of during moiging

3. 実験結果および考察

図3に、測定開始時のひずみを0として測定された繊維の ひずみを、温度とともに示す.

Fig.3 Relationship between strain of fiber, temperature and processing time for each molding condition

図3より,2.5℃/min.の条件では測定開始からA点までの間 に、繊維のひずみは212μεだけ増加していることが分かった. その後、A-B間でひずみは76μεの減少し、冷却時(B-C間)に 229με減少した.一方、1℃/min.の条件では、測定開始からa 点までにひずみは191με増加し、a-b間の硬化収縮で36μεの 圧縮ひずみが生じ、冷却時(b-c間)には224με減少した.冷却 時のひずみはほぼ等しいが、これは2つの材料の繊維含有率 がほぼ等しいことを意味している.また、先行研究によると ^{1.2}、この樹脂の硬化度が0.686以下の状態では繊維は樹脂に 拘束されないので、Aおよびa点までのひずみのほとんどは、 型からの摩擦拘束によるものと考えられる.

Fig.4 Relationship between degree of cure, temperature and processing time for each molding condition

図4に、樹脂の温度と硬化度を、成形時間に対してプロットしたグラフを示す.図4から、昇温速度1.0℃/min.の成形条件では加熱開始から95分、88.5℃で、2.5℃/min.では54分、97.4℃で硬化度0.686に達することが分かった.すなわち、昇温速度1.0℃/min.では温度が100℃に達する前に、繊維が樹脂に拘束されることが分かる.そこで、硬化度0.686 でのひずみを0として、ひずみの評価を行った.図5に、硬化度0.686からのひずみ変化を成形時間に対して示す.また、図中には先行研究²⁾で得られたFEM解析による繊維に生じるひずみの予測結果も併せて示す.

Fig.5 Measured and simulated strain of fiber of GFRP during molding

図5より,昇温速度2.5℃/min.の場合は測定値と解析結果が ほぼ一致していることが分かる.一方で,昇温速度1℃/min の場合は,測定値と解析結果にはいくらか差が見られた.こ の差は,硬化度が0.686に達した後,温度が100℃一定に達す るまでに生じる樹脂の熱ひずみと硬化収縮に起因するもので あり,成形中の熱変形の物性値については見直す必要がある. 温度が一定になった後では,昇温速度2.5℃/minの場合でも実 験結果と解析結果はよく一致していることが分かった.

実験結果と解析結果はどちらも、昇温速度が遅いほど成形 残留ひずみが小さくなることを示していた.この理由は、昇 温速度が遅いほど、100℃に達した時の硬化度が大きくなり、 その結果 100℃に達するまでに生じる引張ひずみが大きくな り、100℃に達した後に生じる硬化収縮によるひずみが小さく なるためである.

成形終了後の残留ひずみは,昇温速度 2.5℃/min.の場合は測 定値が-302µε,解析値が-301µε となり,昇温速度 1.0℃/min. の場合は測定値が-233µε,解析値が-289µε となった. つま り,硬化までの加熱温度時間を 60 分延長することによって, 熱残留ひずみが測定値では 23%,解析結果では 4.0%小さくな ることが分かった.

4. 結言

本研究では2種類の成形温度パターンで GFRP の強化繊維 に生じる成形ひずみの測定を行った.その結果以下のことが 分かった.

- (1) 成形時の昇温速度は GFRP の繊維に生じる硬化ひずみに 影響を与え,昇温速度が小さいほど成残留形ひずみは減 少する.
- (2) 測定された繊維に生じる成形誘起ひずみの履歴は,FEM 解析による予測とよく一致した.しかし,硬化中の樹脂 の熱膨張物性についてはより詳細な検討が必要である.

参考文献

(1)高坂達郎, 逢坂勝彦, 澤田吉裕, "FBG センサを用いた樹 脂のポストキュア過程のモニタリング", 日本機械学会論文 集, Vol.60,No.5(2011),pp.432-438.

(2) Kosaka Tatsuro, Kusukawa Kazuhiro, Yamazaki Heiya, "FEM simulation and experimental evaluations using an FBG sensor of process-induced strain of reinforcements of FRP", ICMP2017-469.

謝辞

本講演会は JSPS 科研費 16K05985 の補助により開催いたします.