Study on functionally graded PNN-PZT piezoelectric ceramics using electrophoretic deposition

1. 緒言

E電セラミックスは機械エネルギーと電気エネルギーと の相互変換が可能であり、センサー、アクチュエータ等に広 く使われている. 圧電セラミックスを用いたアクチュエータ のうちバイモルフ型と呼ばれるものは、二枚の圧電セラミッ クスの間に弾性体を挟み込んで接合した構造を有しており、 電圧の印加をすることで逆圧電効果により両面の圧電セラ ミックスが伸縮変形することで、大きな屈曲変位を出力する. しかし、圧電セラミックスと弾性体は異種材料なので接着部 が異種材料界面となり、繰返し変形させると、その界面での 応力集中により、剥離や圧電体の破壊、損傷などが生じる. このため長期使用に対する信頼性の低下が問題となってい る. このような問題に対し、材料を傾斜機能化することによ り界面を取り除き、かつ圧電セラミックス単体で屈曲変位を 出力するようなモノモルフ型アクチュエータの研究が行わ れている.

電気泳動堆積法(EPD)は、液体中に粒子を混合した懸濁 液に電極を介して外部電界を印加することで、帯電した粒子 をクーロン力より電極表面に引き付け堆積させる方法であ る.この方法では簡易な装置で大面積や複雑な形状を有する 基板上に物質を堆積させることが可能である.これを応用し、 圧電特性の異なる圧電セラミックスを順次堆積させ、焼結さ せると、傾斜機能圧電体が作製可能である.

本研究では EPD を用いて傾斜機能圧電セラミックスのプロセスを探索し,確立させる.また,作製された傾斜機能材の材料特性を評価し,さらに傾斜機能モノモルフ型アクチュエータを作製して,その駆動特性を調査した.

2. 材料および実験方法

2.1 材料

使用した材料は研究室で作製したリラクサ型強誘電セラミ ックス 0.55Pb(Ni_{1/3}Nb_{2/3})O₃-0.45Pb(Zr_{0.3}Ti_{0.7})O₃(PNN-PZ T) (以 下 A材), 0.3Pb(Ni_{1/3}Nb_{2/3})O₃-0.7Pb(Zr_{0.44} Ti_{0.55})O₃(PNN-PZT) (以 下 B 材)を用いた.両材料とも原料粉として酸化鉛 Pb O,酸化ジルコニウム ZrO₂,酸化チタン TiO₂,酸化ニッケル NiO,酸化ニオブ Nb₂O₅ を使用した.ポットミルを用いて, 化学量論的に計量した各材料粉と無水エタノールを加えて 48 時間以上湿式粉砕した.ただし,Pb が蒸発することを考 慮し,PbO 混合量を 3wt%増加させた.粉砕後,エタノール を蒸発させ,乳棒で粉砕を行い,900℃,4 時間の仮焼きを行 った.仮焼き後,再度乳棒で粉砕を行った.なお,通常の加 圧成形により作製した各材料の圧電定数 d₃₃ と仮焼きおよび 焼結条件を表1に示す.

また,両材料のX線回折(XRD)の結果を図1に示す.各材料にペロブスカイト構造のピークが確認できたが,B材はペロブスカイト構造のピーク以外にパイロクロア(Nb2Pb2O7)の

Table 1 Plezolectric constant of materials			
	<i>d</i> ₃₃	Calcined	Sintering
Α	570pC/N	900°C/4h	1200°C/6h
В	39pC/N		

知能機械システム工学コース 機能性材料工学研究室 1205033 上田翔平

(222), (400)面ピーク(*印)が存在した.

2.2 実験方法

EPD による成膜実験装置の模式図を図 2 に示す. 懸濁液は 材料粉 A 材または B 材 2.5g とエタノール 50ml を混合し、 後述するヨウ素を添加したものを用いた. 電極基板は L 字形 の銅板を用い,電極面積を 10×20mm とした. 成膜前に超音 波洗浄器により懸濁液を攪拌し,堆積させる陰極板を陽極板 の真下になるよう配置させ,電極間の距離を 10mm とし,直 流電圧 200V を印加した. 傾斜機能化を図るため,最初 B 材 100%の懸濁液を 2 分毎に A 材 100%の懸濁液と 10ml ずつ入 れ替えて堆積させた. 合計 10 分の堆積堆時間とした. 堆積 後,陰極板上の材料を乾燥させた後に基板から分離し,焼結 させた.

Fig.2 Schematic illustration of electrophoretic deposition system

3 実験結果

3.1 ヨウ素エタノール溶液の添加

懸濁液中の溶媒はエタノールを使用している. 懸濁液に適 量のヨウ素エタノール溶液を添加すると、粒子表面に正電荷 が増加し、静電反発力が大きくなり、分散しやすくなる. 図 3 は A 材および B 材の懸濁液にヨウ素を約 16%配合させた ヨウ素エタノール溶液を添加したときの堆積量の平均と標 準偏差を示している.両材料の懸濁液ともヨウ素エタノール 溶液 30µl を添加すると堆積量が最大になった.過剰にヨウ 素エタノール溶液を添加すると、堆積量が低下し、さらには 回路の短絡が生じた.

Fig.3 Relationship between amount of deposition and iodine ethanol solution

3.2 XRD

図4は二種類の材料を混合させ, EPD で作製した単層材の XRD の結果を示す.各単層材もペロブスカイト構造のピー クが存在した.また,A材の割合が増加するにつれて(101)面 ピーク強度が増大し,そのピーク強度が(222)面ピーク強度よ りも大きくなる傾向が見られた.

Fig.4 XRD analysis of mixed material

EPD で作製した傾斜機能材の厚さは約 1.3mm であった. 材料の上面を B=100 の面とし,その面を 0.2mm ずつ研磨し て,それぞれの上面を XRD で測定した.図5はそれぞれの 面での XRD の結果(25°≤20≤40°)を示し,単位の付き数値は 研磨量とする.材料の上面を研磨するとA 材の割合が増加す るため,(101)面ピーク強度の割合が大きくなる傾向が見られ た.しかし,図6で示す(101)面ピークを注目したとき,その ピーク強度は研磨量 0.8[mm]の面が最も大きくなり,その後 研磨すると(222)面ピーク強度に対する(101)面ピーク強度の 割合が低下する傾向になった.この原因としては EPD によ って作製した材料の厚みが一様ではないためと考えられる.

このように傾斜機材と単層材を比べると回折角に対する ピーク強度の変化において同様な傾向が現れているため,傾 斜機能化していると考えられる.

3.3 傾斜機能モノモルフ型アクチュエータ

EPD によって作製した傾斜機能圧電セラミックスの表裏 面に銀電極を焼き付けた.この材料(12×7×1.89mm)を

2kV/mm, 1h 分極処理を行い, 片持ちはりアクチュエータを 作製した. これに±500V の交流電圧を負荷し, 周波数を 150Hz から 2.5kHz まで変化させ, アクチュエータの先端の 変位をドップラー振動計で測定し, 図 7 はたわみと周波数と の関係を示す. 周波数を変化させた場合, 2.2kHz 付近におい て共振と考えられるピークが生じた.

Fig.7 Relationship between maximum deflection and frequency

4. 結言

- (1) EPD の条件において重要な要素となるヨウ素を約 16%配 合させたヨウ素エタノール溶液の添加量 30µl が最適な条 件となった.
- (2) EPD 懸濁液の濃度を変化させていくことで傾斜機能圧電 セラミックスを作製することができた.
- (3) 周波数を150Hzから2.5kHzまで変化させた場合,2.2kHz 付近で変位振幅が見られた.このときの最大変化0.55μm を得た.